
Lecture 2 



Outline 

• Conceptual overview  

• Scattering (theory) 

–  Identify the observables that can be predicted 

• Scattering (experiment) 

–  Ensure that the observables which are measured 
are those which can be predicted !  

• Decays  
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Particle  emits particle  

Heisenberg's uncertainty principle 

The position of particle  is not determined 

The "quantum path" between the start and end points

is not like a classical path. 
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Particles  interact via the exchange of a force carrying particle (propagator)  
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Generic particle exhcnage 

A high energy particle  scatters off a static

particle  via the exchange of particle .

Particles  and  real (can be observed).

Particle  is virtual (only internal)
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Generic particle exchange 
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Energy conservation violation at vertex: 

 

      

 

       

Energy is not conserved at the vertex ! 

Heisenberg's uncertainty princi
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apparent energy violation   for a short time interval    :    
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Virtual and real particles 

Virtual particles can go "off mass shell" i.e. possess a different mass to 

that given in the books!

The apparent energy conservation violation can be understood in this way.
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The fundamental forces 

 ,W Z

The weak force has a limited range and reduced strength owing

 to the masses of the exchange particles 

The strong force with a massless gluon "should" have a limitless range 

but the gluons interac

 
 
 t in a special way (next lectures).



• Conceptual overview  
–  Forces mediated by particle exchange  

–  Exchange particle mass determines force range.  

• Scattering (theory) 
–  Identify the observables that can be predicted 

• Scattering (experiment) 
–  Ensure that the observables which are measured 

are those which can be predicted !   

• Decays  
 



How do we experimentally observe 
forces ?  

Scattering Decay 

Beam particles 

Target particles 

B C 

A A 

C D 

Scatter :  beam particles off target particles.

Decay : observe decay rates and decay particles.

Need a theoretical formalism to calculate this.



Scattering Interaction rates  
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Quantum mechanics and perturbation theory: Fermi's golden rule:

  

  matrix element/probability amplitude 

 must be calculated, eg, Feynman diagrams.

phase space factor. 

Scattering volume 

Beam particles a 

Target particles b Consider set of beam particles scattering

off target particles in a volume.

 reaction rate per beam and target particle.
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Amplitude 
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Ingredient in calculation of reaction rates. 

Amplitude  for single particle exchange for a  particle

with momentum  to be scattered to a final state with momentum   
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Require a potential for a force. 

X



Yukawa potential  
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Potential energy for a particle  scattering off 

a static particle : 

 (  Yukawa potential ) 

=range,  coupling "charge" on  and 

Eg EM force considering an electron scattering off
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 a proton 

        

   Limit       (Coulomb energy)
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Full relativistic treatment: 

         (Four vectors!)
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Scattering volume 

Beam particles a 

Target particles b 

 
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Consider set of beam particles  scattering

off target particles  in a volume.

 reaction rate per beam and target particle.

     

No.  particles in scattering volume
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Number of interactions between  and  per unit time 

Define  

Number of  particles entering  per unit time per unit beam area (flux)

  =  

 
  

Scattering theory 



The cross section 
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Quantum mechanics tells us that we can calculate a quantity which is related to 

the probability of a scatter between  and 

 
Cross-section:    

Is it an experimentally measurable observab
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  = number of interactions per second   

 

Define luminosity=     (depends on the apparatus used).

 

We measure a reaction rate     We know the luminosity 

 We ca
R

 n measure    

Yes it is an experimentally measurable observable !
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Integrated luminosity and total number of events 

0
0

0

0

'

'

  gives rate of reactions.

An experiment can run over a  time .

Total number of interactions/"events"

Integrated luminosity 
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Questions  
What are the dimensions of the cross section ?  

 

Does the cross section depend on the apparatus, eg beam area ? 

 

Why bother with the cross section ? Surely we can calculate and measure the 
probability of an individual particle a interacting with an individual particle b ?   

 

 

 

 

  



Two experiments observing a scattering off b  
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Reaction rate:              
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Different observed reaction rates depending on luminosity of experiment:

      

Cross section is specific to the individual particle reaction:  
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Visualising the cross section 

b



Assume that each particle of type  (scattering centre) has

a cross-sectional area . A beam particle must  pass through

the cross-sectional area to interact.

The bigger the area, the bigger the chance of an interaction !

Naive ! The EM force has infinite range. 

"Works" in certain situations, eg some strong force reactions. 
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Cross section 

In the previous example, the cross section was defined such that the particle 

interacted in some way.  It could have been scattered, annihilated - doesn't matter.

Defined the total cross section: tot

a



1

.

.

,

When particles interact there are many different types of interactions possibe,

 each of which can be measured which contribute to 

  

Elastic scattering    eg     

Inelastic
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 scattering   eg    

   

Can define cross section for particle scattering into a certain solid angle:  
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Differential cross section 

sin
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Study angular distributions of scattered particles:Eg     ( =anything) 

Define a frame, eg  at rest =energy of .

Reaction rate  for processes leading to  scattered through solid angle

 
 

 
 max

2

' 2

0 4

,
, ,

'

, ',
'

'

D

E

A
d d

r

d E
R E L

d

E

d E E
E d dE

d dE


 

 


 




  


 
 

   

  

If scattered particle's energy  can be measured:

                                 

detector 

A 

B 
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Cross section units 

28 31 21 2

Units of barn.

Origin from nuclear physics :

an uranium nucleus is "as big as a barn".

1barn=1b=10 m    ;    millibarn = 1mb = 10 m   

 

Typical cross section for beam energies of 10 GeV.



• Conceptual overview   
–  Forces mediated by particle exchange  
–  Exchange particle mass determines force range.  

• Scattering (theory) 
–  Identify the observables that can be predicted  
– Interaction rates for sets of overlapping particles  

• Scattering (experiment) 
–  Ensure that the observables which are measured are 

those which can be predicted !  
–  Cross section 

• Decays  
 



Decays 

As for scattering, decays mediated by virtual particles 

Weak force 



Decay rates 
 

   

2
2 '

1 2

1 2

1

0 0

2

1

...

1

...

Unstable particles: 

 = decay rate 

For different decay modes
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Resonances 

2

2200

Experiment makes repeated 

measurement of the mass of a 

particle. Eg  particle.

Experimental resolution is negligible.

 Width =  MeV/

E mc

m c
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:decay from tedreconstruc Mass

                 

:decay from mass Measured

2Width mc 

2 ) Mass (GeV/c



Width  Lifetime

2, .

The energy level (of an excited atom) or mass of an unstable particle is not 

determined !

Range of values of   :             

 Lifetime of excited state/particle. 

Width of 
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A reliable but very approximate method to estimate lifetimes.
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   



Particle Mass  
(a) Rest mass (in the tables) for real i.e. observable particles.

= on-shell mass 

=average mass an experiment would

measure after many repeated measurements.

Even a perfect experiment would not return the same 

value of mass for each measurement  if the particle is not stable.

(b) A particle interacting virtually can go off mass-shell. 

We never directly measure that mass.  

You are at liberty to claim we don't really know if a certain particle 

mediated an interaction as a virtual state. Our best theories tell us 

that but virtual particles are not observables.

 



Summary 

• Conceptual overview   
–  Forces mediated by particle exchange  
–  Exchange particle mass determines force range.  

• Scattering (theory) 
–  Identify the observables that can be predicted  
– Interaction rates for sets of overlapping particles  

• Scattering (experiment) 
–  Ensure that the observables which are measured are those 

which can be predicted !  
–  Cross section 

• Decays 
–  Decay rates 
–  Particle widths 

 
 
 
 


