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Lecture 9 – Lattice vibrations

Reading
Ashcroft & Mermin, Ch. 21, Ch. 22 (p. 422, 428 - 437. p. 438 - 443 for overview)

Content
• Failures of the static lattice

• Harmonic approximation

• Adiabatic approximation

• Law of Dulong and Petit

• Normal modes

• One-dimensional case

• Velocities

• Dispersion relation

• Polarization vectors

• Acoustic and optical branches

Central concepts
• Failures of the static lattice (Ch. 21)

Failures to explain equilibrium properties:
- Specific heat, C(T ) ∼ T 3 for both metals and insulators at low T .
- Thermal expansion
- Melting

Failures to explain transport properties:
- Temperature dependence of relaxation time τ, resistivity etc.
- Failure of Wiedemann-Franz law at intermediate temperature
- Appearance of superconductivity
- Thermal conductivity of insulators
- Transmission of sound in insulators

Failure to explain interaction with radiation:
- Maximum in reflectivity at infrared frequencies for ionic crystals
- Inelastic scattering (frequency shift of relected light)
- Decreased amplitude of x-ray Bragg peaks, background
- Neutron scattering show loss of energy in definite, discrete amounts

• Harmonic approximation
Each ion is displaced only small distances compared with the interionic spacing. This gives a harmonic
force, proportional to the displacement.



• Adiabatic approximation
Electrons have time to assume their ground states for a particular ionic configuration even when the ions
move.

• Law of Dulong and Petit
Classical result for specific heat due to the lattice vibrations

cv =
∂u
∂T

= 3nkB

Deviations are observed at low temperature, where cv decreases, but also at higher temperatures because of
anharmonic terms.

• Normal modes
A general motion of N ions is represented as a superposition (linear combination) of 3N normal modes of
vibration, each with its own characteristic frequency.

The allowed energies of an oscillator with frequency ν are given by(
n +

1
2

)
hν, n = 0, 1, 2, . . . (hν = ~ω)

The 3N normal modes correspond to 3N oscillators, each with the above possible energies.

• One-dimensional case
Lattice spacing a, length L = Na, ion mass M, lattice vectors R = na, n = 0, 1, 2, . . .

Displacements
un(t) = Aei(Kna−ωt)

where K = 2π/λ is the wave vector and ω is the angular frequency.

The solution has N distinct values of K ranging from −π/a to π/a (contained to the 1st Brillouin zone),
each with a unique frequency
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M
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For a lattice with a basis, there are pN normal modes, where p is the number of ions in each of the N
primitive cells. There are still N values of K, so each K will give p solutions for ω.

• Velocities
Group velocity

v =
∂ω

∂K
The group velocity goes to zero at the Brillouin-zone boundary.

Phase velocity
c =

ω

K

Sound waves propagate with a velocity vs = (∂ω/∂K)|K→0

• Dispersion relation
The relation between ω and K is known as the dispersion relation.

• Polarization vectors
The vibrations have different polarization directions. There is always a longitudinal polarization. In 3D
crystals, there are also 2 transverse polarizations, and in 2D crystals one transverse polarization.

In a crystal with N ions there are N vibration modes per polarization direction. For each K, there are thus
3p solutions for ω in 3D crystals.



• Acoustic and optical branches
The 3p curves of ω vs. K (in 3D) are known as branches. Three branches are known as the acoustic
branches, and follow ω = cK at small K. The 3(p−1) other branches (depending on how many ions p there
are per primitive cell) are known as optical branches. Such branches have a finite ω at long wavelengths (K
near 0), and can interact with electromagnetic radiation.

In an acoustic mode, all ions within a primitive cell move essentially in phase, as a unit. In an optical mode,
the ions in each cell are resembling molecular vibrations, which are broadened into a band of frequencies
due to intercellular interactions.


