Lecture 2: Decays and Reactions



Summary of last lecture

* Unlike particle physics, nuclear physics
considers multi-body, composite objects 2
phenomenolgical modelling 2 many
applications.

* Typical sizes of nuclei: ~fm,
Typical energies “"MeV,
Typical densities: 10*g/cm?3




Summary of last lecture

* The charge distribution (and size) of a nucleus
can be experimentally determined by

measuring the angular distirbution of electron
scattering

 The mass distribution can be determined by
scattering of a particles (the original
Rutherford scattering experiments)
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Summary of last lecture
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[ B(AZ)=aA—a A" -

Note (different notation

a, = 15.6 MeV .
a.= 17.2 MeV used by MANY authors):
a, = 23.3 MeV

= 0.70 MeV - change in notation for

assymetry term (x 4 for
the coefficient)

- o= f(A) — If?SA_lT



Open points

* Assymetry term vs. pairing term.
* Short range of nuclear force versus QCD.



Assymetry term vs. Pairing term

* Assymetry term: N==/.

— Reason: Pauli-principle—>symmetry in the strong
force (protons and neutrons respond the same) 2
”lso-spin pairs”

* Pairing term: N even, Z even:

— Reason: Pauli principle = protons come in pairs of
opposite spin, neutrons come in pairs of opposite
spin = unpaired proton, neutron = reduced
binding energy



Nuclear force vs. QCD
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Nuclear stability

Distribution of stable nuclei

A N Z number of stable nuclei
Even even even 166

odd odd 8
QOdd even odd 57

odd even 53

Remaining ~ 2300 nuclides are UNSTABLE!

What are the determinants of nuclear stability?
How do nuclei decay?

How do nuclei interact?



Nuclear decay modes

Nuclear decay modes classified according to force causing the change

Strong force = nucleus loses material (o decay, fission)
Weak force =  changes proton/neutron ratio (B decay)
Electromagnetic force = de—excitation by y-ray emission

(can you relate this to lifetime)?
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Q-value

* Q- valueis defined as the energy released in a
nuclear reaction, e. g. adecay:

%Elﬁ'l _}%_-g}:il_..z _I:_ {I

Q= (my—my —m,)c*

* Allowed decays will have positive Q-values.



Radioactive decay
* Activity:

"’/ —dN f.rJldf AN

A. decay constant (stays constant in time)
Units: 1 Becquerel (Bg) = 1 decay/second, 1 Curie (Ci) = 3.7x10*° Bq

* Time dependence (exponential decay law):

’/I{f} ;\N{}CK[’J[—A”.



Lifetime and half-life

X

L [ 1 exp[—Ar] ds
L ,_:.deNU) 0 1
Mean lifetime: = J dN(7) % N

[ exp[—At] dr

Half-life: hyy=—= 7in 2.



Example: decay chain

1St — Rb +e™ 4+ 1, (2.25 min)
L PKr + et + 1, (22.9 min)
L PBr+e™ + 1, (35.04 hours)

http://periodictable.com/Isotopes/035.79/ind
ex.p.full.html

Did the binding energy increase or decrease?
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Decay chains
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Beta-decay

Il ¥ J” | & | HE: Beta decay

P — N+ e’ -+ /.. Positron emission

I I 1 111
Sh SUSH + UV, Electron capture



Beta-decay scheme

Decay scheme:

(A, Z-1)

~ ground state

> Qg. value

1 A Z+1
Q. value { 5r‘+:-und -s.m’r)e

(A, 2)

ground state

We will get to this later ("Fermi-theory of beta decay”).



Q-values of B+/B- decays

Exercise: repeat this for B-decay



Mass parabolas

M(A,Z)c2=aA +bZ +cZ2+ 6 (AZ)
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Double B decay

Bk Measurement of the Two-Neutrino Double Beta
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 There is a large experimental effort to search for the neutrino-
less double f decay which would have profound consequences
for neutrino physics (neutrino mass).



The valley of stability
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a-decay

* Alpha decay is a special type of fission that
results in the emission of a Helium nucleus

AX—) Y+2a

* This decay is most prevalent among nuclei
with 82 <Z <92, A > roughly 150. This can be
derived by the B-W formula (approx. N=2)
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Alpha decay spectrum of 22°Ra and daughters
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Gamma decay

* [(-decay happens in nuclei
because the nucleus is not in the
energetically most favored state.

* - and a-decays lead to excited
nuclear states o enersy |

. nucleon (or cluster)
H"""‘-\

i

e De-excitation can lead to
gamma-ray emission (keV-MeV
energies) = certain selection
rules that can be understood
within the shell model

gamma ray

ground state

9 C h 7 What degrees of freedom could you speculate?
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Figure 8.12 y-ray spectrum of “*'Fm in coincidence with all a decays in the
range 6.0 to 7.7 MeV. The spectrum was obtained with a Ge(Li) detector.
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Consider 238U - 119pd+119p(d
Q=-238 * (7.6 MeV) + 2*119* (8.5 MeV) = 214 MeV

What are these energies here?



Is this a lot?

 Coal burning: C+0O, = CO,
« 2 10°J/g

* 214 MeV *N,/238g/mol * 1013 J/MeV
« 210 J/g

Clearly, nuclear fission seems to be an efficient source of energy



Spontaneous fission

Break-up of nuclei without external action

Daughters are of approximately equal mass
(~difference of about 45 in mass number)

Daughters usually B- decay into stable state.
For even heavy nuclel, the half times are

Ore

ers of magnitude longer than e.g. o decay

EX

perimentally spontaneous fission Is

observed in heavy nuclei, can this be
understood from the B-W formula? Not really.



Spontaneous fission

* Spontanoues fission seen as a result of an
extreme deformation of the nucleus.

* |s there a situation where the spherical
nucleus is not the energetically favoured
situation (nucleus would then prefer to be in a
non-spherical state) ??

* From the B-W formula this becomes a
competition between the Coulomb and
Surface terms.



Spontaneous fission

N
SN

Figure 2.14 Deformation of a heavy nucleus

AE = (E; + E) = (Es + Ec ey %(MA%—HFZ?A‘T). > —— = 49,

In reality heavy nuclei are non-spherical already in the ground state, which leads

to some double counting. Exercise: redo this exercise
only considering split in 2



Spontaneous fission
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energy and decrease in Coulumb energy
—> Coulumb barrier



-
-

log, Jlspontancous fission half-life (y)] -

20

I I I I
B 236 234 7
238
| o0 _
16 ® o
| U ® -
12 242230233 —
L 2444 O 0 r:%35 ) |
- 250 248 =
250m W™ 246 |
4 }— * 50 - 259 _
0 540 ' —
254m 2 248
- 0 254 _ -
4 |- Cf 250 A _|
A
i Fm 256 252 _
8- 262 260 258 260 258
- 2584 A ¢ e -
-12 - Db 2‘24 Rf __
No
. I_ —
16 I I | I I | I I
L3 36 37 38 39 40 41 42 43 44
' Z%/4
7 :
Z° 2a,
-~ 49,
A d,

We will talk about induced fission in the lecture about
applications of nuclear physics.



Nuclear reactions

* Direct reactions (transit time ~interaction time
(10-%%s )
— elastic,inelastic scattering
— Pick-up, stripping

m(')(:;;l. d) O p+1°0 — d+ 0.

We already considered
one of the direct
reactions, which one?



Nuclear reactions

* Compound reactions
— probe becomes loosely bound to the nucleus

— energy of the probe gets distributed to all
constituents, time-scale 10-1>-10-16s

Energy Cc*

[} o
a+A Y j




Cross-section, compound reactions

Total cross-section (b)

Neutron kinetic energy (MeV)
AEAt > h. _
Neutron- Uranium
compound reactions will be

important when considering
induced fission.

Total cross-section (b) ?
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Compound nuclear reactions

[ncident
- *1 Compound nucleus
protons
Direct
reactions Y = Elastic °Y (p,p)Y
Y » Inelastic °Y (p,p’)°Y

| . Pick-up %Y (p,d)*'Y
clc. elLc.




Summary of today’s lecture

 We had an initial discussion of decays and

reactions (we will revisit this subject in the
next-to-next lecture)

* Introduced: half-life (decay-constant) and
decay chains and Q-value

* Discussed initially: B decay, o decay, y decay,
spontaneous fission.



3-decay

* |s arguably the most important decay mode

* Using the B-W formula and -decay we can
derive the valley of (3 stability (€ mass
parabolas)



a-decay/Fission reactions

* o decay: prevalent to high mass nuclei, can be
derived from B-W formula

* Spontaneous fission: can be derived from
considering deviations of nuclei from spherical
shape.

* Nuclear reactions: direct (like in particle
physics, new particles can be found), capture
(compound reactions).



Next lecture

Nuclear models.



