Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, October 26, 2017

08:00 – 13:00, Room FR4 (Oskar Klein Auditorium)

No tools allowed except calculator (provided at the exam) and the attached formula sheet.

- 1. (4 p) Consider the following decays/reactions (the particles are not bound or virtual). Discuss which of these are possible to observe and draw a Feynman diagram in that case. If a process is impossible state a conservation law forbidding it.
 - (a) $Z^0 \to e^+ + e^-$ (b) $p \rightarrow n + e^+ + \nu_e$
 - (c) $\mu^- \rightarrow e^- + \mu^+ + e^-$ (d) $\tau^+ \rightarrow e^+ + \nu_\tau + \nu_e$
- 2. (4 p) In a scattering process, an electron interacts with a quark in the proton via the exchange of a virtual photon with four-momentum of the photon P_{γ} (one can show that $P_{\gamma}^2 < 0$ for scattering). If the proton's four-momentum is P, show that the fraction x of the proton's momentum carried by the struck quark is

$$x = \frac{-P_{\gamma}^2}{2P \bullet P_{\gamma}}$$

(The symbol • denotes the 4-scalar product.) You can assume that the proton, and thus the quarks, are travelling at a relativistic speed and that particle rest masses can be neglected.

- 3. (4 p) The maximum positron kinetic energy in the spectrum of positrons emitted in the nuclear decay ${}^{11}C \rightarrow {}^{11}B$ is 0.96 MeV. Use this information and the known mass of ${}^{11}\text{B}$, $10.2551 \,\text{GeV}/c^2$, to compute the mass of ${}^{11}\text{C}$.
- 4. Consider a parent nucleus with Z+2 protons, undergoing α -decay into a daughter nucleus with Z protons. The charge of the α -particle in units of e is z = 2.

(a) (1 p) Write down the expression for the Coulomb potential V(r) of the α -particle at a distance r from the daughter nucleus.

(b) (1 p) Given the binding energy $B = 34 \,\text{MeV}$ and Z = 90, find the value of the radius a where the α -particle is classically confined using the formula B = V(a). Given the value Q = 6 MeV for the reaction, find the value of the radius b for which the α -particle has tunneled away of the Coulomb potential, using the formula Q = V(b).

(c) (2 p) Compute the Gamow factor

$$G \approx \sqrt{\frac{2mc^2}{Q}} \frac{zZ}{137} \left(\frac{\pi}{2} - 2\sqrt{x}\right),$$

Page 1 of 2

where x = a/b = Q/B, and $mc^2 = 3.73 \text{ GeV}$ is the rest mass of the α -particle. Estimate the (small) probability to penetrate the barrier, using the formula $P = \exp(-2G)$.

- 5. Explain briefly the following concepts:
 - (a) (1 p) Radiation-matter equality.
 - (b) (1 p) Dark matter.

(c) (2 p) The geometry term proportional to k and the Λ term in the Friedmann equation.

6. (4 p) (a) (1 p) For an equation of state $p/c^2 = w \cdot \rho$, how does ρ depend on the scale factor a?

(b) (2 p) The early Universe could in principle be dominated by cosmic strings of length $l = a(t) \cdot l^0$ where a(t) is the scale factor and l^0 is a constant (i.e., the strings get longer by the scale factor). The energy density in a string is $\lambda \cdot l$ with the string tension λ being a constant. The total energy density of $i = 1, 2, 3, \ldots$ strings of lengths $l_i = a(t)l_i^0$ in a physical volume V is thus

$$\rho_s = \sum_i \frac{\lambda l_i}{V}.$$

What is the equation of state for these cosmic strings? (c) (1 p) How does the scale factor depend on time for cosmic strings?

Good Luck!

Useful equations

Friedmann equation:

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}(\rho_{m} + \rho_{r}) - \frac{kc^{2}}{a^{2}} + \frac{\Lambda}{3} = H_{0}^{2} \left[\Omega_{M}(1+z)^{3} + \Omega_{R}(1+z)^{4} + \Omega_{K}(1+z)^{2} + \Omega_{\Lambda}\right]$$

Fluid equation:

$$\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{p}{c^2}\right) = 0$$

Acceleration equation:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3\frac{p}{c^2} \right) + \frac{\Lambda}{3}$$

"Deceleration parameter": $\begin{pmatrix} \ddot{a}(t_0) \\ 1 \end{pmatrix}_{-1}$

$$q_0 = -\left(\frac{a(t_0)}{a(t_0)}\right) \frac{1}{H_0^2}$$

Equation of state:

$$p/c^2 = w \cdot \rho$$

Coulomb potential:

$$V(r) = \frac{Q_1 Q_2}{4\pi\epsilon_0 r} = \frac{Z_1 Z_2 \alpha \hbar c}{r},$$

where $Q_i = Z_i e, \, \alpha = \frac{1}{137}$ is the fine-structure constant and $\hbar c = 1.973 \cdot 10^{-7} \text{ eV} \cdot \text{m}$

Name	Symbol		value
Newton's constant	G_N		$6.672 \cdot 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$
Speed of light	С	or	$\frac{2.998 \cdot 10^8 \text{ m s}^{-1}}{3.076 \cdot 10^{-7} \text{ Mpc year}^{-1}}$
Planck's constant	$\hbar = h/2\pi$		$1.055 \cdot 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$
Boltzmann's constant	k_B	or	$\frac{1.381 \cdot 10^{-23} \text{ J/K}}{8.619 \cdot 10^{-5} \text{ eV/K}}$
Radiation constant	$\alpha_{rad}=\pi^2k_B^4/15\hbar^3c^3$		$7.565 \cdot 10^{-16} \text{ Jm}^{-3} \text{ K}^{-4}$
Electron rest mass energy	$m_e c^2$		$0.511 { m ~MeV}$
Proton rest mass energy	$m_p c^2$		$938.3 { m ~MeV}$
Neutron rest mass energy	$m_n c^2$		939.6 MeV
W boson rest mass energy	$m_W c^2$		$80.4 \mathrm{GeV}$
Z boson rest mass energy	$m_Z c^2$		$91.2 {\rm GeV}$
Planck energy	$M_{Pl}c^2$		$1.2 \cdot 10^{19} \text{ GeV}$
Thomson cross section	σ_e		$6.652 \cdot 10^{-29} \text{ m}^2$
Neutron half-life (free neutron)	$t_{rac{1}{2}}$		611 s
Hubble constant	H_0		$100 \cdot h \text{ km s}^{-1} \text{ Mpc}^{-1}$
	h		0.70 ± 0.03
Inverse Hubble constant	H_{0}^{-1}		$9.77h^{-1} \cdot 10^9$ years
Critical density	$ ho_c^0$		$1.05h^2 \cdot 10^{-5} \text{ GeV cm}^{-3}$

Constants (W, Z masses and Hubble h are 2017 values)

Conversion factors

 $\begin{array}{l} 1 \ \mathrm{pc} = 3.261 \ \mathrm{light\text{-}years} = 3.086 \cdot 10^{16} \ \mathrm{m} \\ 1 \ \mathrm{AU} = 1.5 \cdot 10^{11} \ \mathrm{m} \\ 1 \ \mathrm{year} = 3.156 \cdot 10^7 \ \mathrm{s} \\ 1 \ \mathrm{eV} = 1.602 \cdot 10^{-19} \ \mathrm{J} \\ 1 \ \mathrm{M}_{\odot} = 1.989 \cdot 10^{30} \ \mathrm{kg} \end{array}$

		QUARKS (Spin ½)			
	Flavor	Flavor Charge	Mass (speculative)			
			Bare	Effective		
				In baryons	In mesons	
First generation {	d u	-13 +23	7.5	} 363	310	
Second generation {	s c	$-\frac{1}{3}$ $+\frac{2}{3}$	150 1100	538 15	483 00	
Third generation	b t	$-\frac{1}{3}$ $+\frac{2}{3}$	4200	4700 >23,000		

PARTICLE DATA (Mass in MeV/c²; Lifetime in Seconds; Charge in Units of Proton Charge.)

LEPTONS	(Spin	ł)
---------	-------	----

	Lepton	Charge	Mass	Lifetime	Principal decays
First generation {	е Ve	-1 0	0.511003 ~ 0	8	
Second generation {	μ ν _μ	-1 0	105.659 ~ 0	$2.197 \times 10^{\circ}$	$ev_{\mu}v_{e}$
Third generation {	τ ν_{τ}	-1 0	~ 0	5.5 × 10 ∞	$\mu_{\nu_{\tau}\nu_{\mu}}, e_{\nu_{\tau}\nu_{e}}, p_{\nu_{\tau}}$

MEDIATORS (Spin 1)

Mediator	Charge	Mass	Lifetime	Force
gluon	0	0	∞	strong
photon (γ)	0	0	∞	electromagnetic
W [±]	±1	81,800	unknown	(charged) weak
Z ⁰	0	92,600	unknown	(neutral) weak

BARYONS (Spin ½)

Baryon	Quark content	Charge	Mass	Lifetime	Principal decays
$N \begin{cases} P \\ n \\ \lambda \\ \Sigma^+ \\ \Sigma^0 \\ \Sigma^- \\ \Xi^0 \\ \Xi^- \\ \Lambda_c^+ \end{cases}$	uud udd uds uus uds dds uss dss uss udc	+1 0 0 +1 0 -1 0 -1 +1	938.280 939.573 1115.6 1189.4 1192.5 1197.3 1314.9 1321.3 2281	$\begin{array}{c} \infty \\ 900 \\ 2.63 \times 10^{-10} \\ 0.80 \times 10^{-10} \\ 6 \times 10^{-20} \\ 1.48 \times 10^{-10} \\ 2.90 \times 10^{-10} \\ 1.64 \times 10^{-10} \\ 2 \times 10^{-13} \end{array}$	$pe \overline{\nu}_{e}$ $p \pi^{-}, n \pi^{0}$ $p \pi^{0}, n \pi^{+}$ $A \gamma$ $n \pi^{-}$ $A \pi^{0}$ $A \pi^{-}$ not established

BARYONS (Spin $\frac{3}{2}$)

Baryon	Quark content	Charge	Mass	Lifetime	Principal decays
Δ Σ* Ξ* Ω ⁻	unu, und, udd, ddd uns, uds, dds uss, dss sss	$ \begin{array}{r} +2, +1, 0, -1 \\ +1, 0, -1 \\ 0, -1 \\ -1 \end{array} $	1232 1385 1533 1672	$\begin{array}{c} 0.6\times10^{-23}\\ 2\times10^{-23}\\ 7\times10^{-23}\\ 0.82\times10^{-10} \end{array}$	$egin{aligned} & N\pi \ & \Lambda\pi, \ & \Sigma\pi \ & \Xi\pi \ & \Lambda K^-, \ & \Xi^0\pi^-, \ & \Xi^-\pi^0 \end{aligned}$

PSEUDOSCALAR MESONS (Spin 0)

Meson	Quark content	Charge	Mass	Lifetime	Principal decays
π^{\pm}	uð, dū	+1, -1	139.569	$2.60 imes 10^{-8}$	$\mu \nu_{\mu}$
π^0	(uū – dđ)/√2	0	134.964	8.7×10 ⁻¹⁷	$\gamma\gamma$
K [±]	นรี, รนี	+1, -1	493.67	1.24 × 10 ⁻⁸	$\mu \nu_{\mu}, \pi^{\pm} \pi^{0}, \pi^{\pm} \pi^{\mp} \pi^{\mp}$
K°, \bar{K}^{0}	dīs, sā	0, 0	497.72	$\begin{cases} K_S^0 0.892 \times 10^{-10} \\ K_L^0 5.18 \times 10^{-8} \end{cases}$	π ⁺ π ⁻ , π ⁰ π ⁰ πeν _e , πμν _μ , πππ
η	$(u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$	0	548.8	7×10^{-19}	$\gamma\gamma, \pi^{0}\pi^{0}\pi^{0}, \pi^{+}\pi^{-}\pi^{0}$
η' .	$(u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$	0.	957.6	3×10^{-21}	$\eta\pi\pi, \rho^0\gamma$
D^{\pm}	cđ, dī	+1, -1	1869	9×10 ⁻¹³	Κππ
D^0, \bar{D}^0	cū, uc	0, 0	1865	4×10 ⁻¹³	Κππ
F^{\pm} (now D_s^{\pm})	cs, sc	+1, -1	1971	3×10^{-13}	not established
B^{\pm} B^{0}, \bar{B}^{0}	ub, bū db, bd	+1, -1 0, 0	5271 5275	14×10^{-13}	D + ?
ης	cī	0	2981	6×10 ⁻²³	ΚΚπ, ηππ, η'ππ

VECTOR MESONS (Spin 1)

Meson	Quark content	Charge	Mass	Lifetime	Principal decays
ρ Κ* ω J/ψ D*	ud, dū, (uū – dd)/V2 uš, sū, dš, sd (uū + dd)/V2 sš cc cd, dč, cū, uč	+1, -1, 0 +1, -1, 0, 0 0 0 +1, -1, 0, 0	770 892 783 1020 3097 2010	$\begin{array}{c} 0.4 \times 10^{-23} \\ 1 \times 10^{-23} \\ 7 \times 10^{-23} \\ 20 \times 10^{-23} \\ 1 \times 10^{-20} \\ >1 \times 10^{-22} \end{array}$	ππ Kπ π+π-π0, π0γ K+K-, K0K0 e+e-, μ+μ-, 5π, 7π Dπ, Dγ