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Problem 1

a) The kinetic energy is given by

T =
1
2
m
(
R sin θωϕ̂ +Rθ̇θ̂

)2

=
1
2
mR2

(
ω2 sin2 θ + θ̇2

)
and the potential energy is given by

U = mgR (1− cos θ)

The Lagrangian is then given by

L = T − U =
1
2
mR2

(
ω2 sin2 θ + θ̇2

)
−mgR (1− cos θ)

and it’s derivatives are {
∂L
∂θ = mR2ω2 sin θ cos θ −mgR sin θ
∂L
∂θ̇

= mR2θ̇

Inserted into Lagrange’s equations,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

we get
mR2θ̈ = mR2ω2 sin θ cos θ −mgR sin θ (1)

which is the equation of motion for θ.

b) From Eq. (1) we see that θ̈ = 0 for θ = 0 and hence θ = 0 is an equilibrium point. To find if
it is stable or not, we Taylor expand the right-hand side in Eq. (1) keeping terms up to linear
order in θ, i.e. we set {

sin θ � θ
cos θ � 1

which gives
mR2θ̈ � (mR2ω2 −mgR

)
θ
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This equation has oscillating cos and sin solutions if the coefficient in front of θ in the right-
hand side is negative, otherwise the solution is exponentials. Hence, for the solution to be
stable, the coefficient has to be negative, i.e.

mR2ω2 −mgR < 0
⇒ ω2 < g

R

⇒ ωc =
√

g
R

c) From Eq. (1) we see that θ̈ = 0 when

sin θ
(
mR2ω2 cos θ −mgR

)
= 0.

We see that this equation is fulfilled when

sin θ = 0 or cos θ =
g

Rω2

The first of these gives the two equilibrium points θ = 0 and θ = π, whereas the second
equation only has a solution when ω > ωc and then the equilibrium point is

θ = arccos
g

Rω2

One can show that this equilibrium point is stable by Taylor expand the right-hand side in
Eq. (1) around θ = arccos g

Rω2 .

Uppgift 2

a) Choose z as the height for the mass m as the
generalized coordinate. The kinetic energy
for the mass m is then given by

Tm =
1
2
mż2

When the mass m has moved a distance z,
the massM has moved the distance z/2. It’s
kinetic energy gets a contribution both from
the translation of the centre of mass, but also
from the rotation around the centre of mass,

α

m M
radius R

A

z

TM =
1
2
M

(
1
2
ż

)2

+
1
2
Iω2

For a solid cylinder the moment of inertia for rotation around the symmetry axis is given by
I = 1

2MR2. The angular velocity is given by ω = ż
2R . The kinetic energy for M is then given

by

TM =
1
8
Mż2 +

1
2
1
2
MR2

(
ż

2R

)2

=
1
8
Mż2 +

1
16
Mż2 =

3
16
Mż2 .

The potential energy is given by

U = mgz −Mg
1
2
z sinα
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which finally gives us the Lagrangian

L = Tm + TM − U =
(
1
2
m+

3
16
M

)
ż2 −

(
mg − 1

2
Mg sinα

)
z.

It’s derivatives are {
∂L
∂z = 1

2Mg sinα−mg
∂L
∂ż =

(
m+ 3

8M
)
ż

Lagrange’s equations,
d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0

then yield (
m+

3
8
M

)
z̈ =

1
2
Mg sinα−mg (2)

which is easily integrated to give the solution

z(t) =
2Mg sinα − 4mg

8m+ 3M
t2 + At+B ; A,B = constants

b) The system is in equilibrium when z̈ = 0. Eq. (2) tell us that z̈ = 0 when

1
2Mg sinα−mg = 0
⇒ α = arcsin2m

M .

We also see that equilibrium only can be obtained when M ≥ 2m.

Uppgift 3

a) Vi have that

{f, gh} =
∑

i

[
∂f

∂pi

∂(gh)
∂qi

− ∂f

∂qi

∂(gh)
∂pi

]

=
∑

i

[
∂f

∂pi

∂g

∂qi
h+ g

∂f

∂pi

∂h

∂qi
− ∂f

∂qi

∂g

∂pi
h− g

∂f

∂qi

∂h

∂pi

]

= g
∑

i

[
∂f

∂pi

∂h

∂qi
− ∂f

∂qi

∂h

∂pi

]
+
∑

i

[
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

]
h = g{f, h}+ {f, g}h.

The second relation is easily shown in the same way.

b) To determine the condition β and γ has to fulfill for Lz to be a constant of motion, we can
e.g. use Noether’s theorem. Alternatively, we can use Poisson brackets by noting that

dLz

dt
= {H,Lz}+ ∂Lz

∂t︸︷︷︸
0

= {H,Lz}.

In other words, we want to determine β and γ such that {H,Lz} = 0. The Hamiltonian is
given by

H =
1
2m

[
p2

x + p2
y + p2

z

]
+ αz2eβx2+γy2
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The z component of the angular momentum is given by

Lz = xpy − ypx.

We are now ready to calculate the Poisson bracket between H and Lz. We then use the
relations that were proved in a) and that {qi, qj} = 0, {pi, pj} = 0, {pi, qj} = δij and
{qi, pj} = −δij to simplify our expression,

{H,Lz} = { 1
2m

[
p2

x + p2
y + p2

z

]
+ αz2eβx2+γy2

, xpy − ypx} =

=
1
2m

{p2
x, xpy} − 1

2m
{p2

y, ypx}+ {αz2eβx2+γy2
, xpy} − {αz2eβx2+γy2

, ypx}

=
1
2m

px {px, x}︸ ︷︷ ︸
1

py − 1
2m

py {py, y}︸ ︷︷ ︸
1

px + αz2x{eβx2+γy2
, py} − αz2y{eβx2+γy2

, px}

=
1
2m

[pxpy − pypx]︸ ︷︷ ︸
0

+αz2x
∑

i


∂e

βx2+γy2

∂pi

∂py

∂qi︸︷︷︸
0

−∂eβx2+γy2

∂qi

∂py

∂pi︸︷︷︸
δi2




−αz2y
∑

i


∂e

βx2+γy2

∂pi

∂px

∂qi︸︷︷︸
0

−∂eβx2+γy2

∂qi

∂px

∂pi︸︷︷︸
δi1




= −αz2x
∂eβx2+γy2

∂y
+ αz2y

∂eβx2+γy2

∂x

= −αz2x2γyeβx2+γy2
+ αz2y2βxeβx2+γy2

= αz2xyeβx2+γy2
[β − γ]

⇒ {H,Lz} = 0 if β = γ

Lz is thus conserved if β = γ, which is the condition we looked for.

Remark. {H,Lz} = 0 is also fulfilled if x = 0, y = 0 or z = 0, but if {H,Lz} = 0 should be
fulfilled for arbitrary initial conditions we have to have β = γ.

Uppgift 4

a) See Scheck, section 2.5 or the lecture notes.

b) This is easy to show with calculus of variations. The distance between (x0, y0) and (x1, y1) is
given by

L =
∫ x1

x0

ds =
∫ x1

x0

√
1 + y′2dx

We can use Euler’s equation given in 4a with

f(y, y′, x) =
√

1 + y′2

Inserted into Euler’s equation, we get

0 =
d

dx

(
∂f

∂y′

)
− ∂f

∂y
=

d

dx

(
y′√

1 + y′2

)
− 0 = 0
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which is easily integrated to

y′√
1 + y′2

= A = const. ⇒ y′ = B = const.

Integrating once more, we get
y = Bx+ C

which is the equation for the straight line. The constants B and C are given by the condition
that the line has to pass through (x0, y0) and (x1, y1).

Uppgift 5

a) For a generating function of the type U we have that

qi = −∂U

∂pi
; Pj = − ∂U

∂Qj
; H̃ = H +

∂U

∂t
.

We want the new Hamiltonian, H̃, to be identically equal to zero, i.e. that

H(q
˜

, p
˜

, t) +
∂U

∂t
= 0

Use that qi = − ∂U
∂pi

and we get

H(−∂U

∂pi
˜

, p
˜

, t) +
∂U

∂t
= 0

which is the Hamilton-Jacobi equation in the momentum representation. This is a partial
differential equation for U with respect to p

˜

and t.

b) With the given Hamiltonian, Hamilton-Jacobi’s equation in the momentum representation
yield

p2

2m
−mg

∂U

∂p
+
∂U

∂t
= 0 (3)

Make the Ansatz
U(p, t) = U1(p) + U2(t)

(where the dependence on the constant Q is not explicitly given). Inserted into Eq. (3) we
get

p2

2m
−mg

∂U1

∂p︸ ︷︷ ︸
=E

+
∂U2

∂t︸︷︷︸
=−E

= 0

where we realize that the first two terms only depend on p whereas the last term only depend
on t and thus they have to be equal constants (but with opposite sign). We then get one
equation for U1 and one for U2, {

p2

2m
−mg ∂U1

∂p
= E

∂U2
∂t = −E.

These are easily solved and we get{
U1 = p3

6m2g − Ep
mg + const.

U2 = −Et+ const.
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which yield the generating function U we looked for,

U =
p3

6m2g
− Ep

mg
− Et+ const. (4)

U should be a function of Q, p and t though so our separation constant E has to be a function
of our constant Q. We choose to define E = Q and let the arbitrary constant in Eq. (4) be
zero, which yield

U(Q, p, t) =
p3

6m2g
− Qp

mg
−Qt. (5)

We can now get the equations that give us the canonical transformation,{
q = −∂U

∂p
= − p2

2m2g
+ Q

mg

P = −∂U
∂Q = p

mg + t

The second of these equations gives

p = mg (P − t) (6)

which, if inserted into the first equation, gives

q = −g (P − t)2

2
+

Q

mg
(7)

Hamilton’s canonical equations for the new variables Q and P are trivial,{
Q̇ = ∂H̃

∂P = 0
Ṗ = −∂H̃

∂Q
= 0

⇒
{

Q = β = const.
P = α = const.

Inserted into Eqs. (6)–(7) we get the solution{
q(t) = β

mg − g(α−t)2

2

p(t) = mg (α− t)

The initial condition p(0) = mv0 gives α = v0/g and q(0) = 0 gives β = mv2
0/2. The solution

with the given initial conditions are thus
 q(t) = v2

0
2g − g

2

(
v0
g − t

)2

p(t) = mg
(

v0
g − t

)
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