QFT problem set 2

Due date: Thursday, Dec 21, 10, 2023

1. In Dirac theory, starting from the expression for the Noether charges, express the Hamiltonian H, momentum P_i , U(1) charge Q, and spin \vec{S} operators in terms of the Dirac field and its conjugate.

Compute Q in terms of the creation and annihilation operators (4 points).

2. In the Dirac theory, consider a 1-particle state $|\mathbf{1}_{p,r}\rangle$ of momentum vector \vec{p} created by either $c_r^{\dagger}(\vec{p})$ or $d_r^{\dagger}(\vec{p})$. The projection of the spin operator \vec{S} along the particle momentum, $S_p = \vec{S} \cdot \hat{p}$, is given by (in units where $\hbar = 1$, and normal ordered)

$$S_p = \frac{1}{2} \int \mathrm{d}^3 x \,\mathrm{N}(\psi^{\dagger} \sigma_p \psi)$$

(See Mandl and Shaw for notations and the identities to use in this problem). Show that in terms of the lowering and raising operators, one gets,

$$\langle \mathbf{1}_{p,r} | S_p | \mathbf{1}_{p,r} \rangle = \frac{1}{2} (-1)^{r+1} \langle \mathbf{1}_{p,r} | \left(d_r^{\dagger}(\vec{p}) d_r(\vec{p}) + c_r^{\dagger}(\vec{p}) c_r(\vec{p}) \right) | \mathbf{1}_{p,r} \rangle.$$

(Important: Note that \vec{p} is the momentum of the state, not to be confused with the dummy momentum labels, say, $\vec{p'}$ and $\vec{p''}$, that would appear in the expansions of ψ and ψ^{\dagger} . The same holds for the indices r, r' and r''.)

What are the spin eigenvalues when $|\mathbf{1}_{p,r}\rangle$ is either the 1-particle states $c_r^{\dagger}(\vec{p})|0\rangle$ or $d_r^{\dagger}(\vec{p})|0\rangle$ (for r = 1, 2)? (4 points)

- 3. Using the expansion of the Dirac fields $\psi(x)$ and $\overline{\psi}(x)$ in terms of creation and annihilation operators, compute the covariant anticommutation relations $\{\psi_{\alpha}^{\pm}(x), \overline{\psi}_{\beta}^{\mp}(y)\}$ showing that the answer is given by eqn (4.52b) of Mandl and Shaw (2nd Edition). (3 points)
- 4. Using the result of question 4, compute the fermion propagator $\langle 0|T(\psi(x)\overline{\psi}(y))|0\rangle$. Show that the result is $iS_{\rm F}(x-y)$ given by the contour integral

$$iS_{\rm F}(x) = \frac{i\hbar}{(2\pi\hbar)^4} \int {\rm d}^3p \int_{C_{\rm F}} {\rm d}p^0 \, e^{-{\rm i}px/\hbar} \, \frac{p\!\!\!/ + mc}{p^2 - m^2 c^2}$$

where C_F is the Feynman contour in the complex p^0 plane (provide your reasoning and calculation details). (3 points)