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Lecture 10 — Lattice vibrations 11
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Central concepts

Normal modes

A general motion of N ions is represented as a superposition (linear combination) of 3N normal modes of
vibration, each with its own characteristic frequency.

The allowed energies of an oscillator with frequency v are given by
1
n+§ hv, n=0,1,2,... (hv = hw)

The 3N normal modes correspond to 3N oscillators, each with the above possible energies.

If the crystal has a primitive cell of p ions, there are 3p branches, each with N_; = N/p normal modes.

Phonons

Instead of talking about the nth energy state of a certain normal mode of branch s and wave vector K, one
says that there is n phonons of type s with wave vector K present in the crystal.

The number of phonons in each mode at thermal equilibrium is given by the Bose-Einstein distribution

1

n:(K) = S et — 1

Zero-point vibrations

Summing the energy of all oscillators gives a contribution

1 1
w= 1 ; 5 s (K)

to the energy density. This vibration energy of 7iw(K)/2 per mode is present even at T = 0.



o High-temperature specific heat

The temperature dependent part of the energy density of a harmonic crystal is given by summing the number
of phonons n,(K) times their energy fiw,(K),

B hwy(K)
v Z o K)/ksT _ |

At high temperatures e* =~ 1 + x, so that ny = kgT /hw. Then the expression becomes a sum over kg7, so
that u = 3nkgT (n = N/V). This gives the classical Dulong-Petit specific heat

ou
aT = 3l’lk3

Cy =

Anharmonic effects are the main reason for deviations at high 7 from this value.

e Debye model

The Debye model makes two assumptions

* w = v|K|, where v; is the sound velocity

* Introduce wp = vyKp such that a sphere of radius K contains N,,, allowed wave vectors (correspond-
ing to 3N states in 3D with three polarization directions).

Since the (reciprocal) volume per K-point is (2)?/V, the second assumption gives
Kp = (67r2n)1/3
where n = N/V.

e Debye temperature

The Debye temperature ®p, is defined from

th = kB®D

o Low-temperature specific heat

Using the Debye model, letting
Vv
= (@

and letting dK = 47K2dK, the heat capacity at low temperature can be written as

3
T

L~ 234 — | nk
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e Einstein model

The Einstein model makes the assumption that all modes have the same frequency, i.e.,
w(K) = wg

This assumption is thus best suited for the optical branches, where w does not go to zero at long wavelengths
(small K). Similarly to ®p an Einstein temperature ®f can be defined, Ziwg = kgOp.
¢ Density of normal modes

It is useful to introduce the density of normal modes D(w) corresponding to the number of modes between
w and w + dw. As earlier, we define g(w) = D(w)/V.



With the Debye model, this gives

2
gp(w)ydw = 3(2 X 4nK“dK
i.e. (Eq. 23.36)
(@) = 3 w?
gplw) = Py} _v%

for frequencies up to wp.

For the Einstein model, all modes have the same frequency wg so that
ge(w) = né(w — wg)
where 6(x) is the Dirac delta function.

van Hove singularities

Just as for electrons, the density of states can be obtained as an integral over a constant-energy surface S,

glw) = Zf Q) |ng<K>|

Since Vw,(K) may become zero, the slope dg/de displays singularities, also known as van Hove singulari-
ties.




