Lecture 2

Outline

- Conceptual overview
- Scattering (theory)
 - Identify the observables that can be predicted
- Scattering (experiment)
 - Ensure that the observables which are measured are those which can be predicted !
- Decays

How particles interact

Simple cartoon picture.

Particles interact via the exchange of a force carrying particle (propagator)

Particle *A* emits particle *X* which is absorbed by particle *B*.

Generic particle exhcnage

Generic particle exchange

Energy conservation violation at vertex:

Heisenberg's uncertainty principle allows

apparent energy violation ΔE for a short time interval $\Delta \tau$: $\Delta E \Delta \tau \sim \hbar$

- \Rightarrow Particle *X* speed ~ *c*
- \Rightarrow Particle X distance travelled $R \sim c \Delta \tau$

$$\Rightarrow$$
 Range of force $R \sim \frac{\hbar}{M_X c}$

Virtual and real particles

Virtual particles can go "off mass shell" i.e. possess a different mass to that given in the books!

The apparent energy conservation violation can be understood in this way.

The fundamental forces

?

theory yet for gravity

The weak force has a limited range and reduced strength owing

to the masses of the exchange particles (W^{+-}, Z)

The strong force with a massless gluon "should" have a limitless range but the gluons interact in a special way (next lectures).

- Conceptual overview
 - Forces mediated by particle exchange
 - Exchange particle mass determines force range.
- Scattering (theory)
 - Identify the observables that can be predicted
- Scattering (experiment)
 - Ensure that the observables which are measured are those which can be predicted !
- Decays

How do we experimentally observe forces ?

Scatter : beam particles off target particles. Decay : observe decay rates and decay particles.

Need a theoretical formalism to calculate this.

Scattering Interaction rates

Quantum mechanics and perturbation theory: Fermi's golden rule:

$$W = \frac{2\pi}{\hbar} \left| \mathcal{M} \right|^2 \rho \left(E' \right)$$

 \mathcal{M} = matrix element/probability amplitude \mathcal{M} must be calculated, eg, Feynman diagrams. $\rho(E')$ = phase space factor.

Consider set of beam particles scattering off target particles in a volume.

W = reaction rate per beam and target particle.

$$=\frac{R}{N_a N_b}$$

 $N_a = No. a$ particles in scattering volume $N_a = No. b$ particles in scattering volume

Amplitude

Ingredient in calculation of reaction rates.

Amplitude for single particle exchange for a particle

with momentum \vec{q}_i to be scattered to a final state with momentum \vec{q}_f .

$$\mathcal{M}\left(\vec{q}\right) = \int d^{3}\vec{r} \ e^{i\frac{\vec{q}_{f} \cdot \vec{r}}{\hbar}} V(\vec{r}) \ e^{-i\frac{\vec{q}_{i} \cdot \vec{r}}{\hbar}} = \int d^{3}\vec{r} \ e^{-\frac{i\vec{q} \cdot \vec{r}}{\hbar}} V(\vec{r}) \qquad \vec{q} = \vec{q}_{f} - \vec{q}_{i}$$

$$\vec{q}_{f}$$

$$\vec{q}_{i}$$

$$X$$

Require a potential $V(\vec{r})$ for a force.

Yukawa potential

Potential energy for a particle *B* scattering off a static particle *A*:

$$V(r) = -\frac{g^{2}}{4\pi}^{2} \frac{e^{-\frac{r}{R}}}{r}$$
 (Yukawa potential)

R=range, $g \equiv$ coupling \equiv "charge" on *A* and *B*.

Eg EM force considering an electron scattering off a proton

$$g_{em} = \frac{q}{\sqrt{\varepsilon_0}} \qquad V(r) = -\frac{q^2 e^{-\frac{r}{R}}}{4\pi\varepsilon_0 r}$$

Limit $R \to \infty \qquad V(r) \to -\frac{q^2}{4\pi\varepsilon_0 r}$ (Coulomb energy)

Amplitude

 \vec{q}_{f}

X

 \vec{q}_i

$$\mathcal{M}\left(\vec{q}\right) = \int d^{3}\vec{r} \ e^{i\frac{\vec{q}_{f}\cdot\vec{r}}{\hbar}} V(\vec{r}) \ e^{-i\frac{\vec{q}_{i}\cdot\vec{r}}{\hbar}} = \int d^{3}\vec{r} \ e^{-\frac{i\vec{q}\cdot\vec{r}}{\hbar}} V(\vec{r}) \qquad \vec{q} = \vec{q}_{f} - \vec{q}_{i}$$

$$\Rightarrow \mathcal{M}\left(\vec{q}\right) = \frac{-g^2\hbar^2}{\left|\vec{q}\right|^2 + M_X^2c^2}$$

Full relativistic treatment:

$$\mathcal{M}(q') = \frac{g^2 \hbar^2}{q'^2 - M_X^2 c^2} \qquad q'^2 = (E_f - E_i)^2 - (\vec{q}_f - \vec{q}_i)^2 c^2 \quad \text{(Four vectors!)}$$

$$\Rightarrow \text{ weak force is weak compared to the em force}$$

 $M_X \approx M_Z, M_W \approx 80 \text{ GeV (weak)}$ $M_X = 0 \text{ GeV (em)}$
 $\frac{g_{em}^2}{|q'|^2} \text{ (em)} \gg \frac{g_W^2}{|q'|^2 - M_W^2 c^2} \text{ (weak) unless } |q'|^2 \gg M_W^2 c^2$

Scattering theory

Consider set of beam particles a scattering off target particles b in a volume.

W = reaction rate per beam and target particle.

$$=\frac{R}{N_a N_b}=\frac{2\pi}{\hbar}\left|\mathcal{M}\right|^2 \rho(E')$$

 $N_a =$ No. *a* particles in scattering volume $N_a =$ No. *b* particles in scattering volume

Scattering volume

Define
$$\sigma = \frac{\text{Number of interactions between } a \text{ and } b \text{ per unit time } \times \frac{1}{N_b}}{\phi_a} = \frac{R \times \frac{1}{N_b}}{\phi_a}$$

 ϕ_a = Number of *a* particles entering *X* per unit time per unit beam area (flux)

$$\Rightarrow R = \sigma \phi_a N_B = \frac{2\pi}{\hbar} |\mathcal{M}|^2 \rho(E') N_A N_B$$
$$\Rightarrow \sigma = \frac{2\pi |\mathcal{M}|^2 \rho(E') N_A}{\hbar \phi_a}$$

The cross section

Quantum mechanics tells us that we can calculate a quantity which is related to the probability of a scatter between a and b

Cross-section:
$$\sigma = \frac{2\pi |\mathcal{M}|^2 \rho(E') N_A}{\hbar \phi_a}$$

Is it an experimentally measurable observable ?

$$\sigma = \frac{R \times \frac{1}{N_b}}{\phi_a} \Longrightarrow R = \phi_a \times N_b \times \sigma = \text{number of interactions per second}$$

Define luminosity= $\mathcal{L} = \phi_a N_b$ (depends on the apparatus used). $\Rightarrow R = \mathcal{L}\sigma$ We measure a reaction rate R . We know the luminosity $\mathcal{L} = \phi N$

We measure a reaction rate *R*. We know the luminosity $\mathcal{L} = \phi_a N_b$

$$\Rightarrow \text{ We can measure } \sigma = \frac{R}{\mathcal{L}}$$

Yes it is an experimentally measurable observable !

Integrated luminosity and total number of events

 $R = \mathcal{L}\sigma$ gives rate of reactions.

An experiment can run over a time *t*.

$$\int_{0}^{t} Rdt = \int_{0}^{t} \sigma \mathcal{L}dt$$

$$N = \int_{0}^{t} Rdt = \text{Total number of interactions/"events"}$$

$$\mathcal{L}' = \int_{0}^{t} \mathcal{L}dt = \text{Integrated luminosity}$$

$$\Rightarrow N = \mathcal{L}'\sigma$$

Questions

What are the dimensions of the cross section ?

Does the cross section depend on the apparatus, eg beam area?

Why bother with the cross section ? Surely we can calculate and measure the probability of an individual particle a interacting with an individual particle b ?

Two experiments observing a scattering off b

Different observed reaction rates depending on luminosity of experiment:

$$\mathcal{L}_2 > \mathcal{L}_1 \quad ; R_2 > R_1$$

Cross section is specific to the individual particle reaction: $\sigma_1 = \sigma_2$

Visualising the cross section

Assume that each particle of type *b* (scattering centre) has a cross-sectional area σ . A beam particle must pass through the cross-sectional area to interact.

The bigger the area, the bigger the chance of an interaction !

Naive ! The EM force has infinite range.

"Works" in certain situations, eg some strong force reactions.

Cross section

In the previous example, the cross section was defined such that the particle *a* interacted in some way. It could have been scattered, annihilated - doesn't matter. Defined the total cross section: σ_{tot} .

When particles interact there are many different types of interactions possibe, each of which can be measured which contribute to σ_{tot} .

Eg e^-, p Elastic scattering $A + B \rightarrow A + B$ eg $e^- + p \rightarrow e^- + p$ σ_1 Inelastic scattering $A + B \rightarrow A + C + D$ eg $e^- + p \rightarrow e^- + n + \pi^+$ σ_2 $\sigma_{tot} = \sigma_1 + \sigma_2$

Can define cross section for particle scattering into a certain solid angle: $\frac{d\sigma}{d\Omega}$

Differential cross section

Study angular distributions of scattered particles: Eg $A + B \rightarrow A + X$ (X=anything) Define a frame, eg B at rest E=energy of A.

Reaction rate *R* for processes leading to *A* scattered through solid angle

$$\Delta \Omega = \sin \theta d\theta d\phi = \frac{A_D}{r^2}$$
$$R(E, \theta, \Delta \Omega) = L \frac{d\sigma(E, \theta)}{d\Omega} \Delta \Omega$$

If scattered particle's energy *E*' can be measured:

$$\sigma(E) = \int_{0}^{E'_{\text{max}}} \int_{4\pi} \frac{d^2 \sigma(E, E', \theta)}{d\Omega dE'} d\Omega dE'$$

Cross section units

Units of barn. Origin from nuclear physics : an uranium nucleus is "as big as a barn".

 $1barn=1b=10^{-28}m^2$; $1 millibarn = 1mb = 10^{-31}m^2$

Typical cross section for beam energies of 10 GeV.

- Conceptual overview
 - Forces mediated by particle exchange
 - Exchange particle mass determines force range.
- Scattering (theory)
 - Identify the observables that can be predicted
 - Interaction rates for sets of overlapping particles
- Scattering (experiment)
 - Ensure that the observables which are measured are those which can be predicted !
 - Cross section
- Decays

Decays

As for scattering, decays mediated by virtual particles

Decay rates

Unstable particles: $W = 2\pi \left\| \mathcal{M} \right\|^2 \rho(E')$

$$W = \Gamma = \frac{1}{\tau}$$
 = decay rate

For different decay modes

Eq: $A \rightarrow B + C (\Gamma_1)$ or $A \rightarrow C + D (\Gamma_2)...$ Lifetime $\tau = \frac{1}{\Gamma_{tot}}$ $\Gamma_{tot} = \Gamma_1 + \Gamma_2 + ...$ Branching ratios $B_i = \frac{\Gamma_1}{\Gamma}$

Decay via $N = N_0 e^{-\frac{t}{\tau}} = N = N_0 e^{-\Gamma_{tot}t}$

N = number of undecayed particles at time t

 N_0 = number of undecayed particles at time t = 0

Resonances

 $E = mc^2$

Experiment makes repeated measurement of the mass of a particle. Eg ρ particle. Experimental resolution is negligible.

 \Rightarrow Width = $\Delta m \sim 200 \text{ MeV}/c^2$

Mass (GeV/ c^2)

Width \rightarrow Lifetime

 $\Delta E \Delta \tau \sim \hbar$

The energy level (of an excited atom) or mass of an unstable particle is not determined !

Range of values of $\Delta E, \Delta m$: $\Delta E \Delta t \sim \hbar \implies \Delta mc^2 \Delta t \sim \hbar$.

 $\Delta t \sim$ Lifetime of excited state/particle.

Width of
$$\rho$$
 : $\Delta m \sim 200 \text{ MeV}/c^2$
 \Rightarrow Lifetime $\tau \sim \frac{6.6 \times 10^{-34}}{2\pi \times 200 \times 10^6 \times 1.602 \times 10^{-19}} \sim 10^{-24} - 10^{-23} \text{ s}$

A reliable but very approximate method to estimate lifetimes.

Particle Mass

- (a) Rest mass (in the tables) for real i.e. observable particles.
- = on-shell mass
- =average mass an experiment would
- measure after many repeated measurements.
- Even a perfect experiment would not return the same value of mass for each measurement if the particle is not stable.

- (b) A particle interacting virtually can go off mass-shell.
- We never directly measure that mass.
- You are at liberty to claim we don't really know if a certain particle mediated an interaction as a virtual state. Our best theories tell us that but virtual particles are not observables.

Baryon	Quark content	Charge	Mass
$N \begin{cases} p \\ n \end{cases}$	uud	+1	938.280
	udd	0	939.573

Summary

- Conceptual overview
 - Forces mediated by particle exchange
 - Exchange particle mass determines force range.
- Scattering (theory)
 - Identify the observables that can be predicted
 - Interaction rates for sets of overlapping particles
- Scattering (experiment)
 - Ensure that the observables which are measured are those which can be predicted !
 - Cross section
- Decays
 - Decay rates
 - Particle widths