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Lecture 18 – Superconductivity

Reading
Ashcroft & Mermin, Ch. 34 (read for general understanding)
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Central concepts
• Critical temperature

Superconductors are in the superconducting state only below a certain temperature, the critical temperature
Tc. Materials are divided into low-Tc or low-temperature superconductors, with a Tc below about 30 K, and
high-Tc or high-temperature superconductors (HTSC), with higher Tc’s. The highest critical temperature
of a compound at normal pressure is currently about 135 K. The known HTSC’s are typically ceramic-like
compounds composed of three to five elements, almost all containing oxygen and copper, while low-Tc

materials with some few exceptions are elements and metal-alloys.

• Meissner effect
In the superconducting state, current is (except in certain cases) conducted without resistance. If a material
with this property of perfect conductivity is exposed to a magnetic field, persistent screening currents at the
surface will be induced to screen out the magnetic field, since E = 0 in the superconductor and, according
to the Faraday law of induction, ∮

E · dl = −
dφ
dt

so that the enclosed flux is kept constant (or zero if initially zero). However, superconductivity is not the
same as perfect conductivity. Superconductors that are placed in a (weak enough) magnetic field at T > Tc

and then cooled down to below Tc expel the magnetic field, so that B is always zero in the bulk. Since

B = µ0(H + M)

this is corresponds to perfect diamagnetism with χ = M/H = −1.



• Critical field, type-I, type-II
Just as the temperature cannot be too high for superconductivity to occur, too strong magnetic fields also
destroy superconductivity by making the regular, normal state energetically favorable. The superconductors
are classified into two groups depending on their behavior in magnetic fields. All bulk superconductors
display the Meissner effect at low enough magnetic fields.

For type-I superconductors, the Meissner state remains (for favorable geometries) up to a critical field
Hc(T ), where superconductivity suddenly disappears.

For type-II superconductors, the Meissner state only remains up to a lower critical field Hc1, above which
magnetic field partially penetrates the superconductor, until the field reaches an upper critical field Hc2,
where the transition to the normal state is finally occuring.

• Fluxoid quantization
Flux enclosed by a (macroscopic) superconducting ring is quantized in amounts of the flux quantum,

φ0 =
h
2e

• Vortex, mixed state
When magnetic field starts to penetrate type-II superconductors at Hc1, this happens because it becomes
energetically favorable to let certain parts of the system become normal, instead of just increasing the
screening currents and associated kinetic energy. In type-I superconductors the boundaries between normal
and superconducting states have positive energy, so that such surfaces are avoided. In type-II superconduc-
tors, however, this energy is negative, and the flux penetrating in the so called mixed state between Hc1 and
Hc2 is divided into the smallest possible bundles, i.e., the flux quantum. The resulting thin filaments of flux
are called vortices, the name coming from the screening currents surrounding them.

Although the superconductor in the mixed state is still in its superconducting state, it may not always
conduct current without resistance. This is because moving vortices induce electrical fields that may drive
currents in their normal cores.

• Specific heat, thermal conductivity
The electronic specific heat shows a discontinuity at Tc,

cs − cn

cn
= 1.43

The electronic thermal conductivity in the superconducting state is very low. Only a (temperature depen-
dent) fraction of the conduction electrons are available to transport entropy / heat.

• Cooper pairs, energy gap
Electrons in the superconducting state can form Cooper pairs. Such a pair of coupled electrons takes the
character of a boson, which condenses into a ground state, described by a macroscopic wave function. The
condensation is enabled through an attraction between the normally repulsive electrons, usually mediated
through electron-phonon interaction. This attraction gives rise to a pair-binding energy of a few meV.

When many Cooper pairs are allowed to form in the superconducting state, the pairing opens a gap 2∆ in
the normal electron density of states around the Fermi energy. This gap prevents small excitations such
as scattering, and thus leads to superconductivity. The presence of a common, macroscopic wave function
prevents the destruction of an individual pair wave function without destroying the entired paired state, to a
high energy cost.

• Tunneling, Josephson effect
Tunneling through a thin insulator from a metal to a superconductor is described by the Giaever effect. It is
found that there is a potential threshold V = ∆/e before a tunneling current flows.



Tunneling between two superconductors can occur with single electrons, but also with paired electrons if
the barrier is thin. Such Cooper pair tunneling is described by the Josephson effects. In the DC Josephson
effect, a supercurrent may flow across the junction in the absence of any applied electrical field. In the
presence of a magnetic field the tunneling current is given by

I = I0
sin(πφ/φ0)
πφ/φ0

where φ is the total magnetic flux in the junction. In the AC Josephson effect, an oscillatory supercurrent of
frequency

ωJ =
2eV
~

is induced by applying a DC voltage V .

• London equations
The first London equation describes the relation between supercurrent and electrical field,

d
dt

js =
nse2

m
E

where js = −nsevs is the supercurrent and ns is the density of superconducting electrons.

The second London equation desctibes the relation between supercurrent and magnetic field,

∇ × js = −
nse2

m
B

Together with the Maxwell equation, ∇ × B = µ0j, this equation gives

∇2B =
1
λ2 B

where

λ =

√
m

µ0nse2

is the London penetration depth.

• Ginzburg-Landau theory
The Ginzburg-Landau theory describes the macroscopic properties of a superconductor by combining ther-
modynamics with a complex order parameter

ψ = |ψ|eiφ

• BCS theory
The BCS theory is a microscopic theory of superconductivity, describing how to approximate the macro-
scopic quantum state of the system of attractively interacting electrons. In its simplest form, it relates the
zero-temperature energy gap with Tc, according to

∆(0)
kBTc

= 1.76

and gives an estimate of Tc,
Tc ∼ θDe−1/N0V0

where θD is the Debye frequency, N0 = g(εF)/2 is the density of states for one spin direction, and V0 is an
effective coupling / attractive interaction parameter.


