
Exam, FK5024, Nuclear & particle physics,
astrophysics & cosmology, October 26, 2017

08:00 – 13:00, Room FR4 (Oskar Klein Auditorium)

No tools allowed except calculator (provided at the exam) and the attached for-
mula sheet.

1. (4 p) Consider the following decays/reactions (the particles are not bound
or virtual). Discuss which of these are possible to observe and draw a
Feynman diagram in that case. If a process is impossible state a conser-
vation law forbidding it.
(a) Z0 → e+ + e−

Allowed. It is one of the main decays of Z0.

(b) p→ n+ e+ + νe
Not allowed because of energy conservation (mpc

2 < mnc
2).

(c) µ− → e− + µ+ + e−

Not allowed (both energy and lepton number conservation).
(d) τ+ → e+ + ντ + νe
Not allowed, lepton number conservation (ντ should have been ντ ).

2. (4 p) In a scattering process, an electron interacts with a quark in the
proton via the exchange of a virtual photon with four-momentum of the
photon Pγ (one can show that P 2

γ < 0 for scattering). If the proton’s
four-momentum is P , show that the fraction x of the proton’s momentum
carried by the struck quark is

x =
−P 2

γ

2P • Pγ
.

(The symbol • denotes the 4-scalar product.) You can assume that the
proton, and thus the quarks, are travelling at a relativistic speed and that
particle rest masses can be neglected.
Look at the photon–quark interaction.
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Four-momentum conservation gives Pγ + xP = Pq, with xP being the
4-momentum of the quark before and Pq the 4-momentum of the quark
after the collision. Squaring gives P 2

γ + 2xP • Pγ = 0 since masses can be
neglected so P 2=P 2

q =0. Thus

x =
−P 2

γ

2P • Pγ
.

3. (4 p) The maximum positron kinetic energy in the spectrum of positrons
emitted in the nuclear decay 11C→11B is 0.96 MeV. Use this information
and the known mass of 11B, 10.2551 GeV/c2, to compute the mass of 11C.
In the decay, a neutrino is also emitted, and the positron and neutrino
share the energy. Thus, when the positron kinetic energy is maximal,
the neutrino gets minimal energy which is very close to zero, as neutrino
masses are extrememly tiny. Thus we can forget about the neutrino in the
calculation. The positron kinetic energy is its total energy minus its rest
mass energy, i.e., Ekin = Etote − mec

2 or Etote = 0.96 MeV+0.511 MeV
= 1.47 MeV. The absolute value k of the momentum of the positron and
the boron nucleus are equal and the direction is opposite (as the C nucleus
decays at rest), and energy conservation gives

MCc
2 =

√
M2
Bc

4 + (kc)2 + Etote .

As the value of kc is of the order of an MeV, we can neglect that contribu-
tion in the square root, and we simply get MCc

2 = MBc
2+Etote = 10.2551

GeV + 0.00147 GeV = 10.257 GeV.

4. Consider a parent nucleus with Z+2 protons, undergoing α-decay into a
daughter nucleus with Z protons. The charge of the α-particle in units of
e is z = 2.
(a) (1 p) Write down the expression for the Coulomb potential V (r) of the
α-particle at a distance r from the daughter nucleus.
From the formula sheet (Z1 = 2, Z2 = 90),

V (r) =
2Zαh̄c

r
=

(
2Z

r

)
· αh̄c =

2.88Z MeV · fm
r
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(b) (1 p) Given the binding energy B = 34 MeV and Z = 90, find the
value of the radius a where the α-particle is classically confined using the
formula B = V (a). Given the value Q = 6 MeV for the reaction, find the
value of the radius b for which the α-particle has tunneled away of the
Coulomb potential, using the formula Q = V (b).
B = V (a)⇒ 34 MeV = 2.88 · 90 MeV·fm/a⇒ a = 259/34 fm = 7.62 fm.
Q = V (b)⇒ 6 MeV = 259 MeV·fm/b⇒ b = 259/6 fm = 43.2 fm.
(c) (2 p) Compute the Gamow factor

G ≈

√
2mc2

Q

zZ

137

(π
2
− 2
√
x
)
,

where x = a/b = Q/B, and mc2 = 3.73 GeV is the rest mass of the α-
particle. Estimate the (small) probability to penetrate the barrier, using
the formula P = exp (−2G).
x = Q/B = 6/34 = 0.176, z = 2, Z = 90, Q = 6 MeV, mc2 = 3730 MeV
gives, using the calculator, G = 33.8. Thus,

P = e−2G = 4.1 · 10−30

(The probability per unit time is still significant, since the alpha particle
moves fast and therefore hits the barrier many times before escaping.)

5. Explain briefly the following concepts:
(a) (1 p) Radiation-matter equality.
The epoch in the early uinverse when the energy density of radiation
equaled that of the matter. (At z ∼ 104.)
(b) (1 p) Dark matter.
The presently unknown component of the matter density that does not
emit or absorb light. (So-called WIMPs and axions are presently two of
the main candidates for dark matter.)
(c) (2 p) The geometry term proportional to k and the Λ term in the
Friedmann equation.
k gives information on the geometry: k = 0 means the universe is geomet-
rically flat on large scales, k > 0 that it is closed, k < 0 means an open
universe. Λ is a measure of the cosmological constant (vacuum energy, or
”dark energy”).

6. (4 p) (a) (1 p) For an equation of state p/c2 = w · ρ, how does ρ depend
on the scale factor a?
From the fluid equation in the formula sheet one gets

ρ̇

ρ
= −3(1 + w)

ȧ

a

which can be integrated with respect to time to give
ln(ρ) = −3(1 + w) ln(a)+const. Exponentiation then gives ρ ∼ a−3(1+w).
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(b) (2 p) The early Universe could in principle be dominated by cosmic
strings of length l = a(t) · l0 where a(t) is the scale factor and l0 is a
constant (i.e., the strings get longer by the scale factor). The energy
density in a string is λ · l with the string tension λ being a constant. The
total energy density of i = 1, 2, 3, . . . strings of lengths li = a(t)l0i in a
physical volume V is thus

ρs =
∑
i

λli
V
.

What is the equation of state for these cosmic strings?
λli ∼ a and V ∼ a3 gives ρs ∼ a−2. Comparing this to the result in (a)
gives 3(1 + w) = 2, or w = −1/3.
(c) (1 p) How does the scale factor depend on time for cosmic strings?
From the acceleration equation in the formula sheet, and the result in (b),
p/c2 = w · ρ = −ρ/3 one finds

ä

a
= 0,

i.e. a(t) ∼ t.

Good Luck!
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