Lecture 6 – Bloch’s theorem

Reading
Ashcroft & Mermin, Ch. 8, pp. 132 – 145.

Content
- Periodic potentials
- Bloch’s theorem
- Born – von Karman boundary condition
- Crystal momentum
- Band index
- Group velocity, external force
- Fermi surface
- Band gap
- Density of states
- van Hove singularities

Central concepts
- Periodic potentials
 A periodic potential appears because the ions are arranged with a periodicity of their Bravais lattice, given by lattice vectors \mathbf{R}.
 \[U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r}) \]
 This potential enters into the Schrödinger equation
 \[\hat{H}\psi = \left(-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r}) \right)\psi = \epsilon\psi \]
 The electrons are no longer free electrons, but are now called Bloch electrons.
- Bloch’s theorem
 Theorem: The eigenstates ψ of the Hamiltonian \hat{H} above can be chosen to have the form of a plane wave times a function with the periodicity of the Bravais lattice:
 \[\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{nk}(\mathbf{r}) \]
 where
 \[u_{nk}(\mathbf{r} + \mathbf{R}) = u_{nk}(\mathbf{r}) \]
 The quantum number n is called the *band index* and takes numbers $n = 1, 2, 3, \ldots$. This quantum number corresponds to the appearance of independent eigenstates of different energies but with the same \mathbf{k}, as will be shown later.
 An alternative formulation of Bloch’s theorem is that the eigenstates of \hat{H} can be chosen so that associated with each ψ is a wave vector \mathbf{k} such that
 \[\psi(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi(\mathbf{r}) \]
• Born – von Karman boundary condition

Apply boundary condition of macroscopic periodicity. Generalize to volume commensurate with underlying Bravais lattice:

\[\psi(r + N_i a_i) = \psi(r), \quad i = 1, 2, 3 \]

where \(a_i \) are the primitive vectors and \(N_i \) are integers of order \(N^{1/3} \) where \(N = N_1 N_2 N_3 \) is the total number of primitive cells in the crystal. The quantum number \(k \) can be composed from the reciprocal lattice vectors with (non-integer) coefficients \(x_i \),

\[k = \sum_{i=1}^{3} m_i \frac{b_i}{N_i} \]

with \(m_i \) integers. For a simple cubic Bravais lattice, the allowed wave vector components reduce to the earlier \(k_x = \frac{2\pi m_x}{L} \) etc., since \(N_i = L/a \) and \(b_i = (2\pi/a) \hat{b} \) etc.

As for the free electron case, the volume \(\Delta k \) per allowed \(k \) is given by

\[\Delta k = \frac{(2\pi)^3}{V} \]

• Crystal momentum

For Bloch electrons, \(\psi_{nk} \) is no longer a momentum eigenstate, i.e., \(\hat{p} \psi_{nk} \neq \hbar k \psi_{nk} \). The relation \(p = \hbar k \) is no longer valid. Some similarities remain, however, and \(\hbar k \) is called the crystal momentum.

• Band index

Any value of \(k \) that is outside the first Brillouin zone can be reduced to the first zone, since all wave vectors \(k' = k + G \) are associated with the same eigenstate \(\psi \), as follows from the alternative formulation of Bloch’s theorem. Allowing \(k \) to range outside the first Brillouin zone thus gives a redundant description. For a given \(k \), there are many solutions to the Schrödinger equation with different eigenvalues \(\varepsilon_n \). As a function of \(k \), these are continuous functions \(\varepsilon_n(k) \), called bands with band index \(n \). The family of continuous functions \(\varepsilon_{nk} = \varepsilon_n(k) \) describes the band structure of the material. Since \(\varepsilon_{nk} \) is periodic, each band has an upper and a lower bound for the corresponding energies.

• Group velocity, external force

The mean (group) velocity of a Bloch electron given by \(n \) and \(k \) is

\[v_n(k) = \frac{1}{\hbar} \nabla_k \varepsilon_n(k) = \frac{1}{\hbar} \frac{\partial \varepsilon_n}{\partial k} \]

(Compare with \(\varepsilon = \hbar \omega, \ v_c = \partial \omega / \partial k \)). This means that the electron does not collide with the periodic potential but remains in a stationary state if the lattice is ideal.

An external force \(F \) acting on an electron in the crystal gives rise to a change of \(k \),

\[\frac{\delta k}{\delta t} = \frac{F}{\hbar} \]

To motivate this, study the force \(F \) acting during time \(\delta t \). The added energy to the electron is given by force times distance, so that

\[\delta \varepsilon = F \cdot v_g \delta t = F \cdot \left(\frac{1}{\hbar} \frac{\partial \varepsilon}{\partial k} \right) \delta t \]

But \(\delta \varepsilon \) can also be written as \(\delta \varepsilon = (\partial \varepsilon / \partial k) \delta k \), and thus we see that \(\delta k / \delta t = F / \hbar \).
• **Fermi surface**

The ground state of a system of Bloch electrons can be constructed by filling up energy levels just as in the free electron case. To count each level only once, \(k \) needs to be limited to a single primitive cell of the reciprocal lattice, typically the first Brillouin zone. The allowed \(k \) values are still spaced discretely, even though \(\epsilon_n(k) \) are continuous functions of \(k \). Since the volume of the Brillouin zone is \(8\pi^3/v_c \) and \(\Delta k = 8\pi^3/V, \) the number of levels per band is \(V/v_c = N \), which gives \(2N \) electron states per band.

Depending on the number of valence electrons \(Z \) per cell \(v_c \) and the band structure \(\epsilon_n(k) \), one may obtain *completely filled* or *partially filled* bands. The Fermi surface is obtained from the condition that \(\epsilon_n(k) = \epsilon_F \).

• **Band gap**

If some bands are completely filled and all others remain empty, the gap between the highest occupied level and the lowest unoccupied level is called the *band gap*. In this case, there is no Fermi surface. This may happen - but does not need to happen - if \(Z \) is even. If \(Z \) is odd, there are always partially filled bands and a Fermi surface is formed. If the material has a Fermi surface, it also has metallic properties.

• **Density of states**

The density of states of the system with a periodic potential can be divided into each band,

\[
g(e) = \sum_n g_n(e)
\]

and it can be shown that

\[
g_n(e) = \frac{1}{4\pi^3} \int_{S_n(e)} \frac{dS}{|\nabla_k \epsilon_n(k)|}
\]

where \(S_n(e) \) is a surface of constant energy. The density of states at the Fermi energy is, thus, obtained by an integral over the Fermi surface. (For free electrons, \(\nabla_k \epsilon(k) = \hbar^2 k/m \) and \(\int dS = 4\pi k^2 \), so that \(g(e) = mk/\pi^2 \hbar^2 = m(2me)^{3/2}/\pi^2 \hbar^3 \) as obtained earlier.)

• **van Hove singularities**

Since \(\epsilon_n(k) \) are periodic and continuous functions, there are values of \(k \) at which \(\nabla_k \epsilon_n(k) = 0 \). The integrand for \(g_n(e) \) then diverges. Such singularities are still integrable, but give divergences in the slope \(dg_n/de \), which are called *van Hove singularities*.