QFT problem set 2

Due date: Thursday, Dec 21, 10, 2023

1. In Dirac theory, starting from the expression for the Noether charges, express the Hamiltonian H, momentum $P_{i}, U(1)$ charge Q, and spin \vec{S} operators in terms of the Dirac field and its conjugate.
Compute Q in terms of the creation and annihilation operators (4 points).
2. In the Dirac theory, consider a 1-particle state $\left|\mathbf{1}_{p, r}\right\rangle$ of momentum vector \vec{p} created by either $c_{r}^{\dagger}(\vec{p})$ or $d_{r}^{\dagger}(\vec{p})$. The projection of the spin operator \vec{S} along the particle momentum, $S_{p}=\vec{S} \cdot \hat{p}$, is given by (in units where $\hbar=1$, and normal ordered)

$$
S_{p}=\frac{1}{2} \int \mathrm{~d}^{3} x \mathrm{~N}\left(\psi^{\dagger} \sigma_{p} \psi\right)
$$

(See Mandl and Shaw for notations and the identities to use in this problem). Show that in terms of the lowering and raising operators, one gets,

$$
\left\langle\mathbf{1}_{p, r}\right| S_{p}\left|\mathbf{1}_{p, r}\right\rangle=\frac{1}{2}(-1)^{r+1}\left\langle\mathbf{1}_{p, r}\right|\left(d_{r}^{\dagger}(\vec{p}) d_{r}(\vec{p})+c_{r}^{\dagger}(\vec{p}) c_{r}(\vec{p})\right)\left|\mathbf{1}_{p, r}\right\rangle .
$$

(Important: Note that \vec{p} is the momentum of the state, not to be confused with the dummy momentum labels, say, \vec{p}^{\prime} and $\vec{p}^{\prime \prime}$, that would appear in the expansions of ψ and ψ^{\dagger}. The same holds for the indices r, r^{\prime} and $r^{\prime \prime}$.)
What are the spin eigenvalues when $\left|\mathbf{1}_{p, r}\right\rangle$ is either the 1-particle states $c_{r}^{\dagger}(\vec{p})|0\rangle$ or $d_{r}^{\dagger}(\vec{p})|0\rangle$ (for $r=1,2$)? (4 points)
3. Using the expansion of the Dirac fields $\psi(x)$ and $\bar{\psi}(x)$ in terms of creation and annihilation operators, compute the covariant anticommutation relations $\left\{\psi_{\alpha}^{ \pm}(x), \bar{\psi}_{\beta}^{\mp}(y)\right\}$ showing that the answer is given by eqn (4.52b) of Mandl and Shaw ($2^{\text {nd }}$ Edition). (3 points)
4. Using the result of question 4 , compute the fermion propagator $\langle 0| \mathrm{T}(\psi(x) \bar{\psi}(y))|0\rangle$. Show that the result is $i S_{\mathrm{F}}(x-y)$ given by the contour integral

$$
i S_{\mathrm{F}}(x)=\frac{i \hbar}{(2 \pi \hbar)^{4}} \int \mathrm{~d}^{3} p \int_{C_{\mathrm{F}}} \mathrm{~d} p^{0} e^{-\mathrm{i} p x / \hbar} \frac{p p+m c}{p^{2}-m^{2} c^{2}}
$$

where C_{F} is the Feynman contour in the complex p^{0} plane (provide your reasoning and calculation details). (3 points)

