Solutions to

Exam in Analytical Mechanics, 5p

June 2, 2001

Solutions will eventually also be available on
http://www.physto.se/~edsjo/teaching/am/index.html.

Problem 1

a) The kinetic energy is given by

$$
T=\frac{1}{2} m(R \sin \theta \omega \hat{\boldsymbol{\varphi}}+R \dot{\theta} \hat{\boldsymbol{\theta}})^{2}=\frac{1}{2} m R^{2}\left(\omega^{2} \sin ^{2} \theta+\dot{\theta}^{2}\right)
$$

and the potential energy is given by

$$
U=m g R(1-\cos \theta)
$$

The Lagrangian is then given by

$$
L=T-U=\frac{1}{2} m R^{2}\left(\omega^{2} \sin ^{2} \theta+\dot{\theta}^{2}\right)-m g R(1-\cos \theta)
$$

and it's derivatives are

$$
\left\{\begin{array}{l}
\frac{\partial L}{\partial \theta}=m R^{2} \omega^{2} \sin \theta \cos \theta-m g R \sin \theta \\
\frac{\partial L}{\partial \dot{\theta}}=m R^{2} \dot{\theta}
\end{array}\right.
$$

Inserted into Lagrange's equations,

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=0
$$

we get

$$
\begin{equation*}
m R^{2} \ddot{\theta}=m R^{2} \omega^{2} \sin \theta \cos \theta-m g R \sin \theta \tag{1}
\end{equation*}
$$

which is the equation of motion for θ.
b) From Eq. (1) we see that $\ddot{\theta}=0$ for $\theta=0$ and hence $\theta=0$ is an equilibrium point. To find if it is stable or not, we Taylor expand the right-hand side in Eq. (1) keeping terms up to linear order in θ, i.e. we set

$$
\left\{\begin{array}{l}
\sin \theta \simeq \theta \\
\cos \theta \simeq 1
\end{array}\right.
$$

which gives

$$
m R^{2} \ddot{\theta} \simeq\left(m R^{2} \omega^{2}-m g R\right) \theta
$$

This equation has oscillating cos and \sin solutions if the coefficient in front of θ in the righthand side is negative, otherwise the solution is exponentials. Hence, for the solution to be stable, the coefficient has to be negative, i.e.

$$
\begin{gathered}
m R^{2} \omega^{2}-m g R<0 \\
\Rightarrow \omega^{2}<\frac{g}{R} \\
\Rightarrow \omega_{c}=\sqrt{\frac{g}{R}}
\end{gathered}
$$

c) From Eq. (1) we see that $\ddot{\theta}=0$ when

$$
\sin \theta\left(m R^{2} \omega^{2} \cos \theta-m g R\right)=0
$$

We see that this equation is fulfilled when

$$
\sin \theta=0 \quad \text { or } \quad \cos \theta=\frac{g}{R \omega^{2}}
$$

The first of these gives the two equilibrium points $\theta=0$ and $\theta=\pi$, whereas the second equation only has a solution when $\omega>\omega_{c}$ and then the equilibrium point is

$$
\theta=\arccos \frac{g}{R \omega^{2}}
$$

One can show that this equilibrium point is stable by Taylor expand the right-hand side in Eq. (1) around $\theta=\arccos \frac{g}{R \omega^{2}}$.

Uppgift 2

a) Choose z as the height for the mass m as the generalized coordinate. The kinetic energy for the mass m is then given by

$$
T_{m}=\frac{1}{2} m \dot{z}^{2}
$$

When the mass m has moved a distance z, the mass M has moved the distance $z / 2$. It's kinetic energy gets a contribution both from the translation of the centre of mass, but also
 from the rotation around the centre of mass,

$$
T_{M}=\frac{1}{2} M\left(\frac{1}{2} \dot{z}\right)^{2}+\frac{1}{2} I \omega^{2}
$$

For a solid cylinder the moment of inertia for rotation around the symmetry axis is given by $I=\frac{1}{2} M R^{2}$. The angular velocity is given by $\omega=\frac{\dot{z}}{2 R}$. The kinetic energy for M is then given by

$$
T_{M}=\frac{1}{8} M \dot{z}^{2}+\frac{1}{2} \frac{1}{2} M R^{2}\left(\frac{\dot{z}}{2 R}\right)^{2}=\frac{1}{8} M \dot{z}^{2}+\frac{1}{16} M \dot{z}^{2}=\frac{3}{16} M \dot{z}^{2}
$$

The potential energy is given by

$$
U=m g z-M g \frac{1}{2} z \sin \alpha
$$

which finally gives us the Lagrangian

$$
L=T_{m}+T_{M}-U=\left(\frac{1}{2} m+\frac{3}{16} M\right) \dot{z}^{2}-\left(m g-\frac{1}{2} M g \sin \alpha\right) z .
$$

It's derivatives are

$$
\left\{\begin{aligned}
\frac{\partial L}{\partial z} & =\frac{1}{2} M g \sin \alpha-m g \\
\frac{\partial L}{\partial \dot{z}} & =\left(m+\frac{3}{8} M\right) \dot{z}
\end{aligned}\right.
$$

Lagrange's equations,

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{z}}\right)-\frac{\partial L}{\partial z}=0
$$

then yield

$$
\begin{equation*}
\left(m+\frac{3}{8} M\right) \ddot{z}=\frac{1}{2} M g \sin \alpha-m g \tag{2}
\end{equation*}
$$

which is easily integrated to give the solution

$$
z(t)=\frac{2 M g \sin \alpha-4 m g}{8 m+3 M} t^{2}+A t+B \quad ; \quad A, B=\mathrm{constants}
$$

b) The system is in equilibrium when $\ddot{z}=0$. Eq. (2) tell us that $\ddot{z}=0$ when

$$
\begin{aligned}
& \frac{1}{2} M g \sin \alpha-m g=0 \\
& \quad \Rightarrow \alpha=\arcsin \frac{2 m}{M} .
\end{aligned}
$$

We also see that equilibrium only can be obtained when $M \geq 2 m$.

Uppgift 3

a) Vi have that

$$
\begin{aligned}
\{f, g h\} & =\sum_{i}\left[\frac{\partial f}{\partial p_{i}} \frac{\partial(g h)}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial(g h)}{\partial p_{i}}\right] \\
& =\sum_{i}\left[\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} h+g \frac{\partial f}{\partial p_{i}} \frac{\partial h}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} h-g \frac{\partial f}{\partial q_{i}} \frac{\partial h}{\partial p_{i}}\right] \\
& =g \sum_{i}\left[\frac{\partial f}{\partial p_{i}} \frac{\partial h}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial h}{\partial p_{i}}\right]+\sum_{i}\left[\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}\right] h=g\{f, h\}+\{f, g\} h .
\end{aligned}
$$

The second relation is easily shown in the same way.
b) To determine the condition β and γ has to fulfill for L_{z} to be a constant of motion, we can e.g. use Noether's theorem. Alternatively, we can use Poisson brackets by noting that

$$
\frac{d L_{z}}{d t}=\left\{H, L_{z}\right\}+\underbrace{\frac{\partial L_{z}}{\partial t}}_{0}=\left\{H, L_{z}\right\} .
$$

In other words, we want to determine β and γ such that $\left\{H, L_{z}\right\}=0$. The Hamiltonian is given by

$$
H=\frac{1}{2 m}\left[p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right]+\alpha z^{2} e^{\beta x^{2}+\gamma y^{2}}
$$

The z component of the angular momentum is given by

$$
L_{z}=x p_{y}-y p_{x} .
$$

We are now ready to calculate the Poisson bracket between H and L_{z}. We then use the relations that were proved in a) and that $\left\{q_{i}, q_{j}\right\}=0,\left\{p_{i}, p_{j}\right\}=0,\left\{p_{i}, q_{j}\right\}=\delta_{i j}$ and $\left\{q_{i}, p_{j}\right\}=-\delta_{i j}$ to simplify our expression,

$$
\begin{aligned}
\left\{H, L_{z}\right\}= & \left\{\frac{1}{2 m}\left[p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right]+\alpha z^{2} e^{\beta x^{2}+\gamma y^{2}}, x p_{y}-y p_{x}\right\}= \\
= & \frac{1}{2 m}\left\{p_{x}^{2}, x p_{y}\right\}-\frac{1}{2 m}\left\{p_{y}^{2}, y p_{x}\right\}+\left\{\alpha z^{2} e^{\beta x^{2}+\gamma y^{2}}, x p_{y}\right\}-\left\{\alpha z^{2} e^{\beta x^{2}+\gamma y^{2}}, y p_{x}\right\} \\
= & \frac{1}{2 m} p_{x} \underbrace{\left\{p_{x}, x\right\}}_{1} p_{y}-\frac{1}{2 m} p_{y} \underbrace{\left\{p_{y}, y\right\}}_{1} p_{x}+\alpha z^{2} x\left\{e^{\beta x^{2}+\gamma y^{2}}, p_{y}\right\}-\alpha z^{2} y\left\{e^{\beta x^{2}+\gamma y^{2}}, p_{x}\right\} \\
= & \frac{1}{2 m} \underbrace{\left[p_{x} p_{y}-p_{y} p_{x}\right]}_{0}+\alpha z^{2} x \sum_{i}[\frac{\partial e^{\beta x^{2}+\gamma y^{2}}}{\partial p_{i}} \underbrace{\frac{\partial p_{y}}{\partial q_{i}}}_{0}-\frac{\partial e^{\beta x^{2}+\gamma y^{2}}}{\partial q_{i}} \underbrace{\frac{\partial p_{y}}{\partial p_{i}}}_{\delta_{i 2}}] \\
& -\alpha z^{2} y \sum_{i}[\frac{\partial e^{\beta x^{2}+\gamma y^{2}}}{\partial p_{i}} \underbrace{\frac{\partial p_{x}}{\partial q_{i}}}_{0}-\frac{\partial e^{\beta x^{2}+\gamma y^{2}}}{\partial q_{i}} \underbrace{\frac{\partial p_{x}}{\partial p_{i}}}_{\delta_{i 1}}] \\
= & -\alpha z^{2} x \frac{\partial e^{\beta x^{2}+\gamma y^{2}}}{\partial y}+\alpha z^{2} y \frac{\partial e^{\beta x^{2}+\gamma y^{2}}}{\partial x} \\
= & -\alpha z^{2} x 2 \gamma y e^{\beta x^{2}+\gamma y^{2}}+\alpha z^{2} y 2 \beta x e^{\beta x^{2}+\gamma y^{2}}=\alpha z^{2} x y e^{\beta x^{2}+\gamma y^{2}}[\beta-\gamma] \\
& \Rightarrow\left\{H, L_{z}\right\}=0 \text { if } \beta=\gamma
\end{aligned}
$$

L_{z} is thus conserved if $\beta=\gamma$, which is the condition we looked for.
Remark. $\left\{H, L_{z}\right\}=0$ is also fulfilled if $x=0, y=0$ or $z=0$, but if $\left\{H, L_{z}\right\}=0$ should be fulfilled for arbitrary initial conditions we have to have $\beta=\gamma$.

Uppgift 4

a) See Scheck, section 2.5 or the lecture notes.
b) This is easy to show with calculus of variations. The distance between $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ is given by

$$
L=\int_{x_{0}}^{x_{1}} d s=\int_{x_{0}}^{x_{1}} \sqrt{1+y^{\prime 2}} d x
$$

We can use Euler's equation given in 4 a with

$$
f\left(y, y^{\prime}, x\right)=\sqrt{1+y^{\prime 2}}
$$

Inserted into Euler's equation, we get

$$
0=\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)-\frac{\partial f}{\partial y}=\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)-0=0
$$

which is easily integrated to

$$
\frac{y^{\prime}}{\sqrt{1+y^{2}}}=A=\text { const. } \quad \Rightarrow \quad y^{\prime}=B=\text { const. }
$$

Integrating once more, we get

$$
y=B x+C
$$

which is the equation for the straight line. The constants B and C are given by the condition that the line has to pass through $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

Uppgift 5

a) For a generating function of the type U we have that

$$
q_{i}=-\frac{\partial U}{\partial p_{i}} \quad ; \quad P_{j}=-\frac{\partial U}{\partial Q_{j}} \quad ; \quad \tilde{H}=H+\frac{\partial U}{\partial t} .
$$

We want the new Hamiltonian, \tilde{H}, to be identically equal to zero, i.e. that

$$
H(\underset{\sim}{q}, \underset{\sim}{p}, t)+\frac{\partial U}{\partial t}=0
$$

Use that $q_{i}=-\frac{\partial U}{\partial p_{i}}$ and we get

$$
H\left(-\frac{\partial U}{\partial{\underset{\sim}{p}}_{i}}, \underset{\sim}{p}, t\right)+\frac{\partial U}{\partial t}=0
$$

which is the Hamilton-Jacobi equation in the momentum representation. This is a partial differential equation for U with respect to $\underset{\sim}{p}$ and t.
b) With the given Hamiltonian, Hamilton-Jacobi's equation in the momentum representation yield

$$
\begin{equation*}
\frac{p^{2}}{2 m}-m g \frac{\partial U}{\partial p}+\frac{\partial U}{\partial t}=0 \tag{3}
\end{equation*}
$$

Make the Ansatz

$$
U(p, t)=U_{1}(p)+U_{2}(t)
$$

(where the dependence on the constant Q is not explicitly given). Inserted into Eq. (3) we get

$$
\underbrace{\frac{p^{2}}{2 m}-m g \frac{\partial U_{1}}{\partial p}}_{=E}+\underbrace{\frac{\partial U_{2}}{\partial t}}_{=-E}=0
$$

where we realize that the first two terms only depend on p whereas the last term only depend on t and thus they have to be equal constants (but with opposite sign). We then get one equation for U_{1} and one for U_{2},

$$
\left\{\begin{array}{l}
\frac{p^{2}}{2 m}-m g \frac{\partial U_{1}}{\partial p}=E \\
\frac{\partial U_{2}}{\partial t}=-E
\end{array}\right.
$$

These are easily solved and we get

$$
\left\{\begin{array}{l}
U_{1}=\frac{p^{3}}{6 m^{2} g}-\frac{E p}{m g}+\text { const. } \\
U_{2}=-E t+\text { const. }
\end{array}\right.
$$

which yield the generating function U we looked for,

$$
\begin{equation*}
U=\frac{p^{3}}{6 m^{2} g}-\frac{E p}{m g}-E t+\text { const } \tag{4}
\end{equation*}
$$

U should be a function of Q, p and t though so our separation constant E has to be a function of our constant Q. We choose to define $E=Q$ and let the arbitrary constant in Eq. (4) be zero, which yield

$$
\begin{equation*}
U(Q, p, t)=\frac{p^{3}}{6 m^{2} g}-\frac{Q p}{m g}-Q t \tag{5}
\end{equation*}
$$

We can now get the equations that give us the canonical transformation,

$$
\left\{\begin{array}{l}
q=-\frac{\partial U}{\partial p}=-\frac{p^{2}}{2 m^{2} g}+\frac{Q}{m g} \\
P=-\frac{\partial U}{\partial Q}=\frac{p}{m g}+t
\end{array}\right.
$$

The second of these equations gives

$$
\begin{equation*}
p=m g(P-t) \tag{6}
\end{equation*}
$$

which, if inserted into the first equation, gives

$$
\begin{equation*}
q=-\frac{g(P-t)^{2}}{2}+\frac{Q}{m g} \tag{7}
\end{equation*}
$$

Hamilton's canonical equations for the new variables Q and P are trivial,

$$
\left\{\begin{array} { l }
{ \dot { Q } = \frac { \partial \tilde { H } } { \partial P } = 0 } \\
{ \dot { P } = - \frac { \partial \tilde { H } } { \partial Q } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
Q=\beta=\text { const. } \\
P=\alpha=\text { const. }
\end{array}\right.\right.
$$

Inserted into Eqs. (6)-(7) we get the solution

$$
\left\{\begin{array}{l}
q(t)=\frac{\beta}{m g}-\frac{g(\alpha-t)^{2}}{2} \\
p(t)=m g(\alpha-t)
\end{array}\right.
$$

The initial condition $p(0)=m v_{0}$ gives $\alpha=v_{0} / g$ and $q(0)=0$ gives $\beta=m v_{0}^{2} / 2$. The solution with the given initial conditions are thus

$$
\left\{\begin{array}{l}
q(t)=\frac{v_{0}^{2}}{2 g}-\frac{g}{2}\left(\frac{v_{0}}{g}-t\right)^{2} \\
p(t)=m g\left(\frac{v_{0}}{g}-t\right)
\end{array}\right.
$$

