Joakim Edsjö

Fysikum, Stockholms Universitet
Tel.: 08-55 378726
E-post: edsjo@physto.se

Exam in Analytical Mechanics, 5p

August 20, 2004

5 problems on 6 hours. Each problem gives a maximum of 5 points.
Write your name on each sheet of paper!
If you want your result by e-mail, write your e-mail address on the first page.
Allowed aids of assistance: Physics Handbook and attached collection of formulae.

1. A mass m can move without friction along a circular wire (see figure). The wire rotates around the vertical diameter (the z axis) with a constant angular velocity ω. The mass m is affected by the gravitational force downwards in the figure. Let θ be the angle between the vertical direction and the mass m according to the figure.
a) Derive the equation of motion for θ.
b) For low angular velocities, $\theta=0$ is a stable equilibrium point, whereas it is unstable for high angular velocities. Determine the critical angular velocity ω_{c} that separates these two cases.
(2p)
c) When $\omega<\omega_{c}$, only $\theta=0$ and $\theta=\pi$ are equilibrium points, whereas when $\omega>\omega_{c}$ there is one more equilibrium point. Determine this point!
(1p)

If you have passed on the hand-in exercises, you don't have to do problem 2 below, as you will get full points for it anyway.
2. Consider a pyramid with mass m and whose base is quadratical with side length a and whose height is h (se figure).
a) Show that the center of mass of the pyramid is at height $h / 4$ from its base.
(2p)
b) Introduce a suitable coordinate system and derive the tensor of inertia with respect to the pyramid's center of mass.
(3p)

3. A cylindrical shell with radius R and mass M can rotate without friction around its symmetry axis. The symmetry axis is horizontal and parallel with a vertical wall. A spring $A B$ with the spring constant k is fastened to the wall and to a thin, flexible, inelastic thread $B C$ that goes over the cylinder, perpendicular to the symmetry axis. No sliding occurs between the thread and the cylinder. In point C on the thread, a mass m is hanging (affected by gravitation). The thread and the spring has negligible masses and the mass m can be assumed to move only vertically.
a) Determine the equilibrium point.
b) Determine the motion of the system if it is released
 from rest in a state where the spring assumes its natural length.
(3p)
4. a) Define the concept canonical transformation and describe how a generating function can be used to generate the transformation.
b) Start from Hamilton's variational principle, $\delta \int\left[\sum_{i} p_{i} \dot{q}_{i}-H(q, p, t)\right] d t=0$, and show that a generating function $S(\underset{\sim}{q}, \underset{\sim}{P}, t)$ can generate a canonical transformation. Also derive the relations sthat then hold between the old variables $\{\underset{\sim}{q}, \underset{\sim}{p}\}$ and the new variables $\{\underset{\sim}{Q}, \underset{\sim}{P}\}$. (3p)
Hint: Note that $\frac{d}{d t} \sum_{i} Q_{i} P_{i}$ can be subtracted or added to the Hamilton function without changing the equations of motion.
5. a) Consider an autonomous (time independent) system that is described by a Lagrangian $L(\underline{q}, \dot{q})$ which is invariant under some transformation. Write down and prove Noether's theorem for this system.
b) A particle in three dimensions is described by the Lagrangian

$$
L=\frac{1}{2} m \dot{\mathbf{r}}^{2}+\frac{A}{r+r^{3}} \quad ; \quad A=\text { const. }
$$

Show that the angular momentum \mathbf{L} is a constant of motion.

Good luck!

The solutions will be posted after the exam. They will also be available on http://www.physto.se/~edsjo/teaching/am/index.html.

