## Summary of last lecture

 We discussed the impact of nuclear physics in the search for dark matter

Otherwise: neutrino physics

 We discussed as applications: nuclear reactor and nuclear bombs

## Letcure 6: Stellar fusion and neutron stars: nucleosynthesis

Jan Conrad

# Abundance of elements in the solar system



## **Fusion**



#### Coulumb barrier

$$V_{\rm C} = \frac{1}{4\pi\varepsilon_0} \frac{ZZ'e^2}{R + R'},$$

$$V_{\rm C} = \left(\frac{e^2}{4\pi\varepsilon_0\hbar c}\right) \frac{\hbar c Z Z'}{1.2 \left[A^{1/3} + (A')^{1/3}\right] \, {\rm fm}} = 1.198 \frac{Z Z'}{A^{1/3} + (A')^{1/3}} {\rm MeV}.$$

 $V_{\rm C} \approx 0.15 A^{\frac{5}{3}} \, {\rm MeV}.$ 

 $A \sim 8 \rightarrow V_c \sim 4.8 \text{ MeV}$ 

## Overcoming the Coulomb barrier

- Colliding beams would be elastically scattering
- Confined, heated plasma were the thermal energy can be large enough to overcome the Coulomb Barrier.

T ~8 MeV/k  $\rightarrow$  T~10<sup>10</sup> K Stellar interiors seem not hot enough (10<sup>7</sup> K)

Eddington: ".... go and find a hotter place".

## Anything to the rescue?

- Tunneling → Gamow-factor
- Maxwell-Boltzman distribution → high E tail.



## Tunneling and Maxwell-tail



- Tunneling effect rises for high energies,
   Maxwell tail gets enhanced
  - → Appreciable fusion rates possible in stars







## Recap

- Big bang creates <sup>1</sup>H, <sup>4</sup>He and some <sup>3</sup>Li
- Massive stars create all elements (in a fusion process) from <sup>7</sup>Li to <sup>56</sup>Fe.
- Once <sup>56</sup>Fe is produced no more energy can be gained → stellar core collapse → Core Collapse
   Supernova
- 99% of gravitational energy radiated in neutrinos
- Remnant: white-dwarf, neutron star or black hole

## Neutron star properties

- 1.2-2 M<sub>solar</sub>
- R= 8-13 km
- Densities:  $^{10^{14}}$  g/cm<sup>3</sup>  $\rightarrow$  nuclear matter
- White dwarfs: supported by "electrondegeneracy pressure"
- Neutron stars: supported by "neutrondegeneracy pressure"

## Electron degeneracy pressure

- Pauli principle: electrons can not occupy identical states.
- Chandrasekar limit: for M < 1.4 M<sub>solar</sub> electrondegeneracy pressure halts collapse → white dwarf.

$$P_g = -\frac{\partial E}{\partial V} = -\frac{1}{5}G(NM_N)^2 \left(\frac{4\pi}{3}\right)^{\frac{1}{3}} V^{-\frac{4}{3}}$$

$$P_e = \frac{\pi^3 \hbar^2}{15m_e} \left(\frac{3N_e}{\pi}\right)^{\frac{5}{3}} V^{-\frac{5}{3}}$$

## Neutron degeneracy pressure

 Above the Chandrasekar limit, the gravitation collapse can continue and form neutron stars

How?

$$\Delta \rho \Delta x \ge t$$
 $P^{mi} \ge t_{\Delta X}$ 
 $\Delta x \sim m^{-\frac{1}{2}}$ 
 $P_F \ge t_{M} m_X^2$ 
 $P_F \ge t_{M} m_X^2$ 
 $Non relativiste$ 
 $Non relativiste$ 
 $Non relativiste$ 

M-SP+E+ Te



At some point, muchin become so neutro-mil runleus (mentra druji) => ~ O (1011 25) => muchi "ourmany" in the real of

We are still far above the densities observed in neutron stars  $\rightarrow$  collapse continues  $\rightarrow$  as you confine neutrons in a volume their Fermi-energy increases  $\rightarrow$  this Fermi-energy will (a) counteract the gravitational collapse and (b) allow neutrons to form new types of particles (e.g. hyperons)  $\rightarrow$  neutron-only stars is a simplification.

#### Neutron star

 If we assume neutron stars to be bound nuclear matter, we should be able to calculate how large mass "nucleus" you need to get a bound system → Bethe-Weizsäcker formula

Look at SEMF, case 
$$z=0$$
,  $A=N$ 
 $S=a_vA-a_sA^{2/g}-a_cO-a_a$ 
 $A=0$ 

A

add a gravitational form  $B_q=\frac{3}{5}G\frac{M^2}{R}$ 
 $M=A\cdot M_n$ ,  $R=R_sA^{1/g}=\frac{M^2}{R_sA^{1/g}}=\frac{A^2M_n}{R_s}=\frac{M_n^2}{R_s}$ 

$$B = a_{v} A - a_{s} A^{2/9} - a_{a} \frac{1}{4} A + \frac{3}{5} \frac{G}{R_{o}} M_{n}^{2} A^{5/3}$$

$$= (a_{v} - \frac{1}{4} q_{a}) A + \frac{3}{5} \frac{G}{R_{o}} M_{n}^{2} A^{5/9}$$

$$= 7,73 \text{ MeV}$$

$$\frac{3}{5} \frac{6,67.10}{1,2.10^{15}} \frac{1}{10} \frac$$

We see that B < 0 (unbound) antil A becomes (solve for B=0): -7,77 A + 5,8/0 A = 0  $-3,73+5,8.10^{-37}A^{2/3}=0 \Rightarrow A=\left(\frac{7,73}{5,8.10^{-37}}\right)^{5/2}=$ 8 10 6 So, the SEMF (parameters littled to nuclei with A = 20 to -240) predicts nuclei with only neutrom to be bound if A 2 1056

## s-process/r-process

 The standard process of heavy-element nucleosynthesis (beyond A ~ 60) is the so called s-process (slow neutron capture)

 rapid neutron capture (r-process) occurs in environments with high density of free neutrons (temperature dependent) (10<sup>24</sup>/cm<sup>3</sup>)

## Solar abundance: nucleo-synthesis



two neutron capture processes in nature:

- rapid n-capture ("r-process")
- slow n-capture ("s-process")

Do we have environments that provide neutron-rich environments, where the r-process could happen?

Neutron stars seem a very good candidate.

What does the 2017 detection of gravitational waves have to do with the nucleosynthesis of heavy elements?

## GW+EM 170817: the first multi-messenger observation of a neutron star merger



first detection GW150914: a merging black hole binary system with (36 + 29) M<sub>☉</sub>

+

four more BH binaries



2017 Nobel Prize in Physics

## Neutron star merger

 If we could identify a neutron star merger and observe it, could we learn about the rprocess?

 Observation of electromagnetic radiation from the radioactive decay of r-process elements!
 In the best case, we'll have the bolometric lightcurve

## Gravitational wave detection and the synthesis of heavy elements



S. Rosswog et al. (2017)

"electron fraction" 
$$Y_e = \frac{\# \text{ protons}}{\# \text{ nucleons}} = \frac{\# \text{ electrons}}{\# \text{ nucleons}}$$

#### The Origin of the Solar System Elements



Astronomical Image Credits: ESA/NASA/AASNova

## Summary of today's lecture

- We discussed nucleosynthesis: fusion and neutron stars.
- Most elements up to iron are produced by fusion in massive stars.
- Most elements above iron require som kind of neutron capture: either slow or rapid neutron capture.
- Neutron star collisions as site of significant rapid neutron capture have just been recently proven.