Analytical Mechanics

Summary
March 13, 2006

Joakim Edsjö
edsjo@physto.se
Stockholm University

Newtonian Mechanics I

Newtonian mechanics $=$ vector mechanics
Newton's Iaws
I. "Law of inertia"
II. "Force law"
III. "Law of action and reaction"

In an inertial system we have

$$
\frac{d}{d t} \vec{p}(t)=\vec{F}(\vec{r}, \dot{\vec{r}}, t)
$$

Coordinate systems
Cartes. coord. Cylindrical coord. Spher. coord.

$$
\begin{array}{ll}
(x, y, z) & (\rho, \varphi, z) \\
\vec{r}=x \widehat{x}+y \widehat{y}+z \hat{z} \\
\vec{v}=\dot{x} \widehat{x}+\dot{y} \widehat{y}+\dot{z} \hat{z} \\
\vec{a}=\ddot{x} \widehat{x}+\ddot{y} \widehat{y}+\ddot{z} \vec{z}
\end{array} \quad\left\{\begin{array} { l }
{ \vec { r } = \rho \hat { \rho } + z \hat { z } } \\
{ \vec { v } = \ldots } \\
{ \vec { a } = \ldots }
\end{array} \quad \left\{\begin{array}{l}
\vec{r}, \theta, \varphi) \\
\vec{v}=r \widehat{r} \\
\vec{a}=\ldots
\end{array}\right.\right.
$$

Isolated 2-body system

$$
\left\{\begin{array}{l}
M \ddot{\vec{r}}_{s}=0 \\
\mu \ddot{\vec{r}}=\vec{F}
\end{array}\right.
$$

Newtonian Mechanics II

Central forces

$$
\left.\begin{array}{c}
\vec{F}=f(r) \hat{r} \\
\Downarrow
\end{array}\right] \begin{gathered}
\vec{l}=\vec{r} \times \vec{p}=\text { const. }=\mu r^{2} \dot{\varphi} \hat{z} \\
E=\frac{1}{2} \mu \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}+U(r)=\text { const. } \\
\Downarrow
\end{gathered} \text { Planar motion! } \quad \$
$$

Kepler's laws (for $U(r)=\frac{A}{r}$)
I. $r(\varphi)=\frac{p}{1+\epsilon \cos \varphi}$
II. $\frac{1}{2} r^{2} \dot{\varphi}=$ const.
III. $\frac{a^{3}}{T^{2}}=$ const.

Conservative force fields

$$
\nabla \times \vec{F}=0
$$

if and only if \vec{F} is a conservative force field.

Newtonian Mechanics III

Particle systems

$$
m_{i} \ddot{\vec{r}}_{i}=\sum_{k \neq i}^{n} \vec{F}_{k i}+\vec{F}_{i}^{(e)}
$$

(i) Law of the center of mass motion

$$
M \ddot{\vec{r}}_{s}=\sum_{i}^{n} \vec{F}_{i}^{(e)}
$$

(ii) Momentum law (torque law)

$$
\frac{d}{d t}\left(\sum_{i=1}^{n} \vec{l}_{i}\right)=\sum_{i=1}^{n} \vec{r}_{i} \times \vec{F}_{i}^{(e)}
$$

(iii) Energy law

$$
\frac{d}{d t}(T+U)=\sum_{i=1}^{n} \vec{v}_{i} \times \vec{F}_{i}^{(e)}
$$

Especially for an isolated system

$$
\left\{\begin{array}{l}
\vec{P}=\text { const. } \\
\vec{L}=\text { const } \\
E=\text { const. }
\end{array}\right.
$$

Newtonian Mechanics IV

2-body problem with a central force

$$
\begin{aligned}
\varphi-\varphi_{0} & = \pm l \int_{r_{0}}^{r(\varphi)} \frac{d r}{r^{2} \sqrt{2 \mu\left(E-U_{\mathrm{eff}}(r)\right)}} \\
U_{\mathrm{eff}}(r) & =U(r)+\frac{l^{2}}{2 \mu r^{2}}
\end{aligned}
$$

If

- $r(t) \geq r_{\text {min }}$ we have scattering states.
\Rightarrow We can learn about the potential by studying the differential cross section,

$$
\frac{d \sigma}{d \omega}=\frac{b\left(\theta^{*}\right)}{\sin \theta^{*}}\left|\frac{d b\left(\theta^{*}\right)}{d \theta^{*}}\right|
$$

- $r_{\text {min }} \leq r(t) \leq r_{\text {max }}$ we have bound states. Symmetric around $S A$ and $S P$ where S is the force center, P is pericenter and A is apocenter.

Canonical Mechanics I

Consider n particles with masses m_{i} subject to \wedge independent constraints

$$
f_{\lambda}\left(\vec{r}_{1}, \ldots, \vec{r}_{n}, t\right)=0 \quad, \quad \lambda=1, \ldots, \wedge
$$

Generalized coordinates

A set of independent coordinates,

$$
q_{k}(t) \quad, \quad k=1, \ldots, f, \quad, \quad f=3 n-\wedge
$$

that the constraints into account.
Lagrange's equations
Define

$$
L(\underset{\sim}{q}, \underset{\sim}{\dot{q}}, t)=T(q, \underset{\sim}{\dot{q}})-U(\underset{\sim}{q}, \underset{\sim}{\dot{q}}, t)
$$

Then Lagrange's equations are fulfilled

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{k}}\right)-\frac{\partial L}{\partial q_{k}}=0 \quad, \quad k=1, \ldots, f
$$

Canonical Mechanics II

Hamilton's equations

Define the Hamilton function

$$
H(\underset{\sim}{q}, \underset{\sim}{p}, t)=\sum_{k} \dot{q}_{k} p_{k}-L(\underset{\sim}{q}, \underset{\sim}{\dot{q}}, t)
$$

with the to q_{k} canonically conjugated momentum p_{k} given by

$$
p_{k}=\frac{\partial L}{\partial \dot{q}_{k}}
$$

Hamilton's canonical equations are then

$$
\frac{\partial H}{\partial p_{k}}=\dot{q}_{k} \quad ; \quad \frac{\partial H}{\partial q_{k}}=-\dot{p}_{k}
$$

We have gone from a system of f second order differential equations (Lagrange) to $2 f$ first order differential equations (Hamilton).

Canonical systems and transformations

Canonical system

A mechanical system is canonical if it can be described by a Hamilton function $H=H(\underset{\sim}{q, p}, t)$ such that Hamilton's equations are fulfilled.

Canonical transformations
A transformation

$$
\begin{cases}\{\underset{\sim}{q}, \underset{\sim}{p}\} & \longrightarrow\{\underset{\sim}{Q}, \underset{\sim}{P}\} \\ H(\underset{\sim}{q}, t) & \longrightarrow K(\underset{\sim}{P}, \underset{\sim}{P}, t)\end{cases}
$$

is called canonical if it preserves the structure on the canonical equations, i.e. if

$$
\left\{\begin{array} { l }
{ \dot { q } _ { i } = \frac { \partial H } { \partial p _ { i } } } \\
{ \dot { p } _ { i } = - \frac { \partial H } { \partial q _ { i } } }
\end{array} \quad \longrightarrow \quad \left\{\begin{array}{l}
\dot{Q}_{i}=\frac{\partial K}{\partial P_{i}} \\
\dot{P}_{i}=-\frac{\partial K}{\partial Q_{i}}
\end{array}\right.\right.
$$

Remark. Both variables and the Hamilton function are transformed.

Canonical transformations

Class A. $F_{1}=F_{1}(\underset{\sim}{q}, \underset{\sim}{Q}, t)$ - generating function

$$
p_{i}=\frac{\partial F_{1}}{\partial q_{i}} \quad ; \quad P_{j}=-\frac{\partial F_{1}}{\partial Q_{j}} \quad ; \quad K=H+\frac{\partial F_{1}}{\partial t}
$$

Class B. $F_{2}=F_{2}(\underset{\sim}{q}, \underset{\sim}{P}, t)$ - generating function

$$
p_{i}=\frac{\partial F_{2}}{\partial q_{i}} \quad ; \quad Q_{j}=\frac{\partial F_{2}}{\partial P_{j}} \quad ; \quad K=H+\frac{\partial F_{2}}{\partial t}
$$

Class C. $F_{3}=F_{3}(\underset{\sim}{Q}, \underset{\sim}{p, t})$ - generating function

$$
q_{i}=-\frac{\partial F_{3}}{\partial p_{i}} \quad ; \quad P_{j}=-\frac{\partial F_{3}}{\partial Q_{j}} \quad ; \quad K=H+\frac{\partial F_{3}}{\partial t}
$$

Class D. $F_{4}=F_{4}(\underset{\sim}{P}, \underset{\sim}{p}, t)-$ generating function

$$
q_{i}=-\frac{\partial F_{4}}{\partial p_{i}} \quad ; \quad Q_{j}=\frac{\partial F_{4}}{\partial P_{j}} \quad ; \quad K=H+\frac{\partial F_{4}}{\partial t}
$$

$$
\begin{cases}-F_{2}=\left(\mathcal{L} F_{1}\right)(\underset{)}{Q}) & =\sum_{k} Q_{k} \frac{\partial F_{1}}{\partial Q_{k}}-F_{1} \\ -F_{3}=\left(\mathcal{L} F_{1}\right)(\underset{\sim}{q}) & =\sum_{k} q_{k} \frac{\partial F_{1}}{\partial q_{k}}-F_{1} \\ -F_{4}=\left(\mathcal{L} F_{1}\right)(\underset{\sim}{q, Q}) & =\sum_{k}\left[q_{k} \frac{\partial F_{1}}{\partial q_{k}}+Q_{k} \frac{\partial F_{1}}{\partial Q_{k}}\right]-F_{1}\end{cases}
$$

Hamilton-Jacobi's equations I

Hamilton-Jacobi's time dependent equation

$$
H\left(q_{i}, \frac{\partial S}{\partial q_{i}}, t\right)+\frac{\partial S}{\partial t}=0
$$

gives the action function $S(\underset{\sim}{q}, \underset{\sim}{\alpha}, t)$ that with $\underset{\sim}{P}=\underset{\sim}{\alpha}$ generates the canonical transformation (class B)

$$
\{\underset{\sim}{q}, \underset{\sim}{p}, H\} \longrightarrow\{\underset{\sim}{Q}, \underset{\sim}{P}, K=0\}
$$

Hamilton-Jacobi's time independent equation If $\frac{\partial H}{\partial t}=0$ we can write

$$
\begin{gathered}
S(\underset{\sim}{q}, \underset{\sim}{\alpha}, t)=W(\underset{\sim}{q}, \underset{\sim}{\alpha})-E(\underset{\sim}{\alpha}) t \\
\quad \Rightarrow \quad H\left(q_{i}, \frac{\partial W}{\partial q_{i}}\right)=E
\end{gathered}
$$

The canonical transformation can be derived from the reduced action function $W(\underset{\sim}{q}, \underset{\sim}{\alpha})$ in two ways:

1. Insert $W(q, \alpha)$ in S and let S generate the canonical transformation.
2. Let $W(\underset{\sim}{q}, \underset{\sim}{\alpha})$ generate the canonical transformation directly.

Hamilton-Jacobi's equations II

Method 1 - transformation through $S(\underset{\sim}{q}, \underset{\sim}{\alpha}, t)$

$$
p_{i}=\frac{\partial S}{\partial q_{i}} \quad ; \quad Q_{j}=\frac{\partial S}{\partial P_{j}} \quad ; \quad K=H+\frac{\partial S}{\partial t}=0
$$

Hamilton's equations give

$$
\left\{\begin{array} { l }
{ \dot { P } _ { j } = - \frac { \partial K } { \partial Q _ { j } } = 0 } \\
{ \dot { Q } _ { j } = \frac { \partial K } { \partial P _ { j } } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
P_{j}=\alpha_{j}=\text { const. } \\
Q_{j}=\beta_{j}=\text { const. }
\end{array}\right.\right.
$$

The problem has the solution

$$
\left\{\begin{array}{l}
q_{i}(t)=q_{i}(\beta, \underset{\alpha}{\beta}, t) \\
p_{i}(t)=p_{i}(\underset{\sim}{\beta}, \underset{\sim}{\alpha}, t)
\end{array} \quad \underset{\sim}{\alpha} \text { and } \underset{\sim}{\beta}\right. \text { from the initial conditions }
$$

Method 2 - transformation directly through $W(\underset{\sim}{q}, \underset{\sim}{\alpha})$

$$
p_{i}=\frac{\partial W}{\partial q_{i}} \quad ; \quad Q_{j}=\frac{\partial W}{\partial P_{j}} \quad ; \quad K=H=E(\underset{\sim}{P})=E(\underset{\sim}{\alpha})
$$

Hamilton's equations give

$$
\left\{\begin{array} { l }
{ \dot { P } _ { j } = - \frac { \partial K } { \partial Q _ { j } } = 0 } \\
{ \dot { Q } _ { j } = \frac { \partial K } { \partial P _ { j } } = \frac { \partial E } { \partial \alpha _ { j } } = v _ { j } = \text { const. } }
\end{array} \Rightarrow \left\{\begin{array}{l}
P_{j}=\alpha_{j}=\text { const. } \\
Q_{j}=v_{j} t+\beta_{j}
\end{array}\right.\right.
$$

The problem has the solution
$\left\{\begin{array}{l}q_{i}(t)=q_{i}(\underset{ }{(v}+\underset{\sim}{\beta}, \underset{\sim}{\alpha}) \\ p_{i}(t)=p_{i}(\underset{\sim}{\sim} t+\underset{\sim}{\underset{\alpha}{\alpha}})\end{array} \quad \underset{\sim}{\alpha}\right.$ and $\underset{\sim}{\beta}$ from the initial conditions

Action angle variables

1. Choose

$$
P=J \equiv \oint p d q \quad ; \quad Q=w
$$

2. Use Hamilton-Jacobi's characteristic (time independent) equation to get $W(q, \alpha)$.
3. Replace p with $\frac{\partial S}{\partial q}$ in the expression for J and integrate
4. Solve for E from this equation and we have our new Hamilton function $K=E(J)$
5. Hamilton's equations then give

$$
\left\{\begin{array}{l}
\dot{J}=-\frac{\partial K}{\partial w}=0 \\
\dot{w}=\frac{\partial K}{\partial J}=\nu=\text { frequency }=\frac{\omega}{2 \pi}
\end{array}\right.
$$

and we get get the angular frequency without either deriving the canonical transformation of motion explicity!

Remark. Can be generalized to multiple periodic separable systems.

The phase space

Def. The phase space \mathbf{P} to a canonical system is the space of points $\underset{\sim}{x}=\{\underset{\sim}{q}, \underset{\sim}{p}\}$.

$\underset{\sim}{x}$ time s

The equations of motion can be written

$$
\underset{\sim}{\dot{x}}=\underset{\sim}{\mathcal{F}}=\left\{\frac{\partial H}{\partial{\underset{\sim}{p}}_{p}^{p}},-\frac{\partial H}{\partial \underset{\sim}{q}}\right\}
$$

In general, we can write the solution as $\underset{\sim}{\Phi} t, s(\underset{\sim}{x})$
Flows in phase space
For a set of initial conditions $\{\underset{\sim}{x}\}$, the solutions ${\underset{\sim}{~}}_{t, s}(\underset{\sim}{x})$ describes a flow in phase space

Liouville's theorem

Consider a set of initial conditions at time s. This set occupies region U_{s} with volume V_{s}. At some later time t, these points have moved to a region U_{t} with volume V_{t}. Liouville's theorem them states that $V_{t}=V_{s}$, i.e. the volume in phase space is conserved.

The volume in phase space is conserved!

Poisson brackets

Def. If f and g are functions of the canonical variables $\underset{\sim}{q}$ and $\underset{\sim}{p}$, then

$$
[f, g]=\sum_{i}^{f}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

is their Poisson bracket.

Theorem. The transformation $(\underset{\sim}{q}, \underset{\sim}{p}) \rightarrow(\underset{\sim}{Q}, \underset{\sim}{P})$ is canonical if and only if

$$
\left\{\begin{array}{l}
{\left[Q_{i}, Q_{j}\right]=\left[P_{i}, P_{j}\right]=0} \\
{\left[Q_{i}, P_{j}\right]=\delta_{i j}}
\end{array}\right.
$$

Remark 1. The canonical equations can be written

$$
\left\{\begin{array}{l}
\dot{q}_{k}=\frac{\partial H}{\partial p_{k}}=\left[q_{k}, H\right] \\
\dot{p}_{k}=-\frac{\partial H}{\partial q_{k}}=\left[p_{k}, H\right]
\end{array}\right.
$$

Remark 2 If $g=g(\underset{\sim}{q}, \underset{\sim}{p}, t)$ we have that

$$
\frac{d g}{d t}=[g, H]+\frac{\partial g}{\partial t}
$$

Rigid body motion

Introduce a reference point S in the body (often chose to be the center of mass) and divide position vectors into two parts,

$$
\vec{r}=\vec{r}_{S}+\vec{x}
$$

The velocity is given by

$$
\vec{v}=\vec{V}+\vec{\omega} \times \vec{x}
$$

with $\vec{\omega}=$ the angular frequency.

Kinetic energy and the tensor of inertia

Now let S be the center of mass!
The kinetic energy can then be written

$$
T=\frac{1}{2} M V^{2}+T_{\mathrm{rot}}
$$

with

$$
T_{\mathrm{rot}}=\frac{1}{2} \vec{\omega} \cdot \overrightarrow{\vec{I}} \cdot \vec{\omega}
$$

where $\overrightarrow{\vec{I}}$ is the tensor of inertia,

$$
\overrightarrow{\vec{I}}= \begin{cases}\sum_{i} m_{i}\left[\vec{x}_{i} \cdot \vec{x}_{i}-\vec{x}_{i} \vec{x}_{i}\right] & , \\ \int[\vec{x} \cdot \vec{x}-\vec{x} \vec{x}] \rho(\vec{x}) d^{3} x & , \text { discrete continuous case }\end{cases}
$$

Remark.

$$
\begin{aligned}
& \vec{x}_{i} \cdot \vec{x}_{i} \text { - usual scalar product } \\
& \vec{x}_{i} \vec{x}_{i}-\text { dyadic product }
\end{aligned}
$$

In the base system $(\hat{x}, \widehat{y}, \widehat{z}), \overrightarrow{\vec{I}}$ can be represented by a matrix,

$$
\overrightarrow{\vec{I}}=\left(\begin{array}{ccc}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)
$$

Properties of the inertia tensor

- $\overrightarrow{\vec{I}}$ is linear,

$$
\overrightarrow{\vec{I}}=\overrightarrow{\vec{I}}_{1}+\overrightarrow{\vec{I}_{2}}
$$

- \vec{I} is symmetric,

$$
I_{k l}=I_{l k}
$$

- It is always possible to rotate K^{\prime} such that $\overrightarrow{\vec{I}}$ is diagonal,

$$
\overrightarrow{\vec{I}}=\left(\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right)
$$

The axes in the new system are called principal axes. There are some symmetry rules that can be used to find a principal system easily.

- If $\overrightarrow{\vec{I}}$ is calculated in a system fixed in the body, then \vec{I} is constant.

Angular momentum

The angular momentum is given by
$\vec{L}=$
$\underbrace{\vec{r}_{S} \times M \dot{\vec{r}}_{S}}_{\text {angular }}$ momentum for CM

$\underbrace{\vec{L}_{\text {rel }}}_{\text {relative angular }}$ momentum
where

$$
\begin{gathered}
\vec{L}_{\mathrm{rel}}=\vec{I} \cdot \vec{\omega} \\
\Rightarrow \quad T_{\mathrm{rot}}=\frac{1}{2} \vec{\omega} \cdot \overrightarrow{\vec{I}} \cdot \vec{\omega}=\frac{1}{2} \vec{\omega} \cdot \vec{L}_{\mathrm{rel}}
\end{gathered}
$$

Remark. $\vec{L}_{\text {rel }}$ is dynamically most interesting as it does not depend on our choice of K.

Euler angles

$\left\{\begin{array}{l}\mathbf{R}_{3^{0}}(\phi)-\text { rotate around the } 3^{0} \text {-axis an angle } \phi \\ \mathbf{R}_{\xi}(\theta)-\text { rotate around the } \xi \text {-axis and angle } \theta \\ \mathbf{R}_{3}(\phi) \text { rotal }\end{array}\right.$ $\mathbf{R}_{3}(\psi)$ - rotate around the 3 -axis and angle ψ

Remark. In quantum mechanics, one usually makes another choice of rotations and angles, (α, β, γ).

The equations of motion

For the center of mass, we have

$$
\frac{d}{d t} \vec{P}=\sum_{i} \vec{F}_{i}
$$

For the rotation Euler's dynamical equations hold

$$
\vec{N}_{0}=\overrightarrow{\vec{I}}^{\prime} \cdot \vec{\omega}^{\prime}+\vec{\omega}^{\prime} \times \overrightarrow{\vec{I}}^{\prime} \cdot \vec{\omega}^{\prime}
$$

where

$$
\vec{N}_{0}=\sum_{i} \vec{r}_{i} \times \vec{F}_{i}
$$

is the sum of the external torques. A prime indicates that the quantity is calculated in the system K^{\prime} with axes fixed in the body.

In a principal system, we get

$$
\left\{\begin{array}{l}
N_{x}=I_{x x}^{\prime} \dot{\omega}_{x}^{\prime}+\left(I_{z z}^{\prime}-I_{y y}^{\prime}\right) \omega_{y}^{\prime} \omega_{z}^{\prime} \\
N_{y}=I_{y y}^{\prime} \dot{\omega}_{y}^{\prime}+\left(I_{x x}^{\prime}-I_{z}^{\prime}\right) \omega_{z}^{\prime} \omega_{x}^{\prime} \\
N_{z}=I_{z z}^{\prime} \dot{\omega}_{z}^{\prime}+\left(I_{y y}^{\prime}-I_{x x}^{\prime}\right) \omega_{x}^{\prime} \omega_{y}^{\prime}
\end{array}\right.
$$

$\vec{\omega}$ can be expressed in terms of the Euler angles,

$$
\left\{\begin{array}{l}
\omega_{x}^{\prime}=\dot{\theta} \cos \psi+\dot{\phi} \sin \theta \sin \phi \\
\omega_{y}^{\prime}=-\dot{\theta} \sin \psi+\dot{\phi} \sin \theta \cos \phi \\
\omega_{z}^{\prime}=\dot{\phi} \cos \theta+\dot{\psi}
\end{array}\right.
$$

Connections to quantum mechanics I

The correspondance principle

$$
\begin{aligned}
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}} & \rightarrow-i \hbar \frac{\partial}{\partial q_{i}} \\
{[u, v] } & \rightarrow \frac{1}{i \hbar}[\widehat{u}, \widehat{v}]=\frac{1}{i \hbar}(\widehat{u} \widehat{v}-\widehat{v} \widehat{u})
\end{aligned}
$$

For a canonical variable, we have

$$
\frac{d g}{d t}=[g, H]+\frac{\partial g}{\partial t}
$$

In quantum mechanics, this becomes Heissenberg's equations of motion

$$
\frac{d \hat{g}}{d t}=\frac{i}{\hbar}[\hat{H}, \hat{g}]+\frac{\partial \widehat{g}}{\partial t}
$$

which describes how an operator evolves in time in the so-called Heissenberg picture.

Connections to quantum mechanics II

Start from the Schrödinger equation

$$
i \hbar \frac{\partial \psi}{\partial t}=\hat{H} \psi \quad, \quad \widehat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+U
$$

Make the Ansatz

$$
\begin{gathered}
\psi(q, t)=A e^{\frac{i}{\hbar} S(q, t)} \\
\Downarrow \\
{\left[\frac{1}{2 m}\left(\frac{\partial S}{\partial q}\right)^{2}+U\right]+\frac{\partial S}{\partial t}=\frac{i \hbar}{2 m}\left(\frac{\partial^{2} S}{\partial q^{2}}\right)}
\end{gathered}
$$

The right-hand side can be neglected if

$$
\hbar\left(\frac{\partial^{2} S}{\partial q^{2}}\right) \ll\left(\frac{\partial S}{\partial q}\right)^{2}
$$

which can be rewritten as

$$
\frac{\partial p / \partial q}{p /(\lambda / 2 \pi)} \ll 1 .
$$

I.e., if the wavelength is so short that the momentum is almost constant over one wavelength, then we get back Hamilon-Jacobi's equation from the Schrödinger equation.

