Summary of indirect detection of neutralino dark matter

Joakim Edsjö

Outline Will focus on these in the MSSM! • WIMPs as Dark Matter – Neutralinos • Indirect detection techniques Current direct detection limits and their implications for neutrino telescopes Conclusions

The MSSM – general

The Lightest Supersymmetric Particle (LSP)

Usually the neutralino. If R-parity is conserved, it is stable.

The Neutralino – χ

$$\tilde{\chi}_{1}^{0} = N_{11}\tilde{B} + N_{12}\tilde{W}^{3} + N_{13}\tilde{H}_{1}^{0} + N_{14}\tilde{H}_{2}^{0}$$

Gaugino fraction

$$Z_g = |N_{11}|^2 + |N_{12}|^2$$

- 1. Select MSSM parameters
- 2. Calculate masses, etc
- 3. Check accelerator constraints
- 4. Calculate relic density
- 5. $0.05 < h^2 < 0.2$?
- 6. Calculate fluxes, rates,...

Calculation done with

www.physto.se/~edsjo/darksusy/

Relic density vs mass and composition

The neutralino is cosmologically interesting for a wide range of masses and compositions!

WIMP search strategies

- Direct detection
- Indirect detection:
 - neutrinos from the Earth/Sun
 - antiprotons from the galactic halo
 - positrons from the galactic halo
 - antideutrons from the galactic halo
 - gamma rays from the galactic halo
 - gamma rays from external galaxies/halos
 - synchrotron radiation from the galactic center / galaxy clusters
 - gammas from around the sun

The HEAT feature at ~7 GeV can be fit better with neutralinos than without, *but*...

...the signal strength needs to be boosted, e.g. by clumps,

...and the fit is not perfect

Antiproton signal

Easy to get high fluxes, but...

Antiprotons – fits to Bess data"

Background only

-1 10 -1 10 L. Bergström, J. Edsjö and P. Ullio, 1999 L. Bergström, J. Edsjö and P. Ullio, 1999 sr⁻¹ GeV⁻¹) sr⁻¹ GeV⁻¹) Solar Modulated, $\phi_{\rm E} = 500 \, {\rm MV}$ Solar Modulated, $\phi_{\rm E} = 500 \text{ MV}$ BESS 95+97 BESS 95+97 — total ---background -s -s ····· signal $\Phi_{\rm p}^{-2}$ (m⁻² ($\Phi_{\overline{p}}$ (m⁻² ; -2 10 -2 10 -3 10 -3 10 10 ⁻¹ 10⁻¹ 10 10 Kinetic Energy, T_n (GeV) Kinetic Energy, T₋ (GeV)

 \Rightarrow No need for, but room for a signal.

Background + signal

Gamma lines – rates in GLAST

NFW halo profile, 1 sr

Bergström, Ullio & Buckley, '97

Gamma fluxes from simulated halo

Continuous gammas

Gamma lines

N-body simulations from Calcáneo-Roldan and Moore, Phys. Rev. D62 (2000) 23005.

Cosmological gamma rays

Thermal production

Non-thermal production

Ullio, Bergström, Edsjö & Lacey, astro-ph/0207125

Direct detection – current limits

Spin-independent scattering

Spin-dependent scattering

Direct detection experiments have started exploring the MSSM parameter space!

• Super-K limit from Shantanu Desai's talk yesterday, converted to full flux with 1 GeV threshold

- Macro limit from Ivan de Mitri's talk yesterday, converted to a μ limit (hard spectrum, 1 GeV threshold)
- Antares expected 3 yrs limits from Susan Cartwright's talk yesterday (hard, conv. to 1 GeV threshold)

Flux from Earth/Sun and future direct detection limits

Earth

Sun

Comparing different searches

- Take all future searches with expected sensitivities within the coming 5–10 years.
- Determine which areas in the m $-Z_g$ parameter space they can explore.
- Compare!

MSSM parameter space Future probed regions I

Earth, km³

Sun, km³

MSSM parameter space **Future probed regions II**

10 5

10

10

10

10

10

10

10

10

10

10

10

10

-5

-6

10

Visible, pbar

▲ Some visible

None visible

 10^{2}

 $Z_g / (1-Z_g)$

J. Edsjö, 2002

 10^{4}

MSSM parameter space All dark matter searches combined

Large parts of the parameter space can be probed by future searches.

Conclusions

- Many indirect searches on the way, some have started exploring the MSSM parameter space.
- Antiprotons: easy to get high rates and fit the spectrum, but no special features unless for heavy WIMPs and large boost factors.
- Antideutrons: The signal is low, but there seems to be a window < 1 GeV where the background is low.
- **Positrons:** intriguing positron excess in HEAT, Caprice and MASS 91 data. Fits are better with neutralinos with a boosted signal, but the fits are not perfect.
- Neutrino telescopes: Complementarity with direct searches for the Sun.
- **Gamma lines:** very nice feature, but signal model dependent. Cosmological gammas may be detectable by GLAST.
- **Spike at GC:** Signal can be high, if the cusp is steep enough and the black hole formation history is favourable.

