Lecture 2

## Outline

- Conceptual overview
- Scattering (theory)
- Identify the observables that can be predicted
- Scattering (experiment)
- Ensure that the observables which are measured are those which can be predicted !
- Decays


## How particles interact

Simple cartoon picture.
Particles interact via the exchange of a force carrying particle (propagator)

$\overleftarrow{O}^{C}$
X

## Generic particle exhcnage

A high energy particle $B$ scatters off a static particle $A$ via the exchange of particle $X$.
Particles $A$ and $B$ real (can be observed).
Particle $X$ is virtual (only internal)


Lower vertex

$$
P_{A}=\left(M_{A} c, 0\right) \quad P_{A}^{\prime}=\left(\frac{E_{A}^{\prime}}{c}, \vec{p}_{A}^{\prime}\right) \quad P_{X}=\left(\frac{E_{X}}{c}, \vec{p}_{A}^{\prime}\right)
$$

$$
P_{A}^{\prime} \bullet P_{A}^{\prime}=\frac{E_{A}^{\prime 2}}{c^{2}}-p_{A}^{\prime 2}=M_{A}^{2} c^{2} \Rightarrow E_{A}^{\prime}=\sqrt{M_{A}^{2} c^{4}+p_{A}^{\prime 2} c^{2}}
$$

$$
P_{X} \bullet P_{X}=\frac{E_{X}^{2}}{c^{2}}-p_{A}^{\prime 2}=M_{X}^{2} c^{2} \Rightarrow E_{X}=\sqrt{M_{X}^{2} c^{4}+p_{A}^{\prime 2} c^{2}}
$$

## Generic particle exchange

Energy conservation violation at vertex:

$$
\Delta E=E_{X}-E_{A}^{\prime}+M_{A} c^{2}=\sqrt{M_{X}^{2} c^{4}+p_{A}^{2} c^{2}}-\sqrt{M_{A}^{2} c^{4}+p_{A}^{\prime 2} c^{2}}+M_{A} c^{2}
$$

$$
\Delta E_{p_{A}^{\prime} \rightarrow 0}=M_{X} c^{2}
$$

$$
\Delta E_{p_{A}^{\prime} \rightarrow \infty}=M_{A} c^{2}
$$

$\Rightarrow \Delta E \geq 0$
Energy is not conserved at the vertex!

Heisenberg's uncertainty principle allows
apparent energy violation $\Delta E$ for a short time interval $\Delta \tau: \Delta E \Delta \tau \sim \hbar$
$\Rightarrow$ Particle $X$ speed $\sim c$
$\Rightarrow$ Particle $X$ distance travelled $R \sim c \Delta \tau$
$\Rightarrow$ Range of force $R \sim \frac{\hbar}{M_{X} c}$

## Virtual and real particles

Virtual particles can go "off mass shell" i.e. possess a different mass to that given in the books!
The apparent energy conservation violation can be understood in this way.


## The fundamental forces



The weak force has a limited range and reduced strength owing to the masses of the exchange particles $\left(W^{+-}, Z\right)$
[The strong force with a massless gluon "should" have a limitless range but the gluons interact in a special way (next lectures).

- Conceptual overview
- Forces mediated by particle exchange
- Exchange particle mass determines force range.
- Scattering (theory)
- Identify the observables that can be predicted
- Scattering (experiment)
- Ensure that the observables which are measured are those which can be predicted!
- Decays


## How do we experimentally observe forces ?



Scatter : beam particles off target particles.
Decay : observe decay rates and decay particles.

Need a theoretical formalism to calculate this.

## Scattering Interaction rates

Quantum mechanics and perturbation theory: Fermi's golden rule:
$W=\frac{2 \pi}{\hbar}|\mathcal{M}|^{2} \rho\left(E^{\prime}\right)$
$\mathcal{M}=$ matrix element/probability amplitude
$\mathcal{M}$ must be calculated, eg, Feynman diagrams.
$\rho\left(E^{\prime}\right)=$ phase space factor.

Consider set of beam particles scattering off target particles in a volume.
$W=$ reaction rate per beam and target particle.

$$
=\frac{R}{N_{a} N_{b}}
$$

$N_{a}=$ No. $a$ particles in scattering volume
$N_{a}=$ No. $b$ particles in scattering volume


Scattering volume

## Amplitude

Ingredient in calculation of reaction rates.
Amplitude for single particle exchange for a particle with momentum $\vec{q}_{i}$ to be scattered to a final state with momentum $\vec{q}_{f}$.
$\mathcal{M}(\vec{q})=\int d^{3} \vec{r} e^{i \frac{\bar{q}_{f} \cdot \vec{r}}{\hbar}} V(\vec{r}) e^{-i-\frac{\bar{q}_{i} \cdot \vec{r}}{\hbar}}=\int d^{3} \vec{r} e^{-\frac{i \bar{q} \cdot \vec{r}}{\hbar}} V(\vec{r}) \quad \vec{q}=\vec{q}_{f}-\vec{q}_{i}$


Require a potential $V(\vec{r})$ for a force.

## Yukawa potential

Potential energy for a particle $B$ scattering off a static particle $A$ :
$V(r)=-\frac{g}{4 \pi} \frac{e^{-\frac{r}{R}}}{r}$ (Yukawa potential )
$R=$ range, $g \equiv$ coupling $\equiv$ "charge" on $A$ and $B$.
$[$ Eg EM force considering an electron scattering off a proton $]$

$g_{e m}=\frac{q}{\sqrt{\varepsilon_{0}}} \quad V(r)=-\frac{q^{2} e^{-\frac{r}{R}}}{4 \pi \varepsilon_{0} r}$
Limit $R \rightarrow \infty \quad V(r) \rightarrow-\frac{q^{2}}{4 \pi \varepsilon_{0} r} \quad$ (Coulomb energy)

## Amplitude

$\mathcal{M}(\vec{q})=\int d^{3} \vec{r} e^{\frac{\bar{q}_{i} \cdot \vec{r}}{\hbar}} V(\vec{r}) e^{-\frac{\bar{q} \cdot \vec{i} \cdot \vec{r}}{\hbar}}=\int d^{3} \vec{r} e^{-\frac{i \bar{q} \cdot \vec{r}}{\hbar}} V(\vec{r}) \quad \vec{q}=\vec{q}_{f}-\vec{q}_{i}$
$\Rightarrow \mathcal{M}(\vec{q})=\frac{-g^{2} \hbar^{2}}{|\vec{q}|^{2}+M_{X}^{2} c^{2}}$

Full relativistic treatment:

$\Rightarrow$ weak force is weak compared to the em force
$M_{X} \approx M_{Z}, M_{W} \approx 80 \mathrm{GeV}$ (weak) $M_{X}=0 \mathrm{GeV}$ (em)
$\frac{g_{e m}^{2}}{\left|q^{\prime 2}\right|^{2}}($ em $) \gg \frac{g_{W}^{2}}{\left|q^{\prime}\right|^{2}-M_{W}^{2} c^{c}}$ (weak) unless $\left|q^{\prime}\right|^{2} \gg M_{W}^{2} c^{2}$

## Scattering theory

Consider set of beam particles $a$ scattering off target particles $b$ in a volume. $W=$ reaction rate per beam and target particle.

$$
=\frac{R}{N_{a} N_{b}}=\frac{2 \pi}{\hbar}|\mathcal{M}|^{2} \rho\left(E^{\prime}\right)
$$

$N_{a}=$ No. $a$ particles in scattering volume
$N_{a}=$ No. $b$ particles in scattering volume


Scattering volume Define $\sigma=\frac{\text { Number of interactions between } a \text { and } b \text { per unit time } \times \frac{1}{N_{b}}}{\phi_{a}}=\frac{R \times \frac{1}{N_{b}}}{\phi_{a}}$
$\phi_{a}=$ Number of $a$ particles entering $X$ per unit time per unit beam area (flux)
$\Rightarrow \quad R=\sigma \phi_{a} N_{B}=\frac{2 \pi}{\hbar}|\mathcal{M}|^{2} \rho\left(E^{\prime}\right) N_{A} N_{B}$
$\Rightarrow \sigma=\frac{2 \pi|\mathcal{M}|^{2} \rho\left(E^{\prime}\right) N_{A}}{\hbar \phi_{a}}$

## The cross section

Quantum mechanics tells us that we can calculate a quantity which is related to the probability of a scatter between $a$ and $b$
Cross-section: $\quad \sigma=\frac{2 \pi|\mathcal{M}|^{2} \rho\left(E^{\prime}\right) N_{A}}{\hbar \phi_{a}}$

Is it an experimentally measurable observable?
$\sigma=\frac{R \times \frac{1}{N_{b}}}{\phi_{a}} \Rightarrow R=\phi_{a} \times N_{b} \times \sigma=$ number of interactions per second

Define luminosity $=\mathcal{L}=\phi_{a} N_{b} \quad$ (depends on the apparatus used).
$\Rightarrow R=\mathcal{L} \sigma$
We measure a reaction rate $R$. We know the luminosity $\mathcal{L}=\phi_{a} N_{b}$
$\Rightarrow$ We can measure $\sigma=\frac{R}{\mathcal{L}}$
Yes it is an experimentally measurable observable!

## Integrated luminosity and total number of events

$R=\mathcal{L} \sigma$ gives rate of reactions.

An experiment can run over a time $t$.
$\int_{0}^{t} R d t=\int_{0}^{t} \sigma \mathcal{L} d t$
$N=\int_{0}^{t} R d t=$ Total number of interactions/"events"
$\mathcal{L}^{\prime}=\int_{0}^{t} \mathcal{L} d t=$ Integrated luminosity
$\Rightarrow N=\mathcal{L}^{\prime} \sigma$

## Questions

What are the dimensions of the cross section ?

Does the cross section depend on the apparatus, eg beam area ?

Why bother with the cross section ? Surely we can calculate and measure the probability of an individual particle $a$ interacting with an individual particle $b$ ?

## Two experiments observing $a$ scattering off $b$



Luminosity:

$$
\mathcal{L}_{1}=\phi_{1}^{a} N_{1}^{b}
$$

$$
\mathcal{L}_{2}=\phi_{2}^{a} N_{2}^{b}
$$

Reaction rate:
$R_{1}$
$R_{2}$

Cross section:

$$
\sigma_{1}=\frac{R_{1}}{\mathcal{L}_{1}}
$$

$$
\sigma_{2}=\frac{R_{2}}{\mathcal{L}_{2}}
$$

Different observed reaction rates depending on luminosity of experiment:
$\mathcal{L}_{2}>\mathcal{L}_{1} ; R_{2}>R_{1}$
Cross section is specific to the individual particle reaction: $\sigma_{1}=\sigma_{2}$

## Visualising the cross section



Assume that each particle of type $b$ (scattering centre) has a cross-sectional area $\sigma$. A beam particle must pass through the cross-sectional area to interact.

The bigger the area, the bigger the chance of an interaction !

Naive ! The EM force has infinite range.
"Works" in certain situations, eg some strong force reactions.

## Cross section

In the previous example, the cross section was defined such that the particle $a$ interacted in some way. It could have been scattered, annihilated - doesn't matter. Defined the total cross section: $\sigma_{\text {too }}$.

When particles interact there are many different types of interactions possibe, each of which can be measured which contribute to $\sigma_{\text {tot }}$.
Eg $e^{-}, p$
Elastic scattering $A+B \rightarrow A+B \quad$ eg $e^{-}+p \rightarrow e^{-}+p \quad \sigma_{1}$ Inelastic scattering $A+B \rightarrow A+C+D$ eg $e^{-}+p \rightarrow e^{-}+n+\pi^{+} \quad \sigma_{2}$
$\sigma_{\text {tot }}=\sigma_{1}+\sigma_{2}$

Can define cross section for particle scattering into a certain solid angle: $\frac{d \sigma}{d \Omega}$

## Differential cross section



Study angular distributions of scattered particles:Eg $A+B \rightarrow A+X \quad$ ( $X=$ anything) Define a frame, eg $B$ at rest $E=$ energy of $A$.
Reaction rate $R$ for processes leading to $A$ scattered through solid angle $\Delta \Omega=\sin \theta d \theta d \phi=\frac{A_{D}}{r^{2}}$
$R(E, \theta, \Delta \Omega)=L \frac{d \sigma(E, \theta)}{d \Omega} \Delta \Omega$
If scattered particle's energy $E$ ' can be measured:

$$
\sigma(E)=\int_{0}^{E_{\max }^{\prime}} \int_{4 \pi} \frac{d^{2} \sigma\left(E, E^{\prime}, \theta\right)}{d \Omega d E^{\prime}} d \Omega d E^{\prime}
$$

## Cross section units

Units of barn.
Origin from nuclear physics :
an uranium nucleus is "as big as a barn".

1 barn $=1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2} ; 1$ millibarn $=1 \mathrm{mb}=10^{-31} \mathrm{~m}^{2}$

Typical cross section for beam energies of 10 GeV .

- Conceptual overview
- Forces mediated by particle exchange
- Exchange particle mass determines force range.
- Scattering (theory)
- Identify the observables that can be predicted
- Interaction rates for sets of overlapping particles
- Scattering (experiment)
- Ensure that the observables which are measured are those which can be predicted!
- Cross section
- Decays


## Decays



As for scattering, decays mediated by virtual particles

## Decay rates

Unstable particles: $W=\left.\left.2 \pi| | \mathcal{M}\right|^{2}\right|^{2} \rho\left(E^{\prime}\right)$
$W=\Gamma=\frac{1}{\tau}=$ decay rate
For different decay modes
Eg: $A \rightarrow B+C\left(\Gamma_{1}\right)$ or $A \rightarrow C+D\left(\Gamma_{2}\right) \ldots$
Lifetime $\tau=\frac{1}{\Gamma_{\text {tot }}}$
$\Gamma_{\text {tot }}=\Gamma_{1}+\Gamma_{2}+\ldots$
Branching ratios $B_{i}=\frac{\Gamma_{1}}{\Gamma_{\text {tot }}}$


Decay via $N=N_{0} e^{-\frac{t}{\tau}}=N=N_{0} e^{-\Gamma_{\text {out }} t}$
$N=$ number of undecayed particles at time $t$
$N_{0}=$ number of undecayed particles at time $t=0$

## Resonances

$E=m c^{2}$
Experiment makes repeated measurement of the mass of a particle. Eg $\rho$ particle.
Experimental resolution is negligible.
$\Rightarrow$ Width $=\Delta m \sim 200 \mathrm{MeV} / c^{2}$


Mass $\left(\mathrm{GeV} / c^{2}\right)$

## Width $\rightarrow$ Lifetime

## $\Delta E \Delta \tau \sim \hbar$

The energy level (of an excited atom) or mass of an unstable particle is not determined!

Range of values of $\Delta E, \Delta m: \quad \Delta E \Delta t \sim \hbar \Rightarrow \Delta m c^{2} \Delta t \sim \hbar$.
$\Delta t \sim$ Lifetime of excited state/particle.

Width of $\rho: \Delta m \sim 200 \mathrm{MeV} / c^{2}$
$\Rightarrow$ Lifetime $\tau \sim \frac{6.6 \times 10^{-34}}{2 \pi \times 200 \times 10^{6} \times 1.602 \times 10^{-19}} \sim 10^{-24}-10^{-23} \mathrm{~s}$

A reliable but very approximate method to estimate lifetimes.

## Particle Mass

(a) Rest mass (in the tables) for real i.e. observable particles.
= on-shell mass
=average mass an experiment would

| Baryon | Quark content | Charge | Mass |
| :---: | :---: | :---: | :---: |
| $N\left\{\begin{array}{l}p \\ n\end{array}\right.$ | uud | +1 | 938.280 |
|  | udd | 0 | 939.573 | measure after many repeated measurements.

Even a perfect experiment would not return the same value of mass for each measurement if the particle is not stable.
(b) A particle interacting virtually can go off mass-shell.

We never directly measure that mass.
You are at liberty to claim we don't really know if a certain particle mediated an interaction as a virtual state. Our best theories tell us that but virtual particles are not observables.

## Summary

- Conceptual overview
- Forces mediated by particle exchange
- Exchange particle mass determines force range.
- Scattering (theory)
- Identify the observables that can be predicted
- Interaction rates for sets of overlapping particles
- Scattering (experiment)
- Ensure that the observables which are measured are those which can be predicted!
- Cross section
- Decays
- Decay rates
- Particle widths

