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Lecture 10 – Lattice vibrations II

Reading
Ashcroft & Mermin, Ch. 23
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Central concepts
• Normal modes

A general motion of N ions is represented as a superposition (linear combination) of 3N normal modes of
vibration, each with its own characteristic frequency.

The allowed energies of an oscillator with frequency ν are given by(
n +

1
2

)
hν, n = 0, 1, 2, . . . (hν = ~ω)

The 3N normal modes correspond to 3N oscillators, each with the above possible energies.

If the crystal has a primitive cell of p ions, there are 3p branches, each with Ncell = N/p normal modes.

• Phonons
Instead of talking about the nth energy state of a certain normal mode of branch s and wave vector K, one
says that there is n phonons of type s with wave vector K present in the crystal.

The number of phonons in each mode at thermal equilibrium is given by the Bose-Einstein distribution

ns(K) =
1

e~ωs(K)/kBT − 1

• Zero-point vibrations
Summing the energy of all oscillators gives a contribution

u0 =
1
V

∑
Ks

1
2
~ωs(K)

to the energy density. This vibration energy of ~ωs(K)/2 per mode is present even at T = 0.



• High-temperature specific heat
The temperature dependent part of the energy density of a harmonic crystal is given by summing the number
of phonons ns(K) times their energy ~ωs(K),

u =
1
V

∑
Ks

~ωs(K)
e~ωs(K)/kBT − 1

At high temperatures ex ≈ 1 + x, so that ns = kBT/~ω. Then the expression becomes a sum over kBT , so
that u ≈ 3nkBT (n = N/V). This gives the classical Dulong-Petit specific heat

cv =
∂u
∂T

= 3nkB

Anharmonic effects are the main reason for deviations at high T from this value.

• Debye model
The Debye model makes two assumptions

? ω = vs|K|, where vs is the sound velocity

? Introduce ωD = vsKD such that a sphere of radius KD contains Nion allowed wave vectors (correspond-
ing to 3N states in 3D with three polarization directions).

Since the (reciprocal) volume per K-point is (2π)3/V , the second assumption gives

KD = (6π2n)
1/3

where n = N/V .

• Debye temperature
The Debye temperature ΘD is defined from

~ωD = kBΘD

• Low-temperature specific heat
Using the Debye model, letting ∑

K

→
V

(2π)3

∫
dK

and letting dK = 4πK2dK, the heat capacity at low temperature can be written as

cv ≈ 234
(

T
ΘD

)3

nkB

• Einstein model
The Einstein model makes the assumption that all modes have the same frequency, i.e.,

ω(K) = ωE

This assumption is thus best suited for the optical branches, whereω does not go to zero at long wavelengths
(small K). Similarly to ΘD an Einstein temperature ΘE can be defined, ~ωE = kBΘE .

• Density of normal modes
It is useful to introduce the density of normal modes D(ω) corresponding to the number of modes between
ω and ω + dω. As earlier, we define g(ω) = D(ω)/V .



With the Debye model, this gives

gD(ω)dω = 3
1

(2π)3 4πK2dK

i.e. (Eq. 23.36)

gD(ω) =
3

2π2

ω2

v3
s

for frequencies up to ωD.

For the Einstein model, all modes have the same frequency ωE so that

gE(ω) = nδ(ω − ωE)

where δ(x) is the Dirac delta function.

• van Hove singularities
Just as for electrons, the density of states can be obtained as an integral over a constant-energy surface S ,

g(ω) =
∑

s

∫
dS

(2π)3

1
|∇ωs(K)|

Since ∇ωs(K) may become zero, the slope dg/dε displays singularities, also known as van Hove singulari-
ties.


