Lecture 3

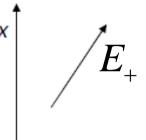
- Antiparticles
- Leptons
- Quarks and hadrons
- The strong force

Implications of introducing special relativity

Consider a particle of charge q, mass m with momentum p moving along the x-axis

What is its energy ? Special relativity gives us a choice: $E = \pm \sqrt{p^2 c^2 + m^2 c^4}$ $E_+ = \sqrt{p^2 c^2 + m^2 c^4}$ $E_- = -\sqrt{p^2 c^2 + m^2 c^4}$

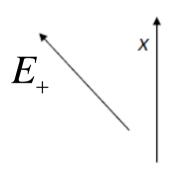
Surely the negative energy solution is unphysical and daft. Can't we just ignore it ?


No - from quantum mechanics, every observable must have a complete set of eigenstates. The negative energy states are needed to form that complete set.

They must mean something

Negative energy states

Consider an electron moving in space along *x*-direction


Positive energy solution: $\psi(x,t) = Ne^{-i\left(\frac{px-E_{+}t}{\hbar}\right)}$ Moves to the right

Negative energy solution:

$$\psi(x,t) = Ne^{-i\left(\frac{px-E_{t}}{\hbar}\right)} = Ne^{-i\left(\frac{px+E_{t}t}{\hbar}\right)} = Ne^{-i\left(\frac{px-E_{t}(-t)}{\hbar}\right)}$$

Moves to the left

 \Rightarrow Negative energy state moving forwards in time is equivalent to a positive energy state moving backwards in time.

t

What does a particle moving backwards in time look like ?

What are the implications of a particle (i.e. an observable state with positive energy) moving backwards in time ?

Lorentz force on an electron in a \vec{B} -field travelling forwards in time at a certain point in space and time \vec{r} and t

$$\vec{F}(\vec{r},t) = m\frac{d^2\vec{r}}{dt^2} = q\vec{v} \times \vec{B} = -e\frac{d\vec{r}}{dt} \times \vec{B} \quad \Rightarrow \frac{d^2\vec{r}}{dt^2} = \frac{-e}{m}\frac{d\vec{r}}{dt} \times \vec{B}$$

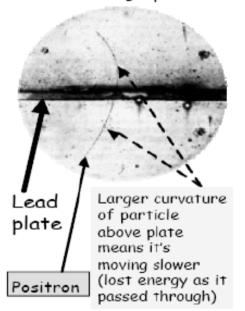
Consider electron moving backwards in time $(dt \rightarrow -dt)$.

$$\frac{d^{2}\vec{r}}{d\left(-t\right)^{2}} = \frac{-e}{m}\frac{d\vec{r}}{d\left(-t\right)} \times \vec{B} \Longrightarrow \frac{d^{2}\vec{r}}{dt^{2}} = \frac{+e}{m}\frac{d\vec{r}}{dt} \times \vec{B}$$

An electron moving backwards in time looks like a positively charged electron moving forwards in time!

Antiparticles

Special relativity permits negative energy solutions and quantum mechanics demands we find a use for them.


(1)The wave function of a particle with negative energy moving forwards in time is the same as the wave function of a particle with positive energy moving backwards in time.

(2)A positive energy particle with charge -q moving backwards in time looks like a positive energy particle with charge +q moving forwards in time.

We expect, for a given particle, to see the "same particle" but with opposite charge: *antiparticles*. Antiparticles can be considered to be particles moving backwards in time - Feynman and Stueckelberg. *Hole theory* (not covered) provides an alternative, though more old fashioned way of thinking about antiparticles.

Electron and the positron

B = 1.5T (out of page) $\vec{F} = q\left(\vec{v} \times \vec{B}\right) \text{ (to left)}$ $r = -\frac{p}{2}$

1897 e- discovered by J.J. Thompson

1932

Anderson measured the track of a cosmic ray particle in a magnetic field.

Same mass as an electron but positive charge

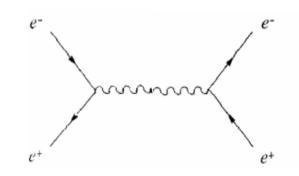
The positron (e^+) - anti-particle of the electron

Nobel prize 1936

Every particle has an antiparticle. Some particles, eg photon, are their own antiparticles.

Special rules particles and antiparticles symbols and names.

Feynman diagrams


Important mathematical tool for calculating rates of processes - Feynman rules.

Qualitative treatment here

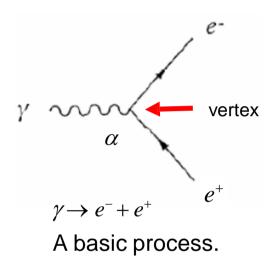
Represent any process by contributing diagrams.

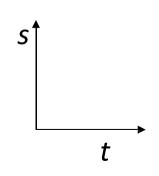
One possible diagram for

 $e^{\scriptscriptstyle +} + e^{\scriptscriptstyle -} \rightarrow e^{\scriptscriptstyle +} + e^{\scriptscriptstyle -}$

Strategy:
(1) Build Feynman diagrams for electromagnetic processes
(2) Consider how they can be used for simple ra^te estimates.
(3) Show Feynman diagram formalism for other ^fundamental forces.

Electromagnetic processes

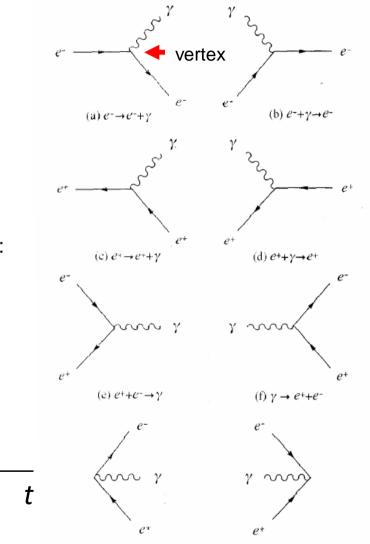

Convention - time flows to the right The lines do not represent trajectories of a particle.

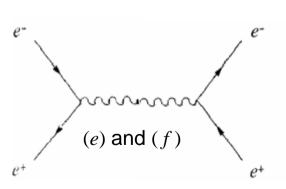

Arrow for antiparticle goes "backward in time". Lines should not be taken as "trajectories" of particles

Interactions occur at a vertex.

Rule of thumb: a vertex carries a factor α associated with the probability of that interaction taking place.

 $\alpha = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\hbar c} \approx \frac{1}{137}$ Fine structure constant




Basic electromagnetic diagrams

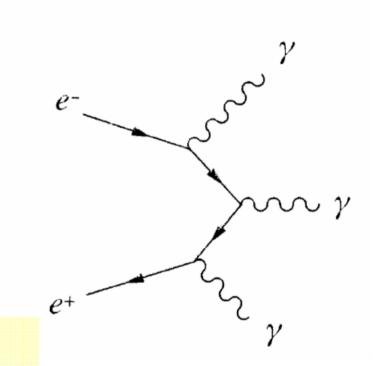
Consider all electromagnetic processes built up from basic processes: (*a*) to (*h*)

The basic processes are never seen since they violate energy conservation (next slide)

They can be combined to make observable processes: $e^+ + e^- \rightarrow e^+ + e^-$

Ś

Using Feynman diagrams

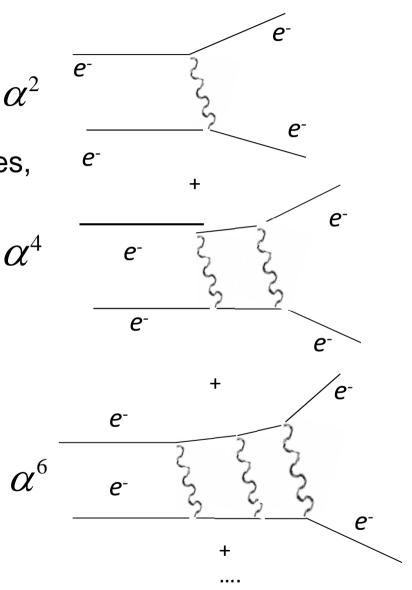

 $e^+ + e^- \rightarrow \gamma + \gamma + \gamma$ Three vertices \Rightarrow probability $\propto \alpha^3$

$$R = \frac{Rate(e^{+} + e^{-} \rightarrow \gamma + \gamma + \gamma)}{Rate(e^{+} + e^{-} \rightarrow \gamma + \gamma)} \approx \frac{\alpha^{3}}{\alpha^{2}}$$
$$= \alpha = 0.7 \times 10^{-2}$$

Observed $R \approx 10^{-3}$

 \Rightarrow Qualitative Feynman diagram picture gives suppression with (very) rough accuracy.

 \Rightarrow Full QED calculation gives correct rates.


+ other contributions

Using Feynman diagrams

Two electrons are observed to repell α^2 each other: $e^- + e^- \rightarrow e^- + e^-$ Many different indistinguishable processes, eg one-photon, two-photon exchange, can contribute to the scattering α^2

Coupling is weak $\alpha \approx \frac{1}{137} << 1$

 \Rightarrow higher order processes contribute less and less to the calculation and can be safely be neglected in any approximate solution.

The charged leptons

- Three types of charged lepton
- Electron, muon, tau
- e⁻, e⁺, μ⁻, μ⁺, τ⁻, τ⁺
- Charged leptons

 interact via the weak
 and electromagnetic
 forces

Lepton	Charge (e)	Mass (GeV/c²)
e-	-1	0.0005
μ	-1	0.105
τ	-1	1.8

+ antiparticles

Heavier leptons

- Muon μ^- (Stevenson and Street, 1936)
- Measurements of energy loss of cosmic-ray particles.
- New particle with mass between e⁻ and p (106 MeV/c²)
- Interacts like a heavy electron

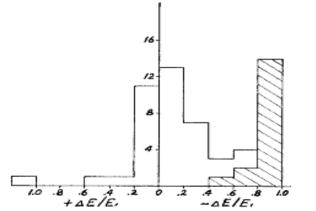
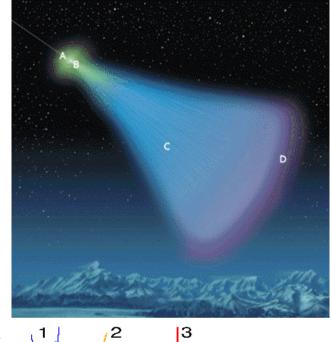
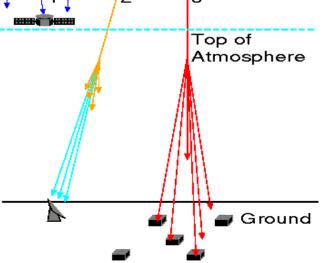
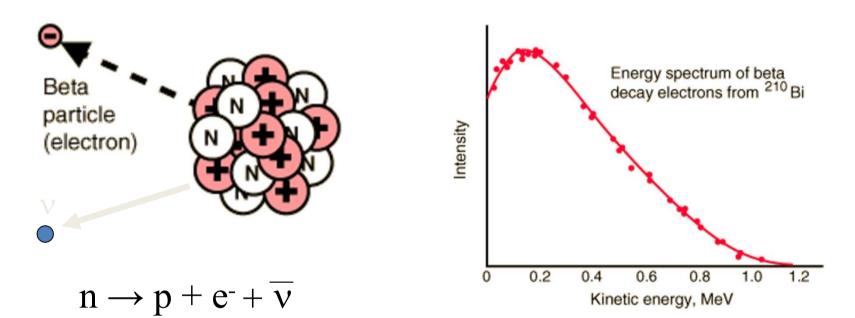





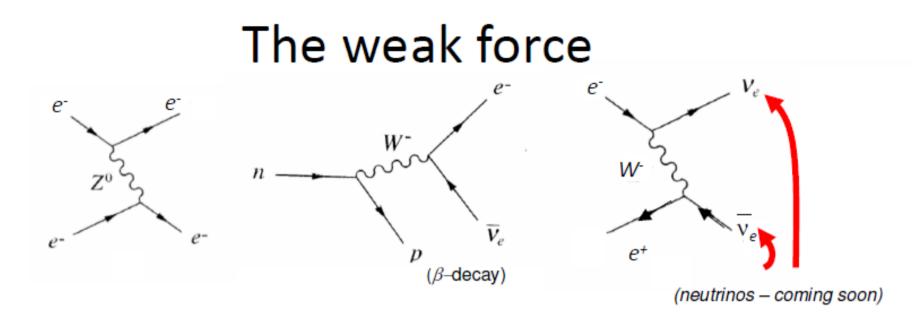
FIG. 2. Distribution of fractional losses in 1 cm of platinum.

Evidence for neutrinos

- Electrons produced by beta decay do not all have the same energy.
 - Pauli proposed the existence of an unseen neutral particle to explain the observed electron spectrum.

The lepton family

Spin 1/2


Lepton (antilepton)	Charge (<i>e</i>)	Mass (GeV/c ²)
e ⁻ (e ⁺)	-1(+1)	0.0005
$V_{\theta}, (\overline{V}_{\theta})$	0	≈0
$\mu^{-}(\mu^{+})$	-1 (+1)	0.105
$V_{\mu} (\overline{V}_{\mu})$	0	≈0
$ au^-(au^+)$	-1 (+1)	1.8
$V_{\tau} (\overline{V}_{\tau})$	0	≈0

Charged leptons interact via the electromagnetic and weak forces. Neutrinos interact only via the weak force.

Particles and antiparticles

Convention:

Charged leptons Tend to denote particles/antiparticles with charge: $\left[\text{electron } \left(e^{-}\right), \text{ anti-electron i.e. positron } \left(e^{+}\right)\right]$ Neutral leptons use bars for antiparticles : $\left[\text{electron neutrino } \left(v_{e}\right), \text{ anti-electron neutrino } \left(\overline{v}_{e}\right)\right]$

Use same formalism as for electromagnetic force

Very brief overview:

Exchange of 3 spin-1 particles: Z^0 (mass=91.2 GeV/c²), W^+ , W^- (mass=80.4 GeV/c²)

$$\Rightarrow$$
 range $R_{w,z} \approx \frac{\hbar}{M_w c} \approx 2 \times 10^{-18}$ m (tiny - proton "radius" $\approx 10^{-15}$ m)

Define coupling constant analagous to fine structure constant

$$\alpha_w = \frac{g_w^2}{4\pi\hbar c} \quad (1.39) \qquad \alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \quad (1.24)$$

 g_w analogous to electric charge (~ "weak charge")

$$\alpha_w = \frac{g_w^2}{4\pi\hbar c} \approx \frac{1}{240} \quad (1.41) \left(\alpha \approx \frac{1}{137}, \text{ the weak force is only weak due to } W, Z \text{ masses} \right)$$

Lepton number conservation

Leptons carry a conserved quantum number.

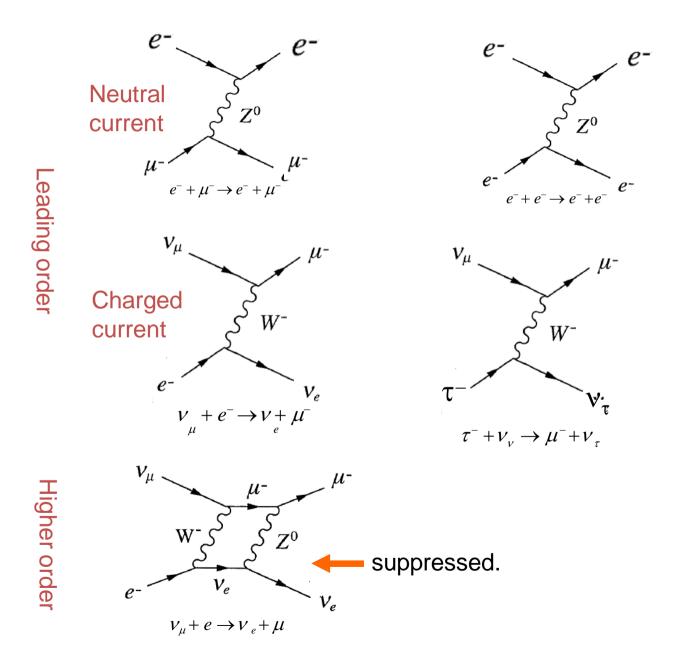
Flavour specific lepton numbers:

electron lepton number L_e , muon lepton number L_{μ} , tau lepton number L_{μ}

(Obviously) for all other particles $L_e = L_{\mu} = L_{\tau} = 0$

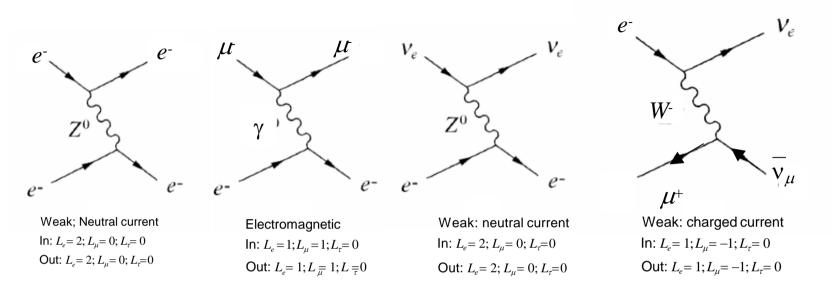
Lepton	L _e	L_{μ}	$L_{ au}$
e-	1	0	0
νε	1	0	0
μ	0	1	0
ν_{μ}	0	1	0
τ	0	0	1
ν_{τ}	0	0	1

Antileptons carry the opposite lepton number.


Eg $\overline{v}_e, e^+, L_e = -1, L_\mu = L_\tau = 0$

Except for neutrino oscillations (to come) lepton number has never been seen to be violated.

Limits on lepton number violation in charged lepton decays


Decay	Violates	Limit on branching ratio
$\mu^- \rightarrow e^- + e^+ + e^-$	L_{μ}, L_{e}	< 1.0×10 ⁻¹²
$\mu^- \rightarrow e^- + \gamma$	$L_{\mu},\ L_{e}$	$< 1.2 \times 10^{-11}$
$ au^- ightarrow e^- + \gamma$	$L_{ au},\ L_{e}$	< 1.1×10 ⁻⁷
$ au^- ightarrow \mu^- + \gamma$	$L_{ au},\ L_{\mu}$	< 6.8×10 ⁻⁸
$ au^- ightarrow e^- + \mu^- + \mu^+$	$L_{ au},\ L_{\mu}$	$< 2 \times 10^{-7}$

Interactions of leptons

22

Lepton interactions

Charged leptons interact via the *em* and weak forces. Neutrinos only interact via the weak force.

Lepton number is always conserved at a vertex and in the whole process.

As for all forces:

Charge conservation and energy-momentum conservation for incoming and outgoing particles.

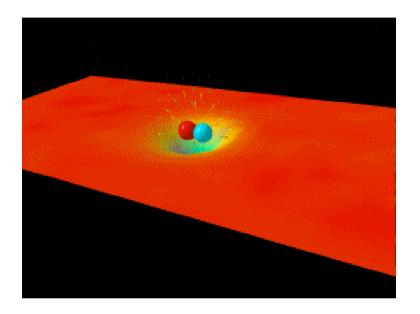
Charge is conserved at a vertex though energy can appear to be violated when dealing with "internal lines" (lecture 1).

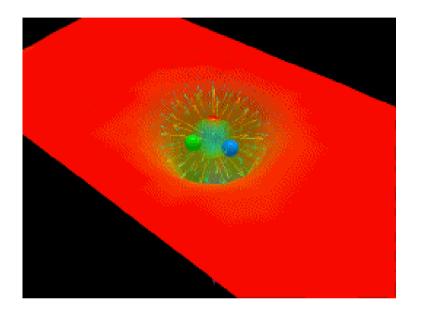
Question

Draw a Feynman diagram for a muon decay process.

Question

Using Feynman diagrams explain why the reactions $v_{\mu} + e^- \rightarrow v_{\mu} + e^-$ and $v_{\tau} + e^- \rightarrow v_{\tau} + e^-$ are suppressed with respect to $v_e + e^- \rightarrow v_e + e^-$.


The quarks


Quark	Q (e)	Mass (GeVc ²)
и- up	2/3	0.003
d- down	-1/3	0.005
s-strange	-1/3	0.15
c - charm	2/3	1.2
b-bottom	-1/3	4.2
t -top	2/3	171

Spin 1/2 particles

Multiplets: $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$ + antiquarks: $\overline{u}, \overline{d}, \overline{s}, \overline{c}, \overline{b}, \overline{t}$ opposite charge: $Q \rightarrow -Q$

Mesons and baryons

Meson (quark-antiquark) Baryons (quark-quark-quark)

Strong force is a short range (~1fm) force which acts to confine quarks and antiquarks in hadrons. "Bare" quarks are not seen.

Hadrons

Two types: mesons (quark+antiquark) and

baryons (quark+quark+quark)

Meson Quark content		Charge	Mass	Lifetime	Principal decays
π^{\pm}	uđ, dū	+1, -1	139.569	2.60×10^{-8}	μνμ
π^0	$(u\bar{u} - d\bar{d})/\sqrt{2}$	0	134.964	8.7×10^{-17}	$\gamma\gamma$
K±	นรี, รนี	+1, -1	493.67	1.24 × 10 ⁻⁸	$\mu \nu_{\mu}, \pi^{\pm} \pi^{0}, \pi^{\pm} \pi^{\mp} \pi^{\mp}$
 K°, <i>K</i> [°]	dīs, sā	0, 0	497.72	$\begin{cases} K_S^0 0.892 \times 10^{-10} \\ K_L^0 5.18 \times 10^{-8} \end{cases}$	π ⁺ π ⁻ , π ⁰ π ⁰ πeν _e , πμν _μ , πππ
η	$(u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$	0	548.8	7×10^{-19}	$\gamma\gamma$, $\pi^0\pi^0\pi^0$, $\pi^+\pi^-\pi^0$
η'	$(u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$	0.	957.6	3×10^{-21}	$\eta \pi \pi, \rho^0 \gamma$
D^{\pm}	cđ, dc	+1, -1	1869	9 × 10 ⁻¹³	Κππ
D^0, \overline{D}^0	cū, uc	0,0	1865	4×10^{-13}	Κππ
F^{\pm} (now D_s^{\pm})	cs, sc	+1, -1	1971	3×10^{-13}	not established
B^{\pm} B^0, \bar{B}^0	ub, bū db, bd	+1, -1 0, 0	5271 5275	14×10^{-13}	D+?
В, Б ¶с	ав, ва сё	0,0	2981	6×10^{-23}	ΚΚπ, ηππ, η'ππ

PSEUDOSCALAR MESONS (Spin 0)

Baryon	Quark content	Charge	Mass	Lifetime	Principal decays
$N \begin{cases} p \\ p \end{cases}$	uud	+1	938.280	ω	-
$n \begin{bmatrix} n \\ n \end{bmatrix}$	udd	0	939.573	900	peve
Λ	uds	0	1115.6	$2.63 imes 10^{-10}$	$p\pi^{-}, n\pi^{0}$ $p\pi^{0}, n\pi^{+}$
Σ+ Σ ⁰	uus	+1	1189.4	$0.80 imes 10^{-10}$	$p\pi^{0}, n\pi^{+}$
Σ^0	uds	0.	1192.5	6×10^{-20}	$\Lambda\gamma$
Σ^{-}	dds	-1	1197.3	1.48×10^{-10}	nπ
Ξ°	uss	0	1314.9	2.90×10^{-10}	$\Lambda \pi^0$
Ξ-	dss	-1	1321.3	1.64 × 10 ⁻¹⁰	$\Lambda\pi^-$
표° 표 ⁻ A _c +	udc	+1	2281	2×10^{-13}	not established

BARYONS (Spin 1)

VECTOR MESONS (Spin 1)

Meson	Quark content	Charge	Mass	Lifetime	Principal decays
ρ Κ* ω φ J/ψ D* Υ	uđ, dū, (uū – dđ)/V2 uš, sū, dš, sđ (uū + dđ)/V2 sš cč cđ, dč, cū, uč bb	$ \begin{array}{c} +1, -1, 0 \\ +1, -1, 0, 0 \\ 0 \\ 0 \\ +1, -1, 0, 0 \\ 0 \end{array} $	770 892 783 1020 3097 2010 9460	$\begin{array}{c} 0.4\times10^{-23}\\ 1\times10^{-23}\\ 7\times10^{-23}\\ 20\times10^{-23}\\ 1\times10^{-20}\\ >1\times10^{-22}\\ 2\times10^{-20} \end{array}$	$\pi\pi K\pi K\pi \pi^{+}\pi^{-}\pi^{0}, \pi^{0}\gamma K^{+}K^{-}, K^{0}K^{0} K^{0} e^{t}e^{-}, \mu^{+}\mu^{-}, 5\pi, 7\pi D\pi, D\gamma \tau^{+}r^{-}, \mu^{+}\mu^{-}, e^{t}e^{-}$

BARYONS (Spin $\frac{3}{2}$)

Baryon	Quark content	Charge	Mass	Lifetime	Principal decays
Δ Σ* Ξ* Ω⁻	uuu, uud, udd, ddd uus, uds, dds uss, dss sss	+2, +1, 0, -1 +1, 0, -1 0, -1 -1	1232 1385 1533 1672	$\begin{array}{c} 0.6\times10^{-23}\\ 2\times10^{-23}\\ 7\times10^{-23}\\ 0.82\times10^{-10} \end{array}$	$egin{aligned} &N\pi\ &\Lambda\pi,\Sigma\pi\ &\Xi\pi\ &\Lambda K^-,\Xi^0\pi^-,\Xi^-\pi^0 \end{aligned}$

Full particle listings from the *Review of Particle Physics*: http://pdg.lbl.gov/2008/listings/contents_listings.html

Hadron quantum numbers

Particle	Mass (MeV)	В	Q	S	С	В
<i>π</i> ⁺ (u <u>d</u>)	140	0	1	0	0	0
K- (sū)	494	0	-1	-1	0	0
D- (<i>cd</i>)	1869	0	-1	0	-1	0
D_s^+ ($c\overline{s}$)	1971	0	1	0	1	0
Ү (bb)	9460	0	0	0	0	0

Mesons (bosons)

Baryons (fermions)

Particle	Mass (MeV)	В	Q	S	С	B
p (uud)	938	1	1	0	0	0
n (udu)	940	1	0	0	0	0
Λ (uds)	1116	1	0	-1	0	0
Λ_{c} (udc)	2285	1	1	0	1	0
Λ_{b} (udb)	5624	1	0	0	0	- 1 29

Particles and antiparticles

Hadrons:

Baryons use a bar proton p(uud), antiprotons $\overline{p}(\overline{uud})$

Mesons are quark-antiquark i.e. matter-antimatter. \Rightarrow There are no "anti-mesons" Can, hwever, swap quark \rightarrow antiquark , antiquark \rightarrow quark Eg $K^0(d\overline{s}) \rightarrow \overline{K}^0(\overline{ds})$ (use bar for neutral mesons) $K^+(u\overline{s}) \rightarrow K^-(\overline{us})$ (use charge)

Some neutral particles are their own antiparticle: Eg γ, π^0

The quarks

in ½ p	oarti	cles	+	ar	tip	art	ic
Quark	Q (e)	Mass (GeV/c²)	В	S	С	B	Т
и- ир	2/3	0.003	1/3	0	0	0	0
d- down	-1/3	0.005	1/3	0	0	0	0
- strange	-1/3	0.15	1/3	-1	0	0	0
c- charm	2/3	1.2	1/3	0	1	0	0
b- bottom	-1/3	4.2	1/3	0	0	-1	0
r-top	2/3	171	1/3	0	0	0	1

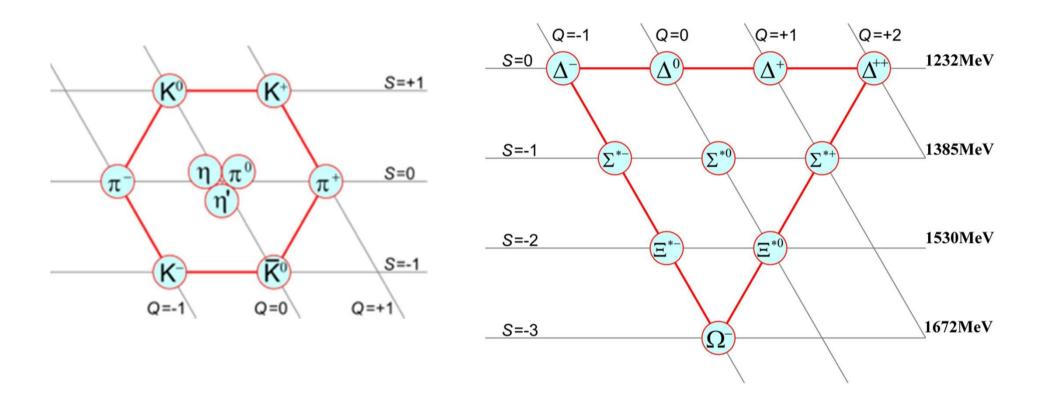
For antiquarks: internal quantum numbers change sign. Charge: $Q \rightarrow -Q$, Baryon number: $B \rightarrow -B$

Flavour: (strangeness) $S \rightarrow -S$, ("charmness") $C \rightarrow -C$, ("bottomness") $\overline{B} \rightarrow -\overline{B}, T \rightarrow -T$

Charge is always conserved.

Flavour quantum numbers are conserved in strong and electromagnetic decays but need not be conserved in weak decays.

Hadron flavour quantum numbers


General rule for all hadrons.

Total strangeness $S = \sum$ strangeness

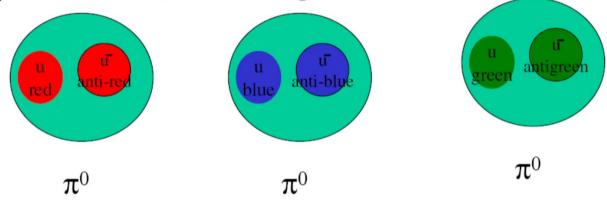
 $= N_{\overline{s}} - N_{s} = (\text{no. } \overline{s} \text{ quarks - no. } \overline{s} \text{ quarks})$ Similarly $C = N_{c} - N_{\overline{c}}$; $\overline{B} = N_{\overline{b}} - N_{b}$ (obs! No "top" hadrons) Baryon number: $B = \sum \text{quark-baryon-number}$

Eg proton (*uud*):
$$S = C = \overline{B} = 0$$
, $B = 3 \times \frac{1}{3} = 1$
 $K^+(u\overline{s})$: $S = 1$, $C = \overline{B} = 0$, $B = \frac{1}{3} - \frac{1}{3} = 0$

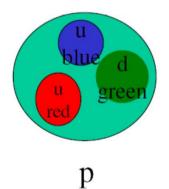
Evidence for quarks

Periodic structure of hadrons (SU(3) multiplets).

Evidence for a new quantum number: colour

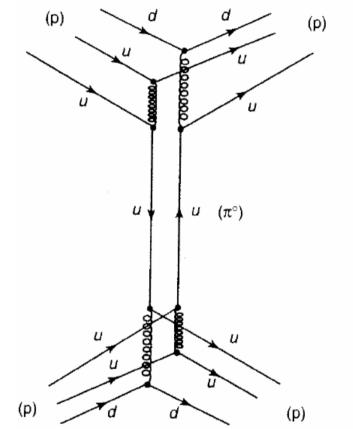

Need an extra quantum number (colour) to distinguish quarks to ensure anti-symmetric wave-function and Pauli's exclusion principle.

Hadrons and the strong force


The strong force occurs between particles carrying "colour" charge. q(R $\overline{q}(G)$ Range of the strong force $\approx 10^{-15}$ m. Coupling at a vertex: α_{s} Gluon (RG) q(R) A quark can carry 3 colours: Red (R), Green (G), Blue (B) There are eight gluons: Gluons themselves carry colour and self-interact: $|R\overline{G}\rangle, |R\overline{B}\rangle, |G\overline{R}\rangle, |G\overline{B}\rangle, |B\overline{R}\rangle, |B\overline{G}\rangle, \frac{1}{\sqrt{2}}(R\overline{R} - G\overline{G}), \frac{1}{\sqrt{2}}(R\overline{R} + G\overline{G} - 2B\overline{B})$ The theory of the strong force is quantum chromodynamics (QCD).

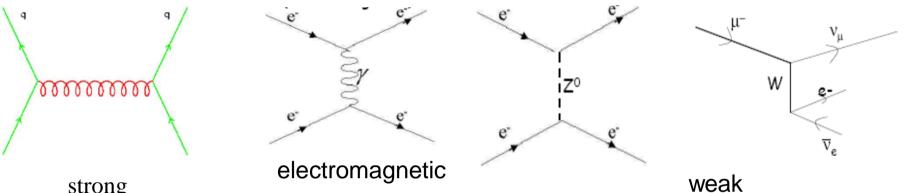
Colour combinations

A meson has a colour-anticolour pair=white (colour singlet)



A baryon has red, blue, green triplet=white (colour singlet)

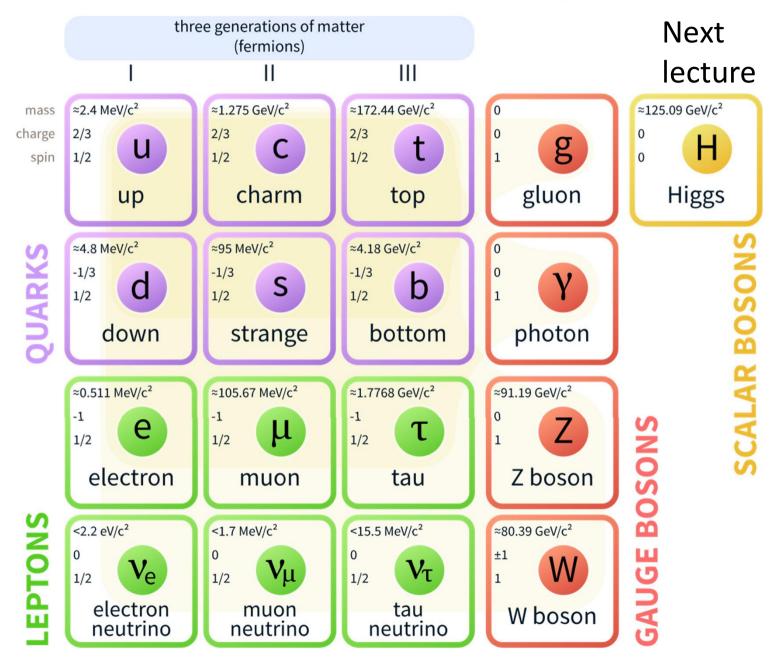
We have never seen a quark or gluon! Nature abhors naked colour. Every particle in nature is colourless/colour singlet


QCD Description of the Strong Nuclear Force

Yukawa model proposed pion exchange Interaction results from internal gluon lines and quark exchange

The fundamental forces

Different exchange particles mediate the forces:



strong

Interaction	Relative strength	Range	Exchange	Mass (GeV)	Charge	Spin	
Strong	1	Short (^o fm)	Gluon	0	0	1	
Electromagnetic	1/137	Long <i>(1/t²)</i>	Photon	0	0	1	
Weak	10 ⁻⁹	Short (º 10 ⁻³ fm)	W+ ₩-,Z	80.4,80. 4, 91.2	+e,-e,0	1	
Gravitational	10 ⁻³⁸	Long (1/r ²)	Graviton ?	0	0	2	No qu theory

antum field yet for gravity

Standard Model of Elementary Particles

Particles in nature

PARTICLE DATA (Mass in MeV/c²; Lifetime in Seconds; Charge in Units of Proton Charge.)

QUARKS (Spin ½)								
	Flavor	Charge	Mass (speculative)					
			Bare	Bare Effective				
				In baryons	In mesons			
First generation {	d u	-13 +23	7.5 4.2	} 363	310			
Second generation {	s c	$-\frac{1}{3}$ + $\frac{2}{3}$	150 1100	538 15				
Third generation {	b t	$-\frac{1}{3}$ $+\frac{2}{3}$	4200 175000	47	00			

LEPTONS (Spin $\frac{1}{2}$)

	Lepton	Charge	Mass	Lifetime	Principal decays
First generation { Second generation { Third generation {	е И И И Т И Т	-1 0 -1 0 -1 0	0.511003 small 105.659 small 1784 small	$ \begin{array}{c} \infty \\ \infty \\ 2.197 \times 10^{-6} \\ 3.3 \times 10^{-13} \\ \infty \end{array} $	$ \begin{array}{c} - \\ - \\ \varepsilon \nu_{\mu} \overline{\nu}_{e} \\ - \\ \mu \nu_{\tau} \overline{\nu}_{\mu}, \ e \nu_{\tau} \overline{\nu}_{e}, \ \rho \nu_{\tau} \\ - \\ - \\ - \end{array} $

MEDIATORS (Spin 1)

Mediator	Charge	Mass	Lifetime	Force	
gluon	0	0	∞	strong	
photon (γ)	0	0	∞	electromagnetic	
W [±]	±1	81,800	unknown	(charged) weak	
Z ⁰	0	92,600	unknown	(neutral) weak	

More information available from the Review of Particle Physics: http://www-pdg.lbl.gov/ BARYONS (Spin ½)

Baryon	Quark content	Charge	Mass	Lifetime	Principal decays
$N \left\{ \begin{array}{c} p \\ p \end{array} \right\}$	uud	+1	938.280	8	-
" [n	udd	0	939.573	900	pev.
Λ	uds	0	1115.6	2.63×10^{-10}	$p\pi^{-}, n\pi^{0}$
Σ^+	uus	+1	1189.4	0.80×10^{-10}	$p\pi^0, n\pi^+$
Σ^0	uds	0.	1192.5	6×10 ⁻²⁰	Δγ
Σ^{-}	dds	-1	1197.3	1.48×10^{-10}	$n\pi^-$
Ξ°	uss	0	1314.9	2.90×10^{-10}	$\Lambda \pi^0$
Ξ-	dss	-1	1321.3	1.64×10 ⁻¹⁰	$\Lambda\pi^{-}$
Λ_c^+	udc	+1	2281	2×10^{-13}	not established

BARYONS (Spin $\frac{3}{2}$)

Baryon	Quark content	Charge	Mass	Lifetime	Principal decays
Δ Σ* Ξ* Ω ⁻	uuu, uud, udd, ddd uus, uds, dds uss, dss sss	+2, +1, 0, -1 +1, 0, -1 0, -1 -1	1232 1385 1533 1672	$\begin{array}{c} 0.6 \times 10^{-23} \\ 2 \times 10^{-23} \\ 7 \times 10^{-23} \\ 0.82 \times 10^{-10} \end{array}$	$N\pi \ \Lambda \pi, \Sigma \pi \ \Xi \pi \ \Lambda K^-, \Xi^0 \pi^-, \Xi^- \pi^0$

PSEUDOSCALAR MESONS (Spin 0)

Meson	Quark content	Charge	Mass	Lifetime	Principal decays
π^{\pm}	uđ, dū	+1, -1	139.569	2.60×10^{-8}	μν,
π^0	$(u\bar{u}-d\bar{d})/\sqrt{2}$	0	134.964	8.7×10 ⁻¹⁷	$\gamma\gamma$
K±	นรี, รนี	+1, -1	493.67	1.24×10^{-8}	$\mu\nu_{\mu}, \pi^{\pm}\pi^{0}, \pi^{\pm}\pi^{\pm}\pi^{\mp}$
K°, <i>K</i> °	dīs, sā	0, 0	497.72	$\begin{cases} K_S^0 0.892 \times 10^{-10} \\ K_L^0 5.18 \times 10^{-8} \end{cases}$	$\pi^+\pi^-, \pi^0\pi^0$ $\pi e \nu_e, \pi \mu \nu_\mu, \pi \pi \pi$
η	$(u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$	0	548.8	7×10^{-19}	$\gamma\gamma, \pi^{0}\pi^{0}\pi^{0}, \pi^{+}\pi^{-}\pi^{0}$
η'	$(u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$	0.	957.6	3 × 10 ⁻²¹	$\eta\pi\pi$, $\rho^0\gamma$
D^*	cđ, dc	+1, -1	1869	9×10^{-13}	Κππ
D^0, \overline{D}^0	cū, uc	0, 0	1865	4×10^{-13}	$K\pi\pi$
F^{\pm} (now D_s^{\pm})	cs, sc	+1, -1	1971	3×10^{-13}	not established
B^{\pm}	นอี, bū	+1,1	5271	} 14×10 ⁻¹³	D + ?
B^0, \bar{B}^0	db, bđ	0, 0	5275		
η_c	cĉ	0	2981	6×10 ⁻²³	ΚΚπ, ηππ, η'ππ

VECTOR MESONS (Spin 1)

Meson	Quark content	Charge	Mass	Lifetime	Principal decays
ρ Κ* ω J/ψ D* T	uđ, dữ, (uữ – dd)/V2 uš, sữ, dš, sđ (uữ + dđ)/V2 sš cc cđ, dē, cũ, uč bb	$ \begin{array}{c} +1, -1, 0 \\ +1, -1, 0, 0 \\ 0 \\ 0 \\ +1, -1, 0, 0 \\ 0 \\ \end{array} $	770 892 783 1020 3097 2010 9460	$\begin{array}{c} 0.4 \times 10^{-23} \\ 1 \times 10^{-23} \\ 7 \times 10^{-23} \\ 20 \times 10^{-23} \\ 1 \times 10^{-20} \\ >1 \times 10^{-22} \\ 2 \times 10^{-20} \end{array}$	$ \begin{array}{c} \pi \pi \\ K \pi \\ \pi^+ \pi^- \pi^0, \pi^0 \gamma \\ K^+ K^-, K^0 K^0 \\ e^+ e^-, \mu^+ \mu^-, 5\pi, 7\pi \\ D \pi, D \gamma \\ \tau^+ \tau^-, \mu^+ \mu^-, e^+ e^- \end{array} $

Summary

Anti-particles for every particle - required by QM+special relativity.

Feynman diagrams - powerful tool for particle interactions.

Three families of leptons and quarks.

Hadrons formed from quarks.

Three forces in the Standard Model of particle physics.