Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, November 1, 2018

Time 08:00 - 13:00, Room FR4

No tools allowed except calculator (provided at the exam) and the attached formula sheets.

- 1. (4 p) Consider the following processes. If a process can take place draw a Feynman diagram. If a process cannot take place state a conservation law which is violated by that process.
 - (a) $\Omega^{-} \to K^{0} + \pi^{-}$

Is not possible (spin and baryon number violated).

(b) $\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$

Is possible (ordinary weak decay through W^- mediator).

(c) $\mu^+ + \mu^- \to \tau^+ + \tau^-$

Is possible (if the energy of the muons is enough to create the heavier τ leptons).

- (d) Decide which of the following statements are true or false. If a statement is false explain why.
- (i) The weak force is dominantly responsible for the decay $\rho^0 \to \pi^+ + \pi^-$.

Wrong! The large decay width (short lifetime) indicates a strong decay.

- (ii) Violation of the conservation of energy has never been observed in a particle decay. Correct! (If a particle decays, it has a finite lifetime τ , and the quantum mechanical uncertainty relation means that the energy may seem violated by $\Delta E \sim \mathcal{O}(\frac{\hbar}{\tau})$. However, this can be interpreted as the fact that the mass of an unstable particle is uncertain, rather than that the energy is not conserved.)
- 2. (4 p) What are the essential features of the liquid-drop, shell, and collective models of the nucleus? Indicate what properties of the nucleus are well predicted by each model.
- 3. Explain briefly the following concepts:
 - (a) (1 p) Dark energy and the cosmological constant, Λ .
 - (b) (1 p) Dark matter.
 - (c) (2 p) Big Bang Nucleosynthesis (BBN) and ⁴He production. Would there be more ⁴He or less, if the neutron half-life would be smaller?

Less. All surviving neutrons eventually end up in helium nuclei, and the shorter the neutron lifetime, the less neutrons survive and the $^4{\rm He}$ production goes down due to the lack of neutrons.

- 4. (4 p) A μ^- and a μ^+ collide head-on at a laboratory. The μ^+ has an energy 120 GeV. An experiment at the laboratory wishes to study the process $\mu^- + \mu^+ \to Z^0$ and selects a range in possible energy values for the μ^- .
 - (a) Estimate the range in energy which the μ^- should possess.

From the particle table, we read the mass of the Z^0 to be 91.2 GeV/ c^2 , and the lifetime $\tau = 3 \cdot 10^{-25}$ s. This gives a decay full width of $\Gamma = 2\Delta E = \frac{\hbar}{\tau} \sim 2.2$ GeV, where we roughly have to hit the central energy of the peak in the centre of mass system with $E_{CMS} = m_Z c^2 \pm \Delta E$ to excite the resonance. Thus $s = (p_{\mu-} + p_{\mu+})^2 = 1$

 $(91.2\pm1.1)^2$. Neglecting the rest mass of muons, this means, now working in the lab frame $(120+E_{\mu^-})^2-(120-E_{\mu^-})^2=4\cdot120\cdot E_{\mu^-}=(91.2\pm1.1)^2$, which gives $E_{\mu^-}=17.33\pm0.42$ GeV. This is the range to choose if we want to study the Z^0 in this experiment.

(b) The experiment observes $\mu^- + \mu^+ \rightarrow e^+ + e^-$.

The energy of the e^+ is 75 GeV. Choose a single energy value from (a) for the μ^- which belongs to the range of energy estimated in (a) and calculate the angle between the e^+ and e^- .

Let us choose the central value 17.33 GeV for E_{μ^-} . Energy conservation means 120 GeV + 17.33 GeV = 75 GeV + E_{e^-} (where E_{e^-} denotes the energy of the electron in the lab frame). Thus, $E_{e^-}=62.33$ GeV. Here it is an even better approximation to neglect e^\pm masses, and we use that s is an invariant to compute in the lab frame after the reaction $s=2\cdot75\cdot62.33\cdot(1-\cos\theta_\pm)=(91.2)^2,$ or $1-\cos\theta_\pm=0.89,$ i.e. $\cos\theta_\pm=0.11,$ or $\theta_\pm=93^\circ.$

- 5. Natural gold $^{197}_{79}$ Au is radioactive since it is unstable against α -decay with an energy of 3.3 MeV.
 - (a) (2 p) Is that expected from the Semi-empirical mass formula?
 - (b) (2 p) Estimate the lifetime of $^{197}_{79}$ Au to explain why gold does not burn a hole in your pocket.

Useful formulas:

Geiger-Nuttall relation: $\log_{10} \lambda = C - DE_{\alpha}^{-1/2}$, $C \approx 52$, $D \approx 140 \text{ (MeV)}^{1/2}$ Semi-empirical mass formula (Bethe-Weizsäcker):

$$E_B = a_V A - a_S A^{2/3} - a_A \frac{(A - 2Z)^2}{A} - a_C \frac{Z(Z - 1)}{A^{1/3}} + \delta(A, Z)$$

with

$$\delta(A, Z) = \left\{ \begin{array}{ll} +\delta_0 & \text{N, Z even, A even} \\ 0 & \text{A odd} \\ -\delta_0 & \text{N, Z odd, A even} \end{array} \right\}, \delta_0 = \frac{a_P}{A^{1/2}}$$

Volume term: $a_V=15.85~{\rm MeV}$ Surface term: $a_S=18.34~{\rm MeV}$ Asymmetry term: $a_A=23.21~{\rm MeV}$ Coulomb term: $a_C=0.714~{\rm MeV}$ For pairing term: $a_P=12.00~{\rm MeV}$

(a) Using the given SEMF one finds $Q = -E_B(197,79) + E_B(193,77) + E_B(4,2) = (-1566.2 + 1540.6 + 22.3)$ MeV = -3.3 MeV, which is negative, so the SEMF does not work in this case (one has to add the extra binding energy of the alpha particle of around 6 MeV - not given in the problem text - which gives a positive value around 3 MeV).

(b) The Geiger-Nuttall relation gives, for E=3.3 MeV, $\log_{10}\lambda=52-\frac{140}{\sqrt{3.3}}\approx-25.1$ s⁻¹. With the decay law $N(t)=N_0e^{-\lambda t}$ we see that the natural decay time scale is $1/\lambda\sim10^{25.1}$ s, which is far longer than the age of the universe $t_0\sim4\cdot10^{17}$ s. Natural gold is regarded as stable, due to the Coulomb barrier for α -decay.

6. (a) (2 p) An alternative to the cosmological constant may be an unusual "fluid" U, the density of which changes with the scale factor like $\rho_U(t) \sim 1/a(t)$. What is the equation of state parameter w_U for this fluid?

From the fluid equation in the formula sheet one gets

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a}$$

which can be integrated with respect to time to give $\ln(\rho) = -3(1+w)\ln(a) + \text{const.}$ Exponentiation then gives $\rho \sim a^{-3(1+w)}$. Here it was given that $\rho \sim a^{-1}$, meaning -3(1+w) = -1, or w = -2/3

(b) (2 p) Assume that the matter and U content now corresponds to $\Omega_M=0.3$ and $\Omega_U=0.7$ (i.e., a flat universe with no cosmological constant and where radiation can be neglected). Compute the value of the "deceleration parameter" for this hypothetical universe.

From the formula sheet, we find $q_0 = -\frac{\ddot{a}(t_0)}{a(t_0)}\frac{1}{H_0^2}$, and $\frac{\ddot{a}}{a} = -\frac{4\pi G_N}{3}\sum_i \left(\rho_i + 3\frac{p_i}{c^2}\right) = -\frac{4\pi G_N}{3}\sum_i \rho_i(1+3w_i)$. With $\rho_c^0 = (3H_0^2)/(8\pi G_N)$ (also from the formula sheet) we can find (for z=0, and using $w_M=0$, $\Omega_U=-2/3$,) $q_0=\frac{1}{2}\left[\Omega_M-\Omega_U\right]=-0.2$ (The deceleration parameter is thus negative, meaning an accelerating universe, but slower acceleration compared to a cosmological constant).