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Lecture 2 – Sommerfeld theory of metals

Reading
Ashcroft & Mermin, Ch. 2, pp. 30 – 53. Ch. 3, pp. 58 – 62 (for overview).
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Central concepts
• Fermi-Dirac distrubution

The Pauli exclusion principle strongly modifies classical (Maxwell-Boltzmann) expressions for electronic
specific heat and electron velocities. Sommerfeld theory ≈ Drude + Fermi-Dirac distribution.

fMB = Ae−ε/kBT

fFD =
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e(ε−µ)/kBT + 1

• Free electrons, boundary conditions
Schrödinger equation
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Free electrons: no potential U. Plane-wave solution
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Applying momentum operator p̂ = −i~∇ gives eigenvalue p = mv = ~k.

The vector k can be interpreted as a wave vector with de Broglie wavelength

λ =
2π
k

Applying periodic boundary conditions ψ(x + L) = ψ(x) etc., L = V1/3 gives allowed wave vector compo-
nents
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• Density of levels
Volume of k-space per level: (2π/L)3. Number of levels per volume in k-space: V/8π3. Each k-state can
also take spin up or down.

• Fermi energy, chemical potential
Since energy increases with k, there is a Fermi sphere of radius kF , defined to contain all N states at T = 0.
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which gives (n = N/V = NionsZ/V for valence Z)

kF = (3π2n)
1/3

corresponding to a Fermi energy

εF =
~2(3π2n)2/3

2m
Definition of Fermi temperature

εF = kBTF

Average energy per electron in ground state

〈ε〉 =
3
5
εF

Compare εF ' 2 − 10 eV in metals with thermal energy kBT ' 25 meV at room temperature.

Equation for chemical potential µ (arbitrary temperature)
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Density of states (2.61)
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Difference between Fermi energy εF and chemical potential µ (2.78)
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• Electron specific heat

Internal energy U
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∫ ∞

0
εD(ε) f (ε)dε = U0 +

π2

6
(kBT )2D(εF)

Specific heat (2.80)
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Strong experimental deviations from this number are observed for, for instance, Nb, Fe, Mn, Bi, and Sb
(Table 2.3).



• Mean free path - revisited
Typical electron velocity is vF so that

l = vFτ

• Thermal conductivity & thermopower - revisited
Using εF = mv2

F/2, the thermal conductivity becomes
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giving a Lorenz number
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Thermopower (2.94)
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Unexplained questions (Ch. 3)
• Transport experiments

- Hall coefficient sign

- Magnetoresistance field dependence

- Colors of Cu, Au

• Thermodynamic experiments
- Size of linear term specific heat for metals such as Fe, Mn

- Cubic term specific heat

• Fundamental observations
- Why are some elements nonmetals? What determines the number of conduction electrons?


