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Introduction

More than one hundred years after the discovery of the electron, there is still no complete
understanding of the states of matter that can be formed in a system of electrons. In this
thesis we consider electron systems under so-called ‘quantum Hall conditions’. We propose
and study a number of novel states of matter that can be formed by electrons under these
conditions. Before we describe our work, we briefly discuss the discovery of the electron
and on the various quantum states that electrons can form.

In the last decade of the nineteenth century, the experiments of Joseph Thomson on
cathode ray tubes led to the discovery of the electron1. He introduced the electron with the
following words: “Electrification essentially involves the splitting up of the atom, a part of
the mass of the atom getting free and becoming detached from the original atom”. Also,
the experiments of Pieter Zeeman on the effect of a magnetic field on spectral lines and the
subsequent explanation of Hendrik Lorentz corroborated the discovery of Thomson. The
(anomalous) Zeeman effect played a crucial role in the determination of the properties of
the electron. This splitting of spectral lines under the influence of a magnetic field could
eventually be described by Wolfgang Pauli by making the assumption that there was an
additional quantum number in the problem. However, he did not clearly state to what this
quantum number relates. Independently, Ralph Kronig and George Uhlenbeck and Samuel
Goudsmit proposed that this additional quantum number is intrinsic to the electron; they
discovered the property of the electron which is nowadays calledspin. One more ingredient
is needed to be able to explain the spectra of atoms in a magnetic field, namely the famous
Pauli exclusion principle, which states that no two electrons can be in the same quantum
state. The spin of the electron and the Pauli exclusion principle are crucial ingredients in
theories of condensed matter systems.

At the Cavendish Laboratory (where Thomson performed his experiments) annual din-
ner a toast used to be offered on the discovery of the electron: “The electron: may it never
be of use to anybody.” Nevertheless, the electron changed society in a profound way, as the
operation of all electronic equipment is based on electrons.

The state of the electrons in a normal metal is understood in terms of the Fermi liquid,
whose properties are largely similar to those of a free electron gas. But, in roughly the
same way as ordinary water molecules can form different phases (namely the solid, liquid
and gas phases), a system of electrons can exist in states that are entirely different from the
free electron gas. In 1911, Heike Kamerlingh Onnes discovered the superconducting state
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in mercury by cooling it down to just 4 Kelvin above the absolute minimum. In this state
of matter, pairs of electrons can move frictionless through the metal. It took theoretical
physicists up to 1957 to explain this type of superconductivity. More states of matter have
been discovered. Here, I would like to mention a special class of superconductors, namely
the ‘high-temperature’ superconductors, discovered in 1986. These ceramic materials be-
come superconducting at much higher temperatures than the original ones discovered by
Kamerlingh Onnes. The state of matter formed by the electrons in these systems is poorly
understood at present.

In this thesis, we will concentrate on yet another class of electron states, the so called
quantum Hall fluids. In 1980, Klaus von Klitzing, Gerhard Dorda and Michael Pepper
made a remarkable discovery. On performing Hall measurements on a system in which the
electrons are confined to a plane, they discovered that, at certain values of the magnetic
field, the longitudinal resistance of the system vanished and the Hall resistance showed
plateaux. The value of the conductance on these plateaux was equal to an integer times
the fundamental conductance quantum, given bye2

h . While this result came more or less
unexpected, this effect can (naively) be understood in terms of a theory of non-interacting
electrons in the presence of disorder.

In 1982, another type of quantum Hall states was discovered. By investigating very
clean hetero-junctions, Daniel Tsui, Horst Störmer and Arthur Gossard discovered quan-
tized Hall plateaux with a quantized Hall conductance equal to a fractional value (namely
1
3 ) of the conductance quantum. The first big step of explaining this effect was made by
Robert Laughlin. He came up with an approximate (though very good) trial wave function
for the full, interacting many body problem. One of the most interesting consequences of
this theory is the existence of particles which carry1

3 of the charge of the electron. In 1995,
this fractional charge was observed inshot-noiseexperiments.

Prompted by observations first made in 1987, Gregory Moore and Nicholas Read pro-
posed new states of two-dimensional electron systems which combine pairing of electrons
with the properties of the fractional quantum Hall fluids proposed by Laughlin. It is these
types of quantum Hall fluids which we will consider in this thesis.

1The references for this section are: E.N. da C. Andrade, [2]; J. Bardeen, L.N. Cooper and J.R. Schrieffer, [11];
J.G. Bednorz and K.A. M̈uller [12]; H. Kamerlingh Onnes, [61]; K. von Klitzing, G. Dorda and M. Pepper, [64];
R.B. Laughlin, [67]; G. Moore and N. Read,[71]; W. Pauli, [77, 78, 79]; R. de Picciottoet. al., [80]; L. Saminadayar
et. al., [89]; J.J. Thomson, [97, 98]; D.C. Tsui, H.L. Störmer and A.C. Gossard, [99]; G.E. Uhlenbeck and
S. Goudsmit, [100]; B.L. van der Waerden, [101]; P. Zeeman, [117].



Chapter 1

The quantum Hall effect

In 1980, K. Von Klitzing, G. Dorda and M. Pepper made a remarkable discovery [64]. In
doing Hall measurements on a silicon MOSFET (metal-oxide-semiconductor field effect
transistor), they found that the Hall resistance, which is given byRH = VH

I (see the left
panel of figure 1.1 for a sample setup) did not follow the classical behaviour, which would be
linear in the applied magnetic field. Instead, they found that at certain values of the magnetic
field, plateauxwere formed. At these plateaux, the Hall conductance was quantized very
precisely (precision nowadays is better than10−8) to an integer times the fundamental units
of conductance,e

2

h . At the values of the magnetic field where the plateaux in the Hall
conductance are observed, the longitudinal voltage goes to zero. This effect is called the
integerquantum Hall effect.

Though this observation was completely unexpected, it can, naively, be explained in
terms of non-interacting electrons confined in a two-dimensional system, with a strong mag-
netic field perpendicular to the two-dimensional plane in which the electrons live. In these
systems, the electronic states organize themselves inLandau levels, which are highly de-
generate, while the states are extended. The Landau levels are separated by large gaps~ωc
(ωc is the cyclotron energy), in comparison to the other energy scales in the problem, which
are the Zeeman and interaction energy.

With p (an integer) Landau levels completely filled, the Hall conductance is quantized to
σH = I

VH
= p e

2

h . To explain the plateau behaviour, the effects of disorder have to be taken
into account. The effect of the disorder is to localize some of the extended states, while
they are also shifted a bit in energy. By changing the magnetic field, one changes the filling
fraction and thus the Fermi-level. If the Fermi-level is in a region where only localized
states, which do not contribute to the conductance, are present, changing the magnetic field
does not change the conductance, and hence we observe a plateau. The regions where
the Hall conductance changes from one plateau to another correspond to magnetic fields
where the Fermi-level lies in the region of the extended states, which do contribute to the
conductance. To explain that, also in the presence of disorder, the Hall conductance is
quantized to an integer times the fundamental conductance quantum, one can use a gauge
argument [66, 54]. Due to gauge invariance, adiabatically changing the flux by one flux
quantum will result in the transfer of charge from one edge to another. If, say,n electrons
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Figure 1.1: Left: schematic setup. Right: resistance measurements; figure taken from [28].

are transferred, this leads to a Hall conductanceσH = n e
2

h , also in the presence of disorder.
The quantization of the Hall conductance can be so precise as found in the experiments
because it is based only on gauge invariance and the presence of a mobility gap.

Remarkable as the integer quantum Hall effect is, nature showed its beauty by pro-
viding an even more astonishing state of matter. In extremely clean GaAs/AlxGa1−xAs
heterostructures, D.C. Tsui, H.L. Störmer and A.C. Gossard observed a quantum Hall effect
at values of the magnetic field which correspond to a partially filled Landau level [99]. The
value of the Hall conductance at these plateaux was a simplefraction of the fundamental
conductance quantumσH = p

q
e2

h , wherep, q are small integers, whileq is odd. This ef-
fect is called thefractional (or anomalous) quantum Hall effect. See figure 1.1 for typical
resistance measurements on clean samples. This fractional quantum Hall effect can not be
explained using the ‘simple’ picture which was used above to explain the integer quantum
Hall effect, because in that picture, no gap can arise within a Landau level. The presence of a
plateau in the Hall conductance and the vanishing longitudinal voltage drop imply the pres-
ence of a (mobility) gap. The interactions between the electrons are crucial in the formation
of such a gap.

The first step in explaining the fractional quantum Hall effect was made by R. Laugh-
lin [67], who proposed a set of quantum Hall states, in the form of trial wave functions,
which were shown to capture the basic features of the fractional quantum Hall states. The
Laughlin wave functions are variational wave functions for the problem of two dimensional
interacting electrons in the presence of a magnetic field. The hamiltonian for this system is
as follows

H =
1

2me

∑
i

(
−i~∇+ eAEM

)2 +
e2

2

∫
d2xd2x′

ρ(x)ρ(x′)
4πε|x− x′|

. (1.1)

The first term describes the kinetic energy of the electrons (withme the (effective) mass of
the electrons andAEM the vector potential for the magnetic field), while the second term
represents the Coulomb interaction (ρ(x) is the electron density in the two-dimensional



1.1. Excitations in quantum Hall systems 13

system). In this description it is assumed that all the electrons are polarized by the strong
magnetic field. The Laughlin wave functions are obtained from this hamiltonian by doing
a variational calculation. There are certain constraints on the wave functions, namely, they
have to be antisymmetric under the exchange of any two electrons and they need to be eigen-
states of the total angular momentum operator. In addition, we assume that the interactions
are taken into account via a Jastrow factor, which is a two-body correlation, keeping the
electrons apart. This factor has the general form

∏
λ(zi−zj). Taking these constraints into

account leads to the following form of the variational wave functions (using the symmetric
gauge in describing the magnetic field which is perpendicular to the plane of the electrons)

ΨL({zi}) =
∏
i<j

(zi − zj)Me−
∑
i
|zi|

2

4l , (1.2)

where we used complex coordinateszi to represent the position of the electrons, while the

magnetic length,l =
√

~

eB is the basic length scale. The quantum Hall systems these

wave functions describe have filling fractionν = 1
M . They are not the exact ground state

wave functions for the Coulomb interaction, but they were shown to have very good overlap
with the numerically obtained ground state wave functions for a large class of repulsive
interactions. So studying these wave functions is a good starting point to study properties
of the quantum Hall systems atν = 1

M . On should keep in mind however, that many
properties, such as the behaviour of the transition from one quantum Hall state to another,
can not be addressed in this way. What can be learned in this approach are properties of the
excitations over these qH systems, and they turn out to be very interesting.

Before we go on to discuss the properties of the excitations over the quantum Hall
systems, we will first briefly discuss the other fractional quantum Hall systems, at filling
fractionsν = p

q , with p > 1. From the experimental plot in figure 1.1, it can be seen that
all the fractions have anodd denominator. The Laughlin states only describe a systems
of fermions whenM is odd. To explain the other quantum Hall systems, Jain proposed
a scheme in whichcomposite fermionsplay a crucial role [60]. In this approach, an even
number of flux quanta is bound to the electrons, to form the composite fermions. These
composite fermions effectively feel a reduced magnetic field, and can form a integer quan-
tum Hall system. The filling fraction of the original electrons becomesν = p

2pn±1 . Almost
all the fractions observed can be obtained in this way. Note that the filling fractions in the
composite fermion scheme all have an odd denominator, related to the fact that the quantum
Hall systems are built from electrons.

1.1 Excitations in quantum Hall systems

Quasiholes in quantum Hall systems can be ‘made’ by locally increasing the magnetic flux
through the sample in an adiabatic manner. These quasiholes can be shown to have afrac-
tional charge, and also the statistics is fractional, in the sense that it interpolates between
fermi and bose statistics.

But before we come to the point of the statistics, we will first show how the fractional
charge of the quasiholes arise, in the case of the Laughlin states. So we are in a situation
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where the conductance of the system is completely off-diagonal, and quantized,σH = 1
M

e2

h ,
σL = 0. If we now locally increase the magnetic flux through the sample by one flux
quantumΦ0 = h

e (in a adiabatic fashion), this has the effect of expelling some charge form
this region. The amount of charge expelled is calculated to beqqh = 1

M , in units where
the charge of the electron isqel = −1. The prediction of the existence of quasiparticles
with fractional charge has been confirmed for theν = 1

3 Laughlin state by means of shot
noise experiments [80, 89]. Later on, also quasiholes with charge1

5 have been observed in
aν = 2

5 quantum Hall state [87].
Let us now turn to the statistics of these quasihole excitations. As said above, the ex-

change statistics of the quasiholes isfractional. It is only in two-dimensional systems that
particles which satisfy (braid) statistics other than the familiar fermi of bose statistics can
occur. In three dimensions (or more), different exchange paths of two identical particles
can be continuously deformed into each other. Thus, after two successive exchanges, we
come back to the original system, described by the same wave function. The phase factor
corresponding to the exchange of two particles has to be±1. In two dimensions, the sit-
uation is different, because the exchange paths can not be deformed into each other. The
reason is that one would have to pull the path through the position of one of the particles,
which is not allowed. Mathematically, this is explained in terms of the fundamental group
of the configuration space, which is euclidian space withN punctures at the positions of the
particles. For a 2-dimensional system, this fundamental group is thebraid group, while in
3 or more dimensions, it is the permutation group.

The Laughlin quasiholes transform according to a 1-dimensional representation of the
braid groupBN . The phase factor the wave function picks up when two quasiholes are
exchanged can be calculated from the Aharonov-Bohm effect [1]. Due to the Aharonov-
Bohm effect, particles can interact via the gauge potentials (of for instance the magnetic
field), while the electro-magnetic fields themselves may vanish at the position of the other
particle. For the Laughlin quasiholes, the phase factoreiπθ corresponding to the exchange
is calculated to beθ = 1

M . The fractionally charged quasiholes of the Laughlin state in-
deed satisfy fractional statistics. However, the statistics of these quasiholes has not been
measured directly, in contrast with the fractional charge.

Another interesting consequence of the fact that particles in two dimensions have to
form a representation of the braid group rather than the permutation group is that higher
dimensional representations can be possible (see, for instance, [44]). In this thesis, we will
see many examples of quantum Hall systems, where this is indeed the case. The study of
such quantum Hall systems was prompted by the observation of a quantum Hall effect at a
filling fraction with anevendenominator, which will be discussed in the next section.

1.2 Theν = 5
2 quantum Hall effect

All the quantum Hall states discussed so far had a filling fraction with an odd denominator,
which was explained via the hierarchy schemes starting with the Laughlin states. In 1987,
a first experimental indication was found of a quantum Hall effect at a filling fraction with
anevendenominator, namelyν = 5

2 . In 1999, the corresponding Hall plateau was observed
[76], proving beyond any doubt that there is indeed a quantum Hall effect at fillingν = 5

2 ,
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2 plateau, figure taken from [76].

see figure 1.2. More recently, similar results were obtained for filling fractionν = 7
2 , see

[27].

The composite fermion and hierarchy schemes can not explain these quantum Hall sys-
tems, as they only cover states with an odd denominator filling. So it was clear immediately
that this quantum Hall system was different from all the others observed before. Many quan-
tum Hall states with peculiar properties were proposed to account for this effect. Among
these is the paired quantum Hall state of Moore and Read [71]. In this quantum Hall state,
the electrons are spin-polarized, and form pairs, similar to the Cooper pairs of BCS super-
conductivity. Though it was first believed that the quantum Hall state atν = 5

2 was not
spin-polarized, nowadays, the experiments point out that this quantum Hall state is indeed
spin-polarized [75]. Also, at the same filling fraction, but at high(er) temperatures, where
the quantum Hall system has disappeared, Fermi-surface effects have been observed. This
indicates that there might be a Cooper instability, which cases the electrons to pair. Subse-
quently, these pairs might condense to form the paired state of Moore and Read. For more
on this, we refer to section 3.2. The experiments outlined above, together with numerous
numerical evidence, has led to the consensus that the quantum Hall systems atν = 5

2 can
be described by the paired quantum Hall state of Moore and Read, which will be dealt with
in great detail in section 3.2.

One of the interesting properties of the Moore-Read state is that the quasihole excitations
over this state have interesting statistics properties. Due to the clustering of electrons, the
system in which quasiholes are present can be formed in more than one way. For instance,
if four quasiholes are present, the system can be in two different states (why this is so is
explained in section 3.3). These states form a two-dimensional representation of the braid
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group. Exchanging the particles gives rise to phase matrices, and it can be shown that these
matrices do not commute [71, 74, 95]. This form of statistics is therefore callednon-abelian
statistics.

The second Landau level is special in the sense that quantum Hall effects occurs at a
filling fractions with an even denominator. Moreover, in [27], it was found that around
this plateau other interesting states occur, which are shown in figure 1.3. In a sense, there
is a reentrant integer quantum Hall state, disjunct from the ordinary integer quantum Hall
plateaux. The nature of these states, which are also observed around filling fractionν = 5

2
is unclear at this point.

In other half filled Landau levels, also very interesting physics is found. Let us first
take a short look at the lowest half filled Landau level. This system can be described as
a fluid of composite fermions, which live in the absence of magnetic field. They form a
compressible Fermi liquid, in which no quantized Hall effect is observed, no plateau or
vanishing longitudinal resistance.

In the higher Landau levels, another state is observed. This state shows a very aniso-
tropic behaviour in the longitudinal resistance and is called a striped phase, see [111] for a
study of the situation atν = 9

2 (and references therein). This phase is observed at filling
fractionsν = 9

2 , . . .
15
2 , and also atν = 5

2 ,
7
2 , when an additional in-plane magnetic field

is applied, but keeping the filling fraction, which is set by the component of the magnetic
field perpendicular to sample, the same. So many electronic states are observed at half filled
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Landau levels. Which state actually forms depends on the details of the energetics. We will
not address this interesting problem, but instead focus on the quantum Hall states similar to
the state which is now believed to form at fillingν = 5

2 .
The observation of a quantum Hall effect at an even denominator filling fraction and the

subsequent description by a system which exhibits non-abelian statistics has led to a great
interest in quantum Hall systems with non-abelian statistics. In this thesis, we will describe
various of these quantum Hall states, which can also be characterized by a clustering of the
electrons.

Before we start with that discussion, we would like to point out another context in which
the clustered states were shown to be relevant. This is the arena of the rotating Bose-Einstein
condensates.

1.3 Rotating Bose-Einstein condensates

This section is the only section of this thesis in which the underlying particles are bosons
instead of fermions. Recently, it has become clear that some of the clustered states de-
scribed in this thesis can be relevant in the description of rotating Bose-Einstein condensates
(BECs).

The hamiltonian describingN weakly interacting atoms (bosons) in a rotating trap (with
angular velocityωẑ and trap frequencyω0) is given by (see, for instance [24])

H =
∑
i

(
(p2
i −mωẑ× r)2

2m
+
m

2
(
(ω2

0 − ω2)(x2 + y2) + ω0z
2
))

+ g
∑
i<j

δ(ri − rj) . (1.3)

Here, the couplingg = 4π~2a/m, giving rise to the corrects-wave scattering lengtha. In
the limit of ω ∼ ω0, this hamiltonian describes a two dimensional system of particles with
chargeq in a magnetic fieldB = (2mω/q)ẑ (see also [110]). In these systems, a filling
fraction can be defined as the ratio of the number of bosonsN (which occupy an areaA)
and the average number of vorticesNV = 2mωA/h, thusν = N

NV
.

The vortices which are formed in the rotating BEC systems form a vortex lattice when
the angular velocity is not to high. However, in the limit ofω → ω0, this vortex lattice
melts, and the system becomes equivalent to the quantum Hall liquids.

The energy gap for a system with6 vortices was studied in [24]. At various filling
fractions, incompressible states have been found via cusps in the (numerically obtained)
energy gaps. Among the fractions at which an incompressible state has been observed is
ν = 1

2 , which was interpreted as a (bosonic) Laughlin state [109]. However, incompressible
systems at fillingν = 1, 3

2 , 2,
5
2 , 3,

7
2 , 4,

9
2 , 5, 6 also have been found [24]. These states

can not be described by simple Laughlin states, but based on overlap studies on the sphere,
these states were interpreted as bosonic versions of the Read-Rezayi states [85], which
are clustered analogs of the Moore-Read state [71]. Thus, the arena of the rotating Bose-
Einstein condensates may also be a good place to look for bosonic quantum states with very
peculiar properties, analogous to the quantum Hall states which will be studied in this thesis.
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1.4 This thesis

In this thesis, we will concentrate on the description of quantum Hall states, using a con-
formal field theory approach. This will limit the questions we can ask, because we will not
be able to address questions like in which way, and at what filling fractions do quantum
Hall states form. What we can do is given a quantum Hall effect at a certain filling fraction,
ask ourselves what are the possible states at this filling fraction? It turns out that quantum
Hall states with very peculiar properties might form. There is now consensus on the nature
of theν = 5

2 state, which is believed to be a quantum state with a pairing structure. The
excitations over this state are expected to show peculiar statistics properties, which go under
the name ofnon-abelianstatistics. This prompted the study of new classes of quantum Hall
states, with similar properties. It is these quantum Hall states which will be the subject of
this thesis.

To set the scene, we will have to introduce some conformal field theory methods, and
point out the relation with quantum Hall systems, which will be done in chapter 2. No-
tably, we will explain the relation between conformal field theory, andChern-Simonstheory,
which is used to describe quantum Hall systems.

Using the conformal field theory connection, new quantum Hall states can be defined,
with similar pairing, or, in general, clustering properties as the quantum state which is re-
lated to the quantum Hall effect atν = 5

2 . One of the surprises was that there are spin
full versions of the spin-polarized state atν = 5

2 , which are not only spin-singlets, but
show a separation of the spin and charge degrees of freedom of the fundamental excitations
over these states. This is on top of the non-abelian statistics, which the quasiholes also sat-
isfy. The simplest of these states occurs at fillingν = 2

3 , see section 3.6. The reason that
the quasiholes of the clustered states can satisfy non-abelian statistics will be explained in
section 3.3.

One of the main themes in this thesis is the study of the quasihole excitations in the
clustered quantum Hall systems. In chapter 4, we will introduce the concept ofexclusion
statistics, which is used in the description of the excitations. Very important in this respect
is the connection between thecompositespresent in the electron sector, and the so-called
pseudoparticles, which lie at the heart of the non-abelian statistics of the quasiholes. In
fact, this connection comes back throughout this thesis. Another very important connection
is the one between the exclusion statistics and the K-matrices which describe the topological
properties of the particles in the quantum Hall states. It turns out that the exclusion statistics
matrices, which are obtained in chapter 5 for the states under consideration in this thesis,
also can be viewed as the K-matrices of the quantum Hall states.

One very nice application of the concepts introduced here, is the state counting of chap-
ter 6. The quantum Hall states in this thesis can be viewed as (zero energy) eigenstates of
idealized hamiltonians. These hamiltonians are constructed in such a way that the eigen-
states have a clustering property, which is also present in the quantum Hall states. The
hamiltonians obtained in that way can be diagonalized in a spherical geometry, in the pres-
ence of a magnetic field. The degeneracies obtained via this diagonalization study for the
quantum Hall states in the presence of quasihole excitations can be explained in terms of
the exclusion statistics properties of theparafermionfields present in the CFT description
of the quantum Hall states. In a sense, the hamiltonians with the clustering property have
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‘knowledge’ of the statistics properties of the parafermion fields!
With that result, we have come full circle. The clustering properties of the quantum Hall

states are incorporated at the level of the underlying CFTs by the presence of parafermion
fields. As a consequence, the quasihole excitations can have the so called non-abelian statis-
tics (see section 3.3). This causes the states with quasiholes present to be degenerate, and,
as discussed in chapter 6, these degeneracies can be understood in terms of the statistics
properties of the parafermions.
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Chapter 2

The quantum Hall - conformal
field theory connection

Two dimensional systems are special in many respects, compared to higher dimensional
systems. One example, which will come back frequently in this thesis, are the possible
statistics properties. The group of local conformal transformations is infinite dimensional
only in two dimensions, makingconformal field theorya very powerful tool in the study of
the critical behaviour of two dimensional systems, sometimes allowing for an exact solution
of the 2-dimensional model under consideration.

Also in the study of the fractional quantum Hall effect, the use of conformal field theory
(CFT) will be useful in determining, for instance, the statistics properties of the particles.
However, it is very important to keep in mind that the systems we are describing in this thesis
arenot critical. There is thus a need to motivate the use of CFTs to describe quantum Hall
systems. Also, one should keep in mind that the important problem of transitions between
various quantum Hall states is not addressed in this thesis. We will assume throughout this
thesis that a quantum Hall effect is observed at a certain filling fraction. We ask ourselves
the question what kind of quantum Hall states can be formed and what are the properties of
these states. Using conformal field theory, one can hope to provide a partial answer to this
kind of questions.

The link between quantum Hall states and CFT can be made, in short, as follows. The
effective field theories describing quantum Hall states are so called2+1-dimensionalChern-
Simonstheories (see, for instance,[119, 69]). A link between these topological field theories
in 2 + 1 dimensions and conformal field theory in2 (or 1 + 1) dimensions was made by
E. Witten in [112]. G. Moore and N. Read [71] proposed to use CFTs to describe and
investigate the properties of quantum Hall systems. This gives us a powerful tool to study
quantum Hall systems.

In this chapter, we will follow the line of reasoning as outlined above. We start with a
short introduction to the topological field theories describing fractional quantum Hall states
in section 2.1. These theories all have a common feature, the Chern-Simons (CS) term. In
this context, the so-called K-matrices appear for the first time. These K-matrices play vari-
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ous different roles throughout this thesis. The connection between the topological theories
and conformal field theory will be given in section 2.2. In section 2.3, we will describe in
which way these conformal field theories can be used to describe quantum Hall states and
explain the construction using the Laughlin and Halperin states as examples. The conditions
to be satisfied by the CFTs, in order to describe quantum Hall systems are given in appendix
2.A.

2.1 Topological theories

The connection between fractional quantum Hall states and conformal field theory is made
via the presence of a topological effective field theory, the Chern-Simons theory. Therefore,
we will first explain why the Chern-Simons term describes the low-energy limit of a quan-
tum Hall system. In this section, we restrict the discussion to the ordinary,abeliancase.
Thenon-abeliancase will be discussed in the following chapters.

The presence of a Chern-Simons term in the low energy effective field theory for quan-
tum Hall states follows from the following, very general considerations (see, for instance,
[107])

1. The system we are describing is(2 + 1)-dimensional system of electrons.

2. The electromagnetic currentJem
µ is conserved:∂µJem

µ = 0.

3. Parity and time reversal symmetry are broken by the magnetic field.

4. We want to describe the low energy part of the system with in a field theoretical setup.

In three dimensions, the conservation law∂µJem
µ = 0 implies thatJem

µ can be written
as a curl:Jem

µ = 1
2π εµνλ∂

νaλ. In turn, making the changeaν → aν + ∂νΛ leaves the
currentJem

µ unchanged, implying thataν is a gauge potential. Invoking the assumption
that we want an effective field theory for the long-distance, low frequency behaviour of the
system, we will write down the most relevant term of gauge fields which is possible in2+1
dimensions which is also gauge invariant (see, for more details on gauge invariance, section
2.2). This turns out to be the Chern-Simons term (see [39] for more details)

LCS =
k

4π
εµνλa

µ∂νaλ . (2.1)

Thus if the couplingk is non-zero, this term will dominate the low energy behaviour. It
turns out that this term indeed gives the correct physics. An important property of the
Chern-Simons term is that it is atopologicalterm: it does not depend on the metric. As a
consequence, the corresponding hamiltonian is zero, and all eigenstates have zero energy.
Naively, one might think that the problem has become trivial, or uninteresting. However,
the topological properties and the degeneracy of the ground state make this problem very
interesting indeed.

Above we showed that the low energy physics of an(2 + 1) dimensional system is
governed by the Chern-Simons term (2.1). Below, we consider a more general form, by
allowing several gauge fields, which are coupled by a matrix, known in the literature as the
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‘K-matrix’. In addition, the gauge fields will be coupled to other fields, which for instance
describe external fields. These terms also have the Chern-Simons form.

In the following, we will use the notation of Wen [105] in describing thequantum Hall
data. This data characterizes the quantum Hall system; it consists of the K-matrix, a charge
and spin vector,t and s, respectively. These vectors have the charge and spin quantum
numbers of the particles as there entries. In addition, there is an angular momentum vector
j. A few remarks with respect to the notation of spin vectors need to be made at this point.
In [108, 107], the concept of a ‘spin vector’ was introduced. This ‘spin vector’ is in fact
related to the angular momentum of the electrons on (for instance) the sphere and is needed
to calculate the so-called shift (see equations (2.5) and (2.6) below). In our case we need
to distinguish between this angular momentum vector and the vector containing the real
SU(2) spin of the particles. Therefore, we have denoted the angular momentum vector by
j, and the vector containing the spin quantum numbers bys. Note that the spin quantum
nubers are given in units ofh/2 in the spin vectors throughout this thesis.

As stated above, the K-matrices play several roles in the description of the quantum
Hall states which are discussed in this thesis. The entries of these matrices do not only
serve as the couplings between the various gauge fields, they also can be interpreted as the
(exclusion) statistics parameters of the particles, as is described in chapter 4. To be able to
make contact with the ‘statistics interpretation’, we distinguish between the K-matrix for
the ‘electron part’ and the quasihole part of the theory. These matrices are denoted byKe

andKφ, respectively. The corresponding charge, spin and angular momentum vectors are
te, tφ, se, sφ, je, andjφ in an obvious notation. In all the cases we considered, it is possible
to formulate the theory in such a way that the K-matrices for the quasihole and electron
sectors are just each others inverse. This form of ‘duality’ will be encountered frequently in
this thesis (see, in particular, [6] and [7]).

The Chern-Simons part of the lagrangian for a system on a surface of genusg has the
following from

LCS =
1

4π
εµνλ

(
K
ij
e a

i
µ∂νa

j
λ + 2tieAµ∂νa

i
λ + 2jieωµ∂νa

i
λ + 2sieβµ∂νa

i
λ

)
, (2.2)

where the fieldsa are the Chern-Simons gauge fields. The Greek indices run over{0, 1, 2},
and the Roman indices over the number of channels. The first term is the Chern-Simons
term, which has the effect of changing the statistics of the matter-fields, which are coupled
to the Chern-Simons (CS) gauge fields in a full theory [118]. The electromagnetic field is
described by the gauge fieldAµ and the coupling to the CS gauge fields involve the charge
vectorte. This vector specifies the charge of the electronic degrees of freedom. The other
terms of the lagrangian have the following interpretation.ωµ is the ‘spin connection’ and
gives rise to the curvature of the space on which the quantum Hall system is defined. The
last term is the (SU(2)) spin equivalent of the second term, and describes the spin Hall
conductance. By analogy with the (electronic) filling fractionν, one can define the spin
filling fraction,σ, and the spin Hall conductance.

In general, one would define the spin conductance in the same way as the charge con-
ductance, namely as a response to a certain field. In the case of a quantum Hall system, the
role of the electric field is taken over by a gradient in the Zeeman energy. The gauge field
describing this is denoted byβµ in eq. (2.2). The spin Hall conductance is related to the
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‘spin current’ induced perpendicular to the direction of the gradient of the Zeeman energy.
Let us now briefly recall the results obtained from this formulation for the filling factors

and the shift corresponding to a surface of genusg. The filling factors can be calculated by
means of simple inner products1

ν = te ·K−1
e · te = tφ ·K−1

φ · tφ ,

σ = se ·K−1
e · se = sφ ·K−1

φ · sφ . (2.3)

The relation between the charge (and spin) vectors of the electron and quasihole parts are
given by

tφ = −K−1
e · te , sφ = −K−1

e · se . (2.4)

The last important property we will discuss is the so called ‘shift’ in the flux on surfaces of
general genusg. The relation between the number of electronsNe and the corresponding
number of flux quantaNΦ is given by

NΦ =
1
ν
Ne − S , (2.5)

where the shiftS is given by

S =
2(1− g)

ν
(te ·K−1

e · je) . (2.6)

Althoughje plays a somewhat different role thante andse, we definejφ by analogy to (2.4)

jφ = −K−1
e · je . (2.7)

The equations (2.3)-(2.7) were derived in the context of abelian quantum Hall states [105].
In section 4.2.2, we will see that these relations also hold, under certain conditions, in the
non-abelian cases as well.

We end this section by noting that the description in terms of the quantum Hall data is
by no means unique. The lagrangian eq. (2.2) is invariant underSL(n,Z) transformations
on the K-matrix (denoted by the matrixW) (for more details, see for instance [105])

K̃e = W ·Ke ·WT , K̃φ = (W−1)T ·Kqh ·W−1 ,

ṽe = W · ve , ṽφ = (W−1)T · vφ , (2.8)

wherev is one of the vectors containing the quantum numbers of the system. It is easily
checked that this leaves all the physical properties of the system, such as the filling fraction,
invariant. We will refer to the transformation (2.8) as a ‘W-transformation’.

1Throughout this thesis, the transpose on the vectors in equations like (2.3) is implicitly understood in order to
simplify the notation.
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2.2 Topological field theory and CFT

In this section, the relation between topological field theories, the Chern-Simons theories of
the previous section, and conformal field theory is described.

Let us start with the gauge invariance of the Chern-Simons action (2.1). Making the
transformationaµ 7→ aµ + ∂µΛ leaves the action invariant, up to a surface term

δL = εµνλ∂
µ(aν∂λΛ) . (2.9)

Of course, on a physical sample with an edge, this surface term is important, and it is
cancelled by the gauge transformation of the so called edge currents. Already in 1982,
B.I. Halperin realized the importance of the current-carrying edge states [54]. They occur
because the confining potential lifts the energy of the Landau levels. At the edge of the
sample, they cross the Fermi surface, and this leads to gapless edge excitations. The trans-
formation properties of these edge-currents makes the complete system gauge invariant, as
it of course should be.

The dynamics on the edge is described by achiral Luttinger liquid(χll) [103, 102, 104],
described by the lagrangian

Lχll =
1

4π

∫
dtdu

(
(∂tϕ)2 − v2(∂uϕ)2

)
, (2.10)

and the chirality constraint∂tϕ = v∂uϕ; u is the space coordinate along the edge. In fact,
the lagrangian describes a massless scalar field, and is a conformal field theory. See [94]
for a discussion of the chiral Luttinger liquid in the context of a unified field theory for
fractional quantum Hall systems.

Theχll of eq. (2.10) has a conserved current, which is given by

Jedge
µ = εµν∂

νϕ , (2.11)

whereεµν is the anti-symmetric symbol, and we work in units wherev = 1.
Using canonical quantization, it can be shown that the Fourier modes of the edge cur-

rentsJedge
0 satisfy the algebra

[jm, jn] = δm+n,0σH , (2.12)

which is au(1) Kac-Moody algebra. Thus, the edge degrees of freedom can be described by
a conformal field theory, which is related to the topological field theory, as was pointed out
above. Thus, at least for the quantum Hall states at simple filling fractions, it has become
clear that the dynamics of the edge excitations are described by a simple conformal field
theory. The situation for systems in which counter-flowing edge modes occur is much more
complicated, and still under debate. However, for systems in which all the edge modes flow
in one direction, this description is undisputed. In this thesis, we will consider this situation,
but consider more complicated situations than the one described above.

So we pointed out the connection between the topological field theory in2 + 1 dimen-
sions, and the conformal field theory (a chiral Luttinger liquid) on the1 + 1 dimensional
edge of a quantum Hall sample. There is also a correspondence between the topological
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field theory and a conformal field theory describing the bulk properties (such a the braid
statistics of the excitations). This connection is due to Witten [112]. It states that the physi-
cal Hilbert space of a three dimensional topological Chern-Simons theory can be interpreted
as the space of conformal blocks of the corresponding Wess-Zumino-Witten model in two
dimensions. So the particles (sources) in the Chern-Simons theory can be interpreted as the
fields in the conformal correlators. In [37], this connection is worked out in detail, giving
consistency conditions for the (chiral) conformal field theory. These will be quoted in ap-
pendix 2.A. But before we come to that point, we first explain in which way CFT is used to
study quantum Hall systems, concentrating on some simple examples.

2.3 Quantum Hall systems and conformal field theory

With the connection between topological Chern-Simons field theory and (chiral) correlators
(or conformal blocks) at hand, G. Moore and N. Read proposed to use conformal field theory
as a method to describe quantum Hall states. More specifically, they used the conformal
blocks of chiral CFTs to obtain (representative) wave functions for known quantum Hall
systems. Pushing the connection further, they proposed to other CFTs in a similar way,
to define new states, which can be interpreted (under certain conditions) as quantum Hall
states. Using this setting, the possible excitations of these new quantum Hall systems and
their properties can be studied. We refer to [34] for a details on conformal field theories.

Throughout this thesis, we will assume that a quantum Hall system is observed at a
certain filling fraction. Using CFT, one can try to construct a quantum state and study its
properties. However, we will not be able to say which of the various possible states will
actually occur, as the answer to this question depends on the details of the energetics.

Interpreting chiral correlators as wave functions for actual quantum systems also should
be done with care. The details of the wave functions of quantum systems depend on the
details of the interaction. However, as long as the real interaction between the electrons
lies in the same universality class as the interaction for which the wave function is an exact
ground state, the topological properties of the particles are the same in both cases. Here,
we made an implicit assumption, namely that there is a, possibly idealized, interaction for
which the wave function under investigation is exact. The existence of such an interaction
is very important. As we will see in chapter 6, the idealized interaction can be used to
study the properties of the quasihole excitations in the quantum Hall systems via numerical
diagonalization studies. These results will be compared to analytic results, obtained by
using the underlying conformal field theory for these systems. Knowledge about the ground
state wave functions is not necessary in these studies. In fact, in many cases, the actual form
of the ground state wave functions in the presence of quasiholes is not known.

In this thesis, we will mainly concentrate on states in the lowest Landau level. As the
gap to the higher Landau Levels is of order~ωc, which is much larger than all the other
energy scales (the Zeeman and electron interaction energy) in the system, we can neglect
excitations in which higher Landau levels are involved, as long as we restrict ourselves to
filling fractionsν < 2 (note that a Landau level completely filled with spin up and down
electrons givesν = 2). As all the electrons are in the lowest Landau level, the kinetic energy
is just a constant. Thus, the wave functions for quantum Hall states in the lowest Landau
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level can be viewed as eigenstates of an interaction hamiltonian.
Wave functions for quantum Hall systems in the lowest Landau level can be written in

the form

Ψ({zi}) = Ψ̃({zi})e−
∑
i
|zi|

2

4l2 , (2.13)

where thezi are the complex electron coordinates andl =
√

~

eB is the magnetic length.

Ψ̃({zi}) is a polynomial in the electron coordinates and is called the ‘reduced wave func-
tion’. The important point is that this polynomial only depends onzi and not on the complex
conjugates̄zi. Note thatΨ({zi}) is not normalized. In this thesis, we concentrate on the
reduced wave functions, but simply speak of ‘wave functions’ (we keep the tilde, however,
to remind the reader of this).

We will now describe the way in which conformal correlators can be used to define
quantum Hall systems. This will be done using two examples, namely the Laughlin and
Halperin states. In the next chapter, we will define the clustered quantum Hall states and
investigate their properties in subsequent chapters.

2.3.1 Example: the Laughlin wave function

Following the reasoning of Moore and Read, the wave functions for quantum Hall systems
can be written as correlators in a chiral conformal field theory. We explain how this can be
done using the Laughlin wave functions as an example, as they are the simplest fractional
quantum Hall states. In the next subsection, we will treat the (somewhat) more complicated
Halperin states [55].

The Laughlin wave functions,

Ψ̃M
L ({zi}) =

∏
i<j

(zi − zj)M , (2.14)

can be reproduced as a correlator of vertex operators of a free bosonϕ, compactified on a
radiusR2 = M . This vertex operator has the form

Vel(zi) = : ei
√
Mϕ(zi) : . (2.15)

The correlator which gives the Laughlin factor is

Ψ̃({zi}) = lim
z∞→∞

zMN2

∞ 〈Vel,1Vel,2 · · ·Vel,N : e−i
√
MNϕ(z∞) :〉 . (2.16)

The background charge is inserted in the correlator to satisfy charge neutrality. The factor
zMN2

∞ is inserted to obtain a non-zero result in the limit where the background charge is
sent to infinity. This procedure of dealing with the background charge is different compared
to [71], where a homogeneous background charge was used. Using a homogeneous back-
ground charge is more involved, but has the advantage of also reproducing the exponential
factors (with the magnetic length set tol = 1) of the full wave function [71].

That the correlator in eq. (2.16) indeed reduces to the Laughlin wave function eq. (2.14),
can be seen from the operator product expansion (OPE) for the vertex operators

: eiαϕ(z1) : : eiβϕ(z2) : = (z1 − z2)αβ : ei(α+β)ϕ(z2) : , (2.17)
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and the use of Wick’s theorem. One of the most important gains of using CFT to describe
quantum Hall systems is the fact that also the quasiholes can be represented in this setup.
Once this has been established, on can use the powerful methods of CFT to study the prop-
erties of the quasiholes. Some of the properties which can be addressed in this way are
the statistics and the degeneracy of quantum Hall systems in the presence of quasiholes.
This can be done, even though sometimes the correlators containing the quasiholes are not
known explicitly.

This brings us to the subject of the quasihole states. As assumed in the above, these
states can also be written as a correlator in the conformal field theory, by inserting quasihole
operators in the chiral correlators. In the case of Laughlin quasiholes, the operators which
create the quasiholes are also vertex operators

Vqh(w) = : ei/
√
Mϕ(w) : . (2.18)

In the following, we denote the electron and quasihole coordinates byzi andwj , respec-
tively. Insertingn quasihole operators and an adjusted background charge in the correlator,
together with the electron operators gives an expression for the wave function of a Laughlin
system with quasiholes

Ψ̃M
L,qh({zi, wi}) = lim

z∞→∞
z
M(N+ n

M )2

∞ 〈Vel,1Vel,2 · · ·Vel,N

× Vqh,1Vqh,2 · · ·Vqh,n : e−i(
√
MN+n/

√
M)ϕ(z∞) :〉 . (2.19)

Evaluating this correlator gives the wave function for the Laughlin state in the presence of
quasiholes

Ψ̃M
L,qh({zi, wj}) =

∏
i<j

(wi − wj)
1
M

∏
i,j

(zi − wj)
∏
i<j

(zi − zj)M . (2.20)

This form corresponds to the form proposed by Laughlin in [67].
The wave functions of quantum Hall states with quasiparticles are more difficult to write

down than there quasihole counterparts. This is caused by the fact that the quasiparticle
wave functions involve non-analytic functions. At present, the corresponding CFT quasi-
particle operators are not known. We will therefore concentrate on the quasihole excitations.

As can be seen from the wave function (2.20), the electrons are expelled from the from
the positions of the quasiholes. The strength of this repulsion however, is weaker than the
strength with which the electrons repel each other. This is directly related to the fact that
the charge of the quasiholes isfractionalized; As explained in chapter 1, the charge of the
Laughlin quasiholes isqqh = 1

M , in units where the electron charge isqe = −1. Because
the electrons are expelled from the regionswi, there is in fact a charge deficit, and the
quasiholes have opposite charge in comparison to the electrons. For quantum Hall states
with spin, a similar ‘inversion’ of quantum numbers for the quasiholes occurs.

It is important to keep in mind that specifying a conformal field theory (in this case the
c = 1 chiral boson compactified on a radiusR2 = M ) is not enough to define a quantum
Hall state. In addition, the form of the electron operator(s) is also needed to define the
quantum Hall state.
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2.3.2 The Halperin states

As an example of a series of states in which the spin degree of freedom is not neglected, we
discuss the simplest case, namely the Halperin states. In general, these states are written in
terms of two types of coordinates, which can also stand for two layers. For now, we keep
the discussion general and the Halperin wave functions take the form [55]

Ψ̃(m,m′,n)
H ({zai , zbj}) =

∏
i<j

(zai − zaj )m
∏
i<j

(zbi − zbj)m
′∏
i,j

(zai − zbj)n , (2.21)

This state describes a double layer (or spin) system, in which the two layers (or particles with
opposite spins) are coupled by via the third factor. The filling fraction can be determined by
means of the K-matrix formalism. For (simple) abelian quantum Hall states, the K-matrices
can easily be obtained from the braid behaviour of the electrons, as encoded in the wave
functions. For the Halperin states, the K-matrix and charge vector read

Ke =
(
m n
n m′

)
, (2.22)

te = −(1, 1) . (2.23)

The corresponding filling fraction becomesν = m+m′−2n
mm′−n2 . Restricting to the casem−1 =

m′ − 1 = n the Halperin states are spin-singlets (if the coordinates are interpreted as the
coordinates of spin up and down electrons). This gives rise to a series of singlet states with
filling fraction ν = 2

2m+1 . Form even, this state is describing a fermionic spin-singlet state.
The condition for the total state, including the spin part of the wave function, to be a spin-
singlet translates into theFock cyclicconditions of the positional part of the wave function
[56]. These conditions on the orbital part of the wave function read (see also Girvin, in [81])

Ψ̃±
∑
j

e(z↑i , z
↓
j )Ψ̃ = 0 , (2.24)

where the+ (−) sign applies for a bosonic (fermionic) state respectively. The operator
e(z↑i , z

↓
j ) exchanges the coordinatesz↑i andz↓j in the function on which it acts. It is easily

shown that the Halperin wave functions (2.21), with parameters(m+ 1,m+ 1,m) satisfy
the conditions (2.24) and thus are spin-singlet states. More physically, the casem = 0
corresponds to a completely filled Landau level (with spin up and down electrons), which is
a spin-singlet. Changingm will only result in the multiplication of the wave function with
a completely symmetric factor, with the only effect of changing the properties of the state
which correspond to the charge degrees of freedom.

Let us now turn to the description of these states in terms of conformal field theory. In
this description, two chiral boson fields are needed:ϕc andϕs, which describe the charge
and spin degrees of freedom, respectively. The electron operators for the spin up and spin
down electrons are

V ↑el = : e
i√
2

(
√

2m+1ϕc+ϕs)(z↑) : , (2.25)

V ↓el = : e
i√
2

(
√

2m+1ϕc−ϕs)(z↓) : . (2.26)
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The quasihole operators can also be written in terms ofϕc andϕs.

V ↑qh = : e
i√
2

( 1√
2m+1

ϕc+ϕs)(w↑) : , (2.27)

V ↓qh = : e
i√
2

( 1√
2m+1

ϕc−ϕs)(w↓) : . (2.28)

The scaling dimensions are given by∆e = m+1
2 and∆qh = m+1

4m+2 . The correlator which
gives the Halperin(m+ 1,m+ 1,m) spin-singlet states can now be written as

Ψ̃m
H,qh = lim

z∞→∞
za∞〈V

↑
el,1 · · ·V

↑
el,N↑

V ↓el,1 · · ·V
↓
el,N↓

V ↑qh,1 · · ·V
↑
qh,n↑

V ↓qh,1 · · ·V
↓
qh,n↓

× : e
−i√

2

(
(
√
m+1(N↑+n↓)+

1√
m+1

(n↑+n↓))ϕc+(N↑−N↓+n↑−n↓)ϕs
)
(z∞) :〉

=
∏
i<j

(z↑i − z
↑
j )m

∏
i<j

(z↓i − z
↓
j )m

∏
i,j

(z↑i − z
↓
j )m−1

×
∏
i,j

(z↑i − w
↑
j )
∏
i,j

(z↓i − w
↓
j )

×
∏
i<j

(w↑i − w
↑
j )

m+1
2m+1

∏
i<j

(w↓i − w
↓
j )

m+1
2m+1

∏
i,j

(w↑i − w
↓
j )
−m

2m+1 . (2.29)

The total numbers of electrons and quasiholes are denoted byN = N↑ + N↓ andn =
n↑ + n↓, respectively. In eq. (2.29), we inserted the most general background charge. But
as we are interested in spin-singlet states, we need to impose the constraint that the ‘back
ground charge’ only consists of the charge bosonϕc. This leads toN↑ + n↑ = N↓ + n↓, a
necessary condition for the state to be a spin-singlet. Using this constraint, the parametera
is calculated to bea = 2m+1

2 (N + n
2m+1 )2. We used the same methods as in the previous

section to work out the correlator. This state is the spin-singlet state at filling fraction
ν = 2

2m+1 mentioned above.
The construction of the last two subsections can be generalized to obtain the so-called

clusteredstates. This will be the subject of the next chapter. But before we come to that,
we first give conditions which need to be satisfied by the conformal field theory and the
operators in order to describe a quantum Hall system.

2.A Constraints on the CFTs for quantum Hall systems

In this subsection, we will point out the consistency conditions, which need to be satisfied
by a chiral CFT and the electron operators, in order to (possibly) describe a quantum Hall
state. We will follow the discussion given in [37].

First of all, we have to specify the conformal field theory itself; this is done by specifying
thechiral algebraA, and the set ofunitary irreducible representationsΛ. The chiral algebra
determines the symmetry of the conformal field theory. For the quantum Hall states, the
symmetry is associated to simple Lie algebras.Λ must at least contain a unique vacuum,
ω, which has scaling dimension∆ω = 0. The electrical current is described by a chiral
u(1) current algebra. Thus the chiral algebra must at least contain oneu(1) current algebra.
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Moreover, we will assume the chiral algebra has the form (see [37] for states based on
minimal models)

A = P ⊗ u(1)r−1 ⊗ u(1)c , (2.A1)

wherer ≥ 1 andP ⊗ u(1)r−1 is an electrically neutral chiral algebra.u(1)c denotes the
u(1) current algebra associated to the charge degree of freedom. In the cases discussed in
this thesis,P has a parafermionic symmetry. In those cases,A is a affine lie algebra. Note
that we will also allow a deformation of the affine Lie algebra symmetry by a modification
of the ‘charge direction’ . This deformation can be described by a so calledshift map, see
[105, 38, 7]. The set of unitary irreducible representations ofP has to be finite and closed
under fusion.

The conditions to be satisfied by the conformal field theory and the operators corre-
sponding to the electrons and quasiholes can now be stated. They all are motivated by
general physical considerations.

1. The presence of the electron.
As we are describing quantum Hall states, we must at least have one representationΛe

which corresponds to the electron. This (set of) representation(s) can be used to define
the set of multi-electron representationsΛm, which are obtained by fusions of the
electrons. These can be thought of the electron clusters, which will play an important
role in the K-matrix formulation of the non-abelian states discussed in chapter 5.

2. Physically realized representations.
The particles (electrons and excitations) of the qH system are labeled by the unitary
representations of the chiral algebra, and becauseA has the special form (2.A1), the
unitary representations can be decomposed as

Λ ⊆ Λp × Rr . (2.A2)

Thus the labels of the excitations take the form(λp, r), whereλp ∈ Λp andr is a
point inRr.

3. Charge and statistics ofelectron-likeparticles
The statistics related to a particle with labelλ can be related to the scaling dimension
∆λ. Upon a rotation of2π, a phase factore2πi∆λ is picked up. Thus if∆λ ∈ N,
the excitation is a boson, if∆λ ∈ N + 1

2 , the particle obeys fermionic statistics, and
finally, if ∆λ 6≡ 0 (mod 1

2 ), the excitation obeys fractional statistics.

It is natural to assume that the multi-electron particles obey bose statistics if they are
obtained by the fusion of an even number of electrons, and fermi statistics if they
resulted from the fusion of an odd number of electrons. Thus we impose a constraint
on the multi-electron particles, namely acharge - statisticsrelation

(te)m = 0 (mod 2) =⇒ ∆m = 0 (mod 1) ,

(te)m = 1 (mod 2) =⇒ ∆m =
1
2

(mod 1) , (2.A3)

wherem runs over all the electron-like particles.
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4. Condition on the quasiparticles
The wave functions for the quantum Hall states are analytic in the coordinates of the
electron like particles. This lays constraints on the possible quasihole excitations,
which have to berelatively localwith the electron like particles. This condition reads

∆λ + ∆m −∆λ′ = 0 (mod 1) , (2.A4)

whereλ′ is in the fusion product ofλ andm.

5. Charge and spin
Just as the charge of the multi electron particles is determined by the electrons, this
also holds for the spin, if it is a good quantum number in the system under consider-
ation. The following connection between charge and spin can by found

(te)m = 0 (mod 2) =⇒ sm = 0 (mod 1) ,

(te)m = 1 (mod 2) =⇒ sm =
1
2

(mod 1) , (2.A5)

wheresm is thesu(2) spin of the multi electron particlem.

Let us end this chapter by saying that the conformal field theories and particle operators
used in the next chapter, do indeed satisfy the conditions stated in this section. This guaran-
tees that the quantum Hall systems described in the next section do have the right physical
properties.



Chapter 3

Clustered quantum Hall states

In this chapter, we will define sets ofclusteredquantum Hall states, and study some of their
properties. G. Moore and N. Read (MR) were among the first to propose a quantum Hall
state with a clustering, or better, pairing structure [71]. It was motivated by the observation
of a quantum Hall effect atevendenominator filling fractionν = 5

2 . Subsequently, this state
was generalized to a series of clustered quantum Hall states by N. Read and E. Rezayi (RR)
[85].

The states mentioned above are all considered to be spin-polarized states; the electron
spin is absent in the construction of these states. In [10], spin was included in a natural
way, and spin-singlet analogs of the states in [85] were constructed. In this chapter, we will
describe in which way these clustered quantum Hall states can be constructed, and some of
the properties are discussed. This chapter will mainly be concerned with the construction of
the states by defining the electron and quasihole operators. We will provide explicit forms
of the wave functions for states without quasiholes. The properties of these quasiholes will
be studied in great detail in the following chapters.

The last set of states we will treat in this chapter are the spin-singlet states of [8]. These
states have a clustering which is somewhat different with respect to the other states discussed
in this chapter. Interestingly, the excitations over these states show a separation of their
SU(2)-spin and charge degrees of freedom.

The outline of this chapter is as follows. We start in section 3.1 by defining a clustering
property for qH states. In the subsequent sections, various clustered quantum Hall states will
be described, on the level of the underlying CFT. Some of their properties will be addressed.
Note that the description in terms of K-matrices will be given in chapter 5.

The paired state proposed by Moore and Read [71] will serve to explain the construction
in general, as it is the simplest example of a clustered state (section 3.2). In section 3.3, we
will explain why the states discussed in this chapter are callednon-abelianquantum Hall
states. The key point here is the structure of the quasiholes, which in turn is closely related
to the clustering property of the electrons.

The clustered generalizations of the Moore-Read state are treated in section 3.4. The
spin-singlet analogs of these states are discussed in section 3.5, while the states which show
a separation of the spin and charge degrees of freedom can be found in section 3.6. An
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overview of the properties of the clustered states, including the properties of the underly-
ing conformal field theories, will be given in section 3.7. The details of the underlying
parafermion CFTs can be found in appendix 3.A.

3.1 The cluster property

Quantum Hall states are said to be clustered (at orderk), if the wave function satisfies the
following property.

Ψ̃cluster(zi) = Φbos(zi)
∏
i<j

(zi − zj)M , (3.1)

where the fully symmetric factorΦbos has the property{
Φbos(z1 = · · · = zi) 6= 0 i ≤ k
Φbos(z1 = · · · = zi) = 0 i > k .

(3.2)

Thus, as up to anyk particles are brought at the same position, the factorΦbos remains
non-zero. However, ifk + 1 or more particles are brought together, this factor will become
zero. This implies that states of the form (3.1) withM = 0, are zero energy ground state of
the hamiltonian

H = V
∑

i1<i2···<ik+1

δ2(zi1 − zi2)δ2(zi2 − zi3) · · · δ2(zik − zik+1) , (3.3)

whereδ2(zi − zj) is the2-dimensional delta-function. Note that fork = 2, we speak of a
pairing property, for obvious reasons.

The states described in this chapter all have the above mentioned clustering property,
except for the spin-charge separated states of section 3.6. These states have a clustering
among the spin up and spin down electrons separately. That this clustering property is
different is closely related to the fact that the underlying affine Lie algebra is different.
For the RR states and the non-abelian spin-singlet (NASS) states, the underlying affine Lie
algebras are the simply laced algebrassu(2) and su(3) respectively, while for the spin-
charge separated state, this algebra isso(5), a non-simply laced Lie algebra. In effect, the
consequence is that the states already have a pairing structure at levelk = 1.

3.2 The Moore-Read quantum Hall state

The way in which the clustered quantum Hall states are constructed will be explained by
using the MR quantum Hall state as an example, as this is the simplest paired stated. Nev-
ertheless, it has most of the features of the general clustered states.

The construction of the MR state goes along the same lines as the construction of the
Laughlin state based on conformal field theory, see section 2.3.1. The difference lies in
the conformal field theory used. In the case of the MR quantum Hall state, this is a theory
with su(2)2 symmetry and can be described in terms of a free chiral boson and a Majorana
fermion.
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The pairing structure is build into the wave function via the electron operator, which
contains the Majorana fermionψ (of the Ising model) in addition to a free chiral boson.
This already points to the fact that the CFT describing the MR state is ac = 3

2 theory. The
electron operator now reads

V mr
el = ψ : ei

√
M+1ϕc : . (3.4)

The MR quantum Hall state is, like the Laughlin state, constructed as a correlator of elec-
tron operators and a suitable background charge. This correlator can easily be calculated,
because the Majorana fermion is also a free field. Thus by using (the fermionic form of)
Wick’s theorem and the correlator of two Majorana fermions

〈ψ(z1)ψ(z2)〉 =
1

z1 − z2
, (3.5)

one finds the wave function

Ψ̃M
MR(zi) = lim

z∞→∞
z(M+1)N2

∞ 〈V mr
el,1 · · ·V mr

el,N : e−i
√
M+1Nϕ(z∞) :〉

= 〈ψ(z1) . . . ψ(zN )〉
∏
i<j

(zi − zj)M+1

= Pf
( 1
zi − zj

)∏
i<j

(zi − zj)M+1 . (3.6)

The second line is obtained by working out the correlator of the vertex operators of the chiral
bosons. Pf(M) is the pfaffian of an anti-symmetric matrixM is the anti-symmetrized
product

Pf(Mi,j) = A(M1,2M3,4 . . .) . (3.7)

In fact, the pfaffian of an anti-symmetric matrix can also be thought of as the square root of
its determinant,Pf(Mi,j) =

√
detM. Because of the presence of the pfaffian factor, the

state corresponding to the wave function (3.6) is also called the pfaffian quantum Hall state.
Note that the number of electronsN need to be even, in order to get a non-zero correlator.
Below, when the quasihole wave functions are introduced, it will become clear that wave
functions with an odd number of electrons are possible when quasiholes are present. The
Moore-Read state (3.6) describes a quantum Hall system at filling fractionν = 1

M+1 , as can
be inferred from the form of the form of the vertex operator ofϕc in the electron operator.
Equivalently, the filling fraction is determined by the Laughlin factor in the wave function.
Note that for fermionic states,M has to be odd, as will be the case throughout this thesis.
The conformal dimensions of the electron operators are easily calculated. The conformal
dimension of the Majorana fermion is∆ψ = 1

2 . In general, the conformal dimension of the

vertex operatorei~α·~φ is given by∆v.o. = α2

2 . Details on dimensions of fields and CFT in
general can be found in the book [34]. Put together, the dimension of the electron operator
is given by∆el = M+2

2 . In fact, the electron operators are constructed in such a way that
for M = 0 they are currents of the underlying Lie algebra CFT. ForM odd, the electron
operator should have half integer dimension, in order to represent a fermionic object. For all
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the states discussed in the thesis, the electron operators indeed have conformal dimension
∆el = M+2

2 .

Before we go on with the discussion on the quasiholes over the MR state, we first will
comment on the relevance of this state. At the time this state was proposed as a quantum
Hall state at fillingν = 1

2 , it was believed that the quantum Hall effect observed at filling
ν = 5

2 was due to anunpolarizedquantum Hall state. Experiments which led to this con-
clusion were tilted field experiments, in which the total magnetic field is increased, while
the component perpendicular to the sample is kept the same. As the filling fraction is only
determined by this perpendicular component and the spin couples to the total magnetic field,
these experiments can shed light on the spin of the quantum Hall state under investigation.
In these tilted field experiments atν = 5

2 , it was observed that upon increasing the total
magnetic field, the quantum Hall state disappeared [29].

The interpretation of these experiments was that the state atν = 5
2 is unpolarized,

and can be destroyed by increasing the in-plane magnetic field. Nevertheless, M. Greiter,
X.-G. Wen and F. Wilczek proposed that the observed quantum Hall effect atν = 5

2 could
be related to the spin-polarized MR state. The electrons in the second Landau level, which
is half filled, are thought to form a MR state, while the first Landau level is completely filled
with spin up and down electrons. The presence of this completely filled Landau level will
alter the details of the interactions between the electrons in the second Landau level. Of
course, in real systems, the states will always have a certain extension in the perpendicu-
lar direction; this will in general lead to a coupling to the in-plane magnetic field, which
eventually could destroy the quantum Hall state. Over the years, evidence built up that the
quantum Hall effect at filling5

2 is indeed related to the MR quantum Hall state. First of all,
there are extensive numerical studies which point in this direction [72, 86]. Experimentally,
it has been established that the state is indeed spin-polarized [75]. Also, at ‘high’ temper-
atures, at which the quantum Hall state has disappeared, Fermi surface effects have been
observed. This indicates that a Cooper instability can occur, providing a mechanism for the
pairing of electrons. Applying an in-plane magnetic field will results in the formation of a
striped phases, with anisotropic behaviour of the resistances. This explains the disappearing
of the quantum Hall state atν = 5

2 upon applying an in-plane magnetic field.

We will now continue with the description of the quasiholes excitations. As indicated in
appendix 2.A, the quasihole operators are restricted to be relatively local with respect to the
electron operators. This leads to the following,smallest chargequasihole operator

V mr
qh = σ : e

i
2

1√
M+1

ϕc : , (3.8)

whereσ is the spin field of the Ising model. It has conformal dimension∆σ = 1
16 . This

gives∆qh = M+3
16(M+1) for the conformal dimension of the quasiholes. The MR wave func-
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tion in the presence of quasiholes can now be written in term of a CFT correlator

Ψ̃M
MR,qh(zi, wj) = lim

z∞→∞
z

(M+1)(N+ n
2(M+1) )2

∞

× 〈V mr
qh,1 · · ·V mr

qh,nV
mr
el,1 · · ·V mr

el,N : e−i
(√

M+1N+ n
2
√
M+1

)
ϕ(z∞) :〉

= 〈σ(w1) · · ·σ(wn)ψ(z1)ψ(zN )〉

×
∏
i,j

(wi − wj)
1

4(M+1)
∏
i,j

(zi − wj)
1
2

∏
i<j

(zi − zj)M+1 . (3.9)

This wave function is analytic in the electron coordinates, as it should be. Note that the

factors(zi − wj)
1
2 are canceled by similar factors present in the correlator of Majorana

and spin fields. This is guaranteed by the structure of the electron and quasihole operators.
To use the correlator eq. (3.9) to obtain explicit forms of the wave functions is a difficult
task. The spin field are not free fields, and therefore, the correlators containing quasihole
operators can not be obtained by applying Wick’s theorem. An explicit form of the MR
wave function with quasiholes present can be found in [84]. In fact, this is the only case in
which these explicit wave functions are known. However useful, the explicit form of these
quasihole wave functions is not necessary to obtain properties of the quasiholes.

Like in the case of BCS superconductors, the flux quantum is halved due to the pairing
of the electrons. This means that if the flux quantum is increased by one, two quasiholes
are created. The charge of these quasiholes is given byqqh = 1

2(M+1) . Compared to the
Laughlin quasiholes, there is an additional fractionalization of the charge. Note that this
structure is also embodied in the K-matrix description of the MR state, which is discussed
in chapter 5.

One of the properties which caused great interest in these paired quantum Hall states is
the statistics of the quasihole excitations. It is said that these quasiholes satisfy non-abelian
(braid) statistics. As this is a very important prediction, which will also come back in the
other clustered quantum Hall states, we will describe the situation for the quasiholes over
the Moore-Read state in some detail in the next section.

3.3 Non-abelian statistics

In this section, we will explain that the quasiholes of the MR quantum Hall states, and the
clustered states in general, satisfy what is called non-abelian statistics.

The key point is the presence of the spin field in the quasihole operator. In turn, this was
possible because of the presence of the Majorana fermion in the electron operators, which
cause the wave function to be paired. So in effect, the pairing (or clustering in general, as
we will see in the following sections), is intimately related to the non-abelian statistics of
the quasiholes. This relationship will again be found in the K-matrix structure, which is
explained in chapter 5.

To explain the non-abelian statistics, we have to take a look at the fusion properties of
the parafermion and spin fields, present in the electron and quasihole operators. The fusion
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Figure 3.1: The Bratteli diagram for the Moore-Read state.

rules of the parafermion fieldsψ is trivial

ψ × ψ = 1 . (3.10)

For the spin fieldsσ, the fusion rule is more complicated

σ × σ = 1 + ψ . (3.11)

The consequence is that upon calculating a correlator which contains a certain number of
spin field, on in general has a choice of many differentfusion pathswhich fuse the (spin)
fields to the identity. In the end, after fusing all the fields, one has to end with the identity,
in order to obtain a non-zero correlator. The number of ways in which this can be done can
be obtained from a so calledBratteli diagram. In such a diagram, the fusion of fields is
encoded in arrows, see figure 3.1. Each arrow stands for fusing with a certain field (in this
case, the spin fieldσ). The field which is fused with the field corresponding to the arrow
is at the starting point of the arrow, while the arrow points at a position corresponding to a
field in the fusion. Taking the fusionσ × ψ = σ into account, one finds the diagram 3.1.

From the diagram in figure 3.1, one easily determines that the number of spin fields in
the correlator has to be even. Only after the fusion of an even number of spin fields, one can
end up in either the1 or theψ-sector. In the first case, the number of electrons need to be
even as well, to end up in the ‘identity sector’. In the second case the number of Majorana
fermions, and accordingly, the number of electrons, has to be odd. In both cases, the number

of fusion paths which lead to the identity is determined to be2
n
2−1.

The fact that there is more than one fusion channel makes the conformal correlator in
(3.9) stand for a set of wave functions, or better, a wave vector. If one now takes a MR
quantum Hall state, in which four quasiholes are present, and one braids these quasiholes,
this will result in a phase, which depends on a phase matrix, instead of a simple phase
factor. These phase matrices have been calculated [71, 74, 95], and it was found that they
do not commute. Thus the ordering of the braiding is essential, explaining the nomenclature
non-abelianstatistics.

At this point, it is useful to spend a few words on the underlying Lie algebra struc-
ture. That is, the electron operator for the MR state can be viewed as ansu(2) current
whenM = 0. The Majorana fermion is viewed as the simplestparafermionrelated to the
su(2)2/u(1) parafermion theory, which is in fact just the Ising model. In the other clustered
quantum Hall states, which we will address in the following sections, parafermion fields will
be present in the electron operators. Again, as a consequence, the quasiholes with smallest
possible charge will contain spin fields. These spin fields also have non-trivial fusion rules,
which are generalizations of eq. (3.11). Thus one can again argue, that the quasiholes over
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these states satisfy non-abelian statistics. Or in other words, these states have anintrinsic
degeneracy in the presence of quasiholes.

One of the main themes in this thesis will be the study of the statistics of these quasi-
holes. In particular, the intrinsic degeneracies described in this section will come back in
chapter 6, where the degeneracy of clustered quantum Hall states will be studied in a spher-
ical geometry. There, we will compare numerical results to analytical studies, in which the
intrinsic degeneracies play a crucial role. However, there is another source of degeneracies,
due to the spherical geometry. Combining those two types of degeneracies will turn out to
be non-trivial, and is in fact the crucial point.

Al this is very nice, but a natural question immediately rises itself: is non-abelian statis-
tics possible in physical systems? And if so, what are the consequences of the non-abelian
statistics? Before we go into this, we first want to remark that in general, it is very hard
to measure the statistics of particles in condensed matter systems. Though the fractional
charge of the Laughlin quasiholes has been confirmed via shot-noise experiments, thefrac-
tional statisticswhich these particles are believed to satisfy, still manages to keep out of
the hands of experimentalists. But apart from that, one might wonder whether or not non-
abelian statistics can be observed in principle.

One of the problems is the fact that for realistic potentials, the quasihole states which
are degenerate for the ultra local tree body interaction might not be degenerate anymore.
However, thetopologicalstatistics properties obtained from the idealized hamiltonian are
expected to carry over to other hamiltonians which lie in the same universality class. Of
course, it is essential that the braiding of quasiholes is done adiabatically slow.

Another worry is of course the presence of disorder in the physical systems. Also here,
the fact that the properties of the quasiholes are topological, protects them against breaking
down, if the exchange is done slow enough. For more details on the effect on disorder can
be found in [83].

All the above have led people to propose the MR quantum Hall state as the building
block for a quantum computer, see, for instance, [35]. In such a quantum computer, the
quasiholes would form the q-bits. Though this is a very interesting proposal, making a
quantum computer based on a quantum Hall system is very far from being realized. This
topic will not be addressed in this thesis.

3.4 The Read-Rezayi states

The construction of quantum Hall states in terms of correlators in CFTs makes generaliza-
tions of the MR state possible. In [85], Read and Rezayi introduced clustered analogs of
the Moore-Read states. In fact, they proposed to use theZk parafermions in the electron
operator, in the same way as the Majorana fermion is used. The states they obtained have
filling fraction

νk,M =
k

kM + 2
. (3.12)

TheZk (or su(2)k/u(1)) conformal field theory contains the parafermion primary fieldsψl,
l = 0, 1, . . . , k−1, whereψ0 = 1. In addition, there are spin fieldsσl, with l = 1, . . . , k−1.
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The fusion rules for the parafermion fieldsψl read

ψl × ψl′ = ψl+l′ , (3.13)

where all the labels are modulok. The (spin-polarized) clustered states are defined in terms
of the electron operator

V rr
el = ψ1 : e

i√
k

√
kM+2ϕc : . (3.14)

Note that in this definition, the most ‘basic’ parafermion in theZk theory is used. This
reflects that the electron has the smallest charge of all ‘electronic particles’.

From (3.13) it follows that the number of electronsN needs to be a multiple ofk (in the
absence of quasiholes). The wave function is easily written in terms of a correlator

Ψ̃k,M
RR (zi) = lim

z∞→∞
z

(M+ 2
k )N2

∞ 〈V rr
el,1 · · ·V rr

el,N : e
−i√
k

√
kM+2Nϕc(z∞) :〉

= 〈ψ1(z1) · · ·ψ1(zN )〉
∏
i<j

(zi − zj)M+ 2
k . (3.15)

To actually calculate the parafermion correlator is much harder compared to the MR case,
because the parafermionsψ1 are not free fields. In [85], a form (to be given below) was
conjectured, which was inspired by the structure of the zeroes implied by the operator prod-
uct expansion of the parafermion fields. In [47], this form was proven to be equal to the
correlator. A different way of characterizing the wave function can be found in [23].

We will now describe the explicit form of the Read-Rezayi wave function, in the case
of M = 0. The wave functions forM > 0 are obtained by multiplying with the Laughlin
factor

∏
i<j(zi−zj)M . To obtain the wave functions of the RR-states forN = pk electrons,

(p is a positive integer) first, the particles have to be divided into groups ofk particles. Let
us consider the simplest way of doing this

(z1, z2, . . . , zk), (zk+1, . . . , z2k), . . . , (z(p−1)k+1, . . . , zpk) . (3.16)

To each pair of two clusters (say theath andbth cluster), the following factor is associated

χa,b = (z(a−1)k+1 − z(b−1)k+1)(z(a−1)k+1 − z(b−1)k+2)
× (z(a−1)k+2 − z(b−1)k+2)(z(a−1)k+2 − z(b−1)k+3)
× . . .× (zak − zbk)(zak − z(b−1)k+1) . (3.17)

To obtain the wave function, one has to multiply the factors (3.17) for each pair of clusters,
and sum over all the possible ways of forming thep clusters ofk particles. The last step is
equivalent (up to a normalization factor) to symmetrize the product ofχ factors in all the
electron coordinates. The wave function thus becomes

Ψ̃RR = S
[∏
a<b

χa,b
]
. (3.18)

It has been shown in [85] that this wave function indeed satisfies the cluster property eq.
(3.2). That the wave functions should satisfy this property follows from the fusion rules of
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the parafermion fieldsψl, given in eq. (3.13). It was proven in [47] that this wave function
is in fact equal to the state defined in eq. (3.15) (forM = 0).

Another way of obtaining an (equivalent) explicit form of the wave function was de-
scribed (and proven) in [23]. The idea is to divide the electrons ink groups, and giving
them different ‘colours’ (denoted bya, b, . . .) so that they become discernible. The wave
function for the system consists of Laughlin factors. To obtain the clustered wave function,
on has to symmetrize all the different electrons

Ψ̃RR = S̃
[∏
i<j

(z(a)
i − z

(a)
j )2

∏
i<j

(z(b)
i − z

(b)
j )2 . . .

]
. (3.19)

The filling fraction of the Read-Rezayi states can be read off from the electron operators,
and is given byν = k

kM+2 . Another way of determining the filling fraction is via the
maximal degree of the wave function with respect to one of the coordinates, sayz1 (any
electron coordinate can be used). The degree of the wave function is equal the to the number
of flux quanta needed to tune to a particular state on the sphere. One has the following
relation

NΦ =
1
ν
Ne − S . (3.20)

The shift is due to the fact that we are in fact using a spherical geometry in this determina-
tion. Using the explicit form (3.18), on indeed finds thatν = k

kM+2 . In addition, the shift
on the sphere is found to beS = M + 2.

The quasiholes over these states are also defined in complete analogy with the MR case.
Thus, the operator creating the most basic quasihole (i.e. the one with the smallest charge)
will contain a spin field, namelyσ1. The quasihole operator is, like the MR case, written in
terms of a spin field and a vertex operator of the charge boson

V rr
qh = σ1 : e

i√
k

1√
kM+2

ϕc : . (3.21)

The vertex part of these operators is determined by the condition that they have to be rela-
tively local with respect to the electron operator (3.14). The charge of the quasiholes can be
determined from the operators (3.21) to beqqh = 1

kM+2 .
The fusion rules imply a condition on the number of quasiholes which can be placed

in the correlator. This condition is that after fusing the spin fieldsσ1 and the parafermions
ψ1 of the electron operators, one has to end up with the identity operator1. For instance,
if the number of electrons is a multiple ofk, the fusion rules imply that a multiple ofk
quasiholes need to be placed in the correlator. Though we don’t have explicit forms for
the wave functions in the presence of quasiholes, formally, they can be written as a CFT
correlator

Ψ̃k,M
RR,qh(zi, wj) = 〈σ1(w1) · · ·σ1(wn)ψ1(z1) · · ·ψ1(zN )〉

×
∏
i<j

(wi − wj)
1

k(kM+2)
∏
i,j

(zi − wj)
1
k

∏
i<j

(zi − zj)M+ 2
k . (3.22)

In general, the correlator ofn σ1 fields (n is the number of quasiholes) andN ψ1 fields is
hard to calculate. Moreover, because of the non-trivial fusion rules of the spin fields, the
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correlator in eq. (3.22) stands for more than one wave function. Like in the MR case, the
quasiholes over the RR states satisfy non-abelian statistics.

Note that in [23], a rather explicit form of the quasihole wave functions was given.
However, it is in fact an over complete set of wave functions; it can’t be used for the state
counting as described in chapter 6, because one has to reduce this set of states. This is in
general a very difficult task, as can be seen from the MR case, were such a reduction was in
fact performed [74].

3.5 Non-abelian spin-singlet states

In this section, we will describe a set of spin-singlet states, which have the same clustering
property as the RR-states. These states can be viewed as spin-singlet analogs of the RR-
states, in the same manner as the Halperin states(m+ 1,m+ 1,m) are spin-singlet analogs
of the spin-polarized Laughlin states. Alternatively, they can be viewed as clustered analogs
of the Halperin states, in the same way as the RR-states are clustered analogs of the Laughlin
states. We will follow the discussion of the defining paper [10] and the work presented in
[9]. The electron and spin filling fractions for these states are given by

νk,M =
2k

2kM + 3
, σk,M = 2k . (3.23)

The underlying structure of these states is a CFT with the symmetry of the affine Lie algebra
su(3)k. The states are defined in terms of the parafermionssu(3)k/u(1)2 and two chiral
bosons, for charge and spin:ϕc andϕs. The parafermion fields are associated to the roots
of su(3). In the root diagram, a charge and a spin direction are chosen in such a way that a
spin doublet is present. In this way, the spin up and spin down electrons can be identified.
Note that only the caseM = 0 has an affinesu(3)k symmetry. ForM > 0, the charge axis
is deformed. As a consequence, the charged part of the vertex operator of the bosonsϕc, ϕs
depends onM .

In figure 3.2, we indicate the correspondence between the particle operators and the root
diagram ofsu(3). As can be seen form figure 3.2, the quasihole operators correspond to
(fundamental) weights ofsu(3). These operators consist of a spin field corresponding to
the weight, and a vertex operator, which is also related to thesu(3) diagram. The spin part
of the vertex operators are defined in such a way that thez component of the spin of the
electrons, which can be measured withSz = i√

2k

∮
dz
2πi∂ϕs, is 1

2 . The charge is normalized
in such a way that the electrons have charge1. ForM 6= 0 this implies that the charge axis
of the root diagram is ‘stretched’, and the full symmetry is nowsu(3)k,M , where the second
label indicates the stretching of the charge axis. The electron and quasihole operators can
be written as

V nass
el,↑ = Ψ↑ = ψ1 : e( i√

2k
(
√

2kM+3ϕc+ϕs)) : , (3.24)

V nass
el,↓ = Ψ↓ = ψ2 : e( i√

2k
(
√

2kM+3ϕc−ϕs)) : , (3.25)

V nass
qh,↑ = φ↑ = σ↑ : e( i√

2k
( 1√

2kM+3
ϕc+ϕs)) : , (3.26)

V nass
qh,↓ = φ↓ = σ↓ : e( i√

2k
( 1√

2kM+3
ϕc−ϕs)) : , (3.27)
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Figure 3.2: The roots(•) and weights(◦) of su(3).

where we have writtenψα1 = ψ1, ψ−α2 = ψ2 , σ$1 = σ↑ andσ−$2 = σ↓ for simplicity
(details on the notation can be found in the appendix 3.A).

The most basic spin fieldsσ↑,↓ transform as a doublet of thesu(2) subalgebra we iden-
tify with the spin of the particles. Note that forM = 0, the electron operators are currents
of the affine Lie algebra theory.

The wave function for the NASS state can be written as a correlator of the electron
operators in eqs. (3.24) and (3.25). By evaluating the vertex operators of the chiral bosons,
we arrive at the following form

Ψ̃k,M
NASS(z↑i ; z↓j ) = 〈ψ1(z↑1) . . . ψ1(z↑N/2)ψ2(z↓1) . . . ψ2(z↓N/2)〉

×
[
Ψ̃(2,2,1)

H (z↑i ; z↓j )
]1/k

Ψ̃M
L (z↑i ; z↓j ) . (3.28)

Note that the explicit form of the Laughlin and Halperin wave functions can be found in
sections 2.3.1 and 2.3.2 respectively. As was the case for the Read-Rezayi states, the wave
function (3.28) is non-singular, and in fact a polynomial in the electron coordinates. In
describing the explicit form of the wave functions for the NASS states in absence of quasi-
holes, we closely follow the results presented in [9].

Because the structure of the parafermions of both the typesψlα1 andψ−lα2 closely
resembles that of theZk parafermionsψl, we expect the structure of the trial wave functions
(that is, of the chiral correlators (3.28)) of the NASS states to be similar to that of the RR
states, and also to generalize the Halperin(2, 2, 1) state. The RR wave functions were
constructed by dividing the particles into clusters ofk, writing down a product of factors
for each pair of clusters, and finally symmetrizing over all ways of dividing the particles
into clusters. Hence in the case with spin, we guess that we should divide the up particles
into groups ofk, the downs into groups ofk and then multiply together factors that connect
up with up, down with down, or up with down clusters, and finally ensure that the function
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is of the correct permutational symmetry type to yield a spin-singlet state (in particular, it
should be symmetric in the coordinates of the up particles, and also in those of the downs).
We expect that the up-up and down-down parts of this should closely resemble the RR wave
functions, before the symmetrization; it was shown in ref. [85] that the functions found there
vanish whenk + 1 particles come to the same point, even inside the sum over permutations
that symmetrizes the final function. These considerations guided the following construction.

Due to the spin-singlet nature of the state, the wave function will be non-zero only if
the number of spin up and spin down particles is the same. Furthermore, there must be an
integer number of clusters, so the total number of particlesN must be divisible by2k, and
will be written asN = 2kp, wherep ∈ N. One example was already given in [10], namely
the wave function for the casek = 2,M = 0 with the number of particles equal to4 (i.e.,
p = 1),

Ψ̃k=2,M=0
NASS (z↑1 , z

↑
2 ; z↓1 , z

↓
2) = (z↑1 − z

↓
1)(z↑2 − z

↓
2) + (z↑1 − z

↓
2)(z↑2 − z

↓
1) . (3.29)

This is part of the two-dimensional irreducible representation of the permutation group on4
objects,S4, as can easily be seen. This is the correct symmetry type to obtain a spin-singlet
state, as we discuss further below.

We will now describe the different factors that enter the NASS wave functions. Because
the only effect ofM being non-zero is to give an overall Laughlin factor, we will assume at
first thatM = 0. First we give the factors that involve particles of the same spin, say spin
up. They are the same as in RR [85]. We will divide the particles into clusters ofk in the
simplest way,

(z↑1 , . . . , z
↑
k), (z↑k+1, . . . , z

↑
2k), . . . , (z↑(p−1)k+1, . . . , z

↑
pk) , (3.30)

and the same for thez↓’s. (In a more precise treatment, we would say that the firstN/2
particles are spin up, the remainder spin down.) We write down factors that connect theath

with thebth cluster:

χz
↑

a,b = (z↑(a−1)k+1 − z
↑
(b−1)k+1)(z↑(a−1)k+1 − z

↑
(b−1)k+2)

× (z↑(a−1)k+2 − z
↑
(b−1)k+2)(z↑(a−1)k+2 − z

↑
(b−1)k+3)

× . . .× (z↑ak − z
↑
bk)(z↑ak − z

↑
(b−1)k+1) . (3.31)

Fork = 1, we would writeχz
↑

a,b = (z↑a − z
↑
b )2. The factors that connect up with down spins

are simpler:

χz
↑,z↓

a,b = (z↑(a−1)k+1 − z
↓
(b−1)k+1)(z↑(a−1)k+2 − z

↓
(b−1)k+2) . . . (z↑ak − z

↓
bk) . (3.32)

For k = 1, the factor would beχz
↑,z↓

a,b = (z↑a − z
↓
b ). We multiply all these factors for all

pairs of clusters, up-up, down-down, or up-down:

p∏
a<b

χz
↑

a,b

p∏
c,d

χz
↑,z↓

c,d

p∏
e<f

χz
↓

e,f . (3.33)
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Notice that fork = 1, we do obtain the Halperin (2,2,1) wave function.
To obtain a spin-singlet state when the spatial function is combined with the spin state

(which lies in the tensor product ofN spins1/2), some symmetry properties must be sat-
isfied. For theM = 0 case, the particles are bosons, hence the full wave function must
be invariant under permutations of spins and coordinates of any two particles. This can be
used to obtain the correct form of the function from that component in which, say the first
N/2 are spin up, the rest spin down, as above, so knowledge of that component is sufficient.
The requirement that the full wave function be a spin-singlet can be shown to reduce to
the Fock conditions: the component just defined must be symmetric under permutations of
the coordinates of the up particles, and also of the down particles, and must also obey the
Fock cyclic condition, as given in ref. [56] (modified in an obvious way for the boson case).
These three conditions can be shown to imply that the spatial wave function is of a definite
permutational symmetry type (belongs to a certain irreducible representation of the permu-
tation group), that corresponds to the Young diagram with two rows ofN/2 boxes each. In
general, given a function of arbitrary symmetry, a Young operator can be constructed that
projects it onto a member of the correct representation (though the result may vanish); this
construction generalizes the familiar symmetrization and anti-symmetrization operations.
For the present case, the Young operator is the following operation, equivalent to summing
over the function with various permutations of its arguments, and some sign changes: First,
anti-symmetrize inz1, zN/2+1; then inz2, zN/2+2; . . . , zN/2, zN ; then symmetrize inz1,
. . . , zN/2; then finally symmetrize inzN/2+1, . . . , zN . This clearly satisfies the first two
requirements of Fock, and can be proved to satisfy also the cyclic condition. It remains to
check that it is nonzero, we believe it is. Incidentally, the application of the Young operator
is the analog of symmetrizing over the down spins in the spatial wave function of the perma-
nent state (see e.g. ref. [84]), to which it reduces for the case of BCS paired wave functions
of spin 1/2 bosons (there are similar statements in the more familiar case of spin-singlet
pairing of spin 1/2 fermions). However, based on the example of the Halperin (k = 1) case,
we also considered the function defined as in eq. (3.33), and then simply symmetrized over
all the ups and over all the downs. For the Halperin function [which in fact is already sym-
metric in eq. (3.33)], this satisfies the cyclic condition, as can be seen using the fact that the
(1,1,0) state is a Landau level filled with both spins, plus the Pauli exclusion principle for
fermions. Fork = 2, 3, we verified the cyclic condition numerically for several moderate
sizes. Hence, we expect that this simpler form actually works for allk (as well as for allN
divisible byk). Apparently, this procedure and the application of the Young operator give
the same function in the end (up to a normalization).

ForM = 0, our wave function is then:

Ψ̃k,0
NASS = Sym

p∏
a<b

χz
↑

a,b

p∏
c,d

χz
↑,z↓

c,d

p∏
e<f

χz
↓

e,f , (3.34)

whereSym stands for the symmetrization over the ups and also over the downs. This
function is nonzero, as may be seen by letting the up coordinates coincide in clusters ofk
each, and also the downs, all clusters at different locations, and making use of the result in
RR [85] that only one term in the symmetrization is nonzero in the limit. This term is the
Halperin(2k, 2k, k) function for2p particles. To obtain the wave function for generalM ,
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we multiply by an overall Laughlin factor,̃ΨM
L .

We can give a simple proof that our wave function (forM = 0) vanishes if anyk + 1
particles, each of either spin, come to the same point. This works also for the RR wave
functions, and is simpler, though less informative, than the proof in RR [85]. It works
term by term, inside the sum over permutations in the symmetrizer. Thus, without loss of
generality, we may use the simple clustering considered above. We note that on the clock
face formed by the labels1, . . . , k within each cluster, there is always a factor connecting
any two particles at the same position, regardless of their spin. This factor vanishes when
the particles coincide. Since there are onlyk distinct positions, whenk + 1 particles come
to the same point, the clock positions must coincide in at least two cases, so that the wave
function vanishes, which completes the proof.

We do not have a direct general proof of the equality of these explicit wave functions and
the formal expressions eq. (3.28), but we have performed a number of consistency checks.
First, the wave functions are polynomials of the correct degree. From eq. (3.28)), we can
infer what the total degree should be. The parafermions of the correlator contribute with (see
[43])−1 ·2kp · (1− 1

k ). The factors of the 2,2,1 part are2 · 2
k ·

1
2kp(kp−1) and1 · 1

k · (kp)
2.

Adding these gives, forM = 0, pk(3p − 2). We need to check whether eq. (3.33) gives
the same degree. For theith up particle, the degree ofz↑i in the product of up-up factors is
2(p − 1), and in the up-down factors isp. Thus the net degree inz↑i is Nφ = 3p − 2 =
3N/2k− 2, or for generalM ,Nφ = 3p+M(N − 1)− 2 = (M + 3/2k)N − 2−M . This
gives the filling factorν = 2k/(2kM+3) [10], which reduces to that for the Halperin states
for k = 1, and also the shift, defined asNφ = N/ν − S, which here isS = M + 2 on the
sphere (for more on the shift, see ref. [105]). Finally, the total degree isN/2 times that in
z↑i , namelykp(3p− 2) for M = 0, the same as for the correlator. Also, the numerical work
described in section 6.1 below confirms that the ground state of the appropriate Hamiltonian
on the sphere fork = 2, M = 1 at the given number of flux does have a unique spin zero
ground state at zero energy, so that the correlator and the wave function constructed above
must coincide. This also implies that the wave functions above must be spin singlet. As was
the case for the Read-Rezayi states, an alternative expression for the wave function of the
NASS states is possible; this form is discussed in [92].

Though we do not have an explicit form of the wave functions with quasiholes, it can be
characterized by the correlator of quasihole and electron operators. Working out the chiral
boson part results in the form

Ψ̃k,M
NASS,qh(z↑i ; z↓j ;w↑i ;w↓j ) =

〈σ↑(w↑1) . . . σ↑(w↑n↑)σ↓(w
↓
1) . . . σ↓(w↓n↓)ψ1(z↑1) . . . ψ1(z↑N↑)ψ2(z↓1) . . . ψ2(z↓N↓)〉

×
[
Ψ̃(2,2,1)

H (z↑i ; z↓j )
]1/k

Ψ̃M
L (z↑i ; z↓j )

∏
i,j

(z↑i − w
↑
j )

1
k

∏
i,j

(z↓i − w
↓
j )

1
k

×
∏
i<j

(w↑i − w
↑
j )

1
2kM+3 ( 2

k+M)
∏
i<j

(w↓i − w
↓
j )

1
2kM+3 ( 2

k+M)

×
∏
i,j

(w↑i − w
↓
j )

−1
2kM+3 ( 1

k+M) . (3.35)
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As in the previous cases where spin fields were present in the correlator, the expression
(3.35) stands for a set of wave functions. The number can be deduced from the spin fields
of the su(3)k/u(1)2 CFT. We will come back in detail on the subject of state counting in
chapter 6.

3.6 The spin-charge separated states

The construction of the previous section, namely constructing spin-singlet analogs of the
MR quantum Hall state by usingsu(3)k/u(1)2 parafermions, can be generalized, by making
use of other rank2 affine Lie algebras. There are only two other rank two Lie algebras,
namelyso(5) andG2. We will concentrate on theso(5) case, as the quasiholes over those
states have an interesting property on top of the non-abelian statistics, namely, a separation
of the spin and charge degrees of freedom. This section is based on the article [8], which
deals with the casek = 1. Here, we will be more general, and in most cases present results
for generalk, with the exception of the explicit wave functions. Note that one can also use
Lie algebras with rankr > 2, as long as one can assign a proper(SU(2))-spin direction
in the root diagram; the electrons should transform as a doublet under spin rotation. In this
section, we will concentrate on theso(5) case.

The underlying structure of the spin-charge separated states is the affine Lie algebra
so(5)k. The roots and weights, and the operators assigned to them are shown in figure 3.3.
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Figure 3.3: The roots(•) and weights(◦) of so(5).

At level k = 1, the only parafermion field in the parafermionic cosetso(5)1/u(1)2 is
the Majorana fermion, because this cosetis the Ising model. It is thus expected that the
structure of the wave function atk = 1 closely resembles the Moore-Read state. This is
indeed the case as can be seen from the explicit wave function (the electron operators are
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given in eq. (3.37))

Ψ̃(M)
SCsep(z↑i , z

↓
j ) = Pf

( 1
xi − xj

)
Ψ̃(M+1,M+1,M)

H (z↑i ; z↓j ) , (3.36)

wherexi can be either a spin up or a spin down electron. The pairing property is somewhat
different from the previous spin-singlet states. We will discuss the pairing property using
the k = 1,M = 0 wave function in equation (3.36). Note that forM = 0, this wave
function has poles when a spin up electron is at the same position as a spin down electron
(this problem does not occur for the physical situationM = 1).

In the casek = 1, up to two particles of the same spin can be brought to the same
location while the wave function is still non-zero. So even for two spin up and two spin
down particles at the same location, the wave function doesn’t vanish (in fact, has a pole).
Thus, the clustering holds for the spin up and spin down particles separately, while for the
spin-singlet clustered states (3.34), putting anyk + 1 electrons at the same position make
the wave function vanish.

In general, the electron operators for theso(5)k states are given by

V sc
el,↑ = Ψ↑ = ψ↑ : e

i√
2k

(
√

2kM+1ϕc+ϕs) : , (3.37)

V sc
el,↓ = Ψ↓ = ψ↓ : e

i√
2k

(
√

2kM+1ϕc−ϕs) : , (3.38)

where now the parafermion fields are in fact the fieldsψ↑ = ψα1+α2 andψ↓ = ψα1 .
Here,α1 is a short root, andα2 a long root. Note that in the casek = 1, they are just a
Majorana fermionψ↑ = ψ↓ = ψ (because of a field identification in the parafermion CFT,
see appendix 3.A).

The operators∆ indicated in figure 3.3 are characterized as

∆c = : ei
√

4kM+2
k ϕc : , (3.39)

∆A
s = : e±i

√
2
kϕs : , (3.40)

whereA =↑↑, ↓↓ refers to the spin eigenvaluessz = ±1.
The operators creating the quasiholes in this quantum Hall state are given by

V sc
qh,c = φc = σ$1 : e

i√
2k

( 1√
2kM+1

ϕc) : , (3.41)

V sc
qh,↑,↓ = φαs = σ±($1−$2) : e

±i√
2k
ϕs : . (3.42)

$1 and$2 are fundamental weights of the Lie algebraso(5). Again, one has to bear in mind
that fork = 1, both the spin fields appearing in the quasihole operators are equal to the spin
field of the Ising model. Apart from the non-abelian statistics, the quasihole excitations over
these quantum Hall states show a separation of their spin and charge degrees of freedom.
The charge of the holon is given byqqh = 1

2kM+1 , while it has no spin. The spinon just
have spin up or spin down (namelysz = ± 1

2 ) and no charge. This structure of spin-charge
separation comes back in the K-matrix description of these states (discussed for levelk = 1
in [8]; results for generalk are presented in section 5.4 of this thesis). A more general
account on K-matrices for conformal field theories can be found in [7].
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Also for this case, one can study the ground state degeneracy of states with quasiholes
present. Fork = 1, the results will be similar as those for the MR state. However, we didn’t
study this case yet. It will be more involved than the cases discussed in chapter 6, because
the Lie algebraso(5) is non-simply laced, which complicates matters quite a bit.

3.7 Overview of properties

In this section, we give an overview of the properties of the clustered quantum Hall states
discussed in this chapter. We will concentrate on the properties of the states without quasi-
hole excitations, because the properties of these excitations will be studied in the next chap-
ters.

For now, let us start by recalling the filling fractions of the various quantum Hall states.
The (electronic) filling fraction is determined by the coefficients of the charged chiral bosons
in the electron operators. We refer to table 3.1 for the values of the filling fractions, or
the various sections in this chapter. For the spin-singlet states, one can define a spin Hall
conductance, similar to the (electronic) Hall conductance (see section 2.1). For both types
of spin-singlet quantum Hall states of sections 3.5 and 3.6, the spin Hall filling is given by
σH = 2k, independent ofM (which only affects the ‘charge’ properties of the quantum
Hall states, see also section 4.2.3).

From the definitions of the electron and quasihole operators, the scaling dimension can
be obtained by the standard CFT techniques (see, for instance, [34]). The details of the
underlying parafermion CFTs will be discussed in appendix 3.A. These scaling dimensions
(also tabulated in table 3.1) are important in the description of the various tunneling exper-
iments one can, in principle, do. However, these experiments are very delicate, and at this
point doing such experiments on samples which show the famous plateau at5

2 filling is still
out of reach. Nevertheless, the tunneling characteristics of the clustered states might pro-
vide an experimental check which can discern the various quantum Hall states at the same
filling fraction.

To illustrate this, we will take a closer look at the spin-charge separated state at filling
fractionν = 2

3 (i.e. k = 1,M = 1). At this filling fraction, another spin-singlet quantum
Hall state has been proposed. This is a state of the so called Jain-series [60], with anti-
parallel flux attachment [113]. In short, the idea behind the construction of Jain is that an
even number of flux quanta gets bound to the electrons. In effect, the composite particles,
which are fermions again, feel a reduced magnetic field. If thesecomposite fermionsfill an
integer number of (effective) Landau levels, a quantum Hall effect can occur. The filling of
the electrons is a fraction, so this construction gives rise to fractional quantum Hall states.
The (electron) filling fraction in the case ofn filled Landau levels of composite fermions
with 2p units of flux attached, is given byν = n

2pn±1 . The+ (−) sign applies in the case
where the attached flux has the same (opposite) direction as the applied magnetic field.

So at certain filling fractions, there may be various proposals for quantum Hall states.
Which state is formed depends heavily on the details of the energetics, which is very hard
to calculate analytically. Numerical analysis might indicate which state is the most relevant
one, as was done in the case of theν = 5

2 qH state (see, for instance, [72]). On the exper-
imental side, one can look for properties which differ for the various proposals. Often, the
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tunneling characteristics of the quantum Hall states indeed differ among the different pro-
posals. As indicated above, doing these tunneling experiments might be hard; however, we
think they provide an interesting check to see which states occur under various conditions.

The relevant electron and quasihole operators needed to calculate the tunneling charac-
teristics of the Jain states were identified in [70]. For the spin-charge separated states, they
can be found in table 3.1.

Here, in describing the tunneling behaviour, we will follow the discussion presented in
[70]. We will concentrate on the process of tunneling electrons from a Fermi liquid into the
edge of the quantum Hall system. Moreover, we will only address the scaling behaviour,
rather than the amplitudes. The tunneling currentI has the scaling behaviourI ∝ V α. The
exponentα is determined by the scaling dimension of the tunneling operator, which in turn
is determined by the electron and quasihole operators. So because in general the scaling
dimensions of the electron operators differ between the various quantum Hall states, also
the I-V characteristics is different. For the composite fermion state at fillingν = 2

3 , the
scaling dimensions of the electron and quasiholes are calculated in [70] to bege = 2 and
qqh = 2

3 respectively. TheI−V characteristics for tunneling electrons into the edge is given
by I ∼ V ge , so the composite fermion state gives rise to a quadraticI − V . For the spin-
charge separated states, the scaling dimensions are given byge = M+2, ghol = 2M+5

16M+8 and
gsp = 5

8 for the electron, holon and spinon, respectively (see also [8]). Thus, for the spin-
charge separated state at fillingν = 2

3 , we predict a cubicI − V . Though experimentally
measuring the scaling behaviour of theI − V of the tunneling processes might be very
hard, it is a probe which distinguishes (some of) the various quantum Hall states which are
proposed at the various filling fractions.

We end this section by providing a summary in the form of table 3.1 of the properties
of the various clustered quantum Hall states discussed in this section. The main properties
of the quantum Hall states are indicated, as well as some of the properties of the underlying
CFTs.

3.A General parafermion CFTs

Following the work of Gepner [43] throughout this appendix, we will state how the general
parafermion fields can be described and indicate which fields are used in the construction of
the clustered quantum Hall states. Here, we only give the minimal information necessary,
for details we refer to [43].

The fields of thegk/u(1)r parafermion CFT (wheregk is a simple affine Lie algebra)
are written asΦΛ

λ . BothΛ andλ are weights of the simple Lie algebrag. λ is considered to
be achargeand is defined modulokML, whereML is the long root lattice ofg. The action
of the (proper) external automorphisms the affine Lie algebra (unfortunately also denoted
by σ) imposes field identifications among the fields

ΦΛ
λ ≡ Φσ(Λ)

λ+σ(0) . (3.A1)

Details on the external automorphismsσ can be found in [34]. Another constraint on the
labels of the fieldsΦ is that the weightλ needs to be ‘accessible’ fromΛ by the subtraction
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of roots (includingα0). The minimal number of times the rootα0 needs to be subtracted
will be denoted bynΛ

λ . Thus ifλ ∈ Λ (now at the level of the simple Lie algebrag), then
nΛ
λ = 0.

The conformal dimensions of the fields are given by

∆Λ
λ =

Λ · (Λ + 2ρ)
2(k + g)

− λ · λ
2k

+ nΛ
λ . (3.A2)

In this equation, the inner products are defined with respect to the quadratic form matrix.
2ρ is the sum of all the positive roots of the corresponding Lie algebra.

The central charge of the parafermionic CFT is given bycpf = caLa − r, wherecaLa is
the central charge of the CFT with affine Lie algebra symmetrygk andr is the rank of the
Lie algebrag. The central charge of the CFT with affine Lie algebra symmetry is given by
caLa = dk

k+g , whered is the dimension of the Lie algebra andg the dual Coxeter number
(no confusion should arise in using the same symbol for the Lie algebra and its dual Coxeter
number).

The remainder of this section is devoted to the (parafermion) field we used in the de-
scription of the paired quantum Hall states discussed in this chapter. Some of the properties
of the various fields used are given in table 3.1.

The parafermion fieldsψα, used in the definition of the electron operators, are in fact
the fieldsΦ1

α. In this notation,1 denotes the vacuum representation1 = (0, . . . , 0) andα is
a root. The operator product expansion (OPE) of the parafermion fields have the following
form

ψα(zi)ψβ(zj) = (zi − zj)∆α+β−∆α−∆βψα+β(zj) . (3.A3)

The scaling dimensions of the parafermion fieldsψα can be obtained using eq. (3.A2). In
the case of the parafermions used in the electron operator,ψα = Φ1

α, whereα is in the
adjoint representation, one finds thatn1

α = 1, implying ∆ψ = 1 − 1
bk , whereb = 1 in the

case of simply-laced Lie algebra.b = 3 for the Lie algebraG2 andb = 2 for all the other
non simply-laced Lie algebras.

The formΦ1
α for the parafermion fieldsψα implies that the fusion of two parafermion

fields is always trivial
ψα × ψβ = ψα+β , (3.A4)

where the labels are modulok times the long root latticeML. Together withr boson
fields, these parafermions can be used to make the currentsJα of the corresponding affine
Lie algebra CFT. In general, the spin fieldsσ$ are the fieldsΦ$$′ , where$′ lies in the
fundamental representation$.

To obtain the operators for creating the electrons and quasiholes, the parafermion and
spin fields must be combined with vertex operators of chiral boson fields. ForM = 0, this
is done in such a way that the electron operators become currents of the underlying affine
algebra. For the rank2 Lie algebras, we choose a spin and charge axis in the root diagram
consistent with the spin of the electron. The conformal dimension of a vertex operatorei~α·~ϕ

is given by∆v.o. = ~α2

2 . Thus the form of the vertex operator part of the electron operator
is fixed. Together with the assignment of charge and spin to the root diagram, this also fixes
the form of the quasihole operators. This procedure automatically takes care of the fact
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that the quasiholes have to be local with respect to the electron operators. The results for
the various states are given in the preceding sections; they are also collected in table 3.1 in
section 3.7.

An important property of quantum Hall states, at least from a theoretical point of view,
is the degeneracy of the state on a torus. This degeneracy can also be characterized by
the number of fields in the chiral algebra of the CFT for the quantum Hall state (see, for
instance, [71]). In the case of the abelian quantum Hall states, this torus degeneracy can be
calculated from the K-matrix of the electron sector, as was shown by Wen (see, for instance,
[105]). The result is simply the determinant of the K-matrix for the electron sector. For
the non-abelian quantum Hall states, this result does not hold anymore, because of the
parafermionic CFTs (for the abelian qH states, only chiral boson fields are present). Of
course, one would like to have a way of obtaining the torus degeneracy directly from the
K-matrices for the non-abelian quantum Hall states, as described in chapter 5. At this point,
we do not have such a formula. However, we can calculate the number of primary fields in
the parafermion theories, and combine this result to the degeneracy ‘caused’ by the chiral
boson fields present in the electron operator.

Using the constraints of the beginning of this appendix, we find the following num-
bers of (parafermion) primary fields for thesu(2) andsu(3) states, namely12k(k + 1) and
1
6k

2(k + 1)(k + 2), respectively. For theso(5) parafermions we find12k
2(k + 1)(k + 2)

primary fields.
These numbers need to be combined with the degeneracy caused by the chiral boson

fields in the electron operators. For the RR, NASS and SCsep states, these are given by
M + 2

k , 2kM+3
k2 and 2kM+1

k2 respectively.
Combined, the degeneracies of the various quantum Hall states on the torus are given

by 1
2 (k+ 1)(kM + 2) and 1

6 (k+ 1)(k+ 2)(2kM + 3) for thesu(2) andsu(3) states, while
theso(5) states have degeneracy1

2 (k + 1)(k + 2)(2kM + 1).
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Chapter 4

Statistics properties

In this chapter, we will introduce the concepts needed to discuss the statistics properties
of the electrons and quasiholes of the paired quantum Hall states. The language we use is
that of the so calledexclusion statisticsprinciple introduced by Haldane in the early 90-ties
[51]. The idea behind this principle is to generalize the Pauli exclusion principle, which
states that no two electrons (or fermions in general) can occupy the same quantum state.
Thus the presence of an electron diminishes the allowed states for the other electrons by
one. Haldane introduced the concept offractionalexclusion statistics. This concept will be
very useful in the state counting, which is discussed in chapter 6. It turns out that the matrix
containing the statistics parameters of the particles of the quantum Hall states has an direct
relation with the K-matrix description of the quantum Hall states. These K-matrices of the
clustered quantum Hall states will be discussed in the following chapter. This chapter deals
with the formalism of describing non-abelian (exclusion) statistics which is needed in the
next chapter. This chapter is based on the sections 4 and 5 of [7].

4.1 Abelian exclusion statistics

To explain the concept ofexclusion statistics, we will follow the way in which Haldane
originally defined this concept, but focus on the concepts needed in this thesis (such as the
state counting). As an example, we will take the spinons which form in the Haldane-Shastry
spin chain [50, 93]. This spin chain is aS = 1

2 Heisenberg chain withinverse-square
exchange.

The idea behind exclusion statistics [51] is that, in finite systems, the number of states
which are available for a particle, depends on the number of particles already present. More
precisely, the addition of a particle diminishes the number of available states for particles
which are added afterwards. For fermionic particles, the number of available states would
diminish by one if a particle is added to the system. In the other familiar case, namely
bosons, the number of states would stay the same. Haldane proposed the following interpo-
lation between fermions and bosons. Letdi be the number of available states for speciesi.
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By adding a particle of speciesj (i.e.∆Nj = 1), the numberdi changes according

∆di = −
∑
j

gij∆Nj . (4.1)

The elementsgij are called the statistical interaction parameters. For bosons, we have
gij = 0, while fermions obeygij = δij , which is the Pauli exclusion principle. The idea of
Haldane is to consider more general forms of statistics, such as fractional statistics. Thegij
have to be rational, in order to have a well defined thermodynamic limit. Crucial for this
definition to work is the assumption that we want to describefinite systems, and that the
particles are added while the boundary conditions are fixed. That systems with fractional
exclusion parameters can occur will be demonstrated forspinonssystems, see below.

The exclusion statistics can also be defined via the consequences it has for the state
counting. The number of states forN identical bosons or fermions inG orbitals is well
known, and given by

Wb =
(G+N − 1)!
N !(G− 1)!

, Wf =
G!

N !(G−N)!
. (4.2)

The state counting for particles obeying general exclusion statistics is given by [114]

W =
∏
i

(
Gi +Ni − 1−

∑
j αij(Nj − δij)

)
!

(Ni)!
(
Gi − 1−

∑
j αij(Nj − δij)

)
!
. (4.3)

Using these multiplicities and the grand canonical partition function for a system of particles
obeying fractional statistics, the equations (4.4) (see below) are obtained. From these equa-
tions, which describe the 1-particle partition functions, the other thermodynamic properties
can be derived.

In this thesis, we will use the concept of fractional exclusion statistics mainly to describe
the fractional quantum Hall states. We find an interesting relation between the exclusion
statistics matrices and the K-matrices describing the topological properties of the quantum
Hall states. In chapter 6, we will use the exclusion statistics of the parafermions to obtain
the ground state degeneracies of the clustered quantum Hall states on the sphere, in the
presence of quasihole excitations. Before we come to that point, we will first take a closer
look at a system, which is best described as an ‘ideal gas of fractional statistics particles’.

An important consequence of the concept of an ‘ideal gas of fractional statistics parti-
cles’ is the notion of 1-particle distribution functions which generalize the familiar Fermi-
Dirac and Bose-Einstein distributions. These distributions can be derived from ‘1-particle
grand canonical partition functions’. These quantities, which we denote byλi, satisfy
the following set of equations, which were independently derived by Isakov, Dasnières de
Veigy-Ouvry and Wu (IOW) [59, 26, 114](

λi − 1
λi

)∏
j

λ
K

st
ij

j = zi , (4.4)

whereλi = λi(z1, . . . , zn), with zi = eβ(µi−ε), is the generalized fugacity of speciesi.
Note that the energyε may also include contributions from the coupling of the charge and



4.1. Abelian exclusion statistics 57

spin of the quasiparticles to external electric and magnetic fields. Hence the information
about charge and spin of the quasiparticles is also encoded in these generalized fugacities.
The fugacities of the particles will be important for the distinction between abelian and
non-abelian statistics, as we will point out later. The matrixKst is the so-called ‘statistics
matrix’ and describes, at least in the original situation in which Haldane introduced his new
notion of statistics, the statistical interaction of particles of different species.

From the solutionsλi of the IOW-equations (4.4) the one-particle distribution functions
ni(ε) are obtained as

ni(ε) = zi
∂

∂zi
log
∏
j

λj∣∣zi=eβ(µi−ε)
=
∑
j

zj
∂

∂zj
log λi∣∣zi=eβ(µi−ε)

, (4.5)

where we have assumed that the matrixKst is symmetric.
Before we go on to describe the in which way the statistics matrices are used in a quan-

tum Hall situation, we will first consider a basic example of the application of exclusion
statistics, namely the of the spinons related tosu(2)1.

4.1.1 Spinons

In this section, we will usespinonsto explain the concept of exclusion statistics. In general
(including arbitrary dimension) spinon excitations can occur in the background of a anti-
ferromagnetic resonating valance bond (RVB) state; they are unpaired spins. Consider a
system ofN spins, andNsp spinon excitations, leaving an integer(N − Nsp)/2 unbroken
bonds. Because of the non-orthogonality of the states, the dimension of the Hilbert space is
given by1 + N−Nsp

2 , independent of the spinon type [52, 51]. To clarify this statement, we
take a look at a three site system. Assume that the spins on two of the sites form a bond,
while the third site contains a spinon (of either spin). Moving the spinon to one of the sites
of the bond only leads to one other independent state; thus, for each bond, there is only one
extra spinon state. Of course, summing over all possible states of a system ofN sites leads
to a total number of states of2N , as expected.

Thus, we come to the conclusion that adding2n spinons to the system reduces the
dimension of the Hilbert space for the next added spinon byn: the spinons obey asemionic
exclusion statistics, interpolating between the fermion and boson statistics. The statistics
parameters are given by

Ksp =

(
1
2

1
2

1
2

1
2

)
. (4.6)

One place where these spinons occur is the Haldane-Shastry spin chain. In [52], Haldane
derived the exact spectrum and the thermodynamics of this system. In this analysis, the
spinons played a crucial role. Without going into all the details of the system, we give the
hamiltonian for the model on a ring, with periodic boundary conditions

H = J
∑
n≤n′

(
d(n− n′)

)2
Sn · Sn′ , (4.7)
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whered(n) = N
π sin(π|n|N ) is thechord distance. Thus the model (4.7) is an example of a

1-dimensional system in which particles with fractional (exclusion) statistics are present.
On the level of conformal field theory, the properties of the spinons were derived in [90].

The 1-particle distribution functions obtained there exactly correspond to the distributions
obtained form the exclusion statistics matrix (4.6). The method used in [90] is that of
‘truncated chiral partition functions’. This method will be used (and explained) in this
thesis in chapter 6.

4.1.2 Abelian quantum Hall fluids

The relation between, on the one hand, the K-matrix of an abelian quantum Hall fluid and,
on the other hand, the exclusion statistics of its charged edge excitations, can be described
as follows. The charged edge excitations are described by a specific conformal field theory,
also known as a chiral Luttinger liquid. Following a procedure first proposed in [90], one
may associate a notion of fractional exclusion statistics to a set of fundamental excitations in
this CFT. Selecting a particular set of negatively charged ‘electron type’ excitations together
with a ‘dual’ set of positively charged quasihole excitations, one precisely finds fractional
exclusion statistics in the sense of Haldane, with statistics matrixK

st given by

K
st = Ke ⊕Kφ , (4.8)

withKe andKφ the K-matrices for the abelian quantum Hall state. For the principal Laugh-
lin series at filling fractionν = 1/M , this result was obtained in [30], in its general form it
first appeared in [6]. The relation of the identification (4.8) with character identities involv-
ing so called universal chiral partition functions will be discussed in section 4.3

In [40], a slightly different identification between the K-matrix and a statistics matrix,
amounting toK = Ke, was proposed. The two proposals can be reconciled by realizing
that we, in our analysis of edge excitations, restrict ourselves to quanta of positive energy
only. From the duality relations that we discuss below, one learns that, in a precise sense,
quasihole quanta of positive energy can be traded for holes in a ‘Fermi sea’ of electron-type
quanta at negative energy, and in this way one arrives at a complete description in terms of
the matrixKe alone.

In chapter 5, we will identify the statistics matrices for excitations over non-abelian
quantum Hall states, following [6]. Extending the identification (4.8) to the non-abelian
case, we shall propose K-matrices for the non-abelian quantum Hall states. We would
like to stress that, although many of the formulas from the well known abelian K-matrix
description still hold for the generalized K-matrices we find here, the description for the
non-abelian states is on an entirely different footing. The abelian K-matrices were intro-
duced to describe quantum Hall states in the ‘most general’ way, i.e. by trying to implement
the hierarchical schemes in a general way. In the non-abelian case, we need the K-matrix
structure to keep track of the non-abelian statistics. So although we use a matrix structure,
we are not describing a hierarchical situation.

We continue this section with a discussion of the fundamental ‘particle-hole’ duality
between the electron and the quasihole sectors of the theory. To show how this duality
works, we assume that we haven quasiholesφ andn electron-like particlesΨ described
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by the matricesKφ andKe, respectively. We assume that (i)Kφ = K
−1
e , and (ii) there is

no mutual exclusion statistics between the two sectors (meaning that the statistics matrix
is given by the direct sum (4.8)). These two conditions in fact constitute what we mean
by duality in this context. In the context of low-energy effective actions for abelian fqH
systems, a similar notion of duality has been considered (see, e.g. [107] and references
therein).

With the matricesKφ andKe, two independent systems of IOW-equations can be written
down, and these systems are related by the duality (for clarity, we will denote the single level
partition function for the quasiholes and electron-like particles byλi andµi respectively;
the corresponding fugacities will be denoted byxi andyi)

λi =
µi

µi − 1
, xi =

∏
j

y
−(Ke)

−1
ij

j , (4.9)

as can be verified easily.
As an illustration of the duality, we calculate the central charge of the conformal field

theory that describes the edge excitations. We focus on the abelian case. In the non-abelian
case, which we discuss in the next section, there will be a subtraction term due to the pres-
ence of pseudoparticles.

In general, for abelian quantum Hall states, the central chargecCFT is given by

cCFT =
6
π2

∫ 1

0

dz

z
log λtot(z) , (4.10)

whereλtot(z) denotes the product
∏
j λj evaluated atzj = z for all j. It has been shown

(see [22, 17] and references therein) that, upon using the IOW-equations (4.4), this can be
rewritten in the following form

cCFT =
6
π2

∑
i

L(ξi) , (4.11)

whereL(z) is Rogers’ dilogarithm

L(z) = −1
2

∫ z

0

dy

(
log y
1− y

+
log(1− y)

y

)
. (4.12)

In [63], many interesting identities involving the dilogarithm can be found. The quantities
ξi which appear in eq. (4.11) are solutions to the central charge equations

ξi =
∏
j

(1− ξj)Kij . (4.13)

For the abelian quantum Hall case, we have two matricesKφ andKe and we need the
solutionsξi andηi of the equations

ξi =
n∏
j=1

(1− ξj)(Kφ)ij , ηi =
n∏
j=1

(1− ηj)(Ke)ij . (4.14)
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By virtue of the duality, these solutions are related by a simple equation:ηi = 1− ξi. This
leads to∑

i

L(ξi) +
∑
i

L(ηi) =
∑
i

(
L(ξi) + L(1− ξi)

)
= nL(1) = n

π2

6
. (4.15)

So in the abelian case, we correctly find that the central charge is just given by the number
of species in the theory,cCFT = n.

4.2 Non-abelian exclusion statistics

In this section, we focus on K-matrices and statistics matrices for non-abelian quantum
Hall states. We shall first introduce new types of particles, pseudoparticles and composite
particles, and explain the role they play in the non-abelian case. We also extend the notion
of duality to the non-abelian case. After that we discuss various aspects (filling factors and
shift map) of the quantum Hall dataK, t, s andj in the non-abelian case.

Among the new particles that appear in non-abelian theories are so called ‘composite’
particles in the electron sector. These will show up as particles which have multiple electron
charges. We introduce an integer labelli for an order-li composite particle of charge(te)i =
−li.

In the quasihole sector, we encounter so called pseudoparticles, which do not carry
any energy, but rather act as a book-keeping device that keep track of ‘internal degrees of
freedom’ of the physical quasiholes. The notion of a ‘pseudoparticle’ can be traced back
to so-called string solutions to the Bethe equations for quantum integrable systems in one
dimension, such as the HeisenbergXXX chain (see [96], where the contribution to the
thermodynamics of the string solutions for theXXX chain is computed). Pseudoparticles
were used (and received their name) in the TBA analysis of integrable systems with non-
diagonal particle scattering (see, e.g. [116]). In the context of exclusion statistics they have
been discussed in [40, 48, 17, 6]. We assign the labelli = 0 to all pseudoparticles.

An important observation, first made in [6], is that the duality between the electron
and quasihole sectors naturally links the presence of composite particles in one sector to the
presence of pseudoparticles in the other. Physically, this is a link between the pairing physics
of the non-abelian quantum Hall states and the non-abelian statistics of their fundamental
excitations.

4.2.1 Composites, pseudoparticles and null-particles

The presence of pseudoparticles and composite particles calls for a slight generalization of
the discussion of the previous section. When focusing on the dependence of theλi on the
energyε, the natural specialization of the generalized fugacitieszi is given byzi = zli , with
z = e−βε. In the presence ofli 6= 1, the 1-particle distribution functions take the form [note
that a composite particle labeled byli carries energyliε]

ni(ε) = zi
∂

∂zi
log
∏
j

[λj ]lj ∣∣zi=eβ(µi−liε)
=
∑
j

ljzj
∂

∂zj
log λi∣∣zi=eβ(µi−liε)

. (4.16)
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With the following definition ofλtot(z)

λtot(z) =
∏
i

[λi(zj = zlj )]li , (4.17)

the central chargecCFT is again given by the expression (4.10). We note that in the special-
ized IOW equations, withzi = zli , the right hand side of the equations for pseudoparticles
is equal to 1. When focusing on quantum numbers other than energy, such as spin, we will
consider slightly more general versions of the quantityλtot.

In all examples (abelian and non-abelian) that are explicitly discussed in this thesis,
we assume a choice of particle basis such thatle = −te. For the abelian quantum Hall
states we further assume that(te)i = −1 for all i. In the quasihole sector we specify
(lφ)i = 1

qqh
(Kφ)ij(le)j = 1

qqh
tφ, whereqqh is the smallest (elementary) charge in the

quasihole sector. [This implies that, even in the abelian case, we may treat some of the
quasiholes as composites of the most fundamental ones, thereby generalizing the discussion
of the previous section.]

Under these assumptions, we find that under dualityλtot(x) andµtot(y) are related in
the following way

λtot(x) = xγµαtot(y) , y = x−β , (4.18)

with

α = β =
1
qqp

, γ =
ν

q2
qp

. (4.19)

A clear sign of non-abelian statistics is found in the way the quantityλi for physical
particles depends on the fugacityzi. Puttingzl = 1 for all pseudoparticles, and focusing on
the smallz behaviour ofλi, one finds

λi = 1 + αizi + o(z2) . (4.20)

In the abelian case,αi = 1, whereas in the non-abelian caseαi > 1. The factorsαi lead
to multiplicative factors in the Boltzmann tails of the one-particle distribution functions for
physical particles. The quantitiesαi are in fact the largest eigenvalues of the fusion matrix
[22], i.e., the quantum dimensions (see, for instance, [34]) of the conformal field theory
associated to the quantum Hall state, and can easily be calculated for the cases we deal with
(see sections 5.1 and 5.2).

In [6], we presented a generalized K-matrix structure for some recently proposed quan-
tum Hall states. The proposed K-matrices were identified via their role as statistics matrices
for the fundamental charged edge excitations. In the quasihole sector, the non-abelian statis-
tics leads to a specific set of pseudoparticles and an associated statistics matrixKφ [48, 17].
The matrixKe, related toKφ by the dualityKe = K

−1
φ , refers to particles which are iden-

tified as composites of the fundamental electron-like excitation. From the point of view of
the wave functions for the non-abelian quantum Hall states (see chapter 3 and [71, 85, 10]),
the presence of composite excitations is very natural. This is because the non-abelian states
show a clustering property, as described in section 3.1. In [46, 45, 6] it was argued that the



62 Chapter 4. Statistics properties

wave functions which show pairing (atk = 2), are related (in the non-magnetic limit, i.e. in
the limit of ν →∞) to BCS superconductivity.

Composite particles are identified as particles whose generalized fugacities are specific
combinations of the generalized fugacities of other particles, i.e., all quantum numbers of
composite particles are completely determined in terms of the quantum numbers of their
constituents. It has been shown in [17] that particular kinds of composite particles, so-
called null-particles, accounting for the null-states in the quasiparticle Fock spaces, are often
needed to interpret the system in terms of Haldane’s exclusion statistics or, equivalently, to
write the partition function in UCPF form (see also section 4.3.2).

We now turn to the computation of the central chargecCFT the non-abelian case. It was
shown in [17], that the presence of pseudoparticles leads to a simple correction term that is
subtracted from the abelian resultcCFT = n. For the pseudoparticles, a system of equations
like eq. (4.13) can be written down

ξ′i =
∏′

j

(1− ξ′j)Kij , (4.21)

where the prime indicates that the product is restricted to pseudoparticles. The correction
term is given by a sum over the dilogarithm of the solutions of (4.21), leading to

cCFT = n− 6
π2

∑′

i

L(ξ′i) . (4.22)

4.2.2 On filling factors

Up to now, we merely asserted that the statistics matricesK can also serve as (generalized)
K-matrices for non-abelian quantum Hall states. To make this statement more clear, we
will now investigate how some of the ‘K-matrix results’ for abelian quantum Hall states
generalize to the non-abelian case. In this derivation, we make the assumption that the
pseudoparticles do not carry charge or spin. In all cases that are explicitly considered in
chapter 5 this assumption holds in the simplest formulation. If pseudoparticles do carry
spin or charge, the formulas we obtain below need to be modified.

Let us start with the filling factor corresponding to state which is described by the IOW-
equations, for a statistics matrixKe, charge vectorte, and labelsle = −te. We couple
the system to an electric field by takingyi = y−(te)i . [This is when the orientation of the
electric field is such that the response is carried by the negatively charged excitations.] The
largey (i.e. low temperature) behaviour of the IOW-equations (4.4) is then given by the
following set of relations ∏

j

µ
(Ke)ij
j ∼ y−(te)i , (4.23)

which imply, whenK is symmetric (which is assumed throughout this thesis) and invertible

µtot =
∏
i

µ
−(te)i
i ∼ yte·K−1

e ·te . (4.24)
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Because the left hand side of Eq. (4.24) in theT → 0 limit determines the filling factorν
throughµtot ∼ yν , we find the well-known formula

ν = te ·K−1
e · te . (4.25)

For the opposite orientation of the electric field, a similar expression is obtained by starting
from the K-matrix for the (positively charged) quasiholes

ν = tφ ·K−1
φ · tφ . (4.26)

This result could also have been obtained by using eq. (4.25) and the transformation prop-
erties ofKe andte under duality. We remark that the above derivations explicitly assume
that only the physical particles respond to the electric field, i.e., that all pseudoparticles are
neutral.

Let us now turn to the spin Hall conductance, and the corresponding spin filling factor.
The derivation of the corresponding spin filling factor

σ = se ·K−1
e · se , (4.27)

goes along the same lines as the derivation of the electron filling factor. As an extra step,
one needs to relate the fugacities of the spin up and down particles byy↑ = 1/y↓ = z. This
results in ∏

i

µ
(se)i
i ∼ zse·K−1

e ·se , (4.28)

leading to Eq. (4.27). It is important to note that this formula only holds in the cases where
the pseudoparticles in theφ-sector do not carry spin. As a check on this formula, one would
like to have a procedure to obtain the spin filling factor directly from the wave functions, as
is possible for the electron filling factor. To do this, one has to count the zeros of the wave
function with respect to one reference particle (of a given spin, say, up). The total number
of zeros gives the total flux needed on the sphere as a linear function of the total number
of electronsNe. By using the relation betweenNe andNΦ given in (2.5) one obtains the
electron filling factor and the shift. To obtain the spin filling factor, one has to keep track of
two different types of zeros, namely those with respect to a particle of the same spin, and
the ones with respect to particles of the other spin. We will denote the number of these zeros
byN↑Φ andN↓Φ respectively. The electron and spin filling factors are obtained from

NΦ = N↑Φ +N↓Φ =
1
ν
Ne − S ,

N↑Φ −N
↓
Φ =

1
σ
Ne − S .

(4.29)

We applied this procedure to the non-abelian spin-singlet states of [10] (the explicit form
of the wave functions are given in section 3.5), and indeed found the same results for the
electron and spin filling factor as obtained from the K-matrix formalism, eq. (3.23). Also
the electron filling factor for the Read-Rezayi states is reproduced correctly, see eq. (3.12).
In addition, for both types of states we found that the shift on the sphere is in agreement
with (2.6) forg = 0.
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Summarizing, we have presented evidence that duality relations

Kφ = K
−1
e , tφ = −K−1

e · te , sφ = −K−1
e · se , jφ = −K−1

e · je . (4.30)

are applicable to both abelian and non-abelian quantum Hall states, and that the expressions
(2.3) for the filling factorsν andσ apply to the non-abelian case, in a formulation where
pseudoparticles do not carry spin or charge.

4.2.3 Shift map

Suppose we have a fractional quantum Hall system which is characterized by the data
(Ke, te, se, je). We can then construct a family of fractional quantum Hall systems, pa-
rameterized byM ∈ Z+, by applying the ‘shift map’SM introduced in [36]. In the cases
we consider,M odd (even) corresponds to a fermionic (bosonic) state respectively. At
the level of trial wave functionsΨ(z), SM simply acts as a multiplicative Laughlin factor∏
i<j(zi − zj)M . Thus,SM increases the number of flux quanta by

NΦ 7→ NΦ +M(Ne − 1) = (
1
ν

+M)Ne − (S +M) , (4.31)

i.e.,

ν−1 7→ ν−1 +M , σ 7→ σ , S 7→ S +M . (4.32)

In fact,SM acts on the fqH data(Ke, te, se, je) as

SMKe = Ke +Mtete ,

SMte = te ,

SMse = se ,

SM je = je +
M

2
te .

(4.33)

One easily checks that (4.33), together with (4.25), leads to the shift inν−1 as given in
(4.32). By duality (4.30) one obtains

SMKφ = Kφ −
M

1 + νM
tφtφ ,

SMtφ =
1

1 + νM
tφ ,

SMsφ = sφ ,

SM jφ = jφ −
M

2

(
νS − 1
1 + νM

)
tφ .

(4.34)

A few remarks should be made. By using the duality (4.30), one actually finds for the
action of the shift map onsφ: SMsφ = sφ + M(tφ·se)

1+νM tφ. However, the shift map is only
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supposed to act on the charge component of the particles, thus we would like to demand that
SMsφ = sφ. Therefore, for consistency, werequire

tφ · se = −te ·K−1
e · se = 0 , (4.35)

leading to (4.34). Of course, relation (4.35) is just the statement that for spin-singlet states
there should be aZ2 symmetry(te, se) 7→ (te,−se). Equation (4.35) is fulfilled for all our
examples (if we takese = 0 for the spin-polarized states). Although, in general,je has to be
treated as an independent variable, for the states discussed in sections 3.4 to 3.6 all formulas
are consistent with the relationje = se + S

2(1−g)te.

In this thesis we will be mainly concerned with fractional quantum Hall systems cor-
responding to conformal field theoriesgk,M which are deformations of the conformal field
theory based on the affine Lie algebragk at levelk. Theg symmetry greatly simplifies the
determination of the fqH data(Ke, te, se, je) for gk. The fqH data forgk,M are then simply
obtained by applying the shift operatorSM as in (4.33). The action of the shift map can be
visualized as follows. Charge is usually identified with a particular direction in the weight
lattice of g. The degrees of freedom associated to this direction can be represented by a
chiral boson compactified on a circle of some radiusR. The shift mapSM has the effect of
rescaling the radiusR while keeping all other directions in the weight diagram fixed.

4.2.4 Composites

The description of a physical system in terms of a set ofn quasiparticles with mutual exclu-
sion statistics given by a matrix(Kij)1≤i,j≤n is not unique. In particular one may extend
the number of quasiparticles by introducing composites as we will now explain.

Consider the IOW-equations (4.4) with

K =

a11 . . . a1n

...
...

an1 . . . ann

 , z =

z1

...
zn

 . (4.36)

If we define the operationCij , corresponding to adding a composite of the quasiparticlesi
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andj to the system, by

CijK =



a11 . . . a1n

... a1i + a1j

...
...

...
...

aij + 1
...
...

aji + 1
...
...

an1 . . . ann
... ani + anj

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . .

ai1 + aj1 . . . ain + ajn
... aii + 2aij + ajj



, (4.37)

and
Cijz = (z1, . . . , zn; zizj) , (4.38)

such that, in particular,

Cijt = (t1, . . . , tn; ti + tj) ,
Cijs = (s1, . . . , sn; si + sj) , (4.39)

then the two systems are equivalent, at least at the level of thermodynamics. The solutions
{λi} to the IOW-equations defined by(K, z) and{λ′i} defined by(K′, z′) = (CijK, Cijz)
are simply related by

λ′i =
λi + λj − 1

λj
, λ′j =

λi + λj − 1
λi

,

λ′n+1 =
λiλj

λi + λj − 1
, λ′k = λk , (k 6= i, j, n+ 1) . (4.40)

Note that, in particular, it followsλi = λ′iλ
′
n+1 andλj = λ′jλ

′
n+1 such thatλtot = λ′tot.

Also, fromλi = λ′iλ
′
n+1 andλj = λ′jλ

′
n+1 one sees that the original one-particle partition

functions fori andj, receive contributions from the new particlesi andj, respectively, as
well as from the composite particlen+ 1. The operationCij has the effect that states in the
spectrum containing both particlesi andj get less dense (their mutual exclusion statistics is
bumped up by1), while the resulting ‘gaps’ are now filled by the new composite particle.

A consistency check on the equivalence of the systems described by(K, z) and(K′, z′)
is the fact that both lead to the same central charge as a consequence of the five-term identity
for Rogers’ dilogarithm (see [17]).

Finally, note that the shift mapSM of eq. (4.33) and composite operationCij of eqs.
(4.37) and (4.39) commute, i.e.

SM Cij = Cij SM , (4.41)

as one would expect.
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4.3 The UCPF and exclusion statistics

In this section, we will comment upon the relation between theuniversal chiral partition
function(UCPF) and exclusion statistics.

4.3.1 Quasiparticle basis and truncated partition function

Quasiparticles in two dimensional conformal field theories are represented by so-called chi-
ral vertex operatorsφ(i)(z) that intertwine between the irreducible representations of the
chiral algebra. Given a set of quasiparticlesφ(i)(z), i = 1, . . . , n, one has to determine a
basis for the Fock space created by the modesφ

(i)
−s, i.e., a maximal, linearly independent set

of vectors
φ

(iN )
−sN . . . φ

(i2)
−s2φ

(i1)
−s1 |ω〉 , (4.42)

with suitable restrictions on the mode sequences(s1, . . . , sN ) (which may depend on the
‘fusion paths’(i1, . . . , iN )), as well as a set of vacua|ω〉 (see [22, 17] for more details).
The partition functionZ(z; q) is then defined by

Z(z; q) = Tr
((∏

i

zNii
)
qL0

)
, (4.43)

where the trace is taken over the basis (4.42) andNi denotes the number operator for quasi-
particles of typei while L0 =

∑
i si for a state of type (4.42). During this discussion on

the UCPF we use the following, in the literature standard, notationq = e−βε0 , whereε0 is
some fixed energy scale, andzi = eβµi .

Exclusion statistics in conformal field theory can be studied by means of recursion re-
lations for truncated partition functions [90]. Truncated partition functionsPL(z; q), for
L = (L1, . . . , Ln), are defined by taking the partition function of those states (4.42) where
all the modess for quasiparticles of speciesi satisfys ≤ Li. By definition, for largeL, we
will have (see [22, 17] for more details)

PL+ei(z; q)/PL(z; q) ∼ λi(ziqLi) , (4.44)

whereei denotes the unit vector in thei-direction. In particular, if the generalized fugacities
zi are given byzi = zli , for some fixedz, and the quasiparticle modes are truncated by
Li = liL, then we find, using (4.17)

PL+1(z; q)/PL(z; q) ∼ λtot(zqL) , (4.45)

wherePL(z; q) = Pl1L,l2L,...,lnL(zi = zli ; q). Thus, given a set of recursion relations
for the truncated partition functionsPL(z; q), one derives algebraic equations for the one-
particle partition functionsλi(z) by taking the largeL limit. In particular one can find an
equation forλtot(z) fromPL(z; q) by using (4.45). For all conformal field theories that have
been studied this way it turns out that one finds agreement between theseλ-equations and
the IOW-equations (4.4) corresponding to a specific statistics matrixK (see, in particular,
[22]).
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4.3.2 The universal chiral partition function

Based on many examples, it has become clear that the characters of the representations of
all conformal field theories can be written in the form of, what is now known as, a universal
chiral partition function (UCPF) (see in particular, ref. [13] and references therein)

Z(K; Q,u|z; q) =
∑′

m

(∏
i

zmii

)
q

1
2 m·K·m+Q·m

∏
i

[(
(I−K) ·m + u

)
i

mi

]
, (4.46)

whereK is a (rational)n× n matrix,I is the identity matrix,Q andu are certainn-vectors
and the sum overm1, . . . ,mn, is over the nonnegative integers subject to some restrictions
(which, throughout this thesis, are taken to be such that the coefficients in theq-binomials
are integer). Theq-binomial (Gaussian polynomial) is defined by[

M

m

]
=

(q)M
(q)m(q)M−m

, (q)m =
m∏
k=1

(1− qk) . (4.47)

The vectorsQ andu as well as the restrictions on the summation variables, will in general
depend on the particular representation of the conformal field theory, whileK is independent
of the representation. To write the conformal characters in the form (4.46) may require
introducing null-quasiparticles which account for null-states in the quasiparticle Fock space
[17]. The null-quasiparticles are certain composites, hence their fugacitieszi in (4.46) are
specific combinations of the fugacities of their constituents.

It has been conjectured that the UCPF (4.4) is precisely the partition function (4.43) of
a set of quasiparticles with exclusion statistics given by the same matrixK, whereui =∞
corresponds to a physical quasiparticle andui <∞ to a pseudoparticle [48, 17]. This con-
jecture has been verified in numerous examples (see [48, 17] for references). A convincing
piece of evidence in support of this conjecture is the fact that the asymptotics of the charac-
ter (4.46) (in the thermodynamic limitq → 1−) is given by exactly the same formula as the
one for the IOW-equations [17] (see also [88, 73, 63, 25] forzi = 1). In the next section we
establish the correspondence in a more direct way.

For future convenience let us introduce the limiting form of the UCPF (4.46) when all
ui → ∞, i.e. the case that all quasiparticles are physical and the exclusion statistics is
abelian

Z∞(K; Q) =
∑′

m

(∏
i

zmii

)q 1
2 m·K·m+Q·m∏

i(q)mi
. (4.48)

Note that the limiting UCPFs (4.48) are not all independent, but satisfy (see [16])

Z∞(K; Q) = Z∞(K; Q + ei) + ziq
1
2Kii+QiZ∞(K; Q +K · ei) , (4.49)

as a consequence of
1

(q)m
=

qm

(q)m
+

1
(q)m−1

. (4.50)
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4.3.3 Relation to exclusion statistics

The relation between the UCPF and exclusion statistics can be made more explicit as fol-
lows. Suppose the truncated partition functionsPL(z; q) are given by ‘finitized UCPFs’ of
the form

PL(z; q) =
∑′

m

(∏
i

zmii

)
q

1
2 m·K·m+Q·m

∏
i

[(
L + (I−K) ·m + u

)
i

mi

]
, (4.51)

for some vectors(Q,u). Of course, the number of parameters in this expression is overde-
termined. Usually we think ofu as being fixed while the meaning of the parametersL are
determined by the cut-off scale. We can of course absorb theu by shifts inL (in fact, in
practice we often make shifts in the definition ofL to simplify the recursion relations). We
also remark that we have introduced finitization parametersLi also for the pseudoparticles
in (4.51) to facilitate deriving recursion relations. In making the identification with the trun-
cated partition functions these parameters are kept at a fixed (usually ‘small’ or even zero)
value.

Using [
M

m

]
=
[
M − 1
m

]
+ qM−m

[
M − 1
m− 1

]
, (4.52)

we find thatPL(z; q) satisfies the system of recursion relations

PL(z; q) = PL−ei(z; q) + ziq
− 1

2Kii+Qi+ui+LiPL−K·ei(z; q) . (4.53)

Upon dividing byPL(z; q), settingq = 1, taking the largeL limit, and using (4.44), we
obtain

1 = λ−1
i + zi

∏
j

λ
−Kji
j , (4.54)

which are equivalent to the IOW-equations (4.4) with statistics matrixK.
Moreover, for any polynomialPL(z; q) satisfying the recursion relation (4.53), the poly-

nomial
QL(z; q) =

(∏
i

z−Lii

)
q

1
2 L·K·L+(Q+u)·LPK·L(z; q−1) , (4.55)

satisfies the recursion relations (4.53) with dual data(K′; Q′,u′, z′), given by (cf. (4.9))

K
′ = K

−1 , Q′ + u′ = K
−1 · (Q + u) , z′i =

∏
j

z
−K−1

ij

j . (4.56)

Thus, under the assumption that the set of finitized UCPFs (4.51), for fixedQ + u, form
a complete set of solutions to (4.53), the dual polynomialQL(z′, q) of (4.55) can again be
written as a (finite) linear sum of finitized UCPFs with dual data (4.56). Moreover, by taking
the largeL limit of (4.55), using eqs. (4.44) and (4.54), one recovers the duality relations
(4.9) and (4.18).

The above calculation shows that, for quasiparticles whose truncated partition function
is given by an expression of the form (4.51), the thermodynamics of these quasiparticles
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is described by Haldane’s exclusion statistics with statistics matrixK. Even though many
truncated characters are indeed of the form (4.51) (we will encounter various examples in
the remainder of this thesis) this is not the general situation. However, in examples it turns
out that for all recursion relations for truncated characters there is an associated recursion
relation, leading to thesameλ-equation, which does admit a solution of the form (4.51).
The true solution to this recursion relation will in general differ from (4.51) by terms of
orderqL. In a sense we can talk about theuniversality classof recursion relations as those
recursion relations that give rise to the sameλ-equations and hence the same exclusion
statistics.

4.3.4 Composites, revisited

In section 4.2.4 we have seen, at the level of thermodynamics (i.e. the IOW-equations), how
to introduce composite particles into the system in such a way that the resulting system is
equivalent to the original system. Due to the intimate relation of exclusion statistics with the
UCPF, explained in section 4.3.3, one would expect that a similar construction is possible
at the level of the UCPF. Indeed, upon substituting the following polynomialq-identity (see
appendix A of [7] for a proof)[

M1

m1

][
M2

m2

]
=∑

m≥0

q(m1−m)(m2−m)

[
M1 −m2

m1 −m

][
M2 −m1

m2 −m

][
M1 +M2 − (m1 +m2) +m

m

]
, (4.57)

into the UCPF (4.46) at the(i, j)-th entry, and subsequently shifting the summation vari-
ablesmi 7→ mi +m,mj 7→ mj +m, yields an equivalent UCPF, based onn+ 1 quasipar-
ticles with data(CijK; CijQ, Ciju) andCijz, where

CijQ = (Q1, . . . ,Qn; Qi + Qj) ,
Ciju = (u1, . . . ,un; ui + uj) ,

(4.58)

while CijK andCijz are defined in eqs. (4.37) and (4.38), respectively. Various limiting
forms of (4.57), relevant to introducing a composite of two physical particles or one physical
particle and one pseudoparticle, are given in [7] as well.



Chapter 5

K-matrices for clustered quantum
Hall states

In this chapter, we will determine the K-matrices for the clustered quantum Hall states
discussed in this thesis. We first deal with the K-matrices for the clustered spin-polarized
states of section 3.4, followed by the spin-singlet states of section 3.5 in sections 5.1 and
5.2 respectively. These sections are based on the sections 6 and 7 of the paper [7]. In
section 5.3, we give an alternative construction of the K-matrices above, inspired by the
observation that the wave functions of the clustered quantum Hall states can be obtained
from a related abeliancoverstate by a symmetrization procedure, described in section 3.4.
This new way of constructing K-matrices for non-abelian quantum Hall states is used to
obtain the K-matrices of the spin-charge separated states (see eq. (3.36) for thek = 1
states) in section 5.4.

Though the K-matrices for quantum Hall systems are interesting by themselves, as they
characterize the topological properties of the quantum Hall systems, they also appear in
many other contexts. They can be viewed as the statistics matrices appearing in theuniversal
chiral partition functionfor the corresponding Wess-Zumino-Witten (WZW) models with
the same affine symmetry, see, in particular, [7].

We will use the K-matrices for the quantum Hall systems as a starting point to obtain the
statistics matrices for the parafermion CFTs in section 5.5. These statistics matrices form
the basis of the fermionic character formulas for the parafermion theories. While these
characters are known for theZk andsu(3)k/u(1)2 parafermions, the form we propose for
the parafermions related toso(5)k/u(1)2 appears to be new.

The results forso(5)k described in this chapter are based on [5]. K-matrices for more
general WZW models with affine Lie algebra symmetry and the related parafermions will
also be presented there.
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5.1 Spin-polarized clustered states:su(2)k,M

In this section we discuss a family of non-abelian spin-polarized fractional quantum Hall
systems with underlying conformal field theorysu(2)k,M and filling factor

νk,M =
k

kM + 2
. (5.1)

For k = 2 we are describing the Moore-Read states, which were introduced in [71] while
the generalizations tok > 2 were introduced in [85]. The system contains a single quasihole
φ, with charge1/(kM+2) and an electron operatorΨ with charge−1. At thesu(2)k-point
(i.e.M = 0) the quasihole operatorφ hassu(2)-weightα/2, whereα is the (positive) root
of su(2) and corresponds to one component of the chiral vertex operator transforming in
the spin1/2 representation (‘spinon’, see [52, 15, 19, 20]), while the electron operator has
weight−α and corresponds to the currentJ−α. For generalM the charge lattice has to be
stretched.

The fqH data(Ke, te) and their duals(Kφ, tφ) for k = 1 (corresponding to the abelian
spin-polarized Laughlin states withν = 1/(M + 2) [67]) were discussed in [30] and for
k = 2 in [6]. Here we discuss the generalization (see also [48]) to arbitraryk, corresponding
to the Read-Rezayi states [85]. But we will first discuss the Moore-Read states correspond-
ing tok = 2.

5.1.1 The Moore-Read case

As indicated before, we analyze the conformal field theorysu(2)k,M by first analyzing the
affine Lie algebra pointM = 0 and subsequently applying the shift map to obtain the result
for generalM . Also, we will study the quasihole sector for the Moore-Read state first, as
this is the simplest state with non-abelian statistics, while it shows all the basic features
related to non-abelian statistics. This case was first studied in [91]. As indicated above, the
quasihole transforms in the spinon representation ofsu(2)2 (in the case of the Moore-Read
state). Also, it is well known that the spinons corresponding tosu(2)2 have the same fusion
rules as the spin field present in the quasihole operator. It is thus to be expected that the
K-matrix describing the quasihole sector contains the same pseudoparticles which take care
of the non-abelian statistics. Anticipating on the fact that we want to split the K-matrix in
a quasihole and electron sector, we only take the positively charged quasihole and arrive at
the following K-matrix and charge vector for the quasihole sector of the Moore-Read state
with M = 0

K
MR,M=0
φ =

(
1 − 1

2
− 1

2
1
2

)
, tφ = (0,

1
2

) . (5.2)

The first particle, which does not carry charge, is interpreted as a pseudoparticle. It is
the presence of this pseudoparticle which takes care of the non-abelian statistics of the
quasiholes over the Moore-Read state. To find the quantum Hall data for generalM , we can
simply apply the shift map (4.34) to find

K
MR
φ =

(
1 − 1

2

− 1
2

M+2
4(M+1)

)
, tφ = (0,

1
2(M + 1)

) . (5.3)
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In the case of the MR state, we can rather easy obtain the quantum Hall data for the elec-
tron sector, because the parafermion field present in the electron operator is the Majorana
fermion. The exclusion statistics corresponding to this field is equivalent to the Pauli exclu-
sion principle, which in the language of exclusion statistics matrices corresponds to1. The
pairing structure in the Moore-Read state is taken into account in the K-matrix formalism
by using both the electron and the composite ‘consisting of two electrons’ in the electron
sector. The corresponding operators are given byψ : ei

√
M+1ϕc : and: ei2

√
M+1ϕc . Be-

cause of this structure, the K-matrix can be obtained as is the case for abelian states, with
the addition of1 for the electron, due to the Majorana fermion. The corresponding quantum
Hall data is given thus given by

K
MR
e =

(
M + 2 2M + 2
2M + 2 4M + 4

)
, te = −(1, 2) . (5.4)

It is easily verified that the data for the quasihole and electron sector satisfy the duality equa-
tion (4.30). Also, the filling fraction(ν = 1

M+1 ) is correctly reproduced by the equations
(4.25) and (4.26). The central charge corresponding to this system is also easily obtained
by the application of equation (4.22), and the fact that the pseudoparticle gives rise to a
reduction of the central charge of1

2 . Thus we correctly obtain the central charge3
2 of the

su(2)2 affine Lie algebra CFT.

As indicated before, the presence of the pairing structure in the Moore-Read state gives
rise to the possibility of quasiholes with non-abelian statistics. This structure is also present
in the K-matrix description described above, because the presence of the composite with
charge−2 gives rise to a neutral particle in the quasihole sector. It is this neutral particle
which is interpreted as pseudoparticle, which via the coupling to the quasihole makes the
latter non-abelian.

Other properties of the K-matrix description can be obtained from the K-matrices for
the Read-Rezayi states by settingk = 2 in the remainder of this section, where we treat the
Read-Rezayi states.

5.1.2 The Read-Rezayi states

The exclusion statistics and UCPF for the doublet of spinon operators insu(2)k were stud-
ied in [20, 33, 48, 17]. It turns out that in this case we needk − 1 additional charge- and spin
neutral pseudoparticles. As was the case for the spin field corresponding to the Majorana
fermion, the fusion rules of the spin fields corresponding to theZk parafermions are identi-
cal to those of the spinons mentioned above. Thus the quasihole in the K-matrix couples to
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k − 1 pseudoparticles in the same way as the spinons (see, in particular, [48, 17])

Kφ =



1 − 1
2

...

− 1
2 1 − 1

2

...
...

...
...

...

− 1
2 1 − 1

2

...

− 1
2 1

... − 1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

− 1
2

... 1
2


, tφ =


0
...
0
1
2

 , (5.5)

leading, with (4.26), to a filling factor ofν = k/2 in accordance with (5.1).
The data for arbitraryM now follow by applying the shift mapSM of (4.34), i.e.

K
M
φ = SMKφ =



...

1
2Ak−1

...

... − 1
2

. . . . . . . . . . . . . . . . . . . . . . . .

− 1
2

... (k−1)M+2
2(kM+2)


, tMφ =


0
...
0
1

kM+2

 , (5.6)

where, in order to simplify the notation, we have introduced the Cartan matrixAk−1 of
su(k) (cf. (6.36)). One verifies that (4.26) is satisfied. The IOW-equations, determining the
exclusion statistics of the quasiholes, can now be written down explicitly. E.g., for the MR
state (k = 2) the following equation forλtot easily follows from (4.4), in agreement with
[91]

(λtot− 1)(λ
1
2
tot− 1) = x2λ

3M+2
2(M+1)
tot . (5.7)

The smallx behaviour ofλtot for generalk was obtained from the IOW-equations in
[22], with the result

λtot(x) = 1 + αkx+ o(x2) , αk = 2 cos
(

π

k + 2

)
. (5.8)

It was argued that the factorsα can also be obtained as quantum dimension of the appropri-
ate CFT. It is easily checked that the smallx behaviour ofλtot in (5.7) indeed satisfies (5.8)
for k = 2. Similar equations forλtot with k = 3, 4 were given in [22].

To determine the fqH data(Ke, te) in the electron sector we observe that the electron
operatorΨ(z) is identified withJ−α(z). By acting with the negative modes ofJ−α(z)
on the lowest weight vector in the lowest energy sector of some integrable highest weight
moduleL(Λ) at levelk, one obtains what is known as the principal subspaceW (Λ) of L(Λ)
(or, rather, the reflected principal subspace). It is known that the character of the principal
subspace can be written in the UCPF form [31, 32, 42] (see appendix B of [6] for a brief
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summary of the results forsu(n)k). For su(2)k this requires, besides the electron operator
Ψ itself, clusters of up tok electron operators. The corresponding K-matrix is given by the
k × k matrixKe = 2Bk where(Bk)ij = min(i, j)

Bk =


1 1 1 · · · 1
1 2 2 2
1 2 3 3
...

...
...

1 2 3 · · · k

 , (5.9)

while te = −(1, 2, . . . , k). Applying the shift map (4.33) thus gives

K
M
e =


M + 2 2M + 2 . . . kM + 2
2M + 2 2(2M + 2) . . . 2(kM + 2)

...
...

...
...

kM + 2 2(kM + 2) . . . k(kM + 2)

 , tMe = −


1
2
...
k

 . (5.10)

One easily verifies that the data(Kφ, tφ) and (Ke, te) are indeed related by the duality
relations (4.30), and that equations (4.25) and (4.26) are satisfied.

Moreover, the resulting IOW-equations forµtot = µ1µ
2
2 in case of the MR state are given

by
(µ2(M+1)

tot − y2)(µM+1
tot − y) = µ3M+2

tot , (5.11)

which are indeed related to (5.7) by the duality relations (4.18). Explicitly,

λtot(x) = y−2µ
2(M+1)
tot (y) , y = x−2(M+1) . (5.12)

Finally, in order to show that the quasihole-electron system based onK = K
M
φ ⊕ KMe

gives a complete description of thesu(2)k,M conformal field theory, we have to show that
the chiral character of the latter can be written in terms of a (finite) combination of UCPF
characters based onKMφ ⊕KMe . This is indeed possible and discussed in appendix C of [6].
Here we suffice to remark that the central charge, related to the asymptotic behaviour of the
characters, works out correctly. Indeed, using standard dilogarithm identities one finds with
(4.22)

cφ + ce =
3k
k + 2

, (5.13)

which equals the central charge ofsu(2)k,M .
The above description of the Read-Rezayi states has an interesting application, namely

the identification of a particle which acts as a supercurrent in the non-magnetic limit. This
identification was made in [6], to which we refer for a more detailed discussion. We use
the variableq = 1/ν = M + k/2, in terms of which the non-magnetic limit corresponds to
q → 0. In this limit, all the statistics parameters of the largest composite (with charge−k),
go to zero, while the statistics parameters of the quasihole diverge. This is easily seen when
one writes the statistic matrices (5.10) and (5.6) in terms ofq. For these quantum Hall states
the fundamental flux quantum ish/ke, because of the order-k clustering. Upon piercing
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a quantum Hall state with this amount of flux, a quasihole with chargee/kq is formed.
This follows from the fact that the conductance ise2/qh in physical units. Forq ≥ 1/k
this is the lowest charge possible and the electron like excitations correspond to multiple
insertions of the flux quantum. This situation changes when we take the limitq → 0.
Following [6], we takeq = 1/N , with N a large integer. The largest composite is formed
by inserting an amount of flux−qkh/e = −kh/Ne, thus a fraction of the flux quantum.
The maximal occupation with this particle (in absence of other particles) isnmax = 1/k2q =
N/k2. Thus the maximal amount of flux that can be screened by this type of composites
is (−kh/Ne)(N/k2) = −h/ke, which is precisely the flux quantum. In conclusion we
find that in the non-magnetic limit, the largest composite has bosonic statistics, and can
screen an amount of flux up to the flux quantum. This clearly resembles the behaviour of
the supercurrent in BCS superconductors.

5.2 Spin-singlet clustered states:su(3)k,M

In [10] a family of non-abelian spin-singlet (NASS) statesΨk,M trial wave functions with
filling factors

νk,M =
2k

2kM + 3
, σk,M = 2k , (5.14)

was constructed. The system has two quasihole excitations{φ↑, φ↓} with one unit of
up/down spin and charge1/(2kM + 3), while the electron operators{Ψ↑,Ψ↓} have charge
−1. The underlying conformal field theory issu(3)k,M . In terms ofsu(3) weights the spin
and charge assignment in theM = 0 case is as follows. Denote the positive simple roots
of su(3) by αi, i = 1, 2 and the remaining positive non-simple root byα3 = α1 + α2.
Let εi, i = 1, 2, 3, denote the weights of the fundamental three dimensional irreducible
representation3 of su(3) such thatεi · εj = δij − 1/3 andαi = εi − εi+1, i = 1, 2,
then{φ↑, φ↓} = {φε1 , φε2} while {Ψ↑,Ψ↓} = {J−α2 , J−α3} (see figure 5.1). The charge
and spin direction are identified in thesu(3) weight diagram as indicated in the figure. For
otherM the analogous picture is obtained by ‘stretching’ the charge axis. Unfortunately,
the notation used in [10, 9] is different from the one used in the mathematics literature. In
effect, the difference between the two notations is a rotation of the root diagram ofsu(3) by
π
3 , which leaves this diagram and hence all the results invariant.

In the following sections we will analyze the fqH data for the conformal field theory
su(3)k,M . We first discuss the casek = 1 (which corresponds to the abelian spin-singlet
Halperin state with parameters(M + 2,M + 2,M + 1) [55]) in some detail and then
generalize to the non-abelian casek > 1.

5.2.1 su(3)k=1,M

The exclusion statistics and UCPF character for thesu(3)k=1,M=0 conformal field theory, in
terms of the quasiparticles{φε1 , φε2 , φε3}, were worked out in [21, 90, 22, 17]. Specializing
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Figure 5.1: The weight diagram ofsu(3).

to the subset{φ↑, φ↓} = {φε1 , φε2} we have

Kφ =
1
3

(
2 −1
−1 2

)
, tφ =

(
1
3
1
3

)
, sφ =

(
1
−1

)
. (5.15)

With (4.26) this leads toν = 2/3 in agreement with (5.14). Applying the shift map (4.34),
the fqH data forsu(3)k=1,M are thus given by

K
M
φ = SMKφ =

1
2M + 3

(
M + 2 −(M + 1)
−(M + 1) M + 2

)
, (5.16)

while

tMφ =
( 1

2M+3
1

2M+3

)
, sMφ =

(
1
−1

)
. (5.17)

The IOW-equation for the total one-particle partition functionλtot = λ↑λ↓, resulting from
(5.16), is given by

λtot− x↑x↓λ
2M+2
2M+3
tot − (x↑ + x↓)λ

M+1
2M+3
tot − 1 = 0 . (5.18)

The K-matrix in the electron sector is determined as follows. First of all, the prin-
cipal subspace of thesu(3)k=1,M=0 integrable highest weight modules is generated by
{J−α1 , J−α2} and has a K-matrix given by (see appendix B of [6])

K =
(

2 −1
−1 2

)
. (5.19)

The electron operators{Ψ↑,Ψ↓}, however, are identified with{J−α2 , J−α3}. Interpreting
J−α3 as the composite(J−α1J−α2), we can apply the construction of section 4.2.4 and find
an equivalent K-matrix for the combined{J−α1 , J−α2 , J−α3} system

K
′ = C12K =

2 0 1
0 2 1
1 1 2

 . (5.20)
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Thus, we conclude that the electron fqH data are given by

Ke =
(

2 1
1 2

)
, te = −

(
1
1

)
, se =

(
1
−1

)
. (5.21)

And thus, by applying the shift map

K
M
e = SMKe =

(
M + 2 M + 1
M + 1 M + 2

)
, tMe = −

(
1
1

)
. (5.22)

Note again that the fqH data in the electron and quasihole sectors, given in eqs. (5.16),
(5.17) and (5.22), are related by the duality (4.30).

The IOW-equation forµtot = µ↑µ↓, resulting from (5.22), is given by

µ2M+3
tot − µ2M+2

tot − (y↑ + y↓)µM+1
tot − y↑y↓ = 0 , (5.23)

and is dual to (5.18) in the sense of (4.18). Explicitly,

λtot(x↑, x↓) = (y↑y↓)−1µtot(y↑, y↓)2M+3 , (5.24)

where

y↑ = x
−(M+2)
↑ x

−(M+1)
↓ , y↓ = x

−(M+1)
↑ x

−(M+2)
↓ . (5.25)

It remains to show that the fqH data(Kφ, tφ, sφ) and their duals(Ke, te, se) give a
complete description of the chiral spectrum of thesu(3)k=1,M conformal field theory by
constructing thesu(3)k=1,M characters in terms of (finite) linear combinations of UCPFs
based onKe ⊕ Kφ. This is shown in appendix D of [6]. Here we only observe that, since
there are no pseudoparticles, eq. (4.15) immediately givesce + cφ = 2 which is the correct
value of the central charge forsu(3)k=1,M . Note also thatcφ andce separately depend on
M and are, in general, not simple rational numbers, e.g., forM = 0 we have numerically
ce = 0.6887 andcφ = 1.3113 while forM → ∞ all the central charge is concentrated in
theφ-sector.

Upon generalizing to higher levelsk > 1, it turns out we need an equivalent description
of the system described above in terms of three quasihole operators, namely by adding a
quasihole operatorφ−ε3 of su(3) weight−ε3, i.e., of charge2/3 (for M = 0) and spinless.
The K-matrix for this system can be obtained as a submatrix of the K-matrix describing
quasiparticles in the3⊕3∗ of su(3) [17] or, equivalently, by using thatφ−ε3 is the composite
(φ−ε1φ−ε2) [21] and using eq. (4.37). We find

K

′M
φ = C12K

M
φ =

1
2M + 3

M + 2 M + 2 1
M + 2 M + 2 1

1 1 2

 , t
′M
φ =

 1
2M+3

1
2M+3

2
2M+3

 . (5.26)

In the electron sector we can similarly introduce the composite(J−α2J−α3) and obtain

K

′M
e = C12K

M
e =

M + 2 M + 2 2M + 3
M + 2 M + 2 2M + 3
2M + 3 2M + 3 4M + 6

 , t′e = −

1
1
2

 . (5.27)
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Now we observe a curiosity; while obviously the fqH data (5.26) and (5.27) are dual, since
they are equivalent to the dual systems given in (5.16) and (5.22), they are not related by the
duality transformation (4.30) because bothKφ andKe are not invertible. The equivalence
can also be observed at the level of the resulting IOW-equations which are now given by

(λ
1

2M+3
tot − x↑x↓)(λtot− x↑x↓λ

2M+2
2M+3
tot − (x↑ + x↓)λ

M+1
2M+3
tot − 1) = 0 ,

(µ2M+3
tot − y↑y↓)(µ2M+3

tot − µ2M+2
tot − (y↑ + y↓)µM+1

tot − y↑y↓) = 0 . (5.28)

Because of the first factor the equations (5.28) do not transform into each other under (5.24).
However, the physical solutions, which are determined by the second factor, do! Summariz-
ing, we conclude that it is obvious that the notion of duality should have an extension that
incorporates non-invertible K-matrices. We leave this for future investigation.

5.2.2 su(3)k,M

As argued in [18, 17], the generalization of the results of the previous section to levelsk > 1
requires the addition of2(k − 1) pseudoparticles incorporating the non-abelian statistics of
the quasihole operators{φ↑, φ↓}. Since these pseudoparticles couple differently to{φ↑, φ↓}
than to the composite particleφ↑↓ = (φ↑φ↓) (i.e., different than the naive coupling given
by the composite construction), it appears that the first construction in Sect. 7.1 does not
generalize to higher levels.

It is known that forsu(n)k,M=0 the pseudoparticles couple to the physical particles by
means of the matrixA−1

n−1 ⊗ Ak−1. Here we have used the result for the restricted Kostka
polynomials as given in, e.g., [14, 25, 63, 57] (see the discussion in [18] for details). Then,
by applying the shift map (4.34), we obtain

K
′M
φ =



...

A
−1
2 ⊗ Ak−1

... − 2
3 − 2

3 − 1
3

... − 1
3 − 1

3 − 2
3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− 2
3 − 1

3

... (4k−1)M+6
3(2kM+3)

(4k−1)M+6
3(2kM+3)

(2k−2)M+3
3(2kM+3)

− 2
3 − 1

3

... (4k−1)M+6
3(2kM+3)

(4k−1)M+6
3(2kM+3)

(2k−2)M+3
3(2kM+3)

− 1
3 − 2

3

... (2k−2)M+3
3(2kM+3)

(2k−2)M+3
3(2kM+3)

(4k−4)M+6
3(2kM+3)


,

(5.29)
where the components ofA−1

2 refer to the quasiholes in the3 and3∗, respectively, and

tφ = (0, 0, . . . , 0︸ ︷︷ ︸
2(k−1)

| 1
2kM + 3

,
1

2kM + 3
,

2
2kM + 3

) . (5.30)
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For instance, for levelk = 2 we have

K
′M
φ =



4
3

2
3

... − 2
3 − 2

3 − 1
3

2
3

4
3

... − 1
3 − 1

3 − 2
3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− 2
3 − 1

3

... 7M+6
12M+9

7M+6
12M+9

2M+3
12M+9

− 2
3 − 1

3

... 7M+6
12M+9

7M+6
12M+9

2M+3
12M+9

− 1
3 − 2

3

... 2M+3
12M+9

2M+3
12M+9

4M+6
12M+9


. (5.31)

Note that the matrixK′Mφ of (5.29) is not invertible, as was observed fork = 1 in section
5.2.1. Thus, we cannot simply identify the dual sector by performing the transformation
(4.30).

To obtain the dual sector we proceed as in section 5.2.1. We start with the K-matrix
of the principal subspace spanned by{J−α1 , J−α2}. As discussed in appendix B of [6],
for su(3)k, this K-matrix is given byK = A2 ⊗ Bk and requires, besides the currents
{J−α1 , J−α2} a set of2(k − 1) composites

(J−αi . . . J−αi︸ ︷︷ ︸
l

) , 2 ≤ l ≤ k , i = 1, 2 . (5.32)

Starting with this matrix we introduce additional composites according to the procedure of
section 4.2.4, beginning with the electron operatorΨ↓ = (J−α1J−α2) (recall thatΨ↑ =
J−α2), and continuing until all composites

(Ψ↑ . . .Ψ↑︸ ︷︷ ︸
n↑

Ψ↓ . . .Ψ↓︸ ︷︷ ︸
n↓

) , n↑ + n↓ ≤ k , (5.33)

have been introduced. Note that the set of composites (5.33), for fixedn↑ + n↓, span a
(n↑+n↓+1)-dimensional irreducible representation of spinSU(2). The electron K-matrix
is then the1

2k(k + 3) × 1
2k(k + 3) submatrix of the resultingK obtained by omitting the

composites which cannot be written in terms of electron operators only. Let us be illustrate
this procedure the case ofk = 2. Starting with the principal subspace K-matrix

K =



2 −1
... 2 −1

−1 2
... −1 2

. . . . . . . . . . . . . . . . . .

2 −1
... 4 −2

−1 2
... −2 4


, (5.34)

we introduce the compositesΨ↓ = (J−α1J−α2), (J−α2(J−α1J−α1)), (J−α2(J−α1J−α2)),
and(J−α2((J−α2(J−α1J−α1))), respectively. Then, after removing the rows and columns
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corresponding toJ−α1 , (J−α1J−α1) and(J−α2(J−α1J−α1)), we obtain

K
′
e =



2 1
... 2 2 1

1 2
... 1 2 2

. . . . . . . . . . . . . . .

2 1
... 4 3 2

2 2
... 3 4 3

1 2
... 2 3 4


, te = −


1
1
2
2
2

 , se =


1
−1
2
0
−2

 . (5.35)

Similarly, one obtains the electron K-matrix forsu(3)k,M=0 at higher levels, and the gen-
eralization to arbitraryM follows, as before, by applying the shift map (4.33). Unfor-
tunately, the procedure described above is ambiguous. The resulting K-matrix depends
on the order in which the composites are taken as well as the precise identification of
the clusters (5.33) with the original clusters (5.32), e.g., should we identify(Ψ↓Ψ↓) with
(J−α1(J−α1(J−α2J−α2))) or ((J−α1J−α1)(J−α2J−α2))? Ultimately, the ‘correct’ ma-
trix Ke is selected by the requirement that the complete spectrum can be build out of the
quasihole and electron operators or, more concretely, that the characters ofsu(3)k,M can be
written as a linear combination of UCPFs based onKφ⊕Ke. A nontrivial (and highly selec-
tive) check is whether the central charge, given by (4.22), works out correctly, i.e., whether
cφ + ce = 8k/(k + 3), for the K-matrices (5.29) and the ‘appropriate’ generalization of
(5.35) to higher levels and arbitraryM . We have checked this numerically for low values
of k andM as well as exactly, for allk, in theM → ∞ limit, in which case the central
charge is entirely concentrated in theφ-sector. We refrain from giving the explicit matrices
Ke until we have performed an additional simplifying reduction.

First observe that, fork = 2, the matrixK′e of eq. (5.35) is invertible, in contrast to
the matrixK′Mφ of (5.31). One could therefore simply have started withK′e and have ob-
tained the dual sector by the duality transformations (4.30). This would result in aφ-sector,
different from the one discussed above, with two physical quasiholes and three pseudoparti-
cles. Unfortunately, this procedure breaks down, in general, for higherk as the matricesKe,
constructed according to the procedure outlined above, are no longer invertible. However,
note that the matrix (5.35) can be reduced to an equivalent4 × 4 matrix by inverting the
composite procedure – in this case by removing(Ψ↑Ψ↓) in the fourth column, since this
column can be created by applyingC12. This procedure works for generalk > 1 and leads
to a2k× 2k electron K-matrix, for the composites (5.32) with eithern↓ = 0 orn↑ = 0 (i.e.
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we lose the SU(2) multiplet structure), given by

Ke =



2 0 2 0 · · · 2 0 2 1
0 2 0 2 · · · 0 2 1 2
2 0 4 0 4 1 4 2
0 2 0 4 1 4 2 4
...

...
...

...
2 0 4 1 2(k − 1) k − 2 2(k − 1) k − 1
0 2 1 4 k − 2 2(k − 1) k − 1 2(k − 1)
2 1 4 2 · · · 2(k − 1) k − 1 2k k
1 2 2 4 · · · k − 1 2(k − 1) k 2k


, (5.36)

and

te = −(1, 1; 2, 2; . . . ; k, k) ,
se = (1,−1; 2,−2; . . . ; k,−k) . (5.37)

The generalizationKMe to arbitraryM follows by applying the shift map, in this case by
adding the matrixM(J2 ⊗ P) whereJ2 is the2 × 2 matrix with all entries equal to 1, and
(P)ij = ij (1 ≤ i, j ≤ k) (see [6] for an explicit expression in the casek = 2). This matrix
is invertible, so we simply defineKMφ = (KMe )−1. A convenient permutation of rows and
columns ofKMφ leads to the following matrix

(KMφ )perm =



A
−1
2 ⊗ Ak−1

...

...

...

...

...

...

...

0

0

0
...

0

− 2
3

− 1
3

− 1
3

− 2
3

0
...

0

0

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 − 2
3 − 1

3

− 1
3 − 2

3 0 · · · 0 0 0

...

...

(4k−1)M+6
3(2kM+3)
−M

3(2kM+3)

−M
3(2kM+3)

(4k−1)M+6
3(2kM+3)



,

(5.38)
containing two physical particles and2(k − 1) pseudoparticles. Also,

tφ = (0, 0, . . . , 0;
1

2kM + 3
,

1
2kM + 3

) ,

sφ = (0, 0, . . . , 0;−1, 1) , (5.39)



5.2. Spin-singlet clustered states:su(3)k,M 83

as one would expect. Fork = 2, the couplings between the pseudoparticles and the real
particles is not precisely of the form as given in eq. (5.38), so we give this matrix explicitly
(the first 2 particles are pseudoparticles)

K
k=2,M
φ =


4
3

2
3 − 2

3 − 1
3

2
3

4
3 − 1

3 − 2
3

− 2
3 − 1

3
7M+6
12M+9

−M
12M+9

− 1
3 − 2

3
−M

12M+9
7M+6
12M+9

 . (5.40)

We have checked that the total central chargece + cφ for eqs. (5.36) and (5.38) works out
correctly, namelyce + cφ = 8k/(k + 3). Moreover, we have checked for low values ofk
that the equation forλtot, resulting from the IOW equations based on (5.38), are identical to
those based on (5.29). Furthermore, in all formulations, the equations (4.25) and (4.26) are
consistent with (5.14).

Fork = 2, 3, we checked the smallx behaviour forλtot, eq. (4.20). We again expect the
constantsα to be the quantum dimensions of the associated conformal field theory. Using
some results in [34], these quantum dimensions are given by

αk = 1 + 2 cos
(

2π
k + 3

)
. (5.41)

Fork = 2, the equation forλtot reads (upon takingx↑ = x↓ = x)

(λ
1
2
tot− 1)2 = x2λ

8M+5
8M+6
tot + xλ

6M+4
8M+6
tot − xλ

2M+1
8M+6
tot , (5.42)

which leads to the following smallx behaviour

λtot = 1 + 2

(
1 +
√

5
2

)
x+ o(x2) , (5.43)

in agreement withα2 = (1 +
√

5)/2 from (5.41); the extra factor2 comes from the sum
over the two physical particles, see eq. (4.20). Fork = 3 we find

(λ
1
2
tot− 1) = xλ

8M+3
6(6M+3)
tot (λ

1
6
tot + 1)

1
3 (λ

1
3
tot + 1)

2
3 , (5.44)

which givesα3 = 2, consistent with (5.41). Note that for the abelian casek = 1, we find
for the smallx↑,↓-behaviour, using (5.18),

λtot = 1 + (x↑ + x↓) + o(x2) , (5.45)

in agreement with (5.41) and the fact that fork = 1 we have an abelian state.
As was the case for the spin-polarized states of section 5.1, also for the non-abelian spin-

singlet states a particle behaving as a supercurrent can be identified in the non-magnetic
limit. The situation here is slightly more complicated than in the case of the spin-polarized
states discussed in section 5.1. This is because in the formulation above, there is no candi-
date particle with the property that all the statistics parameters go to zero in the limitq → 0
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(with q = 1/ν = M + 3/2k). However, if one acts withC2k−1,2k on SMKe, with Ke
given by eq. (5.36), one introduces a composite with charge−2k and spin0, which has the
desired properties. In theφ-sector, the particle content is changed to one quasihole and2k
pseudoparticles, of which a few carry spin.

The possibility to introduce a composite with the right properties enables one to repeat
the discussion of section 5.1, with the only difference that the flux quantum in this case
equalsh/2ke. So, also in this case, we can identify a supercurrent in the non-magnetic
limit.

5.3 Alternative construction

In this section, we will show an alternative way of obtaining the K-matrices for the non-
abelian quantum Hall states which were discussed in sections 5.1 and 5.2. The wave func-
tions of these non-abelian states could be obtained from abeliancoverstates, via a projec-
tion. The idea is to implement this projection on the level of the K-matrices. The K-matrices
for the abelian cover states are easily obtained. They just are the direct sum ofk copies of the
k = 1,M = 0 K-matrices. We will takeM = 0 in this construction, and use the shift map
eq. (4.33) in the end. Applying the shift map directly on the direct sum ofk = 1,M = 0
K-matrices leads to the same result.

The property that discerns the non-abelian K-matrices form the abelian ones is the pres-
ence of composites in the electron sector. These composites are accompanied by pseudopar-
ticles in theφ-sector. To obtain the non-abelian K-matrices from the abelian cover states,
one has to introduce composites. One can use the composite construction from section
4.2.4. However, this construction is based on a character identity, eq. (4.57), and will lead
to an equivalent description. In this description, the electron sector is augmented with a
composite, while in theφ-sector, a real quasiparticle is exchanged for two pseudoparticles.
Actually, this action of the composite construction on theφ-sector is also related to a char-
acter identity, as will be described in the paper [5]. Applying this character identity on the
φ-sectors of the UCPF, one finds another UCPF, based on the transformed K-matrixDijKφ.
This matrix can be obtained from the composite construction (4.37)

DijK = (CijK−1)−1 , (5.46)

where, in addition, the particlesi, j in the transformed formulation are pseudoparticles.
Performing both composite constructions yields an equivalent description, as these con-
structions are based on character identities.

A description of the non-abelian system can be obtained by performing a projection
on the K-matrices of the abelian states. This projection is done by ‘deleting’ a particle in
both the electron andφ-sector. In the end, this description can be obtained from the abelian
cover by simply applying a W-transformation on the electron sector (and the equivalent W-
transform on theφ-sector). In addition, some of the particles in theφ-sector have to be
interpreted as pseudoparticles, in accordance with the construction outlined above. In all
the cases described in this thesis, we will ‘add’ particles in the electron sector which have
the same quantum numbers. In theφ-sector, this will result in particles with all quantum
numbers trivial. These particles are interpreted as pseudoparticles.
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The W-transformations which are equivalent to the composite construction followed by
the reduction of the number of particles all have a similar form. In effect, they ‘add’ one
particle to another, see eq. (5.48). Loosely speaking, they correspond to identity matrices,
in which some of the off-diagonal elements have been changed from0 to 1.

Let us clarify the construction by doing a simple example, that is, obtaining the K-matrix
description for the Moore-Read state. The abelian cover state has a simple K-matrix for the
electron sector

K
cover
e =

(
2 +M M
M 2 +M

)
. (5.47)

The W-transformation (see eq. (2.8)) needed to obtain the K-matrix for the MR state is
characterized by

W =
(

1 1
1 0

)
. (5.48)

Its effect is to make the second particle a composite of the two original particles; the corre-
sponding matrix is

K
mr
e =

(
2 +M 2 + 2M
2 + 2M 4 + 4M

)
. (5.49)

This is indeed the K-matrix for the MR state (compare eq. (5.10) withk = 2). In theφ-
sector, one has one pseudoparticle, in accordance with eq. (5.5). Note that this construction
does not change the filling fraction.

The construction outlined above also works for the general clustered states of sections
3.4 and 3.5. For the spin-polarized states, the K-matrix of the abelian cover state is simply
given by (see also [23])

K
cover
e =


M + 2 M · · · M

M M + 2
...

...
... M

M · · · M M + 2

 , (5.50)

which is ak × k dimensional matrix. All the particles have chargetj = −1 and the filling
fraction corresponding to this state indeed isν = k

kM+2 . To obtain the correct K-matrices
for the non-abelian states, we have to introduce composites which have ‘sizes’ ranging from
1 up tok. This is achieved by the W-transformation

W =


1 0 · · · 0

1 1
...

...
...

...
... 0

1 · · · 1 1

 . (5.51)

It is easily verified that this transformation indeed reproduced the K-matrix (5.10). Also the
φ-sector is obtained correctly, if one interprets the pseudoparticles correctly.

The K-matrices for the spin-singlet analogs can be obtained in a similar way, however,
the construction is somewhat more complicated, because thek = 1 description already has
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two components. This gives more possibilities for the W-transformation, of which only
one gives the correct central charge corresponding to the underlying CFT. The other W-
transformations correspond to other projections. Whether or not these give rise to quan-
tum Hall states is not clear at the moment. Also, to which CFTs the resulting K-matrices
correspond is not clear (if they correspond to a CFT at all). For now, we will use the W-
transformations which lead to K-matrices with rational central charge; it turns out to be the
case that only one W-transformation leads to a rational central charge, which also corre-
sponds to the central charge of the underlying CFT.

The K-matrix for the abelian cover state (see also [92]), is given by

K
cover
e =



M + 2 M + 1 M M · · · · · · M M
M + 1 M + 2 M M M M

M M M + 2 M + 1
...

M M M + 1 M + 2
...

...
... M M

...
... M M

M M M M M + 2 M + 1
M M · · · · · · M M M + 1 M + 2


. (5.52)

The W-transformation which is needed in the projection, is given by

W =



1 0 0 0 · · · · · · 0 0
0 1 0 1 0 1

1 0 1 0
...

...

0 0 0 1
...

...
...

...
... 0 0

...
...

... 0 1
1 0 1 0 1 0
0 0 · · · · · · 0 0 0 1


. (5.53)

Applying this W-transformation on the matrix (5.52), indeed gives the matrixKe for the
spin-singlet paired states (5.36) for generalM (note, that a suitable permutation on the
order of the particles is necessary). Also, in theφ-sector, there are2(k−1) pseudoparticles.

Above, we showed that the K-matrices for the non-abelian quantum Hall states could be
obtained from a suitably chosen, abelian cover matrix. Though we do not have a proof for
this, we will assume that such a construction is also possible for the spin-charge separated
states. In the next section, we will obtain a set of matrices, which we believe, are the correct
matrices to describe theso(5)k affine Lie algebra theory. We will provide a few non-trivial
checks on these matrices to show that they are indeed the correct ones. More on K-matrices
of general affine Lie algebra CFTs can be found in the forthcoming article [5].
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5.4 Spin-charge separated states:so(5)k,M

In this section, we will report some results on the K-matrix structure of the spin-charge
separated states. The results fork = 1 are also described in [8]. For the spin-charge
separated states, the underlying structure is theso(5)k affine Lie algebra. This is anon
simply-lacedalgebra, meaning that the roots come in two different lengths. This makes the
analysis of this algebra much harder than thesimply-lacedalgebra’s. Indeed, we can not
rely so much on results in the mathematical literature. However, we will attempt to obtain a
K-matrix description, without having the intention to be mathematically rigorous. We will
use the observation from the previous section that the K-matrices for the non-abelian states
can be obtained from abeliancoverstates. We will merely assume that the results will carry
over to theso(5)k case, and justify the procedure afterwards by doing consistency checks.

For both the spin-polarized and spin-singlet states of sections 3.4 and 3.5, thek = 1
case corresponds to unpaired, abelian states. For these, the K-matrices were known for a
long time. However,so(5) is non simply-laced, and this implies that the state at levelk = 1
has non-abelian statistics. Thus one expects pseudoparticles in the K-matrix description.
This result was indeed obtained in [8]. We will first discuss this situation.

5.4.1 so(5)k=1,M

It is well-known that the spin-polarized MR state is closely related to an abelian states at
filling ν = 1

M+1 : the two-layer(M + 2,M + 2,M) Halperin state. The transition between
these states have been discussed in the literature (see e.g. [58, 74, 82, 106, 23]). The
connection on the level of K-matrices was described in the previous section.

To obtain the K-matrix description for the spin-charge separated states (3.36), we would
like to have an abelian cover state like in the case of the Moore-Read state. This state was
identified in [8], and has filling fractionν = 2

2M+1 , equal to the levelk = 1 spin-charge
separated states. The wave function for this two-layer state reads [8]

Ψ̃M
2−layer({z

↑t
i , z

↓t
i , z

↑b
i , z

↓b
i }) =

∏
i<j

(z↑ti − z
↑t
j )M+2

∏
i<j

(z↓ti − z
↓t
j )M+2

∏
i<j

(z↑bi − z
↑b
j )M+2

∏
i<j

(z↓bi − z
↓b
j )M+2

∏
i,j

(z↑ti − z
↓t
j )M+1

∏
i,j

(z↑bi − z
↓b
j )M+1

∏
i,j

(z↑ti − z
↑b
j )M

∏
i,j

(z↓ti − z
↓b
j )M

∏
i,j

(z↑ti − z
↓b
j )M−1

∏
i,j

(z↓ti − z
↑b
j )M−1 , (5.54)

where the indicest, b refer to the top and bottom layers. This wave function arises as
a correlator of two-layer spin full electron operators which, in the caseM = 0, are the
currents of theso(6)1 affine Kac-Moody algebra

ψ(↑t) = : eiϕl : : e
i√
2
ϕs : : e

i√
2

√
2M+1ϕc : , (5.55)

ψ(↓t) = : eiφl : : e−
i√
2
ϕs : : e

i√
2

√
2M+1ϕc : , (5.56)

ψ(↑b) = : e−iφl : : e
i√
2
ϕs : : e

i√
2

√
2M+1ϕc : , (5.57)

ψ(↓b) = : e−iφl : : e−
i√
2
ϕs : : e

i√
2

√
2M+1ϕc : , (5.58)
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whereϕl is a chiral boson, corresponding to the ‘layer’ degree of freedom. We expect that
the relation between the paired spin-charge separated state (3.36) and the state (5.54) is on
the same footing as the relation between the (paired) Moore-Read state and the correspond-
ing 2-layer state. The MR state (withM = 0), is obtained from the Halperin(2, 2, 0) state
eq. (2.21) by symmetrizing over all the electron coordinates. In this procedure, the layer
structure is lost, as one would like.

To obtain the spin-charge separated state from the 2-layer state (5.54), one has to take
into account that we are dealing with spin full electrons, and we want to make a spin-
singlet state. To obtain a spin-singlet, one has to do perform the following symmetrization
procedure (see, for instance, [56]). First, anti-symmetrize over(z↑1 , z

↓
1), then over(z↑2 , z

↓
2),

etc. After this, the result has to be symmetrized over all the spin up particles, and finally
over all the spin down particles. This indeed gives a spin-singlet state, which for 4 particles
is indeed the spin-charge separated state. For more particles, this construction does not
seem to work. However, we feel that a construction similar to the construction to obtain the
clustered states of sections 3.4 and 3.5 should be possible.

Coming back to the K-matrix description of the 2-layer state related toso(6), naively,
one would write down the ansatz

Ke =


2 +M 1 +M M −1 +M
1 +M 2 +M −1 +M M
M −1 +M 2 +M 1 +M

−1 +M M 1 +M 2 +M

 , (5.59)

based on the wave function (5.54). However, this matrix is not invertible. To find an ‘in-
vertible’ description, we apply the operatorC1,4, which adds a composite of the ‘first’ and
‘last’ particle. We proceed by removing the spin down particles to find

K
′
e =

 2 +M M 1 + 2M
M 2 +M 1 + 2M

1 + 2M 1 + 2M 2 + 4M

 , K
′
φ =


3
4

1
4 − 1

2
1
4

3
4 − 1

2

− 1
2 − 1

2
1+M
1+2M

 ,

t′e = −(1, 1, 2) , t′φ = (0, 0,
1

1 + 2M
) ,

s′e = (1, 1, 0) , s′φ = (−1,−1, 1) ,

l′e = (+,−, ·) , l′φ = (
−
2
,

+
2
, ·) . (5.60)

where we used the standard duality equations to find the quantum Hall data for theφ-sector.
The vectorl denotes the ‘layer’ degree of freedom, and is only used as a bookkeeping
device. The fact that the K-matrix in eq. (5.59) is not invertible, is caused by the fact that
we were trying to describe the rank3 algebraso(6) by four degrees of freedom. The method
to ‘cure’ this resembles the method used in section 5.2.2.

To obtain the quantum Hall data for theso(5)k=1,M states, we need to do a projection,
as was the case for the wave functions, which could be obtained form the abelian states by
projecting the two layers onto each other (compare with the ‘Ho reduction’ for the MR state
[58]).



5.4. Spin-charge separated states:so(5)k,M 89

On the level of K-matrices, this reduction take the form of introducing a composite in
the electron sector, and the introduction of a pseudoparticle in the quasihole sector. To do
this projection, we apply the W-transformation

W =

1 0 0
1 1 0
0 0 1

 (5.61)

on the quantum Hall data (5.60). This results in the following quantum Hall data

Ke =

 2 +M 2 + 2M 1 + 2M
2 + 2M 4 + 4M 2 + 4M
1 + 2M 2 + 4M 2 + 4M

 , Kφ =

 1 − 1
2 0

− 1
2

3
4 − 1

2

0 − 1
2

1+M
1+2M

 ,

te = −(1, 2, 2) , tφ = (0, 0,
1

1 + 2M
) ,

se = (1, 2, 0) , sφ = (0,−1, 1) . (5.62)

In this description, the first quasihole is neutral and spinless, and is interpreted as a pseudo-
particle. This results in a reduction of the central charge by1

2 , because of the fermionic
statistics. So the central charge corresponding to the data (5.62) becomesc = 5

2 , which
is indeed the central charge of theso(5)1 theory. We will make one further change to the
data (5.62), which will make the spin-charge separation of the fundamental quasiholes man-
ifest. This can be done by applying another W-transformation (which leads to an equivalent
description)

W =

1 0 0
0 1 −1
0 0 1

 . (5.63)

Finally, we obtain the following formulation, which can also be found in [8]

Ke =

M + 2 1 2M + 1
1 2 0

2M + 1 0 4M + 2

 , Kφ =

 1 − 1
2 − 1

2

− 1
2

3
4

1
4

− 1
2

1
4

2M+3
8M+4

 ,

te = −(1, 0, 2) , tφ = (0, 0,
1

2M + 1
) ,

se = (1, 2, 0) , sφ = (0,−1, 0) . (5.64)

Also in this formulation, the first particle in theφ-sector is interpreted as a pseudoparticle.
This pseudoparticle is similar to the pseudoparticle for the MR state (eq. (5.6) withk = 2),
which was of course to be expected from the structure of the spin-charge separated state at
k = 1. The central charge associated to the data (5.64) is also given by5

2 . Of course, to
prove that this description is correct, one should be able to reproduce the affine characters
of so(5)1 in the UCPF form with the K-matrices. At this point, this check has not been
completed. However, we were able to reproduce the restricted Kostka polynomials for
so(5)1, which is also a highly non-trivial check [5].
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5.4.2 so(5)k,M

In this section, we will present the K-matrix description for the spin-charge separated states
at general levelk. Again, the results were not derived as rigorous as was the case for the
su(2) andsu(3) related states. However, the fact that those matrices could be constructed
quite naturally by taking thek = 1 formulations and taking composites, leads to the believe
that a similar construction is possible in this situation. We now take this point of view, and
present the results. On these results, we will perform some non-trivial checks, to show that
they are indeed correct. More details will be provided in the paper [5].

To construct the K-matrices corresponding to theso(5)k,M state, we takek copies of
theM = 0 formulation forso(5)k=1,M=0, eq. (5.64) and make the direct sum, resulting in
a (3k, 3k) matrix. Making the composites, needed in the levelk formulation, is done via
the following W-transformation

W =



1 0 0
... 1 0 0 1 0 0

0 1 0
... 0 0 0 · · · 0 0 0

0 0 1
... 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0
... 1 0 0 1 0 0

0 1 0
... 0 1 0 0 0 0

0 0 1
... 0 0 1 0 0 0

...
...

0 0 0
... 0 0 0 1 0 0

0 1 0
... 0 1 0 · · · 0 1 0

0 0 1
... 0 0 1 0 0 1



. (5.65)

To display the resulting matrix, we first define the matrixD3(a, b) in the following way

D3(a, b) =

a b b
b a 0
b 0 a

 . (5.66)

Note thatD3(2,−1) is the Cartan matrix ofso(6). After a suitable permutation of the
particles, the K-matrix for the electron sector, obtained from the W-transform, takes the
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following form

Ke =


D3(2, 0) D3(2, 0) · · · D3(2, 0) D3(2, 1)
D3(2, 0) D3(4, 0) · · · D3(4, 1) D3(4, 2)

...
...

...
D3(2, 0) D3(4, 1) · · · D3(2(k − 1), k − 2) D3(2(k − 1), (k − 1))
D3(2, 1) D3(4, 2) · · · D3(2(k − 1), k − 1) D3(2k, k)

 .

(5.67)
Note that the structure of this K-matrix is very similar to the matrixKe for the electron
sector of thesu(3)k states. The corresponding spin and charge vectors are given by

te = −(1, 2, 0; 2, 4, 0; · · · ; k − 1, 2(k − 1), 0; k, 2k, 0) ,
se = (1, 0, 2; 2, 0, 4; · · · ; k − 1, 0, 2(k − 1); k, 0, 2k) . (5.68)

Using the charge vector, and the shift map (4.33), on easily constructs the K-matrix for
generalM . The matrix for theφ-sector is just the inverse ofKe. To bring it in a nice form,
we again perform a suitable permutation on the order of the particles

(Kφ)perm =



1
... −1 − 1

2 − 1
2 0 · · · 0

... 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− 1

− 1
2

− 1
2

0
...

0

...

...

...

...

...

...

D
−1
3 ⊗ Ak−1

...

...

...

...

...

...

0
...

0

− 1
2

− 3
4

− 1
4

0
...

0

− 1
2

− 1
4

− 3
4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... 0 · · · 0 − 1

2 − 3
4 − 1

4

... 3
4

1
4

0
... 0 · · · 0 − 1

2 − 1
4 − 3

4

... 1
4

(6k−4)M+3
8kM+4



,

(5.69)
whereD−1

3 denotes the inverse Cartan matrix ofso(6). The charge and spin vectors are
given by

tφ = (0, · · · , 0; 0,
1

2kM + 1
) ,

sφ = (0, · · · , 0;−1, 0) . (5.70)

It is important to realize that in this formulation, the first3k− 2 particles in theφ-sector are
to be interpreted as pseudoparticles. It is this interpretation that causes the reduction from
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the cover system to the (non-abelian)so(5)k,M states. It is easily checked that the filling
factors obtained from the quantum Hall data is

ν =
2k

2kM + 1
, σ = 2k . (5.71)

Note that in calculating the filling factors, we should keep in mind that the matrices (5.67)
and (5.69) are each inverses only after a permutation on the order of the particles.

The first check that the quantum Hall data above are correct concerns the central charge.
This is most easily done by computing, numerically, the central charge reduction due to
the presence of pseudoparticles. For some moderate sizes (up tok = 5), we found that
the pseudoparticles reduce the central charge by(3k−1)k

k+3 . Using the formula (4.22), we

indeed find the correct central charge for theso(5)k,M affine Lie algebraccft = 10k
k+3 . More-

over, fork = 1, 2, the pseudoparticle matrices are shown to occur in the restricted Kostka
polynomials forso(5). These results will be presented in [5].

The non-abelian statistics of the quasihole excitations over the spin-charge separated
states at levelk = 1 manifests itself at the level of the partition functionλtot = λcλs
(λc, λs denote the partition functions of the holons and spinons, respectively). We derived
an equation forλtot (atk = 1) from the IOW equations (4.4) using the statistics matrixKφ
of equation (5.64) (withM = 0)

(λtot− 1)2 = (λtot + 1)(λ
1
2
tot + 1)xsxs + (λtot + λ

1
2
tot)(x

2
c + x2

s) , (5.72)

wherexc andxs are the fugacities for the holons and spinons respectively. The smallx
behaviour can easily be derived, and is given by

λtot = 1 +
√

2(xc + xs) + o(x2) . (5.73)

The factor
√

2 signals the non-abelian statistics (see section 4.2) and it is the same as for
the Moore-Read state (see eq. (5.8) withk = 2). Indeed, the Moore-Read state is defined
in terms of the same parafermion and spin fields as the spin-charge separated states at level
k = 1.

Also, the factor
√

2 follows from the quantum dimensions of the 4-dimensional repre-
sentation ofso(5), which is calculated to be

αk = 2
(

cos
( π

k + 3
)

+ cos
( 2π
k + 3

))
. (5.74)

Fork = 2, this equation givesα2 =
√

5, a result which also can be derived from the Bratteli
diagram for the spin fields of the related parafermion theory at levelk = 2.

In the next section, we will relate the K-matrices for the electron sector to the para-
fermionic CFTs, and write the corresponding characters in the form of a UCPF. As these
characters are related to the so-calledstring functionsof the affine Lie algebra theories, we
can check the consistency of the results of this chapter with respect to these string functions.
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5.5 The relation with parafermions

As an application of the K-matrices which were obtained for the various quantum Hall
states, we will consider the relation with the K-matrices for the parafermion theories. In the
next chapter, these will be extremely useful in determining the ground state degeneracy of
the non-abelian quantum Hall systems in the presence of quasiholes. The K-matrices for
the parafermions associated to simply-laced affine algebras are known already. However,
for the non simply-laced cases, the results appear to be new.

To explain the relation between the K-matrices for the quantum Hall systems and the
statistics of parafermions (which is encoded in the K-matrices), we will use theZk parafer-
mions of the spin-polarized clustered quantum Hall states as an example. For convenience,
we will repeat the matrixKe and charge vector (eq. (5.10)) for this state

K
M
e =


M + 2 2M + 2 . . . kM + 2
2M + 2 2(2M + 2) . . . 2(kM + 2)

...
...

...
...

kM + 2 2(kM + 2) . . . k(kM + 2)

 , tMe = −


1
2
...
k

 . (5.75)

The operators which can be associated to the particles described by this K-matrix are

V rr
l = ψl : e

il√
k

√
kM+2ϕc : , (5.76)

for l = 1, . . . , k and the operator withl = 1 is just the electron operator eq. (3.14). Note that
the parafermion fieldψk = ψ0 = 1, which means thatV rr

k is just a chiral vertex operator.
The statistics properties which are due to the vertex operators are easily calculated, by

taking products of the coefficients of the chiral boson fields

L =
kM + 2

k


1 2 · · · k
2 4 2k
...

...
k 2k · · · k2

 . (5.77)

Note that this matrixL is not a K-matrix or statistics matrix of a quantum Hall systems;
it is the contribution of the chiral boson fields to the (mutual) statistics of the particles.
To obtain the full statistics properties, the statistics due to the parafermion fields must be
included. This leads to the conjecture that the K-matrix for the parafermions can be obtained
by taking the difference of the matrices (5.75) and (5.77) and consider only the firstk − 1
particles. Doing this, we find the following matrix

(Kpf)ij = (Ke − L)ij = 2(min(i, j)− ij

k
) , i, j = 1, . . . , k − 1 . (5.78)

This is precisely twice the inverse of the Cartan matrix ofsu(k), which is indeed the K-
matrix corresponding to theZk parafermion theory, see eq. (6.35) and [68, 65, 41]. In
particular, this matrix is used in the fermionic character formula for theZk parafermions.
In this UCPF, all the particles are real particles.
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The method described to obtain the K-matrices for the parafermion theories can be cast
in a form which is more easy to handle. The ‘decoupling’ of the bosonic degrees of freedom
from the parafermions can be achieved by applying aSL(n,Q) transformation. For the case
at hand, we have

X =


1 − 1

k

1 − 2
k

...
...

1 −k−1
k

1

 ,

K̃e = XKeX
T =

 2A−1
k−1

0
...
0

0 · · · 0 k(kM + 2)

 . (5.79)

Thus the ‘X-transformation’ has the effect of decoupling the parafermion fields from the
chiral vertex operators. In theφ-sector, the pseudoparticles are decoupled from the quasi-
hole excitations, as can be verified easily

K̃φ =

 1
2Ak−1

0
...
0

0 · · · 0 1
k(kM+2)

 . (5.80)

We immediately find that the K-matrix for the parafermion theory is just the inverse of the
K-matrix for the pseudoparticles of the quasihole sector, where all particles are considered
to be real particles, as was the case for the all the particles of the electron sector. This result
is also true for the parafermions ofsu(3)k/u(1)2 (see, for instance, [41]). We now make
the conjecture that the K-matrix for the parafermions associated to the cosetso(5)k/u(1)2

is also given by the inverse of the pseudoparticle matrix of theso(5)k affine Lie algebra
theory. This matrix is easily obtained from eq. (5.69)

(Kpf
so(5)k

)−1 =



1
... −1 − 1

2 − 1
2 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− 1

− 1
2

− 1
2

0
...

0

...

...

...

...

...

...

D
−1
3 ⊗ Ak−1



. (5.81)
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Using the result for the central charge of the K-matrix description of theso(5)k affine Lie
algebra theory, it is easily checked that the central charge corresponding to this matrix is
indeed given bycpf = 10k

k+3 − 2, which is the central charge of the parafermions related
to so(5)k. The central charge associated to the K-matrices of the parafermions and the
pseudoparticles add up to3k − 2, because these matrices are each others inverse and have
dimension3k − 2 (see eq. (4.15)). Also, the central charge associated to the pseudopar-
ticles is such that3k is reduced to the central charge of the affine Lie algebra,c = 10k

k+3 .

Combining these results, we indeed findcpf = (3k − 2)− (3k − 10k
k+3 ) = 10k

k+3 − 2.
Another important check which we performed is exploiting the relation between the

parafermion character formulas and the string functions associated to the affine Lie theories.
This relation, which follows from the definition of the parafermionic CFTs [43], in general
takes the following form

ZΛ,λ
pf = (η)ncΛλ , (5.82)

whereη = q
1
24
∏∞
k=1(1 − qk) = q

1
24 (q)∞ andn is the rank of the affine Lie algebra.

The quantitiescΛλ are the string functions of the Lie algebra. These are the generating
functions for the multiplicities of the (affine) weightλ in the highest weight representation
Λ [34]. The parafermion fields correspond toΦ1

λ, so the form of the parafermion matrices
we conjectured are expected to be related to the characterZΛ=1

pf =
∑
λ(η)nc1λ, where the

sum overλ is such that all the string functions of the formc1λ are included in the sum.
To show how this works, we will use theso(5)2 parafermions as an example. Explicitly

the corresponding K-matrix is (conjectured to be)

K
pf =


2 1 0 0
1 3

2 − 1
2 − 1

2

0 − 1
2 1 0

0 − 1
2 0 1

 . (5.83)

The UCPF based on this K-matrix, namely

ZΛ=1
pf =

∑ q
1
2 m·Kpf ·m∏
i(q)mi

, (5.84)

where themi (i = 1, . . . , 4) run over the non-negative integers, can indeed be written as
the sum over string-functions

ZΛ=1
pf =

∑
λ

(η)2cΛλ . (5.85)

The sum overλ can also be characterized by saying that all the independent parafermion
fields Φ1

λ must be ‘present’. This correspondence has been checked on the computer, by
comparing the result from eq. (5.84) to the string functions tabulated in [62], using the
relation eq. (5.85)

The various string-functionsc(0,0)
(λ1,λ2) are obtained by restricting the sum in eq. (5.84).

Explicitly, we have

c
(0,0)
λ =

q−
1
12

(q)2
∞

∑
res(λ)

q
1
2 m·Kpf ·m∏
i(q)mi

, (5.86)
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whereres(λ) denotes the following restriction on the summation

res(λ) =



2m1 +m2 + 2m3 = 0 mod 4
m3 +m4 = 0 mod 2

for λ = (0, 0)

2m1 +m2 + 2m3 = 0 mod 4
m3 +m4 = 1 mod 2

for λ = (2, 0)

2m1 +m2 + 2m3 = 2 mod 4
m3 +m4 = 0 mod 2

for λ = (0, 2)

2m1 +m2 + 2m3 = 1 mod 4
m3 +m4 = 0 mod 2

for λ = (0, 1) .

(5.87)

Again, we found that these forms correspond, up to the order checked, with the string func-
tions obtained from [62]. Though we haven’t got a proof, we believe that the explicit forms
of the string functions (5.86) are indeed correct. To our best knowledge, these expressions
are the first explicit expressions for some of the string functions ofso(5)2. In the forthcom-
ing paper [5], we will give conjectures for the K-matrices corresponding to arbitrary affine
Lie algebras, and the corresponding K-matrices for the related parafermion CFTs (which
are again related to the string functions of the formc1λ).

5.6 K-matrices: an outlook

In the previous sections, we identified K-matrices for the various clustered quantum Hall
states. The main result is that the K-matrices can be written in the formKe ⊕ Kφ, with
Kφ = K

−1
e . For the states with clustering (at levelk ≥ 1), composites are present at the

‘electron sector’. These composites are accompanied by ‘pseudoparticles’ in theφ-sector.
For the non-simply laced cases, composites and pseudoparticles are also present at level
k = 1. This ‘duality’ is present at every level of description of the clustered quantum Hall
states. It was present at the level of electron and quasihole operators (see chapter 3). It
will also be present in the next chapter, were the excitations over the states are studied by
means of numerical diagonalization of model hamiltonians, and by means of the exclusion
statistics properties of the parafermion fields.

The matrices obtained in this chapter also correspond to the matrices appearing in the
universal chiral partition functions for the affine Lie algebra conformal field theories. The
methods used to identify the K-matrices are not restricted to the cases motivated by the
quantum Hall states. Thus we expect that K-matrices with a similar structure can be found
for the other affine Lie algebra CFTs. This indeed turns out to be the case; more details on
the K-matrices for the affine Lie algebra CFTs will be given in [5].

In identifying the K-matrices, we encountered some identities, based on character iden-
tities, to relate matrices for different theories. Of course, we would like to have a general
scheme to find the matrices for general (rational) conformal field theories. An important
class of these CFTs are the coset conformal field theories. A first step in finding a general
scheme to obtain the K-matrices describing the coset conformal field theories will be given
in [5]. Some of the matrices corresponding to these cosets were identified in the literature
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before, and fit in the scheme presented in [5]. However, also new results will be given, for
instance, results of K-matrices for parafermionic CFTs related to non simply-laced affine
Lie algebras.
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Chapter 6

State counting for clustered
quantum Hall states

The statistics properties of the parafermion fields will be investigated in this chapter, with
the intention of obtaining closed form expressions for the ground state degeneracy of clus-
tered quantum Hall states in the presence of quasihole excitations, as described in [47, 9].
This state counting problem is interesting for the following reasons. The clustered quantum
Hall states can be seen as ground states of a hamiltonian with an (ultra local) interaction
between the electrons. Finding the ground state degeneracy of this hamiltonian can be done
in a conformal field theory (CFT) approach, relying heavily on the statistics properties of
the parafermionic fields. Another approach is by numerically diagonalizing the interaction
hamiltonian for a small number of electrons. This method can serve as a check on the
analytical results of the first approach. Thus, the quasihole degeneracies of a system of
interacting electrons can be understood in terms of parafermionic statistics!

Also, the results for the state counting can be viewed as a justification of the K-matrices
for the quantum Hall states presented in the previous chapter, because these matrices are
closely related to the K-matrices for the parafermion theories, used in the state counting.

In the context of the spin-polarized states of Read and Rezayi, theZk (or su(2)k/u(1))
parafermions are the relevant parafermions. For the non-abelian spin-singlet (NASS) states
of [10], the relevant parafermions are the parafermions related tosu(3)k/u(1)2 (see [43] for
a discussion on general parafermion CFTs).

This chapter is based on [9] and [4]. The plan of this chapter is as follows. In section 6.1
we will shortly indicate the setup of numerical diagonalization studies, because we need to
adapt the calculations to the setup in which these studies are done. Also, we present some
of the results of these numerical studies, which were done by E. Rezayi. These results can
also be found in [9]. The general structure of the counting formulas will be indicated in
section 6.2. It will become clear that the degeneracy consists of an intrinsic and an orbital
part, which need to be combined in the right way. The intrinsic degeneracy factors need to
be split to make this possible. The remainder of this chapter is devoted to this task, closely
following the discussion of [4]. We will explain the procedure to obtain these expressions
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using thesu(3)2/u(1)2 parafermions of the NASS state at levelk = 2 as an example
(see also [9]). The first step is to find a basis for the (chiral) spectrum of the parafermion
CFT. Here, we make contact with the K-matrix description of the clustered quantum Hall
states from chapter 5. Using this basis, recursion relations for truncated characters will be
derived (section 6.3). These recursion relations can be solved using the results of section 6.4,
providing expressions for the truncated characters. From the explicit truncated characters,
the ‘split degeneracies’ can be extracted. Finally the counting formula for the paired spin-
singlet states is obtained in section 6.5, filling in some of the details of the discussion in [9].
In section 6.6, counting formulas for the RR states at general levelk are obtained, while
section 6.7 deals with the counting formulas for the generalk NASS states. For all the cases
checked, the results of the numerical diagonalization studies are exactly reproduced by the
counting formulas.

6.1 The setup of the numerical studies

Though we will not describe numerical diagonalization studies in depth in this chapter, it
is necessary to point out briefly in which setup they are done, because we need to adapt
our calculations to be able to compare results. The numerical diagonalization is most easily
done on the sphere. The interaction between the electrons is chosen such that the clustered
state under investigation is the unique ground state (in the absence of quasihole excitations).
Note that this interaction is an ultra local, many-body interaction, rather different from the
long range Coulomb interaction. To ‘tune’ to the right filling fraction, a specific number
of flux quanta needs to penetrate the sphere. States with quasiholes can be studied by
increasing the number of flux quanta (but keeping all the other parameters the same); this
results in the creation of quasiholes, as can be seen from the Laughlin gauge argument. The
number of flux quanta needed for a state on the sphere with quasiholes is given by

Nφ =
1
ν
N − S + ∆Nφ , (6.1)

whereN is the total number of electrons, and∆Nφ the number of excess flux quanta,
needed for the creation of the quasiholes.S is an integer constant depending on the state
under investigation. Also, the number of quasiholes which are created by increasing the flux
by one flux quantum depends on the state under investigation. For the spin-polarized RR
states, this relation is given byn = k∆Nφ, wheren is the number of quasiholes. For the
NASS states of section 3.5, we have

n = n↑ + n↓ = 2k∆Nφ . (6.2)

For the clustered quantum Hall states with quasiholes present, the ground state is de-
generate (for the ultra local interaction). The degeneracy consists of two parts. First of all,
there is an orbital degeneracy, which is caused by the fact that in this setup, the quasiholes
are non-local. This orbital degeneracy is not specific for clustered states; it is also present
for the (unpaired) Laughlin states. For a system in which the quasiholes are localized, this
degeneracy would not be present. Secondly, there is an intrinsic degeneracy, which stems
from the non-trivial fusion rules of the spin fields, needed to create quasihole excitations.
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This source of degeneracy is special for the clustered states. Here, we will focus on this
intrinsic degeneracy and obtain analytical expressions, which allow the combination with
the orbital degeneracy factors. This provides us with explicit expressions for the degeneracy
of the ground states, in the presence of quasiholes.

As spin and angular momentum are good quantum numbers, all the states obtained
from the numerical diagonalization fall into spin and angular momentum multiplets. The
structure of the counting formulas is such that also the multiplet structure can be extracted.

The numerical diagonalization studies for the spin-singlet states eq. (3.5) were per-
formed by E. Rezayi fork = 2,M = 1 in a spherical geometry. As discussed before
the flux-charge relation for this state isNφ = 7N/4 − 3. The number of single-particle
orbitals (the lowest Landau level degeneracy) isNφ + 1. In order to make contact with
the results on more conventional geometries the radiusR of the sphere has to be chosen
so that the number of flux isNφ = 2R2 (where the magnetic field strengthB is fixed,
such that the magnetic length is 1 in our units), soR =

√
Nφ/2 [49]. The filling factor is

ν = N/Nφ = 2πn̄, wheren̄ = N/(4πR2) is the particle number density.
For numerical purposes, it is best to re-express the interaction hamiltonian in terms

of projection operators onto different values of the total angular momentum for different
groups of particles [49]. For theM = 1, k = 2 case of the NASS states, the required
hamiltonian can be written as

H = U
∑
i<j<k

Pijk(3Nφ/2− 3, 3/2) + V ′
∑
i<j

Pij(Nφ, 0), (6.3)

with U , V ′ > 0. HerePijk(L, S) (Pij(L, S)) are projection operators for the three (resp.,
two) particles specified onto the given values of total angular momentumL and spinS for
the three (resp., two) particles. Each projection is normalized toP 2 = P . To see that this is
the required hamiltonian, that corresponds to the short rangeδ-function interaction forM =
0, and gives the same numbers of zero-energy states found above, note the following. First,
the maximal angular momentum for several particles corresponds to the closest approach of
those particles [49]. In particular, the two-body term is a contact interaction, andV ′ = V0,
the zeroth Haldane pseudo-potential [49]. The two-body term implies that any zero-energy
states must have no component with total angular momentumNφ and total spin zero, which,
since we are dealing with spin 1/2 fermions, means the wave function must vanish when any
two particles coincide. The wave function must therefore contain a factorΨ̃1

L; multiplication
by this factor defines a one-one mapping of the full space of states of spin 1/2 bosons in the
lowest LL, withNφ reduced byN − 1, onto the subspace of states of the fermions that is
annihilated by the two-body term inH. Under this mapping, the three-body hamiltonian
for theM = 0 case corresponds to the three-body term inH, and selects the corresponding
states as zero-energy states. In particular, the total spin of the three bosons when they
coincide (and hence of the fermions) must be3/2. Hence the zero-energy eigenstates of
the present hamiltonian are given by the results derived earlier. Note also thatH can be
rewritten in terms ofδ-functions and their derivatives. The zero-energy eigenstates of this
hamiltonian were found for variousN andNφ values, and analyzed in terms ofL andS.

The results for these numerical diagonalization studies for the spin-singlet states of [10]
can be found in tables 6.1 and 6.2. The results are stated as a function ofN and∆Nφ,
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which is related to the number of quasiholes, eq. (6.2) withk = 2. Also, we indicated the
spin and angular momentum multiplet structure.

As an example, we also include a typical energy spectrum for the systems without quasi-
holes in figure 6.1. Indeed, in this case, the ground state is non-degenerate, as one would
expect.

0 5 1 0 1 5 2 0 2 5 3 0

0

2

4

6

8

1 0

1 2

1 4

E

L
0 2 4 6 8 1 0

-1

0

1

2

0 4 8 1 2 1 6

2

4

6

8

1 0

1 2

S = 4

E

L

0 5 1 0 1 5 2 0 2 5
0

2

4

6

8

1 0

1 2

1 4

S = 3

E

L0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

2

4

6

8

1 0

1 2

1 4

S = 2
E

L
0 2 4 6 8

0 .0
0 .5
1 .0
1 .5
2 .0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

0

2

4

6

8

1 0

1 2

1 4

S = 1E

L

0 2 4 6 8 1 0

0 .5

1 .0

1 .5

0 5 1 0 1 5 2 0 2 5 3 0 3 5

0

2

4

6

8

1 0

1 2

S = 0
E

L

0 2 4 6 8 1 0
- 0 .5

0 .0

0 .5

1 .0

1 .5

Figure 6.1: The spectrum of the NASS model ground state forN = 8 and 4/7 filling. The
last panel shows allS values combined. The insets are the low lying levels. Figure due to
E. Rezayi.

6.2 Degeneracy factors and counting formulas

The intrinsic degeneracy is caused by the non-trivial fusion rules of the spin fields. As an
example, we will use the spin fields of thesu(3)2/u(1)2 parafermionic CFT. The fields and
their fusion rules in this theory can be determined according to the methods of [43] and
are summarized in table 6.3. We use the notation introduced in [9]. The parafermion fields
are denoted byψ, and all have conformal dimension∆ψ = 1

2 . In particular,ψ1,ψ2,ψ12

correspond to the rootsα1,−α2 andα1 +α2 of su(3), respectively. The spin fieldsσ↑,σ↓,σ3

and ρ are related to the weights ofsu(3) and their conformal dimensions are given by
∆σ = 1

10 and∆ρ = 3
5 . The fusion of an arbitrary number ofσ↑,↓ fields can be depicted
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∆Nφ = 1 ∆Nφ = 2

N = 4

# = 20 S = 0 1 2
L = 0 1 0 1
L = 1 0 1 0
L = 2 1 0 0

# = 104 S = 0 1 2
L = 0 1 0 1
L = 1 0 2 0
L = 2 2 1 1
L = 3 0 1 0
L = 4 1 0 0

N = 8

# = 105 S = 0 1 2
L = 0 2 0 1
L = 1 0 2 0
L = 2 2 1 1
L = 3 0 1 0
L = 4 1 0 0

# = 1719 S = 0 1 2 3 4
L = 0 4 1 3 0 1
L = 1 1 7 2 1 0
L = 2 7 7 6 1 0
L = 3 3 9 3 1 0
L = 4 6 6 4 0 0
L = 5 2 5 1 0 0
L = 6 3 2 1 0 0
L = 7 0 1 0 0 0
L = 8 1 0 0 0 0

N = 12

# = 336 S = 0 1 2
L = 0 3 0 1
L = 1 0 3 0
L = 2 3 3 2
L = 3 1 3 0
L = 4 2 1 1
L = 5 0 1 0
L = 6 1 0 0

∆Nφ = 3 ∆Nφ = 4

N = 4

# = 321 S = 0 1 2
L = 0 2 0 1
L = 1 0 2 0
L = 2 2 2 2
L = 3 1 3 0
L = 4 2 1 2
L = 5 0 1 0
L = 6 1 0 0

# = 755 S = 0 1 2
L = 0 2 0 1
L = 1 0 3 0
L = 2 3 2 2
L = 3 1 4 1
L = 4 3 3 2
L = 5 1 3 0
L = 6 2 1 1
L = 7 0 1 0
L = 8 1 0 0

Table 6.1: Counting results for the NASS states atk = 2. N is the number of electrons;
∆Nφ is the number of excess flux quanta. The results are given as a function of theL
(angular momentum) andS (total spin) quantum numbers. The total number of states is
also indicated.
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∆Nφ = 1
2 ∆Nφ = 3

2

N = 2
# = 3 S = 0 1
L = 0 0 1

# = 10 S = 0 1
L = 0 1 0
L = 1 0 1

N = 6
# = 10 S = 0 1
L = 0 1 0
L = 1 0 1

# = 175 S = 0 1 2 3
L = 0 0 2 0 1
L = 1 2 1 1 0
L = 2 0 3 1 0
L = 3 2 1 0 0
L = 4 0 1 0 0

∆Nφ = 1
4 ∆Nφ = 5

4

N = 5 # = 0

# = 48 S = 1
2

3
2

L = 1
2 1 1

L = 3
2 1 1

L = 5
2 1 0

∆Nφ = 3
4 ∆Nφ = 7

4

N = 3
# = 4 S = 1

2

L = 1
2 1

# = 28 S = 1
2

3
2

L = 0 0 0
L = 1 1 1
L = 2 1 0

Table 6.2: Counting results for the NASS states atk = 2 with fractional∆Nφ (symbols as
in table 6.1).

× σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12

σ↑ 1 + ρ
σ↓ ψ12 + σ3 1 + ρ
σ3 ψ1 + σ↓ ψ2 + σ↑ 1 + ρ
ρ ψ2 + σ↑ ψ1 + σ↓ ψ12 + σ3 1 + ρ
ψ1 σ3 ρ σ↑ σ↓ 1
ψ2 ρ σ3 σ↓ σ↑ ψ12 1
ψ12 σ↓ σ↑ ρ σ3 ψ2 ψ1 1

Table 6.3: Fusion rules of the parafermion and spin fields associated to the parafermion
theorysu(3)2/u(1)2 introduced by Gepner [43].

in a Bratteli diagram (see also [9]). Each arrow in the diagram in figure 6.2 stands for
either aσ↑ or σ↓ field. The arrow starts at a certain field which can only be one of the
fields on the left of the diagram at the same height. This last field is fused with the one
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Figure 6.2: Bratteli diagram for the spin fields ofsu(3)2/u(1)2.

corresponding to the arrow, while the arrow points at a field present in this fusion. As an
example, the arrows starting at the∗ are encoding the fusion rulesρ×σ↑(↓) = ψ2(1) +σ↑(↓)
andσ3 × σ↑(↓) = ψ1(2) + σ↓(↑). One checks that the diagram is in accordance with the first
two columns of table 6.3.

From figure 6.2, one immediately reads off that in general there is more than one fusion
path of spin fields with leads to the identity (possibly the identity is reached only after the
fusion with the parafermion fieldsψ1,2 of the electron operators). It is easily seen that the
number of fusion channels starting from and terminating at1 while n↑ σ↑ andn↓ σ↓ spin
fields are fused is given by

dn↑,n↓ = F(n↑ + n↓ − 2) , (6.4)

whereF(n) is then-th Fibonacci number, defined byF(n) = F(n− 1) + F(n− 2) with
the initial conditionsF(0) = 1 andF(1) = 1. Next to this intrinsic degeneracy, there is an
orbital degeneracy. These orbital degeneracy factors can be found in [47, 9] for the states
discussed in sections 3.4 and 3.5. These factors have the general form

∏
i

(ni−Fi
k + ni
ni

)
. (6.5)

The product is over the types of quasiholes, while the numbersFi are interpreted as the
number of ‘unclustered’ particles in the state. In the correlators, these correspond to the
fundamental parafermionsψi. For each fusion path, these numbers can be different, imply-
ing that we have to split the intrinsic degeneracy according to these numbers. We denote
these ‘split degeneracy factors’ by{}k. Explicitly, we have{ nF }k and{ n↑ n↓F1 F2

}k for the RR
and NASS states, respectively.

Using the notation above, the counting formula for the clustered spin-singlet quantum
Hall states take the following form

#NASS(N,∆Nφ, k) =
∑′

N↑,↓,n↑,↓,F1,2

{
n↑ n↓
F1 F2

}
k

(N↑−F1
k + n↑
n↑

)(N↓−F2
k + n↓
n↓

)
,

(6.6)
where the prime on the summation indicates the presence of constraints (see below eq.
(6.50)). The equivalent counting formula for the Read-Rezayi states is given in eq. (6.42).

The explicit split degeneracy factors for theZk andsu(3)k/u(1)2 parafermions at level
k > 2 first appeared in [4] (fork = 2, these factors can be found in [84] and [9] respec-
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tively). Previously, these factors for theZk parafermions (k > 2) could only be charac-
terized via recursion relations, see [47, 22]. Note that the results in this chapter are easily
extended to the more generalsu(N)k/u(1)N−1 parafermions.

We will now briefly outline in which way the split degeneracy factors are obtained. The
starting point is the character of the parafermionic CFT. The symbols{}k can be extracted
from finitized forms of these characters [47] (see also [90]). Recursion relations for these
finitized characters can be derived from an explicit basis of the parafermionic CFT. These
recursion relations will be written in a way that allows for an explicit solution, from which
the symbols{}k can be extracted. In the sections 6.3-6.5, we will demonstrate this for the
levelk = 2 spin-singlet states of [10].

6.3 A basis for thesu(3)2/u(1)2 parafermion theory

In this section, we briefly describe how an explicit basis for the chiral spectrum of the
su(3)2/u(1)2 parafermion CFT is formed. The starting point is the chiral character for the
parafermions in thesu(3)2/u(1)2 conformal field theory. This character can be written in
the form of a ‘universal chiral partition function’ (UCPF) see, for instance, [13, 5]. For the
case at hand, this character reads [65]

ch(x1, x2; q, k = 2) =
∑
n1,n2

q(n2
1+n2

2−n1n2)/2

(q)n1(q)n2

xn1
1 xn2

2 . (6.7)

In this character,xi = eβµi are fugacities of the particles, andq = eβε (β is the inverse
temperature).(q)a is defined by(q)a =

∏a
k=1(1− qk) for a > 0 and(q)0 = 1.

The bilinear form in the exponent ofq is described by the matrix

K =
(

1 − 1
2

− 1
2 1

)
. (6.8)

The same matrix also describes the exclusion statistics of these parafermions. As we showed
in section 5.5, it can also be obtained from the K-matrix of the electron sector for this
quantum Hall state.

A basis for a CFT can be thought of as a set of states spanning the chiral Hilbert space.
This set of states can be written as a (set of) vacuum state(s), on which creation operators
act. The parafermionsψ1,2(z) in thesu(3)2/u(1)2 theory can be expanded in modes as

ψ1,2(z) =
∑
m∈Z

z−mψ1,2

m− 1
2
. (6.9)

As usual, the modesψm with negative index are the creation operators while the modes with
positive index annihilate the vacuum

ψm|0〉 = 0 m > 0 . (6.10)

The set of states
ψan−snψ

an−1
−sn−1

· · ·ψa1
−s1 |0〉 (6.11)
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is overcomplete, because of the (generalized) commutation rules of the parafermions. In
the following, we will point out which restrictions on the indicessi will remove the ‘over-
completeness’. In doing so, we will follow the exclusion interpretation of the K-matrix as
closely as possible and concentrate on the lowest possible ‘energy’ (given byL0 =

∑
i si)

for a certain number of applied fields first. The ordering of the modesψ1,2 is such that we
apply theψ1 modes first. From (6.9) it follows that the simplest non-trivial state is

ψ1
−1/2|0〉 . (6.12)

Interpreting the matrix (6.8) as the exclusion statistics matrix, the minimal spacing between
two ψ1 modes is1, thus the state with twoψ1’s acting on the vacuum with minimal energy
is

ψ1
−3/2ψ

1
−1/2|0〉 . (6.13)

The extension ton1 ψ
1 modes is simple

ψ1
−(2n1−1)/2 · · ·ψ

1
−3/2ψ

1
−1/2|0〉 . (6.14)

Note that if this were the whole story, we would describe the (free) Majorana fermion. The
spacing betweenψ2 modes is the same as for theψ1 modes. However, if one acts withψ2

on a state in whichψ1 modes are already present, one has to take into account the mutual
statistics betweenψ1 andψ2 modes, which is−1/2, according to (6.8). Thus the energies of
theψ2 modes have an extra shift of−n1/2, resulting in the following states (with minimal
energy)

ψ2
−(2n2−1−n1)/2 · · ·ψ

2
−(3−n1)/2ψ

2
−(1−n1)/2ψ

1
−(2n1−1)/2 · · ·ψ

1
−3/2ψ

1
−1/2|0〉 . (6.15)

The (dimensionless) energy associated to this state isn2
1+n2

2−n1n2
2 , precisely the exponent

of q in the character (6.7). To obtain all the possible states, one has to allow states with
higher energies as well. As usual [22], the energies of all the modes can have integer shifts,
under the restriction that modes acting on a state have larger energies than the modes of the
same type which have been applied earlier. This results in the following set of states

ψ2
−(2n2−1−n1)/2−tn2

· · ·ψ2
−(3−n1)/2−t2ψ

2
−(1−n1)/2−t1×

× ψ1
−(2n1−1)/2−sn1

· · ·ψ1
−3/2−s2ψ

1
−1/2−s1 |0〉 , (6.16)

with sn1 ≥ . . . ≥ s2 ≥ s1 ≥ 0 andtn2 ≥ . . . ≥ t2 ≥ t1 ≥ 0 (si, tj ∈ N).
Up to now, we used the special ordering of applying modes to the vacuum, namely, all

theψ1 modes first. This is in fact enough to span the whole chiral spectrum, as can be
seen if we perform the trace over all basis states. More or less by construction, we obtain
the character (6.7). However, we also can allow a general ordering of the modes. As an
example, we take the following state

ψ2
−0ψ

1
−1/2|0〉 . (6.17)

The energy of theψ2 mode is zero because it gets an extra shift of−1/2 due to the presence
of theψ1 mode. In spanning the whole chiral spectrum, we can also choose to use the state,
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with the order of the modes changed

ψ1
−0ψ

2
−1/2|0〉 . (6.18)

In this case, theψ1 mode gets an extra shift of−1/2, because of the presence of theψ2

mode. Thus, theL0 value is the same for both states. In general, changing the order of two
neighbouringψ1 andψ2 modes does not change theL0 value if the extra shifts are changed
in the appropriate way. The extra shift of a field is given by−1/2 times the number of
preceding modes of the other type. In general, two states related by a reordering of modes
are different, but we can use either of them (but not both) to span the chiral spectrum. Note
that the rules of the spacing between the various fields is in accordance with the (exclusion)
statistics interpretation of the matrixK. The character (6.7) is obtained by taking the trace
over all the states in the basis (6.16)

ch(x1, x2; q) = Trxn1
1 xn2

2 qL0 . (6.19)

We can now define the finitized characters needed in the derivation of the symbols{}k by
using the basis described above. These finitized characters are polynomials which will be
denoted byY(l,m). These polynomials are traces over the basis (6.16), but restricted to the
states in which the energy of the modes of theψ1 (ψ2) fields are smaller or equal tol (m).
Though the total energy of a state does not depend on the ordering of the modes, the energies
of the individual modes do depend on the ordering, as can be seen by comparing the states
(6.17) and (6.18). By restricting the trace over states in which the labels of the modes are
bounded, we must include a state if there is at least one ordering in which all the modes
satisfy the bounds imposed. Note that there may be other orderings, in which these bounds
are not satisfied. We write the finitized characters as

Y(l,m)(x1, x2; q) = Tr′
≤l,≤m

xn1
1 xn2

2 qL0 . (6.20)

The prime on the trace denotes an important restriction on the number of modes (denoted
by n1 andn2) present in the states. These numbers must satisfyn1 = 2l (mod 2) and
n2 = 2m (mod 2). This restriction takes into account that after fusing the spin fields,
one ends up in the right sector, which can be1, ψ1, ψ2 or ψ12 depending on the number of
spin up and down electrons. This is necessary, because after fusing the spin fields and the
parafermion fields of the electron operators, on has to end with the identity1, to obtain a
non-zero correlator.

The finitized charactersY(l,m) can be written in terms of recursion relations of the fol-
lowing form

Y(l,m) = Y(l−1,m) + x1q
l− 1

2Y(l−1,m+ 1
2 ) ,

Y(l,m) = Y(l,m−1) + x2q
m− 1

2Y(l+ 1
2 ,m−1) . (6.21)

Note that the recursion relations above are stated in terms of the energy labels of the modes.
The aim we have is finding the number of possible states when a certain number of extra
flux is added. We therefore need to make a change to labels which depend on the additional
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flux. In fact, we will use the number of particles (given byn↑ andn↓ in this case) created
by this flux as labels for the finitized partition functions. Explicitly, we havel = n↑

2 and
m = n↓

2 . In terms of the number of created quasiholes, the recursion relations become

Y(n↑,n↓) = Y(n↑−2,n↓) + x1q
n↑−1

2 Y(n↑−2,n↓+1) ,

Y(n↑,n↓) = Y(n↑,n↓−2) + x2q
n↓−1

2 Y(n↑+1,n↓−2) . (6.22)

The initial conditions for these recursion relations are as follows

Y(1,0) = Y(0,1) = 0 ,
Y(0,0) = Y(2,0) = Y(0,2) = 1 ,

Y(1,1) = q
1
2x1x2 . (6.23)

The finitized characters are completely described by (6.22) and (6.23). In the next sec-
tion, we will solve these recursion relations and thereby provide explicit expressions for the
finitized characters.

6.4 Recursion relations and solutions

The recursion relations of the previous section can be solved explicitly; we will follow the
approach of [16]. The key observation is that the recursion relations can be matched to
general recursion relations, which are solved in terms of finitizations of universal chiral
partition functions. For convenience, we repeat the finitized partition functions eq. (4.51)

PL(z; q) =
∑
m

(∏
i

zmii

)
q

1
2 m·K·m+Q·m

∏
i

[(
L + (I−K) ·m + u

)
i

mi

]
. (6.24)

In this equation,I is the identity matrix,K the statistics matrix and
[
a
b

]
the q-deformed

binomial (q-binomial) [
a

b

]
=

{
(q)a

(q)b(q)a−b
a, b ∈ N ; b ≤ a

0 otherwise .
(6.25)

Note that we defined theq-binomial to be non-zero only if both entries are integers greater
or equal to zero, to avoid additional constraints on the sums in the counting formulas.

From the definition of theq-binomials, the following identity is easily derived[
a

b

]
=

[
a− 1
b

]
+ qa−b

[
a− 1
b− 1

]
. (6.26)

Replacing thei’th q-binomial factor in (6.24) by the right hand side of (6.26), one finds the
following recursion relations

PL(z; q) = PL−ei(z; q) + ziq
− 1

2Kii+Qi+ui+LiPL−K·ei(z; q) . (6.27)
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The vectorei represents a unit vector in thei’th direction. We will use the equivalence
between (6.24) and (6.27) frequently, because the recursion relations we encounter in de-
riving the counting formulas are all of type (6.27). Of course, upon deriving polynomials
from recursion relations, one has to take the initial conditions into account. For the counting
we need to know the finitizations of the character formulas, and these can be written in the
form (6.24). Thus, when we solve recursion relations by polynomials of the form (6.24),
the proper initial conditions are automatically taken into account.

We start by applying the above to the recursion relations (6.21), resulting in the follow-
ing expressions for the truncated charactersY(n↑,n↓)

Y(n↑,n↓)(x1, x2; q) =
∑
a,b

q(a2+b2−ab)/2xa1x
b
2

[n↑+b
2

a

][n↓+a
2

b

]
. (6.28)

In this sum,a andb have to be restricted such thata = n↓ (mod 2) andb = n↑ (mod 2).
Taking the limit(n↑, n↓) → (∞,∞), and summing over the four possibilities of the parity
for n↑, n↓, gives back the untruncated character (6.7).

The result eq. (6.28) for the truncated characters will be needed for the final counting
formula, which we give in the next section.

6.5 A counting formula for the NASS state atk = 2

From the truncated characters of the previous section, we can obtain the symbols{}2,
needed in the counting formula eq. (6.6). In fact, the symbols{}2 are obtained by tak-
ing the limit q → 1 of the coefficient ofxF1

1 xF2
2 in eq. (6.28) (see, for instance, [47, 9])

Y(n↑,n↓)(x1, x2; 1) =
∑
F1,F2

xF1
1 xF2

2

{
n↑ n↓
F1 F2

}
. (6.29)

In this limit, theq-binomials in (6.28) become ‘ordinary’ binomials and we find{
n↑ n↓
F1 F2

}
2

=
(n↑+F2

2

F1

)(n↓+F1
2

F2

)
. (6.30)

The fact that the finitized characters indeed provide the symbols{} is rather non-trivial. This
connection was first proposed in [47]. Some (restricted) ‘solid on solid’ (SOS) models (see,
for instance [3]) can be mapped to the Bratteli diagrams of the spin fields of the quasiholes.
Recursion relations for the partition functions for these models (at finite size) are in general
equivalent to recursion relations for finitized characters in certain CFTs. In the case at hand,
the corresponding CFT is the parafermion CFT. This provides a link between the Bratteli
diagrams and the parafermion theories. As a check, on can calculate the number of fusion
paths for the spin fields by summing over the symbols{} and compare to the result obtained
from the diagram itself. In this specific case, the equivalence follows from the structure of
the recursion relations (see for instance [9]), giving rise to the identity∑′

F1,F2

(n↑+F2
2

F1

)(n↓+F1
2

F2

)
= F(n↑ + n↓ − 2) . (6.31)
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The prime on the summation denotes the constraintsF1 ≡ n↓ (mod 2) andF2 ≡ n↑
(mod 2). At the level of the wave functions, the degeneracy is due to the presence of parti-
cles which do not belong to a cluster any more. At the level of correlators, these unclustered
particles correspond to parafermionsψ1 andψ2, which act as ‘cluster breakers’. In the case
of the Moore-Read state, this was made explicit in [84].

The counting formula for the NASS state atk = 2 is obtained by inserting the symbol
(6.30) in the general counting formula (6.6)

#(N,∆Nφ, k = 2) =∑′

N↑,↓,n↑,↓,F1,2

(n↑+F2
2

F1

)(n↓+F1
2

F2

)(N↑−F1
2 + n↑
n↑

)(N↓−F2
2 + n↓
n↓

)
, (6.32)

where the prime on the sum indicates the constraintsN↑+N↓ = N , n↑+n↓ = 4∆Nφ and
N↑ −N↓ = n↓ − n↑.

We will now comment on the spin and angular momentum multiplet structure. As an
example, we will write out the polynomialsY(n↑,n↓) in the case of two added flux quanta,
giving eight quasiholes

Y(8,0) = 1 + (q2 + q3 + 2q4 + q5 + q6)x2
1 + q8x4

1 + (q6 + q7 + q8 + q9 + q10)x4
1x

2
2 ,

Y(7,1) = (q
1
2 + q

3
2 + q

5
2 + q

7
2 )x1x2 + (q

7
2 + 2q

9
2 + 2q

11
2 + 2q

13
2 + q

15
2 )x3

1x2

+ q
19
2 x5

1x
3
2 ,

Y(6,2) = 1 + (q2 + q3 + q4)x2
1 + (q2 + q3 + 2q4 + q5 + q6)x2

1x
2
2

+ (q6 + q7 + q8)x4
1x

2
2 ,

Y(5,3) = (q
1
2 + 2q

3
2 + 2q

5
2 + q

7
2 )x1x2 + (q

7
2 + q

9
2 + q

11
2 )x3

1x2

+ (q
9
2 + q

11
2 + q

13
2 + q

15
2 )x3

1x
3
2 ,

Y(4,4) = 1 + q2x2
1 + q2x2

2 + (q2 + 2q3 + 3q4 + 2q5 + q6)x2
1x

2
2 + q8x4

1x
4
2 ,

etc. (6.33)

After multiplying the coefficient ofxF1
1 xF2

2 with (in general)q−(n↑F1+n↓F2)/4, one obtains
a sum of terms of the formqlz , which together form a collection of angular momentum
multiplets with quantum numberslz. Taking the polynomialY(5,3) as an example, we find
the following non-zero symbols{

5 3
1 1

}
2

= 6 (L =
3
2
, L =

1
2

) ,{
5 3
3 1

}
2

= 3 (L = 1) ,{
5 3
3 3

}
2

= 4 (L =
3
2

) . (6.34)

An alternative way to obtain these results is by associating angular momentum multiplets
to the binomials in eq. (6.32). The binomials

(
a
f

)
forming the symbols{}2 need to be
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interpreted as the number of ways on can putf fermions ina boxes, which are labeled with
lz = − (a−1)

2 ,− (a−1)
2 + 1, . . . , (a−1)

2 angular momentum quantum numbers. Each way of
putting thef fermions ina boxes has anltot

z associated with it. Together, theseltot
z quantum

numbers fall into angular momentum multiplets. In this way, angular momentum multiplets
can be associated with the binomials. The angular momentum multiplets of the various
binomials in the counting formula need to be added in the usual way.

Though the parafermion theory does not have a properSU(2) spin symmetry, one can
associate spin quantum numbers to every state by takingSz = N↑−N↓

2 . Combining the spin
and angular momentum, one finds that all the states fall into spin and angular momentum
multiplets.

The numerical diagonalization studies for the NASS state at levelk = 2 are described
in [9]. It is very gratifying to see that the counting formula eq. (6.32) does in fact exactly
reproduce the quasihole degeneracies, as well as the multiplet structure.

In order to find the counting results for the spin-singlet states at general level-k, we first
take a closer look at the counting of the Read-Rezayi states, which was in fact done in [47].
Those results however, were stated in terms of recursion relations which are difficult to
solve. The advantage of the recursion relations presented in the next section is that they can
easily be solved in terms of (q-deformed) binomials, and thus provide explicit expressions
for the symbols{}k.

6.6 Counting formulas for the Read-Rezayi states

The derivation of the counting formulas for the RR states goes along the same lines as the
derivation for the NASS k=2 states as explained in the previous sections. Therefore, we do
not go into full detail, but concentrate on the parts which need more explanation.

We start with the character of thesu(2)k/u(1) parafermionic theory (see [115]), which
can be obtained from [68, 65, 41]

ch(x; q, k) =
∑
ai

q
1
2 (a·Ck−1·a)∏

i(q)ai
xiai , (6.35)

wherea = (a1, . . . , ak−1) andCk−1 = 2A−1
k−1, Ak−1 being the Cartan matrix ofsu(k). In

components, these matrices are given by

(Ak−1)i,j = 2δi,j − δ|i−j|,1 , (6.36)

(A−1
k−1)i,j = min(i, j)− ij

k
, i, j = 1, . . . , k − 1 . (6.37)

In fact,Ck−1 is the K-matrix for theZk parafermions and can also be obtained from the
matrixKe in eq. (5.10) by the methods described in section 5.5.

The parafermions in this theory areψ0, ψ1, . . . ψk−1 (ψ0 is the identity1 and the labels
are defined modulok). By writing xiai in the character (6.35), we take care of the fact that
the fugacity of speciesi is i times the fugacity of the first type of particle. In fact, thei’th
species can be thought of as a ‘composite’ ofi particles of species1. This point of view is
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supported by the fusion rules for these parafermionsψ1×ψp = ψp+1, with p = 1, . . . , k−1.
This structure is also present in the K-matrix structure describing the Read-Rezayi states,
presented in section 5.1 (see also [48, 6, 7]).

A basis for the chiral spectrum can be constructed in the same way as described in
section 6.3. The shifts in modes between the various fields are given by the elements of the
matrixK = Ck−1. We will now proceed by directly giving the corresponding recursion
relations

Yl(x; q, k) = Yl−ei + xiqli−
i(k−i)
k Yl−Ck−1·ei . (6.38)

The factori(k−i)k is the conformal dimension of thei’th parafermion in theZk-parafermion
theory. These recursion relations are solved by the following polynomials

Yl(x; q, k) =
∑
ai

q
1
2 (a·Ck−1·a)

k−1∏
i=1

xiai
[(

l + (Ik−1 − Ck−1) · a
)
i

ai

]
, (6.39)

whereIk−1 denotes the(k − 1)-dimensional unit matrix. To obtain the counting results,
we have to specify the truncation parametersli. As in the NASS case withk = 2, we will
do this in terms of the number of particles created by the extra flux, given byn = k∆Nφ
for the states under consideration. Because the chemical potential of speciesi is i times the
chemical potential of species1, the truncation parameterli has to be scaled with a factor
i with respect tol1 (see, for instance [7]), which is found to bel1 = n

k . This leads to
the following truncation parametersli = in

k , and the truncated characters needed for the
counting become

Yn(x; q, k) =
∑
ai

q
1
2 (a·Ck−1·a)

k−1∏
i=1

xiai
[ in
k +

(
(Ik−1 − Ck−1) · a

)
i

ai

]
. (6.40)

To obtain the symbols{ nF }k which are needed for the counting, one has to take the limit
q → 1 of the prefactor ofxF in eq. (6.40). This results in{

n
F

}
k

=
∑

∑
iai=F

k−1∏
i=1

( in
k +

(
(Ik−1 − Ck−1) · a

)
i

ai

)
. (6.41)

With this result, we arrive at the following counting formula for the Read-Rezayi states (for
generalk)

#RR(N,∆Nφ, k) =
∑
F

{
n
F

}
k

(N−F
k + n

n

)
, (6.42)

with n = k∆Nφ. To make the above (in particular the symbols{}k of eq. (6.41)) more
explicit, we will discuss thek = 2 (i.e. the Moore-Read state) andk = 3 cases. For the MR

state counting, we need to know the symbol{}2. Eq. (6.41) withk = 2 gives{ nF }2 =
(n

2
F

)
.

Of course, this is just the result already found in [84]. Note that our notation is slightly
different with respect to the one used in [84, 47]. In our notation, we denote the number of
created quasiholes byn. In [84, 47],n denoted the number of extra fluxes, which is denoted
by ∆Nφ in our notation.
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Although the method described above seems to be unnecessarily complicated to repro-
duce this result, it is very useful for obtaining closed expressions fork > 2. As an illus-
tration, we will discuss the casek = 3, and compare our results with [47]. Fork = 3, the
polynomials are given by the following expression

Yn(x; q, 3) =
∑
a,b

q
2
3 (a2+b2+ab)xa+2b

[n
3 −

a+2b
3

a

][2n
3 −

2a+b
3

b

]
. (6.43)

Indeed, these polynomials reduce to the ones in [47], upon settingq = 1. The symbols{}3
are now easily written down{

n
F

}
3

=
∑

a+2b=F

(n
3 −

a+2b
3

a

)( 2n
3 −

2a+b
3

b

)
. (6.44)

Note that only a finite number of terms contribute to the sum in eq. (6.44). In fact, this is
true for all the symbols (6.41) withn finite.

The fusion rules for the spin fieldσ which is part of the quasihole operator at levelk = 3
(see [85]), can be encoded in a Bratteli diagram with the same structure as the diagram
6.2 (note that the fields differ, of course). This is a consequence of the rank-level duality
su(2)3 ↔ su(3)2 (see§16.6 in [34]). Thus the total intrinsic degeneracy for thek = 3
Read-Rezayi state withn quasiholes is given bydn = F(n − 2). Indeed, by summing the
symbols{ nF }3 overF , this result is reproduced.

The angular momentum multiplets can be found in the same way as described in section
6.5. Let us note that fork = 1 the only degeneracy factor remaining in eq. (6.42) is

(
N+n
n

)
,

which is precisely the orbital factor for the Laughlin states with quasiholes present. This
was of course to be expected, as thek = 1 Read-Rezayi states are in fact the Laughlin
states.

To conclude the discussion on the counting for the Read-Rezayi states, we would like to
mention that the numerical studies as presented fork = 3 in [47] are in complete agreement
with the counting formulas. At this point, no numerical results are available fork ≥ 4.
In the following section we will turn our attention to the counting of the NASS states for
general level.

6.7 Counting formulas for the NASS states

In this section, we describe the counting for the NASS states at general levelk. We will
closely follow the procedure of the previous sections, that is, we start by writing down the
chiral character corresponding to thesu(3)k/u(1)2 parafermions [65, 41]

ch(x1, x2; q, k) =
∑
ai,bj

q
1
2 (a·Ck−1·a+b·Ck−1·b−a·Ck−1·b)∏

i,j(q)ai(q)bj
xiai1 x

jbj
2 , (6.45)

where we used the same notation as in eq. (6.35). This character is of the UCPF form with
the K-matrix equal to the K-matrix of thesu(3)k/u(1)2 parafermions, which is given by
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K =
(

2 −1
−1 2

)
⊗A−1

k−1. The recursion relations corresponding to the basis of this theory can
be written in the following way

Y(l,m)(x1, x2; q, k) = Y(l−ei,m) + xi1q
li− i(k−i)k Y(l−Ck−1·ei,m+ 1

2Ck−1·ei) ,

Y(l,m)(x1, x2; q, k) = Y(l,m−ej) + xj2q
mj− j(k−j)k Y(l+ 1

2Ck−1·ej ,m−Ck−1·ej) . (6.46)

Once again, we solve the recursion relations by matching these recursions to eq. (6.27). The
truncated characters take the form

Y(l,m)(x1, x2; q, k) =
∑
ai,bj

q
1
2 (a·Ck−1·a+b·Ck−1·b−a·Ck−1·b)×

k−1∏
i=1

xiai1

[(
l + (Ik−1 − Ck−1) · a + 1

2Ck−1 · b
)
i

ai

]
×

k−1∏
j=1

x
jbj
2

[(
m + (Ik−1 − Ck−1) · b + 1

2Ck−1 · a
)
j

bj

]
. (6.47)

We continue by specifying the parametersli andmj . We have to use the same construction
as in the RR case, with the difference that we now need the number of spin up and down
particles (denoted byn↑ andn↓) created by the excess flux. Usingli = in↑

k andmj = jn↓
k

results in

Y(n↑,n↓)(x1, x2; q, k) =
∑
ai,bj

q
1
2 (a·Ck−1·a+b·Ck−1·b−a·Ck−1·b)×

k−1∏
i=1

xiai1

[ in↑
k +

(
(Ik−1 − Ck−1) · a + 1

2Ck−1 · b
)
i

ai

]
×

k−1∏
j=1

x
jbj
2

[ jn↓
k +

(
(Ik−1 − Ck−1) · b + 1

2Ck−1 · a
)
j

bj

]
. (6.48)

From eq. (6.48) we obtain the symbols{ n↑ n↓F1 F2
}k by taking the limitq → 1 of the coefficient

of xF1
1 xF2

2{
n↑ n↓
F1 F2

}
k

=
∑

∑
iai=F1∑
jbj=F2

k−1∏
i=1

( in↑
k +

(
(Ik−1 − Ck−1) · a + 1

2Ck−1 · b
)
i

ai

)
×

k−1∏
j=1

( jn↑
k +

(
(Ik−1 − Ck−1) · b + 1

2Ck−1 · a
)
j

bj

)
. (6.49)

We know have specified all the ingredients of the counting formula for the NASS states

#NASS(N,∆Nφ, k) =
∑′

N↑,↓,n↑,↓,F1,2

{
n↑ n↓
F1 F2

}
k

(N↑−F1
k + n↑
n↑

)(N↓−F2
k + n↓
n↓

)
,

(6.50)
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where the prime on the sum indicates the constraintsN↑ + N↓ = N , n↑ + n↓ = 2k∆Nφ
andN↑ − N↓ = n↓ − n↑. The last constraint is a necessary condition for the state to be a
spin-singlet (for more information on the constraints, see [9]).

The casek = 2 was explicitly discussed in section 6.5. Fork = 1 only the orbital
degeneracy factors remain, and we obtain the counting formula for a particular class of
Halperin states [55]. Indeed, fork = 1, the NASS states reduce to the spin-singlet Halperin
states. As already mentioned in section 6.5, the counting formula (6.50) with the symbols
(6.49) exactly reproduces the results of the diagonalization studies fork = 2 [9]. Fork ≥ 3,
no numerical results are available at the moment.



Epilogue

After the results of the previous chapters, this is a good point to sit back, and reflect upon
the issues which were discussed. Mainly, this thesis has been about using conformal field
theory to give a description of (possible) quantum Hall states. Motivation came form the
observation of an even-denominator fractional quantum Hall state, which is believed to be
related to a trial wave function which consists of the usual Laughlin factor and a factor
which is best characterized by a pairing structure. This pairing (or in general, clustering)
opens the possibility for an extra fractionalization of the quantum numbers for the quasi-
holes, compared to the Laughlin quasiholes. Moreover, the quasiholes of the clustered states
satisfy what is called non-abelian statistics. These statistics properties are a consequence of
the clustering properties of the electrons.

This duality between the properties of the electrons and quasiholes is present at the level
of the conformal field theory description as well. On this level, it was found that a basis of
the underlying conformal field theory (of affine Lie algebra type), can be split into two dual
parts, one related to the quasiholes, the other to the electron like particles. Though such a
description of conformal field theories came about in the study of fractional quantum Hall
states, it can be used in a more general setting, to find similar bases for other conformal field
theories.

In defining new quantum Hall states (see chapter 3), we used the following procedure.
We assumed the existence of a quantum Hall state with certain characteristics (for instance
a paired spin-singlet state) and then used conformal field theory to describe such a state.
Of course, one can not hope to give an exhaustive list of all possible states, as this would
require a full classification of conformal field theories. Also, not all conformal field theories
are related to quantum Hall states. However, if one finds quantum Hall states in this way,
one can study its properties, having quite powerful conformal field theory techniques at
hand. As stated above, this has led to new ways of looking at bases for conformal field
theories.

Starting from the spin-polarized Moore-Read state, we have included the electron spin
in a natural way. This has led to some interesting spin-singlet quantum Hall states, which
have a similar clustering structure as the spin-polarized variants. Also, the quasiholes obey
non-abelian statistics. In addition, in one type of these spin full states, the fundamental
quasiholes show a separation of the spin and charge degrees of freedom, for the first time in
the context of the quantum Hall effect.
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To test the ideas of using conformal field theories in the description of clustered quantum
Hall states, one can try to find a model interaction for which the state under consideration is
the ground state. The degeneracy obtained by diagonalizing this interaction (for instance on
the sphere), for systems with quasiholes present, can be understood in terms of the under-
lying conformal field theories. The fact that the quasihole states are degenerate, lie at heart
of the non-abelian statistics satisfied by the quasiholes. For the NASS states we carried out
the program outlined above in full detail, see chapter 6. Important to note here is that the
only things specified in the numerical diagonalization are the ground state properties, for the
system in the absence of quasiholes. This again points to the duality between the clustering
properties of the electrons and the non-abelian statistics of the quasiholes. Also here, it is to
be expected that this relation holds in more general situations, not only the ones related to
quantum Hall states.

An important issue concerning the clustered quantum Hall states is an effective field
theory description. This issue is not addressed in this thesis. To further study the behaviour
of the excitations, and calculate in more detail the tunneling behaviour, it would be nice to
have a full quantum field theory description for these states, as is available in the case of the
Laughlin states. Though some progress has been made in this respect, more research in this
area is needed for a full understanding of these states.

On the experimental side, there are a lot of unanswered questions. In general, it is hard
to distinguish experimentally between the various proposed states. One of the possibilities
is to measure theI−V characteristics for various tunneling processes, as these are, in many
cases, different for the various proposals. Also the charge of the fundamental quasiparticles
is an option, because of the additional fractionalization of quantum numbers in comparison
to the competing hierarchical states, which exist in the cases of odd-denominator clustered
states. However, measuring these properties on samples where the relevant plateaux are
observed is not possible at this point.

In relation to the spin-singlet states studied in this thesis, it is to be expected that these
states are most relevant in the regime where the Zeeman energy goes to zero. This can
be achieved experimentally by applying pressure on the sample. This changes the band
structure and in effect sends the Zeeman energy to zero. This behaviour has been demon-
strated in experiments which showed the existence of skyrmions at theν = 1 plateau. These
skyrmions are topological excitations with many reversed spins, and can have lower energy
than ordinary spin-flips in the low Zeeman energy limit.

A very interesting experimental development is the observation of a fractional quantum
Hall effect at2 Kelvin in organic molecular semiconductors. In the more conventional
materials, the fractional quantum Hall states are only observed at temperatures below0.5
Kelvin. It would be interesting to cool these organic molecular semiconductors to the milli-
Kelvin regime. One can hope that in these systems the Hall plateaux at even denominator
filling fraction are observed at temperatures higher compared to the conventional systems.
Possibly, quantum Hall states are observed at new filling fractions as well.

One has to realize that the study of the quantum Hall effect is much broader than the
study of the clustered states presented in this thesis. An important aspect which I would like
to mention here is the issue of the transitions between quantum Hall states, and the transition
to the insulating state at high magnetic fields. In certain types of samples, there have been
clear observations of scaling with universal scaling exponents, pointing at quantum critical
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behaviour.
In the single layer quantum Hall systems, a lot of different states are formed. In double

layer systems, there is a whole plethora of states, due to the extra degree of freedom and a
lot of research is done in this area (both experimental and theoretical). There is much more
interesting physics in the quantum Hall regime, but describing it all would go beyond the
scope of this epilogue.

To conclude, the research described in this thesis covers only a small area of quantum
Hall physics, but is nevertheless important, as it provides systems in which (quasi)particles
satisfy new forms of statistics, which are special to the types of quantum Hall states dis-
cussed. Also, the properties of these states and the corresponding quasiparticles were stud-
ied in various ways, giving interesting results from the physical as well as the mathematical
point of view.



120



Bibliography

[1] Y. Aharonov and D. Bohm,Significance of electromagnetic potentials in the quantum
theory, Phys. Rev.115, 485 (1959).

[2] E.N. da C. Andrade,Rutherford and the nature of the atom, Doubleday, New York,
1964, p. 64.

[3] G.E. Andrews, R.J. Baxter, and P.J. Forrester,Eight-vertex SOS model and general-
ized Rogers-Ramanujan-type identities, J. Stat. Phys.35, 193 (1984).

[4] E. Ardonne,Parafermion statistics and the application to non-abelian quantum Hall
states, J. Phys. A35, 447 (2002), [cond-mat/0110108].

[5] E. Ardonne, P. Bouwknegt, and P. Dawson, in preparation.
[6] E. Ardonne, P. Bouwknegt, S. Guruswamy, and K. Schoutens,K-matrices for non-

abelian quantum Hall states, Phys. Rev.B61, 10298 (2000), [cond-mat/9908285].
[7] E. Ardonne, P. Bouwknegt, and K. Schoutens,Non-abelian quantum Hall states -

Exclusion statistics K-matrices and duality, J. Stat. Phys.102, 421 (2001), [cond-
mat/0004084].

[8] E. Ardonne, F.J.M. van Lankvelt, A.W.W. Ludwig, and K. Schoutens,Separation
of spin and charge in paired spin-singlet quantum Hall states, Phys. Rev.B65,
041305(R) (2002), [cond-mat/0102072].

[9] E. Ardonne, N. Read, E. Rezayi, and K. Schoutens,Non-abelian spin-singlet quan-
tum Hall states: wave functions and quasihole state counting, Nucl. Phys.B607, 549
(2001), [cond-mat/0104250].

[10] E. Ardonne and K. Schoutens,New class of non-abelian spin-singlet quantum Hall
states, Phys. Rev. Lett.82, 5096 (1999), [cond-mat/9811352].

[11] J. Bardeen, L.N. Cooper, and J.R. Schrieffer,Theory of superconductivity, Phys. Rev.
108, 1175 (1957).

[12] J.G. Bednorz and K.A. M̈uller,Possible highTc superconductivity in the Ba-La-Cu-O
system, Z. Phys.B64, 189 (1986).

[13] A. Berkovich and B. McCoy,The universal chiral partition function for exclusion
statistics, in Statistical Physics on the Eve of the 21st Century, Series on Adv. in Stat.
Mech., Vol. 14, M.T. Batchelor and L.T. Wille, eds. (World Scientific, Singapore,
1999), pp. 240-256, [hep-th/9808013].

[14] A. Berkovich, B. McCoy, and A. Schilling,Rogers-Schur-Ramanujan type identities
for the M(p,p’) minimal models of conformal field theory, Commun. Math. Phys.191,
325 (1998), [q-alg/9607020].



122 Bibliography

[15] D. Bernard, V. Pasquier, and D. Serban,Spinons in conformal field theory, Nucl.
Phys.B428, 612 (1994), [hep-th/9404050].

[16] P. Bouwknegt,Multipartitions, generalized Durfee squares and affine Lie algebra
characters, J. Aust. Math. Soc.A, to appear, [math.CO/0002223].

[17] P. Bouwknegt, L.-H. Chim, and D. Ridout,Exclusion statistics in conformal field the-
ory and the UCPF for WZW models, Nucl. Phys.B572, 547 (2000), [hep-t/9903176].

[18] P. Bouwknegt and N. Halmagyi,q-identities and affinized projective varieties II. Flag
varieties, Commun. Math. Phys.210, 663 (2000), [math-ph/9903033].

[19] P. Bouwknegt, A.W.W. Ludwig, and K. Schoutens,Spinon bases, Yangian symmetry
and fermionic representations of Virasoro characters in conformal field theory, Phys.
Lett. B338, 448 (1994), [hep-th/9406020].

[20] P. Bouwknegt, A.W.W. Ludwig, and K. Schoutens,Spinon basis for higher level
SU(2) WZW models, Phys. Lett.B359, 304 (1995), [hep-th/9412108].

[21] P. Bouwknegt and K. Schoutens,The ̂SU(n)1 WZW models: Spinon decomposition
and Yangian structure, Nucl. Phys.B482, 345 (1996), [hep-th/9607064].

[22] P. Bouwknegt and K. Schoutens,Exclusion statistics in conformal field theory - gen-
eralized fermions and spinons for level-1 WZW theories, Nucl. Phys.B547, 501
(1999), [hep-th/9810113].

[23] A. Cappelli, L.S. Georgiev, and I.T. Todorov,Parafermion Hall states from coset
projections of abelian conformal theories, Nucl. Phys.B599, 499 (2001), [hep-
th/0009229].

[24] N.R. Cooper, N.K. Wilkin, and J.M.F. Gunn,Quantum phases of vortices in rotating
Bose-Einstein condensates, Phys. Rev. Lett.87, 120405 (2001), [cond-mat/0107005].

[25] S. Dasmahapatra, R. Kedem, T. Klassen, B. McCoy, and E.Melzer,Quasi-Particles,
Conformal Field Theory, andq-Series, Int. J. Mod. Phys.B7, 3617 (1993), [hep-
th/9303013].
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Samenvatting

Dit proefschrift beschrijft mogelijke toestanden gevormd door de electronen in systemen
waarin hetfractionele quantum Hall effectoptreedt. Door analogieën te maken met alle-
daagse verschijnselen zal ik in deze samenvatting proberen duidelijk te maken wat ik tijdens
mijn promotie heb onderzocht.

Laat ik beginnen met een zeer alledaagse stof: water. Water kan voorkomen in drie
toestanden (fases), namelijk in vaste vorm, in vloeibare vorm en als gas. Door de temper-
atuur (of de druk) te veranderen kunnen deze vormen in elkaar overgaan, en spreken we van
eenfase overgang. In dit proefschrift heb ik mij niet bezig gehouden met water, maar met
electronen. Electronen kunnen, op dezelfde manier als water moleculen, verschillende toe-
standen vormen, afhankelijk van de externe omstandigheden, waaronder de temperatuur. In
dit proefschrift heb ik een aantal van deze toestanden onderzocht; voordat ik die toestanden
beschrijf, wil ik eerst de belangrijkste eigenschappen van electronen duidelijk maken.

Electronen kunnen, net als water moleculen, opgevat worden als deeltjes. Een van de
belangrijke eigenschappen van electronen is dat ze geladen zijn. Omdat alle electronen
dezelfde lading hebben (die we op−1 stellen; het minteken is historisch bepaald), stoten
electronen elkaar af, op ongeveer dezelfde manier als gelijknamige polen van magneten.
Bovendien worden electronen beı̈nvloed door magnetische velden. Hiervan wordt gebruik
gemaakt in beeldbuizen: electronen worden afgeschoten en daarna afgebogen door mag-
netische velden, waardoor ze op de juiste plaats van het scherm komen. Daar produceren ze
licht, en zo wordt het beeld gevormd dat we zien.

Er zijn nog twee eigenschappen van electronen die ik wil noemen. De eerste is despin
van het electron. Globaal gesproken kunnen electronen in twee ‘soorten’ voorkomen, die
we spin-op en spin-neer noemen. Deze soorten kunnen in elkaar overgaan. De laatste eigen-
schap die zeer belangrijk is, is destatistiekvan electronen. Kort gezegd komt het er op neer
dat electronen van dezelfde soort niet op dezelfde plaats voor kunnen komen, zoals we ook
gewend zijn van voorwerpen in het dagelijks leven. Deze eigenschap van electronen wordt
hetuitsluitingsprincipegenoemd. Golven, zoals bijvoorbeeld aan het oppervlak van water,
maar ook radiogolven, hebben een heel andere statistiek. Dat dat zo moet zijn blijkt uit het
feit dat deze golven ongehinderd door elkaar heen bewegen, zonder elkaar te beı̈nvloeden;
golven kunnen zich dus wel op dezelfde plaats bevinden.

Zoals reeds opgemerkt is, kunnen electronen verschillende fases vormen, op dezelfde
manier als water moleculen. Een voorbeeld is de toestand van electronen in een stuk metaal.
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Figure S.1: Schematische weergave van een (quantum) Hall weerstands meting

In een (näıef) beeld kunnen de electronen in metaal als koper beschreven worden als zouden
ze zich als een gas gedragen. In deze beschrijving wordt ervan uit gegaan dat de electronen
elkaar niet bëınvloeden, een benadering die in sommige gevallen redelijk goed blijkt te
werken.

Echter, de interactie tussen electronen is cruciaal voor de systemen waar ik de afgelopen
jaren onderzoek naar heb gedaan. Dit zijn geen alledaagse systemen. Eén van de ongewone
dingen is dat in de systemen waar ik naar gekeken heb, namelijk het grensvlak van een
isolator en een halfgeleider, de electronen zich alleen maar in een plat vlak kunnen bewegen.
In normale metalen kunnen electronen zich in alle drie de dimensies bewegen, maar in deze
systemen is de vrijheid beperkt tot het zojuist genoemde grensvlak.

Tevens wordt er op deze systemen (ofsamples) een sterk magneetveld aangelegd en
worden ze sterk afgekoeld. Het zijn dus niet de meest alledaagse omstandigheden, maar in
een laboratorium kunnen ze gerealiseerd worden. Het is onder deze omstandigheden dat de
electronen eigenaardige toestanden vormen, die zich nog het beste laten vergelijken met een
vloeistof, echter wel een zeer eigenaardige vloeistof.

Om de vreemde eigenschappen van deze vloeistoffen duidelijk te maken, zal ik eerst
een experiment beschrijven dat reeds aan het eind van de19de eeuw werd uitgevoerd. Men
neemt een dunne strip metaal, bijvoorbeeld van koper. Deze strip wordt in een magneetveld
geplaatst, en er wordt een stroom door deze strip gestuurd (zie figuur S.1 voor een schema-
tisch overzicht). Merk op dat in dit experiment de electronen in alle drie richtingen kun-
nen bewegen. De stroom door de strip gaat gepaard met eenspanningsverschilVL in de
richting van de stroom, zoals gebruikelijk is voor normale metalen. Echter, door het mag-
neetveld onstaat er ook een spanningsverschilVH in de richting loodrecht op de stroom,
de Hall spanning, genoemd naar de ontdekker Edward H. Hall [53]. Deze Hall spanning
wordt veroorzaakt doordat de electronen door het magnetisch veld naaréén kant van de
strip worden afgebogen en er dus een ladingsverschil tussen beide kanten van de strip wordt
opgebouwd. Als het magneetveld sterker wordt gemaakt worden de electronen sterker afge-
bogen, en daarmee wordt ook de Hall spanning groter (en wel recht evenredig); in formule

VH = cB , (S.1)
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Figure S.2: Weerstands metingen aan een quantum Hall sample

waarbijc een constante is die onder meer afhangt van de dichtheid van de electronen. Dit
effect wordt het (klassieke) Hall effect genoemd.

Nu kunnen we de overstap maken naar de vloeistoffen die electronen kunnen vormen in
samples waarin de electronen zich daadwerkelijk in een plat vlak bewegen. Deze vloeistof-
fen kunnen alleen ontstaan bij zeer lage temperatuur, minder danéén graad boven het abso-
lute nulpunt. Bovendien moet het magneetveld zeer sterk zijn, zo’n miljoen maal zo sterk
als het magnetisch veld van de aarde. Als we onder deze omstandigheden dezelfde soort
metingen doen als E.H. Hall, dan vinden we iets opmerkelijks. De Hall spanning vertoont
een heel ander beeld, er treden plateaus op, zoals te zien is in figuur S.2. De waarde van
het Hall geleidingsvermogen (gegeven doorσH = 1

RH
= VH

I ) op deze plateaus is zeer
bijzonder, namelijk

σH =
p

q

e2

h
, (S.2)

waarbijp een geheel getal is enq een oneven getal.e is de electrische lading, terwijlh de
constante van Planck is; beide zijn natuurconstanten. Dus de waarde van de Hall geleiding is
een eenvoudige breuk vermenigvuldigd met natuurconstanten. Belangrijk om op te merken
is dat dit gedrag voor verschillende samples, die qua details van elkaar kunnen verschillen,
hetzelfde is. Ook de vorm van het sample is hierbij niet van belang, in tegenstelling tot
klassiekesystemen, waarin de geleiding sterk afhangt van de vorm van het systeem. Behalve
de plateaus die waargenomen worden in de Hall weerstand, gaat de longitudinale weerstand
bij dezelfde waardes van het magneetveld naar nul; het is alsof de stroom ongehinderd door
het sample kan lopen, een effect dat lijkt op het gedrag van supergeleiders. Voor hetinteger
quantum Hall effect, ontdekt in 1980, geldt datq = 1. In het geval datq > 1, maar
wel geheel, spreken we van hetfractionelequantum Hall effect. Om dit effect te kunnen
verklaren is het van essentieel belang dat de electron interacties worden meegenomen in de
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beschrijving. De toestanden die de electronen vormen onder deze omstandigheden worden
ook welquantumvloeistoffengenoemd.

De quantumvloeistoffen die de quantum Hall systemen beschrijven metp = 1 en q
een oneven geheel getal zijn bedacht en onderzocht door R.B. Laughlin en worden Laugh-
lin toestanden genoemd. Zoals bij normale vloeistoffen ook het geval is, zijn deze quan-
tumvloeistoffen moeilijk samen te drukken. Een andere analogie die met gewone vloeistof-
fen getrokken kan worden is het bestaan van golven aan het oppervlak van vloeistoffen.
Voor de quantumvloeistoffen in twee dimensies kan een soortgelijk verschijnsel optreden,
maar dan aan de rand van het sample. Dit soort golven noemen weexcitatiesvan het sys-
teem.

De eigenschappen van deze excitaties zijn niet te vergelijken met de eigenschappen van
gewone golven. De quantumvloeistoffen zijn opgebouwd uit electronen, die geladen zijn.
Echter, de lading die kan worden toegekend aan de excitaties is een slechts een fractie van
de lading van de electronen. In het geval van de Laughlin toestanden is de lading1

q maal de
lading van het electron. Deze fractionele lading is waargenomen in experimenten, waarbij
de excitaties van een kant van het sample naar de ander kanttunnelen. Hierbij veroorzaken
de excitaties ruis, die vergeleken kan worden met de ruis die te horen is er hagelstenen
vallen op een dak. De lading van de excitaties is van invloed op de ruis. Door deze ruis te
onderzoeken is de lading van de excitaties gemeten, en deze blijkt inderdaad een fractie te
zijn van de electronlading.

Ook binnen de quantumvloeistof kunnen geladen excitaties voorkomen; wederom kan
deze lading een fractie zijn van de lading van het electron. Deze excitaties, of ook wel
quasideeltjes, kunnen, althans in theorie, gecreëerd worden door locaal het magneetveld
langzaam iets te verhogen. Het gevolg is dat de electronen zich ‘een beetje’ van deze plaats
vandaan bewegen, en er een gat achter blijft. De lading van dit gat hangt nauw samen met
het geleidingsvermogen op van het systeem, dat gegeven wordt door vergelijking (S.2). Zo
is bijvoorbeeld de lading van deze deeltjes voor het systeem metp/q = 1/3 gelijk aan1/3
maal de lading van het electron. Dat er quasideeltjes kunnen bestaan met een lading die
kleiner is dan de lading van de electronen die de toestand opbouwen kan alleen doordat heel
veel electronen tezamen een toestand vormen, en als het ware samen werken om dit gedrag
voor elkaar te krijgen.

Een andere, zeer belangrijke eigenschap van deze quasideeltjes is dat zetopologisch
zijn. Dat houdt in dat hun aanwezigheid het gehele sample op een globale manier veran-
derd, en niet alleen in de buurt waar deze deeltjes zich bevinden. Het gevolg is dat kleine
verstoringen in het systeem de eigenschappen van de quasideeltjes niet kunnen veranderen.
Bovendien is de statistiek die we aan deze deeltjes toekennen bijzonder. Deze statistiek
zit als het ware in tussen de statistiek van electronen, die elkaar volledig uitsluiten, en de
golven, die ongehinderd op dezelfde plaats kunnen komen.

Lange tijd is het zo geweest dat het fractionele quantum Hall effect alleen werd waar-
genomen met plateaus waarbij het geleidingsvermogen gegeven wordt door formule (S.2),
waarbijq een oneven getal is. Dit is ook duidelijk terug te zien in figuur S.2. Het feit datq in
al deze gevallen oneven is, is gerelateerd aan een fundamentele eigenschap van electronen,
namelijk het uitsluitingsprincipe. Groot was dan ook de verbazing toen er een quantum Hall
effect alleen werd waargenomen bij een waarde vanp

q = 5
2 , zie figuur 1.2 op pagina 15.

Tegenwoordig wordt dit begrepen door aan te nemen dat in deze toestanden de electro-
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nen als het ware paren vormen (ondanks het feit dat electronen elkaar afstoten). Voor deze
paren geldt het uitsluitingsprincipe niet, en deze paren kunnen een toestand vormen die op-
treedt bij de waargenomen waarde van het geleidingsvermogen. Deze toestand is bedacht
door G. Moore en N. Read, en wordt wel de Moore-Read toestand genoemd.

Het is gebleken dat de quasideeltjes die in deze toestand voor kunnen komen speciale
eigenschappen hebben. Net zoals de quasideeltjes in de Laughlin toestanden hebben de
quasideeltjes een lading die een fractie (namelijk1/4) van de lading van het electron is.
Belangrijker is echter een eigenschap die weontaardingnoemen. Dit houdt in dat het
plaatsen van identieke quasideeltjes op bepaalde posities op verschillende manieren kan
gebeuren. Stel we plaatsen vier quasideeltjes (op vier vaste plaatsen), dan blijkt dit op
twee verschillende manieren kan worden gedaan. Laten we deze twee manieren voor het
gemak ‘rood’ en ‘blauw’ noemen. Door nu meerdere quasideeltjes achtereenvolgens om
elkaar heen te draaien (om daarna weer uit te komen op de oorspronkelijke posities) kan
het zo zijn dat het systeem overgegaan is van ‘rood’ naar ‘blauw’. De volgorde waarin
het de deeltjes om elkaar zijn gedraaid is van belang voor de uiteindelijke uitkomst. Dit
zeer opmerkelijke gedrag (dat volgt uit de theoretische beschrijving van de toestand, en
(nog) niet is waargenomen), komt niet voor bij de quasideeltjes die horen bij de Laughlin
toestand. De mogelijkheid voor dit gedrag komt, uiteindelijk, voort uit het gegeven dat de
electronen paren gevormd hebben. Ook het feit dat we systemen bekijken in twee dimensies
onder invloed van een sterk magneetveld is van essentieel belang.

Met deze toestand zijn we aanbeland bij het onderzoek dat ik tijdens mij promotie heb
gedaan. Dit gaat ook over speciale toestanden waarbij de electronen paren, of meer al-
gemeen, clusters vormen. We hebben onderzocht welke toestanden er, in principe, mo-
gelijk zijn. Het is gebleken dat de spin van het electron verschillende toestanden mogelijk
maakt. Van de toestanden die we gevonden hebben, hebben we de eigenschappen in kaart
gebracht. Hierbij hebben we speciaal gelet op de eigenschappen van de quasideeltjes, om-
dat deze afwijkend zijn van de ‘normale’ quasideeltjes in quantum Hall systemen. Eigen-
schappen waar we speciaal naar gekeken hebben zijn de topologische eigenschappen van
de quasideeltjes, en ook de ontaarding, zoals die ook optreedt bij de toestand die hierboven
is beschreven. Een van de mooie resultaten, die in het geval van de Laughlin toestanden
al bekend was, is dat de topologische eigenschappen nauw verbonden zijn met de statistiek
van de deeltjes. Deze statistiek op zijn beurt is weer nauw verbonden met de ontaarding.
Deze verbanden hebben het mogelijk gemaakt om expliciete formules af te leiden die de on-
taarding van de toestanden, waarin zich quasideeltjes bevinden, beschrijven. Het mooie is
dat deze ontaardingen ook uit computersimulaties gehaald kunnen worden. Het is gebleken
dat de resultaten van de computerberekeningen perfect overeen komen met de formules die
gegeven worden in hoofdstuk 6.

Ondanks dat de meeste toestanden die in dit proefschrift beschreven zijn, (nog?) niet
zijn waargenomen, is het onderzoek ernaar belangwekkend, omdat deze toestanden eigen-
schappen hebben, die nieuw zijn in quantum Hall systemen. Ook voorzien ze in mogelijke
systemen, waarin deeltjes voorkomen met vormen van statistiek die nog niet zijn waargeno-
men. Dit onderzoek is dus niet zozeer van praktisch nut geweest, maar heeft wel bijgedragen
aan het begrip van de mogelijke toestanden van materie die in de natuur voor kunnen komen.
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