Neutralino Dark Matter How can we find them?

Joakim Edsjö

Stockholm University edsjo@physto.se

Copenhagen, June 19, 2001

Outline

- Supersymmetric framework MSSM
- Direct detection
- Indirect detection:
 - Gamma rays, antiprotons and positrons from the halo.
 - Neutrinos from the Earth / Sun.

Problems with the Standard Model

- Why are the masses and couplings as they are?
- The coupling constants almost converge at 10¹⁵-10¹⁶ GeV. Hint for a Grand-Unified Theory?
- Is gravity unified at M_{Planck}?
- The mass of the Higgs boson gets huge radiative corrections. How is this prevented?

Why Supersymmetry?

- The convergence of the coupling constants is even better.
- The radiative corrections to M_{Higgs} are finite.
- Supersymmetry seems essential for string theory.
 BUT,
- We have so much freedom in how to construct a supersymmetric theory. What has nature chosen?
- String theory might tell us in the future!

Are the coupling constants unified at high energy?

The Minimal Supersymmetric Standard Model (MSSM)

The simplest extension of the Standard Model:

- One supersymmetric partner to each SM particle.
- Two Higgs doublets 5 physical Higgs bosons: H_1^0, H_2^0, H_3^0 and H^{\pm}
- The most general soft SUSY-breaking terms that preserve baryon number, lepton number and so called R-parity.

MSSM – Mass spectrum

Normal particles / fields		Supersymmetric particles / fields					
		Interaction	eigenstates	Mass eigens	tates		
Symbol	Name	Symbol	Name	Symbol	Name		
q = d, c, b, u, s, t	quark	${ ilde q}_L, { ilde q}_R$	squark	${ ilde q}_1, { ilde q}_2$	squark		
$l = e, \mu, \tau$	lepton	$ ilde{l}_L, ilde{l}_R$	slepton	\tilde{l}_1, \tilde{l}_2	slepton		
$\mathbf{v} = \mathbf{v}_e, \mathbf{v}_\mu, \mathbf{v}_\tau$	neutrino	$\widetilde{\mathbf{v}}$	sneutrino	$\tilde{\mathbf{v}}$	sneutrino		
8	gluon	Ĩ	gluino	Ĩ	gluino		
W^{\pm}	W-boson	${ ilde W}^{\pm}$	wino	$\left\{ \widetilde{\chi}_{n}^{\pm} \right\}$	charging		
H^{\mp}	Higgs boson	$ ilde{H}_{1/2}^{ op}$	Higgsino	J×₽	enargino		
В	B-field	\tilde{B}	bino				
W^3	W ³ -field	$ ilde{W}^3$	wino				
H_1^0	Higgs boson	$ ilde{oldsymbol{H}}^0$	Higgsino	$\tilde{\chi}^0_{1,2,3,4}$	neutralino		
H_2^0	Higgs boson	$\tilde{\boldsymbol{\mu}}^0$	Higgsino				
H_{31}^{0}	Higgs boson	n ₂					
	=+1		R=	-1			

The MSSM – parameters

- Higgsino mass parameter
- M₂ Gaugino mass parameter
- m_A mass of CP-odd Higgs boson
- tan ratio of Higgs vacuum expectation values
- m₀ scalar mass parameter
- A_b trilinear coupling, bottom sector
- A_t trilinear coupling, top sector

Parameter Unit	μ GeV	M_2 GeV	<i>tan</i> β 1	m _A GeV	m ₀ GeV	A_b/m_0 1	A_t/m_0 1
Min	-50000	-50000	1	0	100	-3	-3
Max	+50000	+50000	60	10000	30000	3	3

The MSSM – general

The Lightest Supersymmetric Particle (LSP)

Usually the neutralino. If R-parity is conserved, it is stable.

The Neutralino – χ

$$\tilde{\chi}_{1}^{0} = N_{11}\tilde{B} + N_{12}\tilde{W}^{3} + N_{13}\tilde{H}_{1}^{0} + N_{14}\tilde{H}_{2}^{0}$$

Gaugino fraction

$$Z_g = \left| N_{11} \right|^2 + \left| N_{12} \right|^2$$

 Select MSSM parameters
 Calculate masses, etc
 Check accelerator constraints
 Calculate relic density
 0.025 < h² < 0.5 ?
 Calculate fluxes, rates,...

Calculation done with

Overview

DarkSUSY is a Fortran package for MSSM dark matter calculations. Calculable quantities include:

- Vertices
- Mass spectrum
- Accelerator bounds
- Relic density
- Scattering cross sections

- Rates in neutrino telescopes
- Fluxes from the halo: antiprotons, positrons, continuum gammas, gamma lines (and) and neutrinos.

Download from http://www.physto.se/~edsjo/darksusy/

Relic density – simple approach

Figure from Jungman, Kamionkowski and Griest, Phys. Rep. 267 (1996) 195.

Relic density – accurate approach

Solve the Boltzmann equation

$$\frac{dn}{dt} = -3Hn - \left\langle \sigma_{ann} v \right\rangle \left(n^2 - n_{eq}^2 \right)$$

- properly taking the thermal average $\langle \cdot \rangle$
- including the full annihilation cross section (all annihilation channels, thresholds, resonances).
- including so called coannihilations between other SUSY particles present at freeze-out.

Relic density vs mass and composition

The neutralino is cosmologically interesting for a wide range of masses and compositions!

Direct detection - general principles

- WIMP + nucleus WIMP + nucleus
- Measure the nuclear recoil energy
- Suppress backgrounds enough to be sensitive to a signal, or...

• Search for an annual modulation due to the Earth's motion around the Sun

Direct detection – scattering diagrams

Spin-independent scattering

+ diagrams with gluons

Spin-dependent scattering

Diagrams from Jungman, Kamionkowski and Griest, Phys. Rep. 267 (1996) 195.

Direct detection – example spectra

Differential rate

Gamma background in Ge-detector

Figures from Jungman, Kamionkowski and Griest, Phys. Rep. 267 (1996) 195.

Direct detection – current limits

Direct detection experiments have started exploring the MSSM parameter space!

Annihilation in the halo

Neutralinos can annihilate in the halo producing

- antiprotons
- positrons
- gamma rays
- synchrotron radiation (from e⁺/e⁻ in magn. fields)
- neutrinos

Galaxy model

Propagation model

The diffusion model with free escape at the boundaries

Halo profile

Modified isothermal sphere, Navarro, Frenk and White, Moore et al., etc.

Energy losses

Inelastic scattering gives rise to energy losses (included as a 'tertiary' source function for antiprotons).

The diffusion equation

$$R = \frac{p}{|Z|} = \text{Rigidity}$$

N(E, \vec{x}) = particle density

 $\frac{\partial N}{\partial t} = 0 \text{ for stationary solutions}$

The diffusion, galaxy and energy loss parameters are derived from cosmic ray studies.

Antiproton background

Background antiprotons are produced when cosmic rays hit the interstellar medium:

$$p + p \qquad p + p + p + p$$
$$E_{th} \qquad 7m_p$$

Naively, the background below 1 GeV would be very small, but...

- energy losses
- p-He interactions
- reacceleration

are all important.

Antiproton signal from neutralinos

Antiproton source function

$$Q_p(T, \vec{x}) = (\sigma_{ann}v) \frac{\rho_{\chi}(\vec{x})}{m_{\chi}} \Big|_{f} B_f \frac{dN_f}{dT}$$

Put into the diffusion equation taking the galaxy model into account.

The antiprotons meet the solar wind. Take this modulation into account.

Antiproton signal

Antiprotons – fits to Bess data

Positron fluxes from neutralinos

Compared to antiprotons,

- energy losses are much more important
- essentially only local halo properties are important
- higher energies due to more prompt annihilation channels (ZZ, W⁺W⁻, etc)
- propagation uncertainties are higher
- solar modulation uncertainties are higher

Positrons – signal fluxes

Positrons – example spectra

E.A. Baltz and J. Edsjö, 1998

(b) Example 2

Signal + bkg.

Bkg. only fit

10³

Signal + bkg.

Bkg. only fit

Bkg.

 10^{2}

Signal

E.A. Baltz and J. Edsjö, 1998

(d) Example 4

10⁴

10³

Bkg. Signal

...the positron spectra can have features that could be detected!

The signal strength needs to be boosted, e.g. by clumps, though.

Gamma lines

At one-loop, neutralinos can annihilate to

$$\begin{array}{ll} \gamma\gamma & E_{\gamma} &= m_{\chi} \\ Z\gamma & E_{\gamma} &= m_{\chi} &- \frac{m_{Z}^{2}}{4m_{\chi}} \end{array}$$

i.e. *monochromatic* gamma rays.

Features of monochromatic gamma rays:

- they keep their direction no propagation uncertainties
- the fluxes are generally low, but the signature is very clear
- the flux (especially towards the galactic center) depends strongly on the halo profile

Gamma lines – rates in GLAST

Number of photons in 2 years

Continuum gamma rays

From final state jets, we also get continuum rays:

$$\chi\chi$$
 ··· π^0 $\gamma\gamma$

Features compared to gamma lines:

- much lower energy
- many more gammas per annihilation
- rather high fluxes, even away from the galactic center
- not a very clear signature

Continuum gammas – fluxes

Flux at high galactic latitudes

small halo profile dependence

Neutralino capture and annihilation

Neutrino telescopes – how do they work?

- The neutrino interactswith a nucleus in the iceand creates a muon.
- The muon emits *Cherenkov radiation*.
- The radiation is recorded by photomultipliers and the muon track can be reconstructed.

Neutrino telescopes Capture and annihilation

Evolution equation

Solution

$$A = \frac{1}{2} C \tanh^2 \frac{t}{\tau}$$
$$\tau = \frac{1}{\sqrt{CC_A}}$$

Dependencies

C - f(v), , _{scatt}, composition of Earth/Sun

$$C_A - ann$$
, (r) in Earth/Sun

Neutrino telescopes – Capture

Figure from Jungman, Kamionkowski and Griest, Phys. Rep. 267 (1996) 195.

Angular Spread of WIMP signal – Earth

37

Angular Spread of WIMP signal – Sun

1.2 b) Sun 50 GeV 100 GeV 1 200 GeV 350 GeV 0.8 750 GeV $\sqrt{\frac{d\Phi_{\mu}}{d\Theta_{\mu}}}(0)$ 0.6 d⊕ d⊕_ 0.4 0.2 0 -10 10 15 -15 -5 5 n Θ_{μ} [degrees]

Neutrino-induced muons

The angular spread decreases with increasing WIMP mass, making it easier to discriminate against the background of atmospheric neutrinos.

Neutrinos and muons from the Earth's atmosphere

Cosmic rays + atmosphere $\pi, K, ...$ $\pi^{\pm} \quad \mu^{\pm} + \nu_{\mu}(\nabla_{\mu})$

$$e^{\pm} + v_e(\nabla_e) + \nabla_{\mu}(v_{\mu})$$

Use the Earth as a **filter** by looking for upgoing muons.

Only atmospheric neutrinos remain as a background.

Searches for neutrinos from WIMPs

- IMB
- Macro
- Baksan
- Kamiokande, Super-Kamiokande
- Amanda, ICE³
- Antares
- •

The Amanda detector

Event distributions Amanda B10, 1997 years data

AMANDA v-candidate

- Early photons are red, late photons are blue. More photons are larger circles.
- Bottom of array is towards center of the Earth.
- The muon is clearly traveling in the upward direction.

		Event nr: 1936710 Mode: LE Scale: Lin Blectrical Chemosils Before Cate: 41 bit Oble, 41 bits After Cate: 41 bit Oble, 41 bits
3		2471 2 3
. ;		
• •		3284 3297 4
		3462 1 3545 2 3627 3
• •	• • • •	OM size is ADC. I< 2< 3< 4< 5< 6< 7< 8<
•••		• • • • • • • • •
· ·	•	9e 10e 11e 12e 13e 14e 15e 16e
• "		$\circ \circ $
•	÷ 🁌• :	No external geometry file open. Using data file eve-1936710.128. Run ne: 0
: •	ă.	Yean/day: 1997/241 Time since midnight: 79745.8014341 s The data file contains 1 events.
. *	š 🏹 🛉	and 302 OMs.
	: ! ::	Tracks available: Fined Assimant 1 (ma+) Fitted Antimuon 2 (ma+)
: :		Currently displaying information for:
. :		x y z Venex.pos. : -51.9 33.2 1.6 m
•		Direction : 0.01632 -0.02223 0.99962 Length : INF m
· ;	e 🕴	Time : 2990.100098 m Then : 198.40 Point : 125.40
	S	
-		
f		

Limits: Annihilation rate

- Derived limits on the annihilation rate in the center of the Earth.
- **Preliminary:** systematic uncertainties are not included.

Limits: µ flux from the Earth

- AMANDA limits comparable to MACRO, Baksan and Super-Kamiokande.
- **Preliminary:** systematic uncertainties are not included.

Predicted fluxes and searches

Earth

Sun

Flux from Earth/Sun and future GENIUS/CRESST limits

Comparing different searches

- Take all future searches with expected sensitivities within the coming 5–10 years.
- Determine which areas in the m $-Z_g$ parameter space they can explore.
- Compare!

MSSM parameter space Future probed regions I

MSSM parameter space Future probed regions II

MSSM parameter space All dark matter searches combined

Large parts of the parameter space can be probed by future searches.

Conclusions

- The neutralino is a natural WIMP dark matter candidate.
- The rates (direct and indirect) in many different experiments can be high and sometimes have a nice feature to be distinguished from the background.
- Several experiments have started exploring the MSSM parameter space.

References

Supersymmetry à la particle physics

- J. Wess and J. Bagger, Supersymmetry and Supergravity, Prinecton University Press (1992)
- H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75.

Supersymmetry à la dark matter

• G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 267 (1996) 1995.

Cosmology, cosmic rays, etc

• E.W. Kolb and M.S. Turner, The Early Universe, Addison-Wesley (1990)

DarkSUSY

• www.physto.se/~edsjo/darksusy/