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Newtonian Mechanics I

Newtonian mechanics = vector mechanics

Newton’s laws

I. “Law of inertia”

II. “Force law”

III. “Law of action and reaction”

In an inertial system we have

d

dt
~p(t) = ~F (~r, ~̇r, t)

Coordinate systems

Cartes. coord. Cylindrical coord. Spher. coord.
(x, y, z) (ρ, ϕ, z) (r, θ, ϕ)



~r = xx̂+ yŷ+ zẑ
~v = ẋx̂+ ẏŷ+ żẑ
~a = ẍx̂+ ÿŷ+ z̈ẑ





~r = ρρ̂+ zẑ
~v = . . .
~a = . . .





~r = rr̂
~v = . . .
~a = . . .

Isolated 2-body system
{
M~̈rs = 0

µ~̈r = ~F
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Newtonian Mechanics II

Central forces
~F = f(r)r̂

⇓





~l = ~r × ~p = const. = µr2ϕ̇ẑ

E = 1
2µṙ

2 + l2

2µr2
+ U(r) = const.

⇓

Planar motion!

Kepler’s laws (for U(r) = A
r )

I. r(ϕ) = p
1+ǫ cosϕ

II. 1
2r

2ϕ̇ = const.

III. a3

T2 = const.

Conservative force fields

∇× ~F = 0

if and only if ~F is a conservative force field.
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Newtonian Mechanics III

Particle systems

mi~̈ri =
n∑

k 6=i

~Fki + ~F
(e)
i

(i) Law of the center of mass motion

M~̈rs =
n∑

i

~F
(e)
i

(ii) Momentum law (torque law)

d

dt




n∑

i=1

~li


 =

n∑

i=1

~ri × ~F
(e)
i

(iii) Energy law

d

dt
(T + U) =

n∑

i=1

~vi × ~F
(e)
i

Especially for an isolated system




~P = const.
~L = const.
E = const.
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Newtonian Mechanics IV

2-body problem with a central force

ϕ− ϕ0 = ±l
∫ r(ϕ)

r0

dr

r2
√

2µ(E − Ueff(r))

Ueff(r) = U(r) +
l2

2µr2

If

• r(t) ≥ rmin we have scattering states.

⇒ We can learn about the potential by study-

ing the differential cross section,

dσ

dω
=

b(θ∗)

sin θ∗

∣∣∣∣∣
db(θ∗)

dθ∗

∣∣∣∣∣

• rmin ≤ r(t) ≤ rmax we have bound states. Sym-

metric around SA and SP where S is the force

center, P is pericenter and A is apocenter.
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Canonical Mechanics I

Consider n particles with masses mi subject to Λ

independent constraints

fλ(~r1, . . . , ~rn, t) = 0 , λ = 1, . . . ,Λ

Generalized coordinates

A set of independent coordinates,

qk(t) , k = 1, . . . , f, , f = 3n− Λ

that the constraints into account.

Lagrange’s equations

Define

L(q
˜
, q̇
˜
, t) = T(q

˜
, q̇
˜
) − U(q

˜
, q̇
˜
, t)

Then Lagrange’s equations are fulfilled

d

dt

(
∂L

∂q̇k

)
−
∂L

∂qk
= 0 , k = 1, . . . , f
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Canonical Mechanics II

Hamilton’s equations

Define the Hamilton function

H(q
˜
, p
˜
, t) =

∑

k

q̇kpk − L(q
˜
, q̇
˜
, t)

with the to qk canonically conjugated momentum

pk given by

pk =
∂L

∂q̇k

Hamilton’s canonical equations are then

∂H

∂pk
= q̇k ;

∂H

∂qk
= −ṗk

We have gone from a system of f second order

differential equations (Lagrange) to 2f first order

differential equations (Hamilton).
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Canonical systems and transformations

Canonical system

A mechanical system is canonical if it can be de-

scribed by a Hamilton function H = H(q
˜
, p
˜
, t) such

that Hamilton’s equations are fulfilled.

Canonical transformations

A transformation




{q
˜
, p
˜
} −→ {Q

˜
, P
˜
}

H(q
˜
, p
˜
, t) −→ K(Q

˜
, P
˜
, t)

is called canonical if it preserves the structure on

the canonical equations, i.e. if




q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

−→





Q̇i =
∂K
∂Pi

Ṗi = − ∂K
∂Qi

Remark. Both variables and the Hamilton function

are transformed.
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Canonical transformations

Class A. F1 = F1(q
˜
, Q
˜
, t) - generating function

pi =
∂F1

∂qi
; Pj = −

∂F1

∂Qj
; K = H +

∂F1

∂t

Class B. F2 = F2(q
˜
, P
˜
, t) - generating function

pi =
∂F2

∂qi
; Qj =

∂F2

∂Pj
; K = H +

∂F2

∂t

Class C. F3 = F3(Q
˜
, p
˜
, t) - generating function

qi = −
∂F3

∂pi
; Pj = −

∂F3

∂Qj
; K = H +

∂F3

∂t

Class D. F4 = F4(P
˜
, p
˜
, t) - generating function

qi = −
∂F4

∂pi
; Qj =

∂F4

∂Pj
; K = H +

∂F4

∂t

×





−F2 = (LF1)(Q
˜
) =

∑
kQk

∂F1

∂Qk
− F1

−F3 = (LF1)(q
˜
) =

∑
k qk

∂F1

∂qk
− F1

−F4 = (LF1)(q
˜
, Q
˜
) =

∑
k

[
qk
∂F1

∂qk
+Qk

∂F1

∂Qk

]
− F1
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Hamilton-Jacobi’s equations I

Hamilton-Jacobi’s time dependent equation

H(qi,
∂S

∂qi
, t) +

∂S

∂t
= 0

gives the action function S(q
˜
, α
˜
, t) that with P

˜
= α
˜

generates the canonical transformation (class B)

{q
˜
, p
˜
, H} −→ {Q

˜
, P
˜
,K = 0}

Hamilton-Jacobi’s time independent equation

If ∂H
∂t = 0 we can write

S(q
˜
, α
˜
, t) = W (q

˜
, α
˜
) − E(α

˜
)t

⇒ H(qi,
∂W

∂qi
) = E

The canonical transformation can be derived from

the reduced action function W (q
˜
, α
˜
) in two ways:

1. Insert W (q
˜
, α
˜
) in S and let S generate the canon-

ical transformation.

2. Let W (q
˜
, α
˜
) generate the canonical transforma-

tion directly.
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Hamilton-Jacobi’s equations II

Method 1 - transformation through S(q
˜
, α
˜
, t)

pi =
∂S

∂qi
; Qj =

∂S

∂Pj
; K = H +

∂S

∂t
= 0

Hamilton’s equations give
{
Ṗj = − ∂K

∂Qj
= 0

Q̇j = ∂K
∂Pj

= 0
⇒

{
Pj = αj = const.
Qj = βj = const.

The problem has the solution
{
qi(t) = qi(β

˜
, α
˜
, t)

pi(t) = pi(β
˜
, α
˜
, t)

α
˜

and β
˜

from the initial conditions

Method 2 - transformation directly through W(q
˜
, α
˜
)

pi =
∂W

∂qi
; Qj =

∂W

∂Pj
; K = H = E(P

˜
) = E(α

˜
)

Hamilton’s equations give
{
Ṗj = − ∂K

∂Qj
= 0

Q̇j = ∂K
∂Pj

= ∂E
∂αj

= vj = const.
⇒

{
Pj = αj = const.
Qj = vjt+ βj

The problem has the solution
{
qi(t) = qi(v

˜
t+ β

˜
, α
˜
)

pi(t) = pi(v
˜
t+ β

˜
, α
˜
)

α
˜

and β
˜

from the initial conditions
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Action angle variables

1. Choose

P = J ≡
∮
pdq ; Q = w

2. Use Hamilton-Jacobi’s characteristic (time in-

dependent) equation to get W (q, α).

3. Replace p with ∂S
∂q in the expression for J and

integrate

4. Solve for E from this equation and we have our

new Hamilton function K = E(J)

5. Hamilton’s equations then give



J̇ = −∂K

∂w = 0

ẇ = ∂K
∂J = ν = frequency = ω

2π

and we get get the angular frequency without

either deriving the canonical transformation of

motion explicity!

Remark. Can be generalized to multiple periodic

separable systems.
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The phase space

Def. The phase space P to a canonical system is

the space of points x
˜

= {q
˜
, p
˜
}.

x  time s
~

y  time t
~

The equations of motion can be written

ẋ
˜

= F
˜

=

{
∂H

∂p
˜

,−
∂H

∂q
˜

}

In general, we can write the solution as Φ
˜ t,s

(x
˜
)

Flows in phase space

For a set of initial conditions {x
˜
}, the solutions

Φ
˜ t,s

(x
˜
) describes a flow in phase space
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Liouville’s theorem

Consider a set of initial conditions at time s. This

set occupies region Us with volume Vs. At some

later time t, these points have moved to a region

Ut with volume Vt. Liouville’s theorem them states

that Vt = Vs, i.e. the volume in phase space is

conserved.

x
~

y
~Us

Ut

Volume: Vs

Volume: Vt

Liouville's theorem: Vs = Vt

y = Φt,s (x)~ ~~

time s

time t

The volume in phase space is conserved!
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Poisson brackets

Def. If f and g are functions of the canonical vari-

ables q
˜

and p
˜
, then

[f, g] =
f∑

i

(
∂f

∂qi

∂g

∂pi
−
∂f

∂pi

∂g

∂qi

)

is their Poisson bracket.

Theorem. The transformation (q
˜
, p
˜
) → (Q

˜
, P
˜
) is

canonical if and only if
{

[Qi, Qj] = [Pi, Pj] = 0

[Qi, Pj] = δij

Remark 1. The canonical equations can be writ-

ten 




q̇k = ∂H
∂pk

= [qk, H]

ṗk = −∂H
∂qk

= [pk, H]

Remark 2 If g = g(q
˜
, p
˜
, t) we have that

dg

dt
= [g,H] +

∂g

∂t
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Rigid body motion

inertial

system

K

K’
K0

axes fixed

in space

axes fixed

in the body

S

r
_

S

r
_

x
_

Introduce a reference point S in the body (often

chose to be the center of mass) and divide position

vectors into two parts,

~r = ~rS + ~x

The velocity is given by

~v = ~V + ~ω × ~x

with ~ω = the angular frequency.
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Kinetic energy and the tensor of inertia

Now let S be the center of mass!

The kinetic energy can then be written

T =
1

2
MV 2 + Trot

with

Trot =
1

2
~ω ·

~~I · ~ω

where
~~I is the tensor of inertia,

~~I =





∑
imi [~xi · ~xi − ~xi~xi] , discrete case

∫
[~x · ~x− ~x~x] ρ(~x)d3x , continuous case

Remark.

~xi · ~xi - usual scalar product

~xi~xi - dyadic product

In the base system (x̂, ŷ, ẑ),
~~I can be represented

by a matrix,

~~I =



Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



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Properties of the inertia tensor

•
~~I is linear,

~~I =
~~I1 +

~~I2

•
~~I is symmetric,

Ikl = Ilk

• It is always possible to rotate K ′ such that
~~I is

diagonal,

~~I =



I1 0 0
0 I2 0
0 0 I3




The axes in the new system are called principal

axes. There are some symmetry rules that can

be used to find a principal system easily.

• If
~~I is calculated in a system fixed in the body,

then
~~I is constant.
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Angular momentum

The angular momentum is given by

~L = ~rS ×M~̇rS︸ ︷︷ ︸
angular

momentum for

CM

+ ~Lrel︸ ︷︷ ︸
relative angular

momentum

where

~Lrel =
~~I · ~ω

⇒ Trot =
1

2
~ω ·

~~I · ~ω =
1

2
~ω · ~Lrel

Remark. ~Lrel is dynamically most interesting as it

does not depend on our choice of K.
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Euler angles

K0

K´

φ

ψ

θ

ξ10

20

30

3

1

2

R(t) = R3(ψ)Rξ(θ)R30(φ)





R30(φ) − rotate around the 30-axis an angle φ
Rξ(θ) − rotate around the ξ-axis and angle θ

R3(ψ) − rotate around the 3-axis and angle ψ

Remark. In quantum mechanics, one usually makes

another choice of rotations and angles, (α, β, γ).

20



The equations of motion

For the center of mass, we have

d

dt
~P =

∑

i

~Fi

For the rotation Euler’s dynamical equations hold

~N0 =
~~I ′ · ~̇ω′ + ~ω′ ×

~~I ′ · ~ω′

where

~N0 =
∑

i

~ri × ~Fi

is the sum of the external torques. A prime indi-
cates that the quantity is calculated in the system
K ′ with axes fixed in the body.

In a principal system, we get





Nx = I ′xxω̇
′
x + (I ′zz − I ′yy)ω

′
yω

′
z

Ny = I ′yyω̇
′
y + (I ′xx − I ′zz)ω

′
zω

′
x

Nz = I ′zzω̇
′
z + (I ′yy − I ′xx)ω

′
xω

′
y

~ω can be expressed in terms of the Euler angles,




ω′
x = θ̇ cosψ + φ̇ sin θ sinφ
ω′
y = −θ̇ sinψ + φ̇ sin θ cosφ

ω′
z = φ̇ cos θ + ψ̇
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Connections to quantum mechanics I

The correspondance principle

pi =
∂L

∂q̇i
→ −ih̄

∂

∂qi

[u, v] →
1

ih̄
[û, v̂] =

1

ih̄
(ûv̂ − v̂û)

For a canonical variable, we have

dg

dt
= [g,H] +

∂g

∂t

In quantum mechanics, this becomes Heissenberg’s

equations of motion

dĝ

dt
=

i

h̄

[
Ĥ, ĝ

]
+
∂ĝ

∂t

which describes how an operator evolves in time in

the so-called Heissenberg picture.
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Connections to quantum mechanics II

Start from the Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ , Ĥ = −

h̄2

2m
∇2 + U

Make the Ansatz

ψ(q, t) = Ae
i
h̄S(q,t)

⇓


 1

2m

(
∂S

∂q

)2

+ U



+
∂S

∂t
=

ih̄

2m

(
∂2S

∂q2

)

The right-hand side can be neglected if

h̄

(
∂2S

∂q2

)
≪

(
∂S

∂q

)2

which can be rewritten as

∂p/∂q

p/(λ/2π)
≪ 1.

I.e., if the wavelength is so short that the momen-

tum is almost constant over one wavelength, then

we get back Hamilon-Jacobi’s equation from the

Schrödinger equation.
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