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Problem 1

a) See Scheck, section 3.2.

b) The tensor of inertia is given by

~~I =

∫

[~x · ~x − ~x~x] ρ(~x)d3x

where ~x·~x is a normal scalar product, whereas ~x~x is a dyadic product. In a cartesian coordinate
system, the components of the tensor of inertia are

Iij =

∫
[
~x2δij − xixj

]
ρ(~x)d3x. (1)

According to Eq. (1) we have

Izz =

∫

(x2 + y2)ρ(~x)d3x

≤

∫

(z2 + x2 + y2 + z2)ρ(~x)d3x

=

∫

(z2 + x2)ρ(~x)d3x +

∫

(y2 + z2)ρ(~x)d3x

= Iyy + Ixx,

i.e. Izz ≤ Ixx + Iyy, which is exactly what was to be shown.

We have equality when ∫

z2ρ(~x)d3x = 0,

i.e. when the body does not have any extension in the z direction, i.e. when the body is a thin
plate in the xy plane.
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Problem 2

We realize that the problem has two degrees of freedom
and choose x and y as generalized coordinates according to
the figure. x is the position of mass 1 with respect to the
starting position and y is the position of mass 3 with respect
to the right pulley. This means that we can write the heights
(or rather the change of the heights relative to the starting
position) for the three masses as







z1 = x
z2 = y − x
z3 = −y − x

(2)

This gives the kinetic energy

T =
1

2
m1ż

2

1 +
1

2
m2ż

2

2 +
1

2
m3ż

2

3

=
1

2
m1ẋ

2 +
1

2
m2(ẏ − ẋ)2 +

1

2
m3(−ẋ − ẏ)2

=
1

2
(m1 + m2 + m3)ẋ

2 +
1

2
(m2 + m3)ẏ

2 + (m3 − m2)ẋẏ

� � � �
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m2

m3

0

y

0
z1

z2

z3

z

x

The potential energy is

U = m1gz1 + m2gz2 + m3gz3 = (m1 − m2 − m3)gx + (m2 − m3)gy

which gives us the Lagrangian, L = T − U

L =
1

2
(m1 + m2 +m3)ẋ

2 +
1

2
(m2 + m3)ẏ

2 + (m3 −m2)ẋẏ− (m1 −m2 −m3)gx− (m2 −m3)gy (3)

The derivatives of L are given by
{

∂L
∂x

= −(m1 − m2 − m3)g

∂L
∂y

= −(m2 − m3)g
;

{
∂L
∂ẋ

= (m1 + m2 + m3)ẋ + (m3 − m2)ẏ

∂L
∂ẏ

= (m2 + m3)ẏ + (m3 − m2)ẋ

Lagrange’s equations give us the equations of motion

(m1 + m2 + m3)ẍ + (m3 − m2)ÿ + (m1 − m2 − m3)g = 0 (4)

(m2 + m3)ÿ + (m3 − m2)ẍ + (m2 − m3)g = 0 (5)

By substitution, we can solve for ẍ in Eq. (4) and put this into Eq. (5). We then get

[m1(m2 + m3) + 4m2m3)] ÿ + 2m1(m2 − m3)g = 0

In the same way, we can solve for ÿ in Eq. (4) and put this into Eq. (5) to get

[m1(m2 + m3) + 4m2m3] ẍ + [m1(m2 + m3) − 4m2m3] g = 0

Both of these equations are easily integrated twice to get the solution

x(t) = −
[m1(m2 + m3) − 4m2m3] g

m1(m2 + m3) + 4m2m3

t2

2
+ At + B

y(t) = −
2m1(m2 − m3)g

m1(m2 + m3) + 4m2m3

t2

2
+ Ct + D
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where A, B, C and D are constants which are determined from the initial conditions. Inserted into
Eq. (2) these equations give us the motion for the three masses.

Problem 3

a) The Poisson bracket between two canonical variables f and g is defined by

{f, g} =

f
∑

i

[
∂f

∂pi

∂g

∂qi

−
∂f

∂qi

∂g

∂pi

]

Now consider a transformation from (q
˜

, p
˜

) to (Q
˜

, P
˜

), where

{
Qi = Qi(q

˜

, p
˜

, t)
Pj = Pj(q

˜

, p
˜

, t)

This transformation is canonical if the following relations hold






{Qi, Qj} = 0 ; ∀ i, j
{Pi, Pj} = 0 ; ∀ i, j

{Pi, Qj} =

{
0 ; ∀ i 6= j
1 ; ∀ i = j

b) We know that the time evaluation for a canonical variable f is given by

df

dt
=

∂f

∂t
+ {H, f} (6)

Now let f = q1p2 − q2p1 and insert this into Eq. (6) requiring that df/dt = 0,

0 =
df

dt
=

∂f

∂t
︸︷︷︸

0

+{H, f} = {q1p2 − q2p1,
p2

1

2m
+

p2

2

2m
+ a1q

2

1
+ a2q

2

2
} (7)

Now note that all Poisson brackets between the canonical variables are zero, except

{pi, qj} = 1 om i = j.

We can further on use the following properties for the Poisson brackets to simplify our ex-
pression,

{f, gh} = g{f, h}+ {f, g}h ; {fg, h} = f{g, h}+ {f, h}g ; {f, g} = −{g, f}

Eq. (7) can now be simplified to

0 =
p2

2m
{q1, p

2

1} + a2q1{p2, q
2

2} −
p2

1

2m
{q2, p

2

2} − a1q2{p1, q
2

1}

=
p2

2m
2p1 {q1, p1}

︸ ︷︷ ︸

−1

+a2q12q2 {p2, q2}
︸ ︷︷ ︸

1

−
p1

2m
2p2 {q2, p2}

︸ ︷︷ ︸

−1

−a1q22q1 {p1, q1}
︸ ︷︷ ︸

1

=
p1p2

2m
−

p1p2

2m
+ 2q1q2(a2 − a1) = 2q1q2(a2 − a1)

We thus see that we have to require that a1 = a2 for q1p2 − q2p1 to be a constant of motion.
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Uppgift 4

The kinetic energy is given by

T =
1

2
m(lϕ̇)2 +

1

2
ml̇2 =

1

2
m(lϕ̇)2 +

1

2
mα2

and the potential energy is givne by

U = −mgl(t) cosϕ.

The Lagrangian is then

L = T − U =
1

2
m(lϕ̇)2 +

1

2
mα2 + mgl cosϕ.

The canonical momentum is

pϕ =
∂L

∂ϕ̇
= ml2ϕ̇

which finally give us Hamiltonian

H = pϕϕ̇ − L =
p2

ϕ

ml2
−

1

2
ml2

( pϕ

ml2

)2

−
1

2
mα2 − mlg cosϕ

=
1

2

p2
ϕ

ml2(t)
−

1

2
mα2 − mgl(t) cosϕ = H(t) (8)

We note that the Hamiltonian depends explicitly on time because of the time dependent constraint
(the length of the thread that is reduced as time goes on)
The energy for the system is

E = T + U =
1

2

p2

ϕ

ml2(t)
+

1

2
mα2 − mgl(t) cosα = E(t) (9)

Note that the energy E 6= H . If we compare Eq. (8) and (9) we see that

E(t) = H(t) + mα2

Because the Hamiltonian depends explicitly on time, it cannot be a constant of motion. We have
that

dH

dt
=

∂H

∂t
+ {H, H} =

∂H

∂t
6= 0

For the same reason, the energi is not a constant of motion either,

dE

dt
=

∂E

∂t
+ {H, H + mα2} =

∂E

∂t
6= 0

So, we have seen that the Hamiltonian is not equal to the total energy and we have also seen that
neither the Hamiltonian nor the energy are constants of motion. If our constraints does not depend
on time and we write the Lagrangian on its natural form L = T − U , the Hamiltonian is given by
H = T + U , but in this case the constraint is time dependent and then this relation is not valid.
We also exchange energy with the system by the external force that pulls the thread and thus the
energy is not conserved.
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Problem 5

a) We introduce a rotating coordinate system K̄ where the x and y axes are in the plane of
the frisbee and the z axis is along the symmetry axis perpendicular to this plane. This is a
principal system with the moments of inertia (see Physics Handbook, or calculate them)

I1 =
1

4
mr2 ; I2 =

1

4
mr2 ; I3 =

1

2
mr2

Euler’s dynamical equation in our system K̄ read







˙̄ω1 + I3−I2
I1

ω̄2ω̄3 = N̄1

˙̄ω2 + I1−I3
I2

ω̄3ω̄1 = N̄2

˙̄ω3 + I2−I1
I1

ω̄1ω̄2 = N̄3

In our case I1 = I2 and all external torques N̄i = 0, which yield







˙̄ω1 + I3−I1
I1

ω̄2ω̄3 = 0
˙̄ω2 −

I3−I1
I1

ω̄3ω̄1 = 0
˙̄ω3 = 0

The last of these equations immediately give us that

ω̄3 = Ω|| = konst.

Now introduce the following constant

Ω0 =
I3 − I1

I1

ω̄3

which enables us to write the first two of Euler’s dynamical equations as

{
˙̄ω1 = −Ω0ω̄2

˙̄ω2 = Ω0ω̄1

The solution to these equations is easy to find and is given by

{
ω̄1 = Ω⊥ cos(Ω0t + β)
ω̄2 = Ω⊥ sin(Ω0t + β)

The angular velocity vector expressed in the system K̄ is thus given by

ω̄ =
(
Ω⊥ cos(Ω0t + β), Ω⊥ sin(Ω0t + β), Ω||

)

Expressed in the K̄ system, the angular momentum is given by

L̄ = I · ω̄ = (I1ω̄1, I2ω̄2, I3ω̄3)

=
(
I1Ω⊥ cos(Ω0t + β), I1Ω⊥ sin(Ω0t + β), I3Ω||

)

From the expressions for L̄ and ω̄ it is evident that the symmetri axis (the 3̄ axis), L̄ and ω̄

all lie in the same plane.
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b) Since no external torques act on the frisbee, L has to be conserved. Since L rotates around
the 3̄ axis with angular velocity Ω0 in the K̄ system, the 3̄ axis has to rotate with angular
velocity Ω0 around L in a non-rotating system. The angular velocity we are looking for is thus

Ω0 =
I3 − I1

I1

ω̄3

If ω0 is the angular velocity for the rotation around the rotation axis, then ω̄3 = ω0 cosα and
we thus get

Ω0 =
I3 − I1

I1

ω0 cosα

If we now insert the expressions for I3 and I1 and use the fact that ω0 = 2πν we finally get
the sought-after angular velocity

Ω0 = 2πν cosα
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