Lecture 2: Decays and Reactions

Jan Conrad

Summary of last lecture

- Unlike particle physics, nuclear physics considers multi-body, composite objects → phenomenolgical modelling → many applications.
- Typical sizes of nuclei: ~fm,
 Typical energies ~MeV,
 Typical densities: 10¹⁴g/cm³

Summary of last lecture

- The charge distribution (and size) of a nucleus can be experimentally determined by measuring the angular distirbution of electron scattering
- The mass distribution can be determined by scattering of α particles (the original Rutherford scattering experiments)

$$R = r_0 A^{1/3}$$

r₀ ~ 1,2 fm

Summary of last lecture

$$B(A,Z) = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_a \frac{(A-2Z)^2}{A} + \delta(A,Z)$$

a_v = 15.6 MeV a_s = 17.2 MeV a_a = 23.3 MeV a_c = 0.70 MeV Note (different notation used by MANY authors):

 change in notation for assymetry term (x 4 for the coefficient)

$$- \delta = f(A) = a_5 A^{-\frac{1}{2}}$$

Open points

- Assymetry term vs. pairing term.
- Short range of nuclear force versus QCD.

Assymetry term vs. Pairing term

- Assymetry term: N==Z.
 - Reason: Pauli-principle→symmetry in the strong force (protons and neutrons respond the same) → "Iso-spin pairs"
- Pairing term: N even, Z even:
 - Reason: Pauli principle → protons come in pairs of opposite spin, neutrons come in pairs of opposite spin → unpaired proton, neutron → reduced binding energy

Nuclear force vs. QCD

• Nuclear force ≠ QCD

 Nuclear force: adequately described by meson exchange

Nuclear stability

Distr	ribution of st	able nucle	i
A Even	N even odd	Z even odd	number of stable nuclei 166 8
Odd	even odd	odd even	57 53
	Remaining ~	2300 nucl	ides are UNSTABLE!

What are the determinants of nuclear stability?

How do nuclei decay?

How do nuclei interact?

Nuclear decay modes

Nuclear *decay modes* classified according to force causing the change

<u>Strong force</u>	\Rightarrow	
Weak force	\Rightarrow	
Electromagnetic force		

nucleus loses material (α decay, fission) changes proton/neutron ratio (β decay) de–excitation by γ –ray emission

Q-value

Q- value is defined as the energy released in a nuclear reaction, e. g. αdecay:

$${}^{A}_{Z}X_{N} \rightarrow {}^{A-4}_{Z-2}X'_{N-2} + \alpha$$

$$Q = (m_{\mathbf{X}} - m_{\mathbf{X}'} - m_{\alpha})c^2$$

• Allowed decays will have positive Q-values.

Radioactive decay

• Activity:

$$\mathscr{A} = -\mathrm{d}N/\mathrm{d}t = \lambda N,$$

λ: decay constant (stays constant in time) Units: 1 Becquerel (Bq) = 1 decay/second , 1 Curie (Ci) = 3.7x10¹⁰ Bq

• Time dependence (exponential decay law):

$$\mathscr{A}(t) = \lambda N_0 \exp(-\lambda t),$$

Lifetime and half-life

Mean lifetime:
$$\tau \equiv \frac{\int t \, dN(t)}{\int dN(t)} = \frac{\int_{0}^{\infty} t \, \exp[-\lambda t] \, dt}{\int_{0}^{\infty} \exp[-\lambda t] \, dt} = \frac{1}{\lambda}.$$

Half-life:
$$t_{1/2} = \frac{\ln 2}{\lambda} = \tau \ln 2.$$

Example: decay chain

http://periodictable.com/Isotopes/035.79/ind ex.p.full.html

Decay chains

Beta-decay

$$n
ightarrow p + e^- + ar{
u}_e;$$
 Beta decay $p
ightarrow n + e^+ +
u_e,$ Positron emission

 $e^- + {}^{11}_{51}\text{Sb} \rightarrow {}^{111}_{50}\text{Sn} + \nu_e$ Electron capture

Beta-decay scheme

We will get to this later ("Fermi-theory of beta decay").

Q-values of $\beta + \beta$ - decays

Man defect: $\Delta m = [M_{X} - zme] - [(M_{Y} - (z-1)me) + me]$ $= M_{X} - M_{Y} - 2me$ $(\chi = (M_{X} - M_{Y} - 2me)c^{2}$

Exercise: repeat this for β -decay

Mass parabolas

Double β decay

Go to chart

• There is a large experimental effort to search for the *neutrinoless double* β *decay* which would have profound consequences for neutrino physics (neutrino mass).

The valley of stability

$\alpha\text{-decay}$

• Alpha decay is a special type of fission that results in the emission of a Helium nucleus

$$_{Z}^{A}X \longrightarrow _{Z-2}^{A-4}Y + _{2}^{4}\alpha$$

 This decay is most prevalent among nuclei with 82 < Z < 92, A > roughly 150. This can be derived by the B-W formula (approx. N=Z)

Gamma decay

- β-decay happens in nuclei
 because the nucleus is not in the energetically most favored state.
- β and α -decays lead to excited nuclear states
- De-excitation can lead to gamma-ray emission (keV-MeV energies) → certain selection rules that can be understood within the shell model

 \rightarrow ch. 7

What degrees of freedom could you speculate?

Figure 8.12 γ -ray spectrum of ²⁵¹Fm in coincidence with all α decays in the range 6.0 to 7.7 MeV. The spectrum was obtained with a Ge(Li) detector.

Fission

Consider ²³⁸U → ¹¹⁹Pd+¹¹⁹Pd Q= -238 * (7.6 MeV) + 2*119* (8.5 MeV) = 214 MeV

What are these energies here?

Is this a lot?

- Coal burning: $C+O_2 \rightarrow CO_2$
 - \rightarrow 10⁵ J/g
- 214 MeV *N_A/238g/mol * 10⁻¹³ J/MeV
 →10¹¹ J/g

Clearly, nuclear fission seems to be an efficient source of energy

- Break-up of nuclei without external action
- Daughters are of approximately equal mass (~difference of about 45 in mass number)
- Daughters usually β decay into stable state.
- For even heavy nuclei, the half times are orders of magnitude longer than e.g. α decay
- Experimentally spontaneous fission is observed in heavy nuclei, can this be understood from the B-W formula? Not really.

- Spontanoues fission seen as a result of an extreme deformation of the nucleus.
- Is there a situation where the spherical nucleus is not the energetically favoured situation (nucleus would then prefer to be in a non-spherical state) ??
- From the B-W formula this becomes a competition between the Coulomb and Surface terms.

Figure 2.14 Deformation of a heavy nucleus

$$\Delta E = (E_s + E_c) - (E_s + E_c)_{\text{SEMF}} = \frac{\varepsilon^2}{5} \left(2a_s A^{\frac{2}{3}} - a_c Z^2 A^{-\frac{1}{3}} \right). \quad \longrightarrow \quad \frac{Z^2}{A} \ge \frac{2a_s}{a_c} \approx 49,$$

In reality heavy nuclei are non-spherical already in the ground state, which leads to some double counting.

Exercise: redo this exercise only considering split in 2

Binding energy varies due to increase in surface energy and decrease in Coulumb energy → Coulumb barrier

We will talk about induced fission in the lecture about applications of nuclear physics.

- .

Nuclear reactions

- Direct reactions (transit time ~interaction time (10⁻²²s)
 - elastic, inelastic scattering
 - Pick-up, stripping

 $^{16}\mathrm{O}(p,d)^{15}\mathrm{O}$ $p + {}^{16}\mathrm{O} \to d + {}^{15}\mathrm{O},$

We already considered one of the direct reactions, which one?

Nuclear reactions

- Compound reactions
 - probe becomes loosely bound to the nucleus
 - energy of the probe gets distributed to all constituents, time-scale 10⁻¹⁵-10⁻¹⁶s

Cross-section, compound reactions

Neutron- Uranium compound reactions will be important when considering induced fission.

THE HOLEMAN THEMOMENOEOOT

Compound nuclear reactions

Summary of today's lecture

- We had an initial discussion of decays and reactions (we will revisit this subject in the next-to-next lecture)
- Introduced: half-life (decay-constant) and decay chains and Q-value
- Discussed initially: β decay, α decay, γ decay, spontaneous fission.

β-decay

• Is arguably the most important decay mode

Using the B-W formula and β-decay we can derive the valley of β stability (← mass parabolas)

α -decay/Fission reactions

- α decay: prevalent to high mass nuclei, can be derived from B-W formula
- Spontaneous fission: can be derived from considering deviations of nuclei from spherical shape.
- Nuclear reactions: direct (like in particle physics, new particles can be found), capture (compound reactions).

Next lecture

Nuclear models.