Summary lecture 3

 \We have covered the basics of nuclear models
(Fermi-Gas-model, Shell model, Collective
model)

* The shell model was able to predict magic
numbers after (a) Woods-Saxon and (b) spin-
orbit coupling was introduced.

* Excited states = vibrational/rotational
degrees of freedom.



The shell model

* Assume spherical nuclei and potential

* Consider spin and angular momentum
gquantum numbers

* Properties of the nucleus determined only by
the unpaired ("valence”) particle.



Spin orbit coupling

Viotal = Vccn[ml{*"} | V;"_HI:F}IL -,

The total potential is the Woods-Saxon potential with an added term that
provides a coupling between the nucleons spin and it’s angular
momentum.



Differences between atomic and
nuclear shell models

e Spin-orbit interaction much stronger in nuclei

* Opposite sign to the atomic case (spin-orbit
coupling is attractive)

e Spin-orbit coupling not magnetic, but rather
inherent to nuclear force.



The collective model

 The collective model combines the shell
model with the liquid drop model.

* The outer valence nucleons are viewed as the
surface molecules of a liquid drop

* Asphericity: vibrations and rotations can lead
to additional excited states.



Lecture 4: Decays revisited



Decay’s considered

* o decay (strong force)
* B decay (weak force)
* v decay (electro-magnetic)




o decay

(typically for nuclei 82 < Z < 92)

[(A.2) > (A-4,Z-2) + o]

Needs to be energetically allowed:

[Qu = [M(A,Z) - M(A-4, Z-2) - M(*He)]c? > 0]
Jv (A, Z) absorbed (negative Q) in t

ground state

Q-value < o decN

(A-4, Z-2)

ground state

Large spread in half-lives: ns ~ 107 years. Especially the longer half-llives
motivate modelling as a tunneling processa tunneling process.



V(r)

o decay: tunneling

Coulumb potential of
the daughter nucleus
othic
V=27 —
N — ¢ r
‘G o

How does this relate
to the large spread o




o decay: transition probability

T — e G

e Gamow factor:

Fe
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R
* Derived by considering the Coulumb-

barrier as a succession of thin barriers
of height V(r).



o decay: Geiger Nutall relation

The transition probability (which is a function of the Coulomb barrier
height and o particle energy)can be used to find a relation between
lifetime (~ transition probability) and energy of the o particle (~Q value).
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B decay: Transition rates and
spectrum

* The transition rates are determined by the
”"Fermi Golden Rule”
ZTF ) :
~[M| n(E).
/ AN

Matrix element

Density of states



B decay: Transition rates and
momentum spectrum

My = [ W7 (g0)W; d’x.

Type of interaction reflects in transformation

of operator. In a scalar interaction the

operator will be a simple an integral over the
potential that affects the state.

Name Symbol | Current | Number of components | Effect under Parity
Scalar S ) 1 |
Vector \Y% Uy 4 (4-4-0-)
Tensor T ot 6
Axial Vector A YyRyOY 4 (+,+,+,+)
Pseudo-Scalar P R 1 -

= [yevy, do



Fermi-theory

proton p+  glectron . proton ,, electron

antineutrino

antineutrino 7, e
W.
M= GF(Upl"un)(GeI"u\,) 1
M=G(U0.Fu)— 5 (0.T
(Ul 0y M2 - ) (@ Tuy)

heutron = neutron

a. Fermi's 4-point Interaction, 1934 b.Weak Interaction mediated by boson, 1938



Fermi theory

* We consider a point-interaction = extremely
short range Yukawa potential 2 constant

Gr/(hic)” = 1.166 x 1075 GeV~2.

/ Fermi Coupling
GF constant
Mg =
\ Normalisation of
wave function
4T(ﬁ£} (@AWY
GF Y\ 2
(Mwc-)

Measured in muon
decay




Fermi theory

* Since the matrix element is a constant, the
crucial quantity is the density of the states
factor



B decay: spectrum
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B decay: spectrum
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B decay and the neutrino: the Kurie
plot
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v decay

* Asy decay Is a electromagnetic process, total
angular momentum and parity are conserved

&,

ground state

e electric (E) transitions (oscillating charges)
* magnetic (M) transitions (varying currents)



v decay: selection rules

Photon carries away momentum L.

Ji =0 -> Jr= 0 1s strictly forbidden, because photon
IS a spin-1 vector meson (Minimum L ==1)

=1: dipole, L=2: quadrupole, L=3: octupole ..
M2: magnetic dipole radiation, E2: electric dipole

Ji=J L Jitdy = L= Ui Uy

electric radiation: (-1)', magnetic radiation (-1)'*!



v selection rules

Table 7.1 Selection rules for ~ emission

Multipolarity Dipole Quadrupole Octupole
Type of radiation El MI E2 M2 E3 M3
L 1 1 2 2 3 3
AP Yes No No Yes Yes No




v decay: transition rates

* Transition rates can be calculated in the shell
model.

» General features: rates decrease with L,
electric transitions several dex. more probable
than magnetic.

I'.(E1) = 0.068E°A%": T (M1) = 0.021E°: T.(E2) = (4.9 x 107" )E° A%/,



Transition rate 7 (s™)

v decay: transition rates
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Virtual vy

* Energy conversation can be violated for a very
short time (Heisenberg uncertainty principle).

- Internal conversion (electron emitted)

and internal pair production
(electron-positron pair emitted)



EOQ de-excitation
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Figure 10.10 Energy levels in "*Ge.



Summary of today’s lecture

* We discussed a-decay theory, p-decay theory
(Fermi-theory) and y-ray theory

* We scetched the derivation of the electron
spectrum for B-decay from Fermi-theory (main
assumption: point-like interactions, short range
Yukawa coupling, no Fermi screening), which
IS determined by the phase space factor.



Summary of today’s lecture

* Geiger-Nutall relation for a-decay
— relates half lives to Q-value

* Fermi-Kurie relation for p-decay

— deviation can point to ’new’”’ physics, e.g. neutrino
mass

* Selection rules for y decays

— According to angular momentum and Parity
conservation (n.b. internal conversion, internal
pair production)



