Condensed Matter Physics - FK7060, Jan. 30, 2018.

Lecture 5 – The reciprocal lattice

Reading

Ashcroft & Mermin, Ch. 5, pp. 86 – 93.

Content

- Definition of the reciprocal lattice
- Construction of the reciprocal lattice
- · First Brillouin zone
- Lattice planes
- Miller indices
- Useful facts and relations
- Chapter 6 summary

Central concepts

• Definition of the reciprocal lattice

The reciprocal lattice is a construction with vast importance for condensed matter physics. Starting with a Bravais lattice, the reciprocal lattice is the set of all wave vectors **G** that give plane waves $e^{i\mathbf{G}\cdot\mathbf{r}}$ with the periodicity of the Bravais lattice. If the Bravais lattice is given by points **R**, one thus have

 $e^{i\mathbf{G}\cdot(\mathbf{r}+\mathbf{R})} = e^{i\mathbf{G}\cdot\mathbf{r}}$

The G-vectors correspond to the reciprocal lattice points.

The reciprocal lattice is also a Bravais lattice.

• Construction of the reciprocal lattice

If \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 are the primitive vectors of the direct lattice the reciprocal lattice is described by the corresponding primitive vectors

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$
$$\mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$
$$\mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

which corresponds to

$$\mathbf{b}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij}$$

where δ_{ij} is the Kronecker delta.

• First Brillouin zone

The first Brillouin zone is defined as the Wigner-Seitz cell of the reciprocal lattice.

• Lattice planes

A *lattice plane* is any plane given by three Bravais lattice points that are not all aligned. Parallel, equally spaced lattice planes form a *family* of lattice planes. Each family of lattice planes have an associated reciprocal lattice vector that is perpendicular to the planes and that have a length $2\pi/d$ if the plane spacing is *d*.

• Miller indices

The orientation of a family of lattice planes is described by a vector normal to the planes. The shorted reciprocal lattice vector that is normal to the planes gives the *Miller indices* of the plane family: A family of planes associated with a shortest reciprocal lattice vector

$$\mathbf{G} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$$

has Miller indices (h, k, l).

The intercepts of a lattice plane with the crystal axes are inversely proportional to the Miller indices of the plane.

To simplify nomenclature, one writes negative numbers as \bar{n} instead of -n. The commas can then be skipped, to give Miller indices such as $(14\bar{2})$ and (111).

All symmetry-equivalent families of lattice planes are written with $\{\}$ instead of (). The planes (100), (010), and (001) together are thus the $\{100\}$ -planes.

A direction $n_1\mathbf{a}_1 + n_2\mathbf{a}_2 + n_3\mathbf{a}_3$ is similarly written with [] as $[n_1n_2n_3]$ and a family of directions [100], [010], [100] etc. is written as $\langle 100 \rangle$.

Distance between planes decrease with increasing Miller indices while the atomic density increases with decreasing Miller indices.

• Useful facts and relations

- The reciprocal lattice of a reciprocal lattice is the original, direct lattice.
- The reciprocal lattice of a simple cubic lattice with primitive cell side *a* is again a simple cubic lattice, but with cell side $2\pi/a$.
- The reciprocal lattice of an *fcc* Bravais lattice with conventional cubic cell side *a* is a *bcc* lattice with conventional cubic cell side $4\pi/a$.
- The reciprocal lattice of an *bcc* lattice with conventional cell side *a* is similarly an *fcc* lattice with conventional cell side $4\pi/a$.
- The reciprocal lattice on a *simple hexagonal* Bravais lattive with lattice constants a and c is also a simple hexagonal lattice but with lattice constants $4\pi/\sqrt{3}a$ and $2\pi/c$, and rotated 30° around the c-axis.
- The volume v_g of the reciprocal lattice primitive cell is $v_g = (2\pi)^3/v_c$, where v_c is the volume of the direct lattice primitive cell. The cell volumes can be obtained from the corresponding primitive vectors by taking $v_c = \mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)$ and $v_g = \mathbf{b}_1 \cdot (\mathbf{b}_2 \times \mathbf{b}_3)$.
- The reciprocal lattice is the fourier transform of the direct lattice.
- A reciprocal lattice vector $\mathbf{G}(hkl)$ is perpendicular to the plane (*hkl*).
- If a function is periodic in the direct lattice, so that $f(\mathbf{r}) = f(\mathbf{r} + \mathbf{R})$ one can write

$$f(\mathbf{r}) = \sum_{\mathbf{G}} a_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}}$$

so that the sum is taken only over the reciprocal lattice points.

Ch. 6 – X-ray diffraction

• Conditions for diffraction

 For a Bravais lattice, the condition for diffraction is that the change in x-ray wave wector is a reciprocal lattice vector, i.e.,

$$\Delta \mathbf{k} = \mathbf{G}$$

- For a Bravais lattice + basis, the condition is that of a Bravais lattice, but with the additional condition that the *geometrical structure factor* S_{G} is non-zero, where

$$S_{\mathbf{G}} = \sum_{j=1}^{n} f_j e^{i\mathbf{G}\cdot\mathbf{d}_j}$$

is a sum over the ions of the basis. Here f_j is the *atomic form factor*, which depends on the charge distribution of the ion *j*. It can often be approximated by the atomic number *Z* of the ion.

• Bragg's law

$$n\lambda = 2d\sin\theta$$

• Laue condition

$$\mathbf{k} \cdot \hat{\mathbf{G}} = \frac{1}{2}G$$

where $\hat{\mathbf{G}}$ is a unit vector along \mathbf{G} .

• Quadratic expression

Start with the Laue diffraction condition, which can be written as $G = |\mathbf{G}| = 2 |\mathbf{k}| \sin \theta$. Assume a cubic crystal structure with lattice parameter *a*. Then one can write the relation between Miller indices (*hkl*) of the Bragg plane and the Bragg angle θ as

$$\sin^2\theta = \frac{\lambda^2}{4a^2} \left(h^2 + k^2 + l^2\right)$$

Depending on the basis, there will be rules on the (hkl) for diffraction to occur. (Do not confuse the *k* here being a Miller index with $k = |\mathbf{k}| = 2\pi/\lambda$ being the wave number.) For a *simple cubic* system, all (hkl) give reflections. For a *bcc* lattice, the sum h + k + l should be even. For an *fcc* lattice, all indices should be either even or odd.

To index a structure means to determine (*hkl*) for all given reflections.

• Wavelengths

For x-rays, $\varepsilon = hc/\lambda$ so that

For electrons, $\varepsilon = \hbar^2 k^2 / 2m$ so that

For neutrons, similarly,

 $\lambda = h / \sqrt{2m_n \varepsilon}$

 $\lambda = h / \sqrt{2m\varepsilon}$

 $\lambda = hc/\varepsilon$