QFT problem set 4

(Fawad Hassan)

Deadline: Monday, March 09, 2020

- 1. Show that the notions of helicity and chirality coincide for zero mass fermions.
- 2. (a) Starting from $(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi$, where Φ is the Higgs doublet in the electroweak theory, show that after spontaneous symmetry breaking, the gauge fields W, W^{\dagger}, Z become massive while the photon field A remains massless. You can use the unitary gauge for Φ .
 - (b) Starting from the Yang-Mills Lagrangian for the $SU(2)_W \times U(1)_Y$ gauge fields W_i^{μ} and B^{μ} , work out the Lagrangian for the physical fields $A^{\mu}, Z^{\mu}, W^{\mu}, W^{\dagger \mu}$, including the interaction terms.
 - (c) Obtain the Feynman rules for the vertices of the type $WW^{\dagger}AA$, $WW^{\dagger}A$ and $WW^{\dagger}AZ$.
- 3. Consider the elastic electron-neutrino scattering processes, $\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$ and $\bar{\nu}_{\mu} + e^- \rightarrow \bar{\nu}_{\mu} + e^-$ in electroweak theory. Write down the expressions for the Feynmann amplitudes.
- 4. The following generalized Higgs-neutrino coupling term can be added to the original electroweak theory (see Mandl and Shaw for details and conventions),

$$-G_{l'l}\bar{\Psi}^{L}_{l'}(x)\psi^{R}_{\nu_{l}}(x)\tilde{\Phi}(x) - G^{*}_{l'l}\tilde{\Phi}^{\dagger}(x)\bar{\psi}^{R}_{\nu_{l}}(x)\Psi^{L}_{l'}(x)$$
(A)

In the unitary gauge, write (A) in terms of $\psi_j = \sum_l U_{jl} \psi_{\nu_l}$, where U is the unitary matrix that diagonalizes the Hermitian coupling matrix G, *i.e.*, $(UGU^{\dagger})_{ij} = \lambda_i \delta_{ij}$. What are the masses m_j of the eigenstate neutrinos ν_j associated with the fields $\psi_j(x)$? Draw the Higgs-neutrino (ν_j) interaction vertex and show that it comes with vertex factor $(-i/v)m_j$.

5. Problem 19.2 (page 448) from Mandl and Shaw, 2nd edition (Decay rates are defined in section 16.5 (page 372) of the book).