




On Aspects of Anyons and Quantum Graphs

Babak Majidzadeh Garjani





On Aspects of Anyons and Quantum Graphs

Babak Majidzadeh Garjani



ISBN Print 978-91-7649-813-2
ISBN PDF 978-91-7649-814-9
pp. i-xx, 1-107 c© Babak Majidzadeh Garjani, June 2017

Printed by Universitetsservice US-AB, Stockholm, Sweden, 2017

Typeset in pdfLATEX



This thesis is dedicated to my wife, Shadi





Abstract

This thesis consists of two distinct parts. The first part, based on the first
two accompanied papers, is in the field of topological phases of matter and the
second part, based on the third accompanied paper, looks at a problem in the
field of quantum graphs, a rapidly growing field of mathematical physics.

First, we investigate the entanglement property of the Laughlin state by
looking at the rank of the reduced density operator when particles are divided
into two groups. We show that the problem of determining this rank trans-
lates itself into a question about symmetric polynomials, namely, one has to
determine the lower bound for the degree in each variable of the symmetric
polynomials that vanish under a transformation that clusters the particles into
groups of equal size and then brings the particles in each group together. Al-
though we were not able to prove this, but we were able to determine the lower
bound for the total degree of symmetric polynomials that vanish under the
transformation described above. Moreover, we were able to characterize all
symmetric polynomials that vanish under this transformation.

In the second paper, we introduce a one-dimensional model of interacting
su(2)k anyons. The specific feature of this model is that, through pairing terms
present in the Hamiltonian, the number of anyons of the chain can fluctuate.
We also take into account the possibility that anyons hop to empty neighbor-
ing sites. We investigate the model at five different points of the parameter
space. At one of these points, the Hamiltonian of the model becomes a sum of
projectors and we determine, for odd values of k, the explicit form of all the
zero-energy ground states. At the other four points, the system is integrable
and we determine the behavior of the model at these integrable points. In par-
ticular, we show that the system is critical and determine the conformal field
theories describing the system at these points.

It is known that there are non-Hermitian Hamiltonians whose spectra are
entirely real. This property can be understood in terms of a certain symmetry
of these Hamiltonians, known as PT -symmetry. It is also known that the spec-
trum of a non-Hermitian PT -symmetric Hamiltonian has reflection symmetry
with respect to the real axis. We then ask the reverse question that whether or
not the reflection symmetry of a non-Hermitian Hamiltonian necessarily implies
that the Hamiltonian is PT -symmetric. In the context of quantum graphs, we
introduce a model for which the answer to this question is positive.





Svensk Sammanfattning

Denna avhandling består av två olika delar. Den första delen, som är baserad på
de första två bifogade pappren, handlar om topologiska materiefaser. Den an-
dra delen, som är baserad på det tredje bifogade pappret, handlar om ett prob-
lem angående kvantgrafer, som är ett snabbt växande område inom matematisk
fysik.

I det första pappret tittar vi på sammanflätningsegenskaper för Laughlin-
tillståndet, genom att undersöka den reducerade täthetsmatrisen när man delar
upp partiklarna i tillståndet i två olika grupper. Mer specifikt tittar vi på ma-
trisrangen av täthetsmatrisen. Vi visar att för att beräkna rangen, är detta
likvärdigt med ett visst problem som handlar om symmetriska polynom. Mer
precist måste man hitta den lägsta möjliga graden av en variabel för ett poly-
nom, som blir noll när man grupperar variablerna i lika stora grupper, och man
sätter alla variabler i en grupp lika med varandra. Även om vi inte lyckades med
att lösa det här problemet, lyckades vi med att visa vad den minimala totala
graden av en sådant polynom är. Dessutom lyckades vi med att karakterisera
polynom av den här typen.

I det andra pappret introducerar vi en en-dimensionell modell av väx-
elverkande anyoner av typ su(2)k. Specifikt för den här modellen är att antalet
anyoner kan fluktuera, via en parbildningsterm. Anyonera kan också flytta sig
till en angränsande position, om den är tom. Vi undersöker den här modellen i
fem olika punkter i parameterrummet. Vid en av dessa punkter kan man skriva
Hamiltonianen som en summa av projektorer, och vi hittade alla grundtillstånd
med noll energi för udda k. Vid de andra fyra punkter är modellen exakt lös-
bar, och vi undersökte beteendet av modellen vid de här punkterna. Vi visade
att modellen är kritsik, och vi bestämde den konforma fältteori-beskrivningen.

Det är känt att det finns icke-Hermitska Hamiltonianer, som har reella spek-
tra. Den här egenskapen kan förklaras med hjälp av en viss symmetri, känd
som PT -symmetri. Det är också känt att spektrumet hos en PT -symmetrisk
Hamiltonian är symmetriskt med avseende på den reella axeln. Vi frågar oss
nu om det motsatta också är sant: om man har en icke-Hermitsk Hamiltonian,
som har ett spektrum som är symmetriskt med avseende på den reella axeln,
har den här Hamiltonianen då automatisk PT -symmetri? Vi introducerar en
modell i området kvantgrafer, för vilken vi visar att svaret på den här frågan
är positivt.
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Chapter 0

Introduction and Outline

0.1 Introduction

The first part of this thesis is based on the first two accompanied papers.
Generally speaking, the objects of interest in each one of these papers are
particles called anyons. In the first paper our focus is on Abelian anyons and
in the second paper our focus is on a model of non-Abelian anyons. In the next
few lines we describe these terms first.

As the reader might know from her quantum mechanics courses, the ele-
mentary particles of the universe in which we, apparently, live—the universe
with one temporal dimension and three spatial ones—fall into two categories.
An elementary particle is either a boson or a fermion. The argument to explain
this goes along the following lines.

Consider a system consisting of two identical elementary particles, described
by the wave-function ψ(r1, r2). Rotate the particles by 180◦ about the mid-
point of the line-segment joining them. This gives rise to an exchange of the
two particles. Since the particles are assumed to be identical, exchanging them
must not affect the expectation value of any dynamical variable associated with
the system. This then implies that

|ψ(r1, r2)|2 = |ψ(r2, r1)|2, (1)

or, equivalently,
ψ(r1, r2) = eiπθ ψ(r2, r1), (2)

for some real θ in the interval [0, 2). Continuing the rotation of the particles
for another 180◦ around the same point and in the same direction, the system
returns to its initial state and, therefore,

ψ(r1, r2) = e2iπθ ψ(r1, r2). (3)

Thus, there are two possibilities for θ, namely, θ ≡ 0, 1 (mod 2). The possibility
θ = 0 corresponds to bosons and θ = 1 corresponds to fermions. Since zero and
one are both integers, bosons and fermions are said to obey integer statistics.

However, if we lived in a universe with one temporal dimension and only
two spatial ones, the above innocent argument—as was first mentioned by
Jon Magne Leinaas and Jan Myrheim [LM77] and later by Frank Wilczek
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Figure 0.2: Braiding of two anyons in 2D. (Figure by Eddy Ardonne)

of that particular type of anyon. The process in which one anyon goes around
another anyon is called braiding. To be more precise, the anyons described
above, for which braiding two of them gives rise to a non-trivial phase factor
for the corresponding wave-function, are called Abelian anyons, since the phases
in this case, which are just complex numbers, commute.

There is another type of anyons, called non-Abelian anyons, for which dif-
ferent braidings do not in general commute. To explain this, consider a (2+1)-
dimensional system consisting of a number of identical particles at fixed posi-
tions. Moreover, assume that this state is not unique but, say, d-fold degenerate
and also assume that the system is gapped. This state then can be considered
as a d-dimensional column vector. Now consider an adiabatic process in which
some of these particles are braided around each other such that the final po-
sitions of particles are the same as the initial positions of particles. Although
the adiabatic theorem implies that the final energy of the system is the same
as the initial energy of the system, but it cannot guarantee that the system
ends up in exactly the same state that it started from. The most thing that
the adiabatic theorem asserts is that the system ends up in a state that is
a linear combination of the d degenerate states. In which state the system
will end up, depends on the topology of the knot of the braiding processes.
Therefore, braiding process can be considered as a matrix acting on the initial
d-dimensional state vector. Since, in general, two matrices do not commute,
these kind of anyons are called non-Abelian.

In the first paper, we look at the entanglement properties of the Laughlin
state, which hosts the Abelian anyons. In the second paper, we consider a one-
dimensional model of a chain of non-Abelian anyons and investigate some of
its properties. In particular, we investigate the model at four integrable points
and determine the exact zero-energy ground states at another point.

In the second part of this thesis, which is based on the third accompanied
paper, we look at an axiom of quantum mechanics which asserts that the phys-
ical observables are represented by Hermitian operators. This axiom is in fact
a mathematical sufficient condition that guarantees the reality of the spectrum
of the physical observable that the Hermitian operator represents, which is of



4 Chapter 0. Introduction and Outline

course expected to be the case for a physical theory. However, the Hermiticity
of the operators in quantum mechanics is not a necessary condition for the
spectrum of the operator to be a subset of real numbers.

In this part, we first express the fact that there are non-Hermitian linear
operators whose spectra are entirely real. One simple example in this regard is
the non-Hermitian “Hamiltonian” H defined by:

H = P 2 + iX3, (5)

where P is the momentum operator and X is the position operator. The fact
that the spectrum of H is entirely real and positive was first conjectured by
Bessis and Zinn-Justin in 1998. Soon afterwards, Bender and Boettcher con-
firmed this numerically to a very high accuracy [BB98]. Finally, in 2001, a proof
for this conjecture was given by Dorey et al [DDT01]. Bender and Boettcher
associated the reality of the spectrum of H, despite of its non-Hermiticiy, to a
symmetry possessed by H, namely, PT symmetry, where P and T are the (lin-
ear) parity and the (anti-linear) time-reversal operators, respectively. A Hamil-
tonian H is called PT -symmetric if it commutes with PT , that is, [H,PT ] = 0.
We see that the spectrum of a PT -symmetric Hamiltonian, either Hermitian
or non-Hermitian, has reflection symmetry with respect to the real axis of the
complex energy plane, namely, the eigenvalues are either real or come in con-
jugate pairs. The last statement gives rise to a natural question, namely, if the
spectrum of a non-Hermitian Hamiltonian H has reflection symmetry with re-
spect to the real axis, does this imply that H is PT -symmetric? Investigating
if this opposite statement holds is harder. In the third accompanied paper, we
investigate this question in the context of quantum graphs. A quantum graph
is a graph-like object equipped with a differential operator together with a set
of boundary conditions, called vertex conditions. In this paper, we consider
a simple model, namely, a equilateral quantum star-graph equipped with the
Laplacian as the operator acting on it, subject to such vertex conditions that
make the Laplace operator non-Hermitian. We show in this paper that the
answer to the question above is positive for this model.

0.2 Outline of the Thesis

This thesis contains two distinct parts A and B. Part A, which includes four
chapters, starts by a chapter on the integer and fractional quantum Hall ef-
fects. It introduces the trial wave-function proposed by Laughlin to explain
the fraction quantum Hall effect, and also introduces Abelian and non-Abelian
quantum Hall states, corresponding to Abelian and non-Abelian anyons, respec-
tively. This chapter provides the physical background necessary for Chapter 2.

Chapter 2, which is based on the first accompanied paper [GEA15], is de-
voted to the entanglement property of a fractional quantum Hall system mod-
eled by the Laughlin state and subject to a decomposition scheme, known as
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the particle-cut. The notion of interest in this chapter is the rank of the re-
duced density operator corresponding to the smaller subsystem when the larger
subsystem is traced out. In Chapter 2, we relate this rank to the number of
summands present in the sum (2.49), which presents a weak-Schmidt decompo-
sition form for the Laughlin state Ψm, and reduce the problem of determining
this rank to proving that this sum is indeed a weak-Schmidt decomposition
of the corresponding Laughlin state. Then we reduce this latter problem to
determining a lower bound for the degree, in each variable, of symmetric poly-
nomials that vanish under a linear transformation, which we call the clustering
transformation.

Chapter 3 is devoted to the general theory of anyons and treats the subject
on an abstract level. It discusses the notions of fusion rules, F-symbols and
R-symbols, and general aspects of the Hilbert spaces corresponding to anyon
models. It also contains concrete examples regarding these concepts. Essen-
tially, this chapter provides the necessary tools needed for the next chapter.

Chapter 4 describes the main content of the second accompanied paper
[GA17]. It introduces a one-dimensional chain of non-Abelian su(2)k anyons.
The model considered in this chapter includes terms in its Hamiltonian that
allow for spin-1/2 anyons to interact, a spin-1/2 anyon can hop to the adjacent
empty site, and a pair of spin-1/2 anyons can be created out of the vacuum or a
pair of spin-1/2 anyons can annihilated into the vacuum. The latter possibility
is actually a characteristic feature of our model. In this chapter, we analyze the
model at five different points of the parameter space. At one of these points,
the Hamiltonian of the model becomes a sum of projection operators, where
we are able to determine the explicit form of all zero-energy ground states of
the model. We continue our analysis of the model in the subsequent sections
and determine four other points of the parameter space at which the system is
integrable. This we do by mapping our model onto a restricted solid-on-solid
model investigated in [WNS92]. We also discuss the criticality of the system
at these integrable points.

Part B of the thesis includes a single chapter and that is Chapter 5. This
chapter, which is based on the third accompanied paper [KMG17], starts with
an introduction to the notion of PT -symmetric quantum mechanics. There
we see that there are non-Hermitian PT -symmetric Hamiltonians whose spec-
tra are entirely real. There we also see that it is a feature of PT -symmetric
Hamiltonians that their spectrum have reflection symmetry with respect to
the real axis in the energy complex plane. In the context of quantum graphs,
which is introduced in the same chapter, we construct a simple model of a
non-Hermitian operator whose spectrum has this reflection symmetry and we
show that the Hamiltonian is indeed PT -symmetric, where T is the anti-linear
complex-conjugation operator and P is an edge-permuting symmetry of the
graph.





Part A

The Quantum Hall Effect and Anyon Chains





Chapter 1

The Quantum Hall Effect, Abelian and Non-Abelian Anyons

The outline of this chapter is as follows. Section 1.1, after recalling Landau’s
theory of symmetry breaking to explain the phase transition, introduces the
integer and fractional quantum Hall effects. In this section, the fractional
quantum Hall state is introduced as a new phase of matter, namely, the topo-
logical phase. Section 1.2 starts with the classical Hall effect and points the
relation between the classical and quantum Hall effects. Section 1.3 is devoted
to the quantum mechanical investigation of an electron in two spatial dimen-
sions subject to a uniform perpendicular magnetic field, that is, the well-known
problem of Landau levels. Section 1.4 introduces the Laughlin wave-function
and explains how Laughlin came to this approximate wave-function to describe
the FQHE. In Section 1.5, the Laughlin quasi-holes with fractional charge and
statistics. The last section introduces non-Abelian quasi-holes. This chapter,
except Section 1.6, is based on [MG15].

1.1 Topological Phase and Topological Order

From personal experience, we know that matter is found in three different
states or phases, namely, solid, liquid, and gas. For example, a bunch of water
molecules can be found in all these three states as ice, liquid water, and steam.
Cooling an amount of liquid water down to its freezing temperature transforms
it into solid ice. The liquid phase transforms to the solid phase and it is said
that a phase transition has occurred. Although a full description of these states
needs quantum physics as well, but these three states traditionally belong to a
category called classical states of matter. Another important phase of matter
is the ferromagnetic phase, which is already known from the time of Ancient
Greek in the form of permanent magnets. At high temperatures, the magnetic
moments of a magnetic material are disordered and the average magnetic mo-
ment is zero. Cooling the material down to the temperature known as the Curie
temperature, the magnetic moments align and the average magnetic moment
does no longer vanish and the material is said to be in the ferromagnetic phase.
Other examples of phases of matter are the superfluid, the superconducting,
and the liquid crystal phases.

What distinguishes these phases from each other is their internal structure,
which is referred to as the internal order. Consider a monatomic gas as an
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example. The interaction between atoms is almost zero and, therefore, each
atom is moving without being affected by the motion of other atoms. Thus,
one can say that the gaseous state is a very disordered one and that the gas is
symmetric under a translation with respect to any vector of an arbitrary mag-
nitude and direction. At low temperatures, the kinetic energy of atoms is lower
and the interaction of atoms becomes more important. Hence, the motion of
any individual atom influences others and a regular pattern known as a crystal
or lattice is formed. This lattice is symmetric with respect to only those trans-
lations whose corresponding vector is an integer multiple of the lattice vector.
This then means that the continuous translational symmetry is broken to a dis-
crete translational symmetry. In the ferromagnetism phenomenon mentioned
earlier, at high temperatures, the system has a continuous rotational symmetry
known as SO(3) symmetry. Below the Curie temperature, however, the mag-
netic moments of the system align and this gives rise to a non-zero magnetic
moment and the ferromagnetic state emerges. In this case the SO(3) rotational
symmetry is broken to the SO(2) symmetry.

Taking into account the relation between the internal order and the sym-
metries underlying various phases of matter, Russian physicist Lev Landau
developed a theory, Landau’s theory of phase transition, to explain all different
phases of matter, known at the time, and transitions between them. The main
idea underlying Landau’s theory is the idea of symmetry breaking. Roughly
speaking, this idea expresses that, in a phase transition from some disordered
phase to a more ordered one, some symmetry is lost. In this theory, the notion
of the local order parameter plays a crucial role. In the ordered phase, the
order parameter takes a finite value, while its value is zero in the disordered
phase. In the case of ferromagnetism, for example, the magnetization plays the
role of the local order parameter.

Landau’s theory was very successful in explaining different phases of matter
and the transitions between them. However, by the discovery of the quantum
Hall effects in the early 80s, it became clear that Landau’s theory does not
capture all phases of matter. In 1980, the German physicist Klaus von Klitz-
ing found out that, at low temperatures and strong magnetic fields, the Hall
resistance of a two-dimensional electron gas—in contrast to what one would
expect classically as it is explained in Section 1.2—does not vary smoothly
proportional to the strength of the magnetic field and changes in steps showing
a pattern of plateaus [KDP80]. It turned out that the Hall resistance ρH of
these plateaus can be expressed as ρH = h/(νe2), where e is the electric charge
of the electron, h is the Planck constant, and ν, to a very high accuracy, is an
integer. This phenomenon is known as the integer quantum Hall effect (IQHE).
For this discovery, von Klitzing received the 1985 Nobel Prize in physics. Two
years later, Horst L. Störmer and Daniel Tsui at Bell labs, doing essentially the
same kind of experiments at a very low temperature of about 1K and a very
strong magnetic field of about 30T and on a much cleaner sample, discovered
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a topological phase of matter is called a topological order [Wen95]. Recognizing
that a given phase is a topological phase is, in general, not easy. One manifes-
tation of a topological phase is that the ground state of a topological phase is
degenerate and the order of this degeneracy depends on topological properties,
such as the genus, of the surface on which the system is set up [Wen95].

The first successful theoretical explanation of the FQHE was given by
Robert Laughlin from the Stanford University in 1983 [Lau83]. As is explained
in Section 1.4, his idea was based on introducing an approximate trial wave-
function that captured the important aspects of the physics underlying a FQH
system.

1.2 From Classical to Quantum Hall Effect

In 1879 Edwin Hall, a graduate physics student at Johns Hopkins University,
observed that if a thin strip of a conducting material that carries a longitudi-
nal electric current is subject to a perpendicular uniform magnetic field B, a
transverse voltage appears [Hal79]. To explain this from the classical-physics
point of view, consider a thin strip of a conducting material lying on the x1Ox2

plane and carrying a longitudinal electric current along the positive direction
of the Ox2 axis. When a uniform magnetic field B in the positive direction
of the Ox3 axis is turned on, the electrons in the strip are affected by the
Lorentz force F = ev ×B that lies on the plane of the strip perpendicular to
its length. Here, e (e < 0) is the electric charge of the electron and v is its
velocity. Under this force, electrons begin to accumulate on one longitudinal
edge of the strip, giving rise to a transverse voltage. This continues until the
magnetic force on the electrons is balanced by the force exerted on them due
to the so-called Hall electric field EH, created by the transverse voltage. At
this point, the electrons flow along the strip without being disturbed by any
transverse acceleration and,

ev ×B + eEH = 0. (1.1)

In this context, the transverse resistivity ρ12 is known as Hall resistivity and
it is denoted by ρH. To see how classical physics relates the Hall resistivity to
the magnitude B of the magnetic field, consider the current density:

j = nev, (1.2)

where n is the number-density of the electrons in the strip. The two components
EH,1 and EH,2 of the Hall electric field are related to the components of j,
through the resistivity tensor ρ = [ρμν ]2×2, according to

EH,μ =
2∑

ν=1

ρμνjν . (1.3)
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For this problem it is straightforward to see that:

ρ =
B

ne

[
0 −1
1 0

]
. (1.4)

Therefore, classical physics predicts that ρ12 is proportional to the magnitude
of the magnetic field according to the following equation:

ρ12 =
B

n|e|
, (1.5)

and the longitudinal resistivities ρ11 and ρ22 vanish. By taking the inverse of
the resistivity tensor in Eq (1.4), the conductivity tensor σ is found to be

σ =
ne

B

[
0 1
−1 0

]
. (1.6)

In contrast, by doing measurements on a silicon MOSFET (metal-oxide-
semiconductor field effect transistor), von Klitzing found that the Hall resis-
tance does not follow the classical predictions [KDP80]. It was revealed that
increasing the magnetic field on some intervals does not affect the Hall resis-
tivity ρH and the Hall resistivity remains constant on these intervals. In other
words, the graph of ρH versus the magnetic field B shows plateaus. However,
as in the classical case, on these plateaus the longitudinal resistivity is zero, as
is shown in Fig. 1.1. It is also measured, to a very high accuracy, that the Hall
resistance ρH on each plateau obeys the following simple relation:

ρH =
1

ν

h

e2
, (1.7)

where h is the Planck constant and ν is either an integer or a simple fraction.
The Hall conductance then is:

σH = ν
e2

h
, (1.8)

and, consequently, on the plateaus, Eqs. (1.4) and (1.6) must be corrected as
follows:

ρ =
1

ν

h

e2

[
0 −1
1 0

]
, σ = ν

e2

h

[
0 1
−1 0

]
. (1.9)

As mentioned earlier, depending on ν being an integer or a simple fraction,
the phenomenon is known as the integer or fractional quantum Hall effect,
respectively.
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1.3 Landau Levels and Quantum Hall Effects

As mentioned before, the corner stone of the theoretical understanding of the
integer and fractional quantum Hall effects is the quantum-mechanical treat-
ment of one single electron in two spatial dimensions and in a perpendicular
magnetic field. Consider an electron of mass me and the electric charge e
subject to a uniform strong§ magnetic field of magnitude B along the positive
direction of the Ox3 axis. Assume also that the electron is somehow confined
to move in the x1Ox2 plane¶. The corresponding Hamiltonian is

H =
1

2me
(p− eA)

2
, (1.10)

where c is the speed of light, p = −i�∇ is the momentum operator, and A is
the vector potential related to the magnetic field through:‡

εij∂
iAj = B. (1.11)

The general solution of the equation above is:

Ai = −B

2

(
εijxj − ∂iξ

)
, (1.12)

where ξ is an arbitrary scalar function that fixes the gauge. It turns out that
the allowed energy values for the electron are, as in the case of the harmonic
oscillator, evenly spaced and are given by:

En = �ωc

(
n+

1

2

)
, (1.13)

where the quantum number n is a non-negative integer and the cyclotron fre-
quency ωc is given by

ωc =
|e|B
me

· (1.14)

These energy levels are known as the Landau levels (LL)s in the honor of Lev
Landau who, in 1930, solved the problem for the first time [Lan30]. The first
energy level E0 = 1/2�ωc is called the lowest Landau level (LLL). Although
the energy levels are independent of the gauge chosen, but, in general, the form
of the corresponding wave-functions does depend on the gauge.

§Strong magnetic field makes the chance of finding the electron with an anti-aligned spin
so small that, in practice and at least to first approximation, one can safely ignore the spin
degree of freedom of the electron.

¶In practice, this can be done, for example, by cooling a sample consisting of an interface
of an insulator and a semi-conductor down to almost absolute zero.

‡ε11 = ε22 = 0, and ε12 = −ε21 = 1.
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In the symmetric gauge, that is, the gauge for which ξ in Eq. (1.12) is chosen
to be zero, the wave-functions corresponding to the nth Landau level expressed
in complex coordinates are given by:

ψl,n(z) =

√
n!

2π2l(l + n)!
zl Ll

n

( |z|2
2l2B

)
exp

(
− |z|2

4l2B

)
· (1.15)

In this equation, l is an integer not less than −n, Ll
n is the associated Laguerre

polynomial, z = x1 + ix2 where (x1, x2) are the Cartesian coordinates of the
electron, and

lB =

√
�

|e|B · (1.16)

The number lB has the dimension of length and it is called the magnetic length,
which can be considered as the natural length scale of the system.

In the symmetric gauge, the third component L3 of the angular momentum
commutes with the Hamiltonian (1.10) and it turns out that for a given value
of n the wave-function ψl,n(z) in Eq. (1.15) is also an eigenstate of L3 with the
eigenvalue l�. Note that in complex coordinates

L3 = �(z∂ − z̄∂̄), (1.17)

where z̄ is the complex conjugate of z and

∂ :=
∂

∂z
=

1

2
(∂1 − i∂2),

∂̄ :=
∂

∂z̄
=

1

2
(∂1 + i∂2).

(1.18)

Since l in Eq. (1.15) can take any integer value greater than or equal to −n,
each LL is infinitely degenerate. This is a notable characteristic of this problem.
This infinite degeneracy is the consequence of not considering any constraint on
the electron except that it is limited to move in the x1Ox2 plane. However, in
practice one always deals with a sample of finite size that confines the electron’s
motion to a finite region of the x1Ox2 plane. Finiteness of the sample, as the
following argument shows, puts an upper bound on the degeneracy of the LLs.

For simplicity, we consider only the LLL, where the wave-functions corre-
spond to n = 0 in Eq. (1.15), that is,

ψl,0(z) =
1√

2π2ll!
zl exp

(
− |z|2

4l2B

)
, l = 0, 1, 2, . . . . (1.19)

By calculating the derivative of |ψl,0(z)|2 for a given non-negative integer l, it
is seen that the maximum value of this function occurs at the points lying on
the circle of radius

√
2llB centered at the origin. Hence, for a circular sample
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of radius R, one should not consider the states ψl,0(z) with
√
2llB > R and the

degeneracy of LLL is

lmax =
R2

2l2B
· (1.20)

This degeneracy can also be written as

lmax =
πR2

2πl2B
=

πR2B

2πl2BB
=

Φ

Φ0
· (1.21)

Here Φ is the magnetic flux penetrating through the sample and Φ0 is the flux
quantum defined as

Φ0 =
h

|e| · (1.22)

The ratio Φ/Φ0 is then the number of flux quanta and it is denoted by NΦ

(NΦ = lmax). Another ratio of particular interest in the context of quantum
Hall physics is the filling factor νf . It is defined by

νf =
N

NΦ

, (1.23)

where N denotes the number of electrons in the sample. This ratio can be
expressed in a different way related to the geometry of the sample. From the
discussion above, it is seen that to any value l� (0 � l � lmax) of the angular
momentum, one can associate a circle of radius Rl =

√
2llB centered at the

origin. The area ΔS encircled by the two concentric circles corresponding to
two consecutive values l and l + 1 of the angular momentum is:

ΔS = πR2
l+1 − πR2

l = 2πl2B . (1.24)

Hence, from Equations (1.21) and (1.23), one gets:

νf =
NΔS

S
· (1.25)

It turns out that νf is equal to ν that appeared in the relation for the Hall
resistivity and, therefore, from now on we denote it simply by ν.

Now let us look back at the integer and fractional quantum Hall effects. It is
clear that, for an integer value of ν, the ground state of a quantum Hall system
is the state corresponding to the case in which all the first ν Landau levels
are completely filled§ and, hence, the ground state is a non-degenerate state.
In this case, since the system is gapped and the typical Coulomb repulsion
between electrons is of order e2/lB , which is much less than the gap �ωc, one

§Note that because of Pauli’s exclusion principle, no more than one electron can be in
the same state.
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can neglect the Coulomb interaction, at least to first approximation. Therefore,
a system in an integer quantum state is essentially a non-interacting system
and this is why soon after its discovery it was explained theoretically. The
many-body wave-function is just a single Slater determinant.

As an example, consider the simplest case ν = 1 in which the number of
electrons is exactly equal to the number of orbitals in the first LL and let
Ψν=1(z1, . . . , zN ) denote the unique ground state. This many-body ground
state is the following Slater determinant:

Ψν=1(z1, . . . , zN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ0,0(z1) . . . ψ0,0(zN )
ψ1,0(z1) . . . ψ1,0(zN )

...
...

ψN−1,0(z1) . . . ψN−1,0(zN )

∣∣∣∣∣∣∣∣∣ . (1.26)

Using Eq. (1.19) for the entries of this determinant, we come up with:

Ψν=1(z1, . . . , zN ) = N

∣∣∣∣∣∣∣∣∣
1 . . . 1
z1 . . . zN
...

...
zN−1
1 . . . zN−1

N

∣∣∣∣∣∣∣∣∣ exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (1.27)

where N is a constant and the determinant above is the well-known Vander-
monde determinant. Writing this determinant explicitly, one gets:

Ψν=1(z1, . . . , zN ) =
∏

1�i<j�N

(zi − zj) exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (1.28)

up to a normalization constant.
In contrast, FQHE is a whole new story. As mentioned earlier, the first

substantial progress in theoretical explanation of this phenomenon was achieved
by Laughlin through his introduction of a set of trial wave-functions, which is
the topic of the next section.

1.4 Laughlin’s Wave-Function

In a FQH system, that is, a two-dimensional quantum-mechanical system sub-
ject to a strong perpendicular magnetic field at a very low temperature whose
Hall resistance corresponds to a fractional value of ν, only a fraction of or-
bitals in each LL is filled and, as mentioned earlier and the Fig. 1.1 shows,
for a FQH system the graph of Hall resistance ρH versus the magnetic field B
shows plateaus, which indicates that the system is gapped. This implies that
the Coulomb repulsion between the electrons must definitely be taken into ac-
count, since in the absence of the Coulomb interaction any redistribution of
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electrons within the same LL can be done at zero energy cost, giving rise to
a large degeneracy. To explain that a gapped quantum Hall state can occur
at the observed filling factors, one needs the Coulomb interaction to lift the
degeneracy. In other words, a FQH system is a highly-correlated system and
difficult to solve.

Robert Laughlin achieved a breakthrough in the theoretical explanation of
the FQHE by proposing a set of quantum Hall states in the form of a set of
trial wave-functions, which were shown to contain the basic features of this
phenomenon. Laughlin proposed the ansatz wave-function:

Ψm(z1, . . . , zN ) =
∏

1�i<j�N

(zi − zj)
m exp

(
− 1

4l2B

N∑
k=1

|zk|2
)
, (1.29)

to describe the ground state of the FQHE at filling factor ν = 1/m, where m
is an odd integer [Lau83]. Laughlin arrived to this wave-function arguing as
follows:

(i) The suitable wave-function should be of the following form§:

Υ(z1, . . . , zN ) = p(z1, . . . , zN ) exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (1.30)

where p(z1, . . . , zN ) is a polynomial in z1 till zN . To write this, Laughlin
was inspired by the form of the wave-function (1.19) for the LLL states.

(ii) Since this wave-function is to describe a system of electrons as fermions, it
must be totally anti-symmetric. Therefore, the polynomial p(z1, . . . , zN )
has to be totally anti-symmetric.

(iii) Because of the success of Jastrow-type wave-functions in describing the
interacting systems with pairwise interactions like Coulomb interaction,
as is the case here, Laughlin assumed the following form:

p(z1, . . . , zN ) =
∏

1�i<j�N

f(zi − zj), (1.31)

for the p(z1, . . . , zN ) polynomial. Here f must be an odd polynomial-
function so that p(z1, . . . , zN ) be totally anti-symmetric.

(iv) Since the total angular momentum along the Ox3 direction:

L3 = �

N∑
i=1

(zi∂i − z̄i∂̄i), (1.32)

§One should find out how Υ depends on the filling factor ν = 1/m.
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commutes with Coulomb term and, consequently, it commutes with the
Hamiltonian, Laughlin required that the suitable wave-function to be an
eigenstate of L3 as well. A simple calculation shows that for this to
happen, it is sufficient that the polynomial p(z1, . . . , zN ) be an eigenstate
of the operator �

∑N
i=1 zi∂i.

It is straightforward to see that, for any odd integer n, f(z) = zn is a suitable
choice and gives rise to a polynomial p(z1, . . . , zN ) that is an eigenstate of
�
∑N

i=1 zi∂i operator and, therefore,

Υ(z1, . . . , zN ) =
∏

1�i<j�N

(zi − zj)
n exp

(
− 1

4l2B

N∑
k=1

|zk|2
)
· (1.33)

We now determine the appropriate exponent n as follows. This function is
supposed to describe interacting electrons in the LLL at the filling factor ν =
1/m. The maximum value lmax of the angular momentum that each electron
in the state (1.33) can have is the maximum power n(N − 1) of any one of
the variables z1 till zN in Υ. Thus according to Eq. (1.20), the area S of the
sample described by (1.33) is:

S = 2πlmaxl
2
B = 2πn(N − 1)l2B . (1.34)

From Eqs. (1.24) and (1.25), the filling factor νf corresponding to the wave-
function (1.33), for large values of N , is

νf =
N

n(N − 1)
∼ 1

n
, (1.35)

and, therefore, n = m.
At this stage, it is good to know that the wave-function above is an approxi-

mate eigenstate of the real Hamiltonian, that is, the Hamiltonian with Coulomb
interaction as its interaction term. For small system sizes, namely, systems with
only a few electrons, numerical calculations confirmed more than 99% overlap
between Laughlin’s trial wave-function (1.29) and the exact ground state wave-
function. On the other hand, despite of being just an approximate eigenstate
for the real Hamiltonian, Laughlin’s wave-function is the exact solution of a
contrived model Hamiltonian, namely, a Hamiltonian whose interaction term is
engineered so that the Laughlin state (1.29) is the exact ground state§ [Hal83].
This yet provides another explanation for the triumph of Laughlin’s insight to
explain the FQHE.

§This model interaction basically enforces that the wave-function should vanish at least
as an mth power (instead of a first power, which is necessary because of the Pauli exclusion
principle) when two electrons are at the same location.
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Consider some “total” Hamiltonian Htotal defined by:

Htotal = λHmodel + (1− λ)Hreal, (1.36)

where Hmodel is the model Hamiltonian mentioned above, Hreal is the real
Hamiltonian, and 0 � λ � 1 is a real parameter. Numerical investigations
confirm that, if one continuously varies the parameter λ from zero to one, no
phase transition occurs. Therefore, the model Hamiltonian and its exact ground
state, namely, the Laughlin wave-function, can be used to study interesting
physical properties of FQH systems corresponding to filling factors of the form
ν = 1/m.

1.5 Abelian Quantum Hall States

Using his wave-function, Laughlin not only explained the ν = 1/3 fractional
quantum Hall effect but also predicted that quasi-holes with fractional charge
and statistics can exist in FQH systems. The fractional charge of these quasi-
holes was observed experimentally in 1997 [DPRH+98, SGJE97]. Laughlin,
Störmer, and Tsui were awarded the 1998 Nobel prize in physics for these
contributions.

To understand the quasi-holes, consider a FQH system in the x1Ox2 plane
subject to a magnetic field in the positive Ox3 direction that exhibits the
fractional value ν = 1/m. Suppose that its state is modeled by the Laughlin
state Ψm given by Eq. (1.29). Following Laughlin, we locally increase the
magnetic field at the origin by one flux quantum Φ0. This can be thought
to be done by considering an infinitesimally thin and infinitely long solenoid
threading normally into the system at the origin, and adiabatically varying
the current through it from zero (the initial value) to some appropriate value
and in an appropriate direction. Such solenoid is referred to as a “flux-tube.”
Variation of the magnetic field at the origin generates an electric field E curling
around the origin in a direction resisting this change. This electric field in
turn generates an electric current of density j that relates itself to the Hall
conductivity tensor σ and the electric field E through the following relation:

j = σE. (1.37)

According to Eq. (1.9), for a FQH system on a plateau, the entries on the
main diagonal of the conductivity tensor are zero and, therefore, j lies along
the radial direction toward the origin, where the flux tube is located. Thus,
Eq. (1.37) reduces to the following one:

jr = σHEφ, (1.38)

where jr is the radial component of current density, Eφ is the azimuthal com-
ponent of the electric field, and σH is as given in Eq. (1.9). This current density
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indicates that the electrons flow out from a small region confined by a small
circle centered at the origin, where the flux tube is located, making a “hole”
behind them, known as a quasi-hole. During this adiabatic process, the ground
state Ψm evolves to the ground state of the final Hamiltonian where the mag-
netic flux is now increased by one flux quantum Φ0. This excess of magnetic
flux can be gauged away with a singular gauge transformation and we are left
with the new exact quasi-hole ground state of the Hamiltonian. It turns out
that this small region can act as a particle in its own. Laughlin proposed the
following trial wave-function:

Ψq.h.
m (z1, . . . , zN ) = Ψm(z1, . . . , zN )

∏
1�k�N

zk, (1.39)

for theoretical explanation of a FQH system with one quasi-hole at the origin.
Though not an exact ground state for the Coulomb interaction, Ψq.h.

m (z1, . . . , zN )
is an exact ground state for the model Hamiltonian. In general, if the magnetic
flux is slowly changed from zero up to one flux quantum Φ0 at n local points
with complex coordinates w1 till wn, Eq. (1.39) then takes the following form:

Ψq.h.
m (z1, . . . , zN ) = Ψm(z1, . . . , zN )

∏
1�k�N
1�l�n

(zk − wl). (1.40)

Wave-functions Ψq.h.
m (z1, . . . , zN ) are known as quasi-hole excitations of Laugh-

lin states Ψm(z1, . . . , zN ).
We now go back to the simple case of one quasi-hole at the origin to explore

some interesting features of quasi-holes. The state (1.39) has a lack of charge
of some magnitude Q at the origin. By Faraday’s law:∮

Γ

E · dr = −dΦ

dt
, (1.41)

where Γ is a small circle of radius R centered at the origin. This gives rise to

Eφ = − 1

2πR

dΦ

dt
, (1.42)

and
Q =

∫
2πR|jr| dt = σH Φ0 = ν|e|. (1.43)

This means that this excitation can be regarded as the one with a fractional
charge of magnitude ν|e|. In a FQH system the quasi-holes obey fractional
statistics in the sense that, if two of them are slowly interchanged, the wave-
function picks up a phase factor eiαπ, where α is a fraction strictly between
zero and one. In other words, Laughlin’s quasi-holes are Abelian anyons. It
turns out that α is the same as the filling factor ν, as was shown by Arovas,
Schrieffer and Wilczek [ASW84], by calculating the phase associated with the
process of adiabatically exchanging two quasi-holes.
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1.6 Non-Abelian Quantum Hall States

Although most of the quantum Hall plateaus occur at filling factors with odd
denominators, plateaus occurring at filling factors with even denominators have
been observed as well [Wil13]. Among the latter plateaus, the ones with filling
factors ν = 5/2 and ν = 7/2 are the most well-known ones and have been
observed very clearly in the laboratory. In the beginning, for a FQH system
consisting of fermions such as electrons, the discovery of plateaus at filling
factors with even denominators was not even expected. This was due to the
fact that the Laughlin wave-function (1.29) was very successful in describing
the plateaus at filling factors ν = 1/m, and only for odd values of m this
wave-function is totally anti-symmetric, which of course must be the case for a
suitable wave-function describing a system consisting of fermions.

To explain the plateau at filling factor ν = 5/2, following the same strategy
as Laughlin, Moore and Read introduced a trial wave-function ΨMR that is
supposed to describe a FQH state for fermions at filling factor ν = 1/m, for
even values of m [MR91]. To write down this wave-function, they used the
notion of a Pfaffian of an anti-symmetric matrix, which we now introduce.

Let N be an even integer and let A be an N × N anti-symmetric matrix,
namely, AT = −A, where AT is the transpose of A. The Pfaffian of A is
denoted by Pf(A) and it is defined by:

Pf(A) =
1

2N/2(N/2)!

∑
σ

(
sgn(σ)

N/2∏
i=1

aσ(2i−1),σ(2i)

)
, (1.44)

where the sum is over all permutations σ of the set {1, 2, . . . , N}, sgn(σ) is +1
or −1 according to whether σ is an even or odd permutation, respectively, and
akl denotes the (kl)th entry of the matrix A. The Pfaffian and the determinant
of an anti-symmetric matrix are related through the following relation:(

Pf(A)
)2

= det(A). (1.45)

Since the determinant of any anti-symmetric matrix of odd degree is zero, the
Pfaffian of any such matrix is zero as well. As examples of non-trivial Pfaffians,
one can mention the following ones:

Pf

[
0 a
−a 0

]
= a, Pf

⎡⎢⎢⎣
0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

⎤⎥⎥⎦ = af − be+ dc. (1.46)

The Pfaffian of an N ×N anti-symmetric matrix is a polynomial of degree N/2
with the matrix elements as its variables.
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The Moore–Read state for an even number N of particles is now given as
follows:

ΨMR(z1, . . . , zN ) = Ψ̃MR(z1, . . . , zN ) exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (1.47)

where
Ψ̃MR(z1, . . . , zN ) := Pf

( 1

zi − zj

)∏
i<j

(zi − zj)
m. (1.48)

Here Pf(1/(zi − zj)) denotes the Pfaffian of an N ×N anti-symmetric matrix
whose (ij)th entry is 1/(zi−zj), if i �= j; and it is zero, otherwise. For example,
for four particles, using the second part of (1.46), we have:

Pf
( 1

zi − zj

)
=

1

z1 − z2

1

z3 − z4
+

1

z1 − z3

1

z4 − z2
+

1

z1 − z4

1

z2 − z3
·

This Pfaffian is a totally anti-symmetric function and, therefore, for even val-
ues of m, the Moore–Read state is anti-symmetric and can indeed represent
the wave-function for a system of fermions. On the other hand, the exponent
of any variable in Ψ̃MR is m(N − 1) − 1, in which m(N − 1) stems from the
Laughlin-type factor in Ψ̃MR and −1 stems from the Pfaffian factor. Therefore,
in thermodynamic limit, the exponent of any variable in Ψ̃MR is mN . Conse-
quently, ΨMR describes a FQH system at filling factor ν = 1/m, as is expected.
Furthermore, although the Pfaffian above diverges when two particles come to-
gether, the Moore–Read state remains finite due to the compensation that the
factor

∏
i<j(zi − zj)

m causes. In addition, Ψ̃MR for m = 1 is the homogeneous
polynomial with the lowest total degree, up to a numerical pre-factor, that does
not vanish if two variables are identified but vanishes when any three variables
are identified.

As in the case of the Laughlin state, the Moore–Read state is also the
exact zero-energy ground state of a model Hamiltonian. We now look at the
excitations of the Moore–Read state. Letting z := (z1, . . . , zN ), for any given
complex number w, the wave-function:

Ψq.h.
MR(z) = Ψ̃q.h.

MR(z) exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (1.49)

where
Ψ̃q.h.

MR(z) :=
∏
k

(zk − w) Pf
( 1

zi − zj

)∏
i<j

(zi − zj)
m, (1.50)

is also a zero-energy state of the model Hamiltonian. Since the exponential
factor is always present, in what follows we focus only on the non-exponential
parts of the corresponding wave-functions, which are indicated with a tilde on
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top. The exponent of each z variable in Ψ̃q.h.
MR exceeds from the exponent of the

corresponding variable in Ψ̃MR by one. Therefore, the angular momentum of
this state is one unit larger than the angular momentum of Ψ̃MR. The state
Ψ̃q.h.

MR is called the quasi-hole excitation of the Moore–Read state corresponding
to one single quasi-hole sitting at w. As in the case of the Laughlin state, each
quasi-hole carries a fractional charge e/m, but in this case more interesting
things can happen.

Consider the following function with two independent parameters w1 and
w2:

Ψ̃2q.h.
MR (z) = Pf

(
(zi − w1)(zj − w2) + (zj − w1)(zi − w2)

zi − zj

)∏
i<j

(zi − zj)
m.

Note that the Pfaffian above is well-defined, since its argument is still an anti-
symmetric matrix. This is also a state of the corresponding model Hamiltonian.
Moreover, if w1 = w2 = w, then Ψ̃2q.h.

MR (z) reduces to Ψ̃q.h.
MR(z) given in (1.50).

This would then mean that Ψ̃2q.h.
MR (z) can be interpreted as a state with two

quasi-hole at w1 and w2 of total charge e/m. Therefore, Ψ̃2q.h.
MR (z) is an exci-

tation of the Moore–Read state with two quasi-holes each of fractional charge
e/(2m).

Following the same idea as above, one can consider an excitation Ψ̃4q.h.
MR (z)

of the Moore–Read state consisting of four quasi-holes. This time we need a
wave-function with four independent parameters w1 till w4 to locate the quasi-
holes. A simple guess in this regard, splitting the quasi-holes into two parts in
which the first and the second quasi-holes are grouped together and the third
and the forth ones are grouped together, is the following:

Ψ̃4q.h.
MR (z) = Pf(12),(34)(z)

∏
i<j

(zi − zj)
m, (1.51)

where

Pf(12),(34)(z) := Pf

(
(zi − w1)(zi − w2)(zj − w3)(zj − w4) + (i ↔ j)

zi − zj

)
.

Here (i ↔ j) indicates the expression that is obtained by interchanging the
indices i and j in the first term of the numerator. Apparently, there are two
more states of this kind, namely, the one in which the quasi-holes are grouped
as (13) and (24) and the one in which they are grouped as (14) and (23).
However, it turns out that only two of these three states are indeed linearly
independent. Therefore, the ground state corresponding to four quasi-holes is
not not 3-fold degenerate but doubly degenerate. One can show that, for the
general case of 2n quasi-holes, the ground state is 2n−1-fold degenerate [NW96].
Hence, in general, if one starts from one of these degenerate states in the
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corresponding 2n−1-dimensional eigenspace and adiabatically follows a closed
path in the configuration space of quasi-holes, one ends up with a state that
still belongs to the the same eigenspace. Hence, the original and final states
are related by a unitary transformation not just a simple phase. Quasi-hole
excitations of the Moore–Read state are therefore non-Abelian anyons.





Chapter 2

The Rank Saturation Conjecture

This chapter, which is based on [MG15], expands the main content of the first
accompanied paper [GEA15]. This paper presents a new strategy toward a
possible proof for a particular case of the rank saturation conjecture. The
general statement of this conjecture is given in Section 2.1, but, in this thesis,
we are only interested in a particular case of this conjecture in which the model
state is the Laughlin state.

Sections 2.2 till 2.6 develop the mathematical tools necessary to formulate
the rank saturation conjecture in a mathematical language and in terms of
the properties of symmetric polynomials. These include the reduced density
operator, Schmidt and weak-Schmidt decompositions, partition of non-negative
integers, and finally a tiny part of the rich theory of symmetric polynomials.
Based on what we gain in these sections, we state a theorem in Section 2.6 that
is our main tool in writing the Laughlin state in a weak-Schmidt decomposed
form. These notions are explained in more detail in [MG15]. For further studies
in the theory of symmetric polynomials the reader is referred to [Mac95,Sta99].

Section 2.7 starts by delving more into the content of the rank saturation
conjecture. It also mathematically formulates this conjecture, Eq. (2.35), for
the special case of the Laughlin state Ψm, which we want to investigate in this
thesis.

Section 2.8 is devoted to the problem of determining a possible way toward
a weak-Schmidt decomposition of a generic Laughlin state Ψm corresponding to
a FQH system that is subject to a bipartitioning scheme known as the particle-
cut, explained in Section 2.1. In Section 2.8, to write the Laughlin state in a
weak-Schmidt decomposed form, we do a mathematical trick and introduce a
linear transformation, which we call the clustering transformation.

Finally, motivated by the results of Section 2.8, we study the properties of
symmetric polynomials that vanish under the clustering transformation.

2.1 The Rank Saturation Conjecture, First Visit

As mentioned in the previous chapter, the physics of a system with topological
order, like a FQH system, is very rich and it is important to study the non-local
nature of these kind of systems. One way to probe systems with topological
order is to partition the system into two subsystems in some way, and then
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look at different properties of the reduced density operator corresponding to
each part of the system [LW06, KP06]. In general, one can consider all the
eigenvalues of the reduced density operator. In this thesis, however, we consider
only the number of non-zero eigenvalues, that is, the rank, of the reduced
density operator. In the FQH context, different ways of bipartitioning the total
Hilbert space, namely, the orbital-cut, the real-space-cut, and the particle-cut
have been proposed [ZHSR07,HZS07,LH08,DRR12, SCR+12,RSS12]. In this
thesis, we focus on the particle-cut scheme in which one attaches numbers to
N particles (electrons) in the system and declares the particles numbered 1 till
NA to belong to subsystem A and the remaining particles numbered NA + 1
till N to belong to subsystem B.

In the context of fractional quantum Hall physics, it is conjectured that
the rank of the reduced density operator for a model Hamiltonian describing
the system is equal to the number of quasi-hole states. More precisely, for
future reference, we formulate this conjecture as follows. The content of this
conjecture is explained in more detail in Section 2.7.

Conjecture 2.1 (Rank Saturation Conjecture). The rank of the reduced den-
sity operator corresponding to a particle-cut of a model state, such as a Laughlin
or a Moore–Read state [MR91], is equal to the number of quasi-hole states in
an appropriate number of flux quanta, that is, the number of ground states of
the model Hamiltonian in an appropriate magnetic field.

It is clear from Eq. (2.53) that the conjecture above is satisfied for the special
case of the Laughlin state Ψ1, with the filling factor equal to one. Numerical
investigations, however, provide evidence that the above conjecture holds in
general. Although we were not able to prove the above conjecture, we made
progress in the case of the Laughlin states, which we explain briefly below.
Detailed explanation in this regard is the subject of the next few sections.

We consider a FQH system in a pure Laughlin state Ψm(z1, . . . , zN ), as the
model state, and aim for determining the rank of the reduced density operator
associated with a particle-cut of the system and then compare this rank with
the number of independent quasi-hole wave-functions. The method pursued
is to relate this conjecture, for the case of Laughlin state, to the properties
of a few types of symmetric polynomials presented in Section 2.5, and then
to use known results in this new context to determine the lowest total degree
of the symmetric polynomials that vanish under some specific transformation
referred to as the clustering transformation. Roughly speaking, this transfor-
mation, which is formally introduced in Section 2.7, partitions the variables of
a symmetric polynomial into equally-sized parts and identifies the variables in
each part. The main result needed from the theory of symmetric polynomials is
Theorem 2.4 that enables us to decompose the double product

∏
i

∏
j(1+xiyj),

in which the x and y variables are mixed, as a sum of terms where each term
is a product of two symmetric polynomials, one of which depends only on x
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variables and the other depends only on y variables. We then realize that, for
a FQH system consisting of N electrons in a pure Laughlin state Ψm, Conjec-
ture 2.1 is equivalent to the following conjecture, which is formulated in terms
of the properties of a certain class of symmetric polynomials.

Conjecture 2.2. There is no non-zero symmetric polynomial in mN variables
with degree, in each variable, less than N +1 that vanishes under the transfor-
mation that clusters the mN variables equally in m groups and identifies the
variables in each group.

The content of Conjecture 2.2 becomes clear during subsequent chapters.
For m greater than one, we were not able to find an analytic proof for the

conjecture above, but we made progress. This observation led us to study the
properties of symmetric polynomials, and in particular their properties under
the clustering transformation. It turned out that proving Conjecture 2.2 is
very hard and we did not succeed completely. However, we were able to prove
that there are no non-zero symmetric polynomials in mN variables with total
degree less than N + 1, that vanish under the clustering transformation. In
addition, we determined a full characterization of the symmetric polynomials
that vanish under this transformation.

2.2 Reduced Density Operator

Consider a composite system S that is composed of two subsystems A and
B. If H, HA, and HB are Hilbert spaces corresponding to systems S, A,
and B, respectively, then one of the axioms of quantum mechanics asserts
that H = HA ⊗ HB . In this chapter, it is assumed that HA and HB , and,
consequently, H are finite-dimensional Hilbert spaces.

Let the system S be described by a density operator ρAB . The reduced
density operator ρA of subsystem A is defined by

ρA = trB(ρ
AB), (2.1)

where trB , called the partial trace over subsystem B, is a linear map that asso-
ciates each linear map acting on H with a linear map acting on HA, according
to the following rule:

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2| tr(|b1〉〈b2|). (2.2)

Here |a1〉 and |a2〉 are two states in HA, and |b1〉 and |b2〉 are two states in HB .
Note that Eq. (2.2) together with the linearity of trB suffice to know how trB
acts on a generic Hermitian operator A⊗B that acts on HA ⊗HB . If S is in
the pure state |Ψ〉, then Eq. (2.1) reduces to the following simple form:

ρA = trB(|Ψ〉〈Ψ|)· (2.3)

The reduced density operator ρB of subsystem B is defined similarly.
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2.3 Schmidt and Weak-Schmidt Decompositions

Consider a composite system S composed of two subparts A and B. We know
that, if

{
|ui〉 | 1 � i � NA

}
is an orthonormal basis for the NA-dimensional

state space HA of subsystem A and if
{
|vi〉 | 1 � i � NB

}
is an orthonormal

basis for the NB-dimensional state space HB of subsystem B, then the set{
|ui〉 ⊗ |vj〉 | 1 � i � NA , 1 � j � NB

}
, (2.4)

is an orthonormal basis for the (NANB)-dimensional state space HA ⊗HB of
the whole system S. Therefore, if |Ψ〉 is a normalized pure state of the system
S, then,

|Ψ〉 =
NA∑
i=1

NB∑
j=1

cij ui ⊗ vj , (2.5)

for some complex numbers cij with
∑NA

i=1

∑NB

j=1 |cij |2 = 1. In other words, any
pure state of the whole system S can be written as a double sum as is indicated
in Eq. (2.5). However, the Schmidt Decomposition Theorem asserts that it is
always possible to write |Ψ〉 as a single sum for an aptly chosen orthonormal
subsets of the corresponding state spaces. More precisely, for a normalized pure
state |Ψ〉 of the composite system S, one can always find orthonormal states{
|φA

i 〉
}
i

and
{
|φB

i 〉
}
i

in HA and HB , respectively, such that

|Ψ〉 =
r∑

i=1

λi |φA
i 〉 ⊗ |φB

i 〉, (2.6)

where r = min{NA, NB} and λi’s are non-negative real numbers such that∑r
i=1 λ

2
i = 1. The number of strictly positive λi’s in (2.6) is called the Schmidt

number of |Ψ〉. The interested reader can refer to [NC00] for a proof. One can
also show that the rank of the reduced density operator of the subsystem with
the Hilbert space of lower dimension is equal to the Schmidt number of |Ψ〉.

Schmidt’s Theorem motivates Theorem 2.3, which we present here without
proof. The proof can be found in [MG15]. This theorem asserts that if a pure
state |Ψ〉 is decomposed as in (2.6), one can still conclude that the number r,
that is, the number of summands in this sum, is the Schmidt number of |Ψ〉,
even if, instead of being orthonormal, the states { |φA

i 〉}i and { |φB
i 〉}i are only

known to be linearly independent in their corresponding Hilbert spaces. This
theorem would be of interest in determining the desired rank in Section 2.8, if,
of course, one can show that (2.49) is indeed a weak-Schmidt decomposition of
the Laughlin state Ψm in the first place.

Theorem 2.3 (Weak-Schmidt Decomposition). Let |Ψ〉 be a normalized pure
state of a composite system S composed of subsystems A and B with corre-
sponding Hilbert spaces HA and HB of dimensions NA and NB, respectively.
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If the state |Ψ〉 has the following form:

|Ψ〉 =
r∑

i=1

ξi |ϕA
i 〉 ⊗ |ϕB

i 〉, (2.7)

where r � min{NA, NB}, ξi’s are non-zero numbers, and the following sets:{
|ϕA

i 〉 | 1 � i � r
}
,

{
|ϕB

i 〉 | 1 � i � r
}

are linearly independent subsets of HA and HB, respectively, then the rank of
the reduced density operators ρA and ρB is equal to r.

The sum in (2.7) is then called a weak-Schmidt decomposition of |Ψ〉.

2.4 Partitions of Non-Negative Integers

Let n be a positive integer. An infinite sequence

λ = (λ1, . . . , λr, 0, 0, 0 . . . ), (2.8)

consisting of positive integers λ1 till λr together with infinite number of zeros
at the end is said to be an r-partition of n, if

λ1 � · · · � λr, (2.9)

and
r∑

i=1

λi = n. (2.10)

For simplicity in writing, one usually suppresses the infinite number of tail-
zeros. Thus, the partition (2.8) is simply written as λ = (λ1, . . . , λr). For
example, (3, 1, 1, 0, 0, . . .) is a partition of 5 that is usually written as (3, 1, 1).
We define that the infinite sequence (0, 0, 0, . . .) or, actually, the empty sequence
() after suppressing tail-zeros, is the only partition of zero. This partition is
called the empty partition and it is denoted by ∅. In this thesis, although not
a standard one, a partition is denoted by a bold Greek letter and its parts are
denoted by the same non-bold letter and are subscripted by positive integers.

To indicate that λ is a partition of n, one writes λ � n. The number n
is referred to as the weight of λ and it is denoted by |λ|, so |∅| = 0. Each
(non-zero) λi is called a part of λ. The number of parts of λ is defined to be
its length and it is denoted by l(λ), so l(∅) = 0. The set of all partitions of n
is denoted by Par(n). For instance,

Par(5) = {(5), (4, 1), (3, 2), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}. (2.11)
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The set of all partitions is denoted by P and it is defined by

P =
⋃
n�0

Par(n). (2.12)

The multiplicity of a positive integer i in a partition λ is denoted by mi(λ)
or, when the partition λ is clear from the context, briefly by mi and it is defined
to be the the number of parts of λ that are equal to i. In other words,

mi(λ) = Card{ j | λj = i }, (2.13)

where “Card” refers to the cardinality or the number of elements of a set.
This provides still another useful notation for a partition. Using the notion of
multiplicity, any partition λ can be written as

λ = (1m12m23m3 · · · ), (2.14)

where imi , for any i � 1, means that there are exactly mi parts in λ that are
equal to i. In this notation ∑

i�1

imi = |λ|. (2.15)

For example, λ = (1220344050 · · · ) is the partition (3, 3, 3, 3, 1, 1) of 14, which
is usually written briefly as λ = (1234).

To make working with partitions easier, one can associate a graphical rep-
resentation with a partition in some way. For example, the gray squares in
Fig. 2.1 represents the partition λ = (8, 6, 3, 3, 1).

The complement of a partition λ with respect to a rectangle of height n
and width d, which we denote by λ̄, is defined as

λ̄ = (d− λn, d− λn−1, . . . , d− λ1). (2.16)

For example, the complement of λ = (8, 6, 3, 3, 1) with respect to the rectangle
shown in Fig. 2.1 is λ̄ = (10, 9, 7, 7, 4, 2). It is clear that l(λ̄) � n and λ̄1 � d.

Of particular interest in this thesis is the number of partitions with at most
n parts such that each part is at most d. As is explained shortly, this number
is equal to

(
n+d
n

)
and, hence,

Card
{
λ ∈ P | λ1 � d , l(λ) � n

}
=

(
n+ d

n

)
. (2.17)

One way to see this it to establish a one-to-one correspondence between the
set of partitions that fit into a rectangle of height n and width d, and the set
of polygon-lines consisting of n vertical (V) and d horizontal (H) segments, as
is shown in Fig. 2.1 for a special case of n = 6 and d = 10. Therefore, one
can count the number of these polygon-lines instead of counting the number of
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6

10

Figure 2.1: Gray squares represent λ = (8, 6, 3, 3, 1) and white squares repre-
sent λ̄ = (10, 9, 7, 7, 4, 2).

desired partitions. It is clear that each such polygon-line consists of n vertical
and d horizontal segments. Consequently, the number of these polygon-lines is
equal to the number of permutations of a string of letters consisting of n letters
of V and d letters of H, which is

(
n+d
n

)
by a simple combinatorial argument.

2.5 Symmetric Polynomials

A polynomial s(x1, . . . , xn) is said to be symmetric if interchanging any pair of
its variables does not change the polynomial. For example, the polynomial

s(x1, x2, x3) = x2
1x2 + x1x

2
2 + x2

2x3 + x2x
2
3 + x2

3x1 + x1x
2
3, (2.18)

is a symmetric polynomial in three variables.
In this thesis, the highest exponent of anyone of the variables in a symmet-

ric polynomial is referred to as the degree of the polynomial§. For instance,
although the polynomial (2.18) is of total degree three, it is of degree two.
The set of all symmetric polynomials in n variables x1 till xn is dentoed by
Λn[x1, . . . , xn] and the set of all symmetric polynomials in these variables of
degree at most m is denoted by Λm

n [x1, . . . , xn]. If the variables are clear from
the context, the mentioned sets are simply denoted by Λn and Λm

n .

2.5.1 Monomial Symmetric Polynomials

The monomial symmetric polynomial mλ(x1, . . . , xn), for a given partition
λ = (λ1, . . . , λr), is defined to be the constant polynomial 1, if λ = ∅; the zero
polynomial, if r > n; and it is defined by

mλ(x1, x2, . . . , xn) = Sym(xλ1
1 xλ2

2 · · ·xλr
r x0

r+1 · · ·x0
n), (2.19)

§This is not the same as in the mathematics literatures.
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otherwise, where Sym stands for the symmetrization operation. For example,

m(2,1,1)(x1, x2, x3) = x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3,

m(2,1)(x1, x2, x3) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3,

m(2,1,1)(x1, x2) = 0.

The important property of these monomials for our purpose is that the set{
mλ(x1, . . . , xn) | λ1 � m , l(λ) � n

}, (2.20)

forms a basis for Λm
n and, therefore,

dim
(
Λm
n

)
=

(
m+ n

n

)
. (2.21)

2.5.2 Elementary Symmetric Polynomials

Given a partition λ, the elementary symmetric function corresponding to λ is
denoted by eλ and it is defined by

eλ = eλ1
eλ2

eλ3
· · · , (2.22)

where,
e0 := 1, (2.23)

and, for any positive integer r, the rth elementary symmetric function er is
defined by

er =
∑

i1<···<in

xi1· · ·xin . (2.24)

For instance, we have

e1(x1, x2, x3) = x1 + x2 + x3,

e2(x1, x2, x3) = x1x2 + x2x3 + x3x1,

e3(x1, x2, x3) = x1x2x3,

en(x1, x2, x3) = 0,

and

e(2,1,1)(x1, x2) = e2(x1, x2)e1(x1, x2)e1(x1, x2)

= x1x2(x1 + x2)
2.

It is easily seen that the total degree of eλ is |λ| and its degree is l(λ).
It is shown, for example, in [Sta99] that the set{

eλ(x1, . . . , xn) | λ1 � n , l(λ) � m
}
, (2.25)

is a basis for Λm
n .
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2.5.3 Power-Sum Symmetric Polynomials

Let λ be a partition. The power-sum symmetric polynomial corresponding to
λ is denoted by pλ and it is defined by

pλ = pλ1
pλ2

· · · , (2.26)

where,
p0 := n, (2.27)

and, for any positive integer r, the rth power-sum symmetric function pr is
defined by

pr =
∑
i�1

xr
i . (2.28)

The total degree and the degree of pλ are both equal to |λ|.

2.6 The Main Tool to Decompose the Laughlin State

In this section, without proof, we state the theorem that is used in the next
chapter to decompose the Laughlin state Ψm as sum of a number of terms in
which each term is a product of a symmetric polynomial depending only on
one group of variables with a symmetric polynomial depending only on another
group of variables. The proof is given in [Mac95,Sta99,MG15].

Theorem 2.4. For a finite number of variables x1 till xn and y1 till ym, we
have the following identities:

n∏
i=1

m∏
j=1

(1 + xiyj) =
∑
λ

mλ(x1, . . . , xn)eλ(y1, . . . , ym), (2.29)

=
∑
λ

eλ(x1, . . . , xn)mλ(y1, . . . , ym), (2.30)

where the sum in Eq. (2.29) is over all partitions λ for which l(λ) � n and
λ1 � m, and the sum in Eq. (2.30) is over all partitions λ for which l(λ) � m
and λ1 � n.

Note that the number of summands on the right hand sides of each one of
the above identities is

(
m+n
m

)
.

2.7 The Rank Saturation Conjecture, Second Visit

In this section, we first expand the content of the rank saturation conjecture
stated in Section 2.1 in more detail. We then, considering the Laughlin state as
the model state, determine the number of quasi-hole states and mathematically
formulate the conjecture for this special case.
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Consider a FQH system consisting of a number of electrons that is de-
scribed by a model state like a Laughlin or a Moore–Read state at a generic
filling factor. As mentioned in Chapter 1, these model states are exact ground
states of some model Hamiltonians. Any ground state of the corresponding
model Hamiltonian is called a quasi-hole state. It was also mentioned in
Chapter 1 that, for the special case of the Laughlin state, quasi-hole states
are suitable trial wave-functions that describe the system S with some num-
ber of flux quanta added locally to the system. These states are usually re-
ferred to as quasi-hole excitations of the corresponding model state. In this
context, the model state itself can be regarded as a quasi-hole state corre-
sponding to zero number of additional flux quanta or quasi-holes. The num-
ber of quasi-hole states #q.h.(N,NΦ) for a FQH system with N number of
electrons and NΦ number of additional flux quanta can often be obtained ex-
actly [RR96,GR00,ARRS01,Ard02,Rea06].

Suppose now that S is a FQH system consisting of N electrons, described by
a model state at filling factor ν, and subject to a particle-cut that divides S into
two subsystems A and B with NA and NB number of electrons, respectively,
such that NA � NB , and let RA

ν (NA, NB) denote the rank of the reduced
density operator ρA. The rank saturation conjecture then claims that

RA
ν (NA, NB) = #q.h.(NA, ν

−1NB). (2.31)

Let us now consider the special case of the Laughlin state Ψm at the filling
factor ν = 1/m, which is of interest in this thesis, and determine the right
hand side of the Eq. (2.31). Consider a FQH system consisting of NA number
of electrons and ν−1NB = mNB number of flux quanta located at unspecified
points with complex coordinates w1 till wmNB

. It turns out that the ground
state Ψq.h.

m of the corresponding model Hamiltonian takes the following form:

Ψq.h.
m (z1, . . . , zNA

) = Ψm(z1, . . . , zNA
)Pw(z1, . . . , zNA

), (2.32)

where Ψm is the Laughlin wave-function at filling factor 1/m and Pw, with
w = (w1, . . . , wmNB

) being the coordinates of the added flux quanta, is a
symmetric polynomial in z variables. On the other hand, the degree of Ψm is
m(NA−1) and the degree of Ψq.h.

m is m(NA−1)+mNB . Thus Pw is a symmetric
polynomial in NA variables and the degree at most mNB and, therefore, Pw

belongs to ΛmNB

NA
. Therefore, by Eq. (2.21), for the special case that the system

S is described by the Laughlin state Ψm, we have

#q.h.(NA, ν
−1NB) = lm, (2.33)

where

lm :=

(
NA +mNB

NA

)
. (2.34)
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Therefore, the rank saturation conjecture, when Laughlin state Ψm is consid-
ered as the model state, reads simply as follows:

RA
1/m(NA, NB) = lm. (2.35)

In the next section, we explain our strategy toward a possible proof of this
relation.

2.8 Toward a Possible Proof of RA
1/m(NA, NB) = lm

Consider a FQH system S consisting of N electrons with coordinates z1 till zN
in a pure state that can be modeled by the following Laughlin state:

Ψm(z1, . . . , zN ) =
∏

1�i<j�N

(zi − zj)
m exp

(
− 1

4l2B

N∑
k=1

|zk|2
)
, (2.36)

at filling factor ν = 1/m, with m an odd integer. As mentioned in Section 2.1,
one way to probe the properties of S is to look at the rank of the reduced den-
sity operator corresponding to a particle-cut associated with S. Consider the
particle-cut in which we declare the electrons numbered 1 till NA to constitute
subsystem A and electrons numbered NA + 1 till N to constitute subsystem
B. Note that, in what follows, xj and yj are complex numbers and they are
no longer used as the real and imaginary part of zj . Here NB = N −NA is the
number of electrons in subsystem B and, without the loss of generality, one can
assume that NA � NB . Let x1 till xNA

indicate the coordinates of particles in A
and y1 till yNB

indicate the coordinates of particles in B. One should note that
HA is the space of all physically acceptable totally anti-symmetric functions in
variables x1 till xNA

and HB is the space of all physically acceptable totally
anti-symmetric functions in variables y1 till yNB

. The goal is to determine
the rank of the reduced density operator ρA corresponding to the pure state
Ψm(z1, . . . , zN ). To this end, according to Theorem 2.3, it suffices to find a
weak-Schmidt decomposition of Ψm(z1, . . . , zN ) and count the number of sum-
mands in that decomposition. Letting x = (x1, . . . , xNA

), y = (y1, . . . , yNB
),

and z = (z1, . . . , zN ), Ψm in (2.36) can be written as

Ψm(z) = Fm(x)Φm(x,y)Gm(y), (2.37)

where

Φm(x,y) :=

NA∏
i=1

NB∏
j=1

(xi − yj)
m, (2.38)



38 Chapter 2. The Rank Saturation Conjecture

and

Fm(x) :=
∏
i1<i2

(xi1 − xi2)
m exp

(
− 1

4l2B

NA∑
k=1

|xk|2
)
,

Gm(y) :=
∏

j1<j2

(yj1 − yj2)
m exp

(
− 1

4l2B

NB∑
k=1

|yk|2
)
.

(2.39)

We now define the clustering transformation Cm from ΛmNB
to ΛNB

such
that, for any symmetric polynomial s with mNB variables in ΛmNB

,

Cm(s) = t, (2.40)

where t is a polynomial with NB variables in ΛNB
such that

t(y1, y2 . . . , yNB
) = s(y1, . . . , y1︸ ︷︷ ︸

m

, y2, . . . , y2︸ ︷︷ ︸
m

, . . . , yNB
, . . . , yNB︸ ︷︷ ︸

m

). (2.41)

It is straightforward to see that, if w = (w1, . . . , wmNB
), the effect of Cm on

Ω(x,w) :=

NA∏
i=1

mNB∏
j=1

(xi − wj), (2.42)

considered as a symmetric polynomial in ΛmNB
with w variables, is as follows:

Cm(Ω)(x,w) = Φm(x,y). (2.43)

Pulling the x variables out on the right hand side of (2.42) yields

Ω(x,w) =

[ NA∏
i=1

xmNB
i

][ NA∏
i=1

mNB∏
j=1

(
1− 1

xi
wj

)]
, (2.44)

or, equivalently, by the first identity in Theorem 2.4, we get

Ω(x,w) =

[ NA∏
i=1

xmNB
i

]∑
λ

mλ(−1/x)eλ(w), (2.45)

where (−1/x) is a shorthand for (−1/x1, . . . ,−1/xNA
). In addition, again by

Theorem 2.4, the sum in (2.45) is over all partitions that fit into a rectangle of
height NA and width mNB . Hence, according to (2.17), this sum consists of
lm number of terms, where lm is given in (2.34). It is straightforward to check
that [ NA∏

i=1

xmNB
i

]
mλ(−1/x) = (−1)|λ|mλ̄(x), (2.46)
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where λ̄, defined in (2.16), is the complement of λ with respect to the rectangle
of height NA and width mNB . Hence, (2.44) reduces to

Ω(x,w) =
∑
λ

(−1)|λ|mλ̄(x)eλ(w), (2.47)

with lm number of summands on the right hand side. Acting Cm on both sides
of (2.47) and considering (2.43), one gets

Φm(x,y) =
∑
λ

(−1)|λ|mλ̄(x)Cm(eλ)(y). (2.48)

Finally, substituting the above relation for Φm back into (2.37), yields

Ψm(z) =
∑
λ

(
Fm(x)(−1)|λ|mλ̄(x)

)(
Cm(eλ)(y)Gm(y)

)
, (2.49)

where the sum runs through lm number of partitions λ. Note at this stage that,
if one could show (2.49) is indeed a weak-Schmidt decomposition of Ψm(z), then
Theorem 2.3 implies Eq. (2.35) and, as desired, the rank saturation conjecture
for the special case of the Laughlin state is proven. To prove that Eq. (2.49)
provides a weak-Schmidt decomposition for Ψm(z), one only needs to show
that the set {

Cm(eλ) | λ1 � mNB , l(λ) � NA

}
, (2.50)

forms a linearly independent subset of ΛNB
. Note that, since the symmetric

monomials form a basis, the set
{
(−1)|λ|Fmmλ̄

}
λ

is already linearly indepen-
dent. On the other hand the set{

eλ(w1, . . . , wmNB
) | λ1 � mNB , l(λ) � NA

}
, (2.51)

is linearly independent, since, as we saw in (2.25), this set forms a basis for
ΛNA

mNB
. Hence, if one could show that the restriction of Cm to ΛNA

mNB
, which

is a linear map to ΛmNA

NB
, is injective as long as NA � NB , it proves that

the set (2.50) is linearly independent, since injective linear maps respect linear
independence of vectors. Moreover, a linear map is injective if and only if its
kernel is trivial. Thus, one needs to show that, besides the zero polynomial,
no symmetric polynomial in mNB variables and maximum degree NA vanish
under Cm. This is in fact the content of Conjecture 2.2 that motivates the study
of the class of symmetric polynomials that vanish under Cm and is discussed in
Section 2.9.

Before ending this section, to have a signal indicating that we are actually
on a right track, it would be instructive to check two points. Firstly, we present
a proof of Eq. (2.35), along the lines described above, for the special case where
m = 1. Secondly, we show that lm in (2.34) is an upper bound for the rank of
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the reduced density operator for the Laughlin state (2.36), when the system is
subject to a particle-cut as described earlier.

For the first point, note that the clustering transformation C1, corresponding
to m = 1, is just the identity map on ΛNB

and, therefore, the set (2.50) reduces
to the following set:{

eλ(y1, . . . , yNB
) | λ1 � NB , l(λ) � NA

}
. (2.52)

Comparing the set above with the set given in (2.25), one realizes that the set
in (2.52) forms a basis for ΛNA

NB
and, consequently, it is linearly independent.

Thus, the rank of the reduced density operator in this simple case is, by (2.21),
equal to (

NA +NB

NA

)
= l1. (2.53)

For the second point, consider a Schmidt decomposition of Ψm(z) as fol-
lows§:

Ψm(z) =

r∑
i=1

λi φ
A
i (x)φ

A
i (y). (2.54)

Since Ψm(z) vanishes as mth power when two variables coincide, this implies
that φA

i (x) vanishes as mth power when two x coordinates coincide. Therefore,

φA
i (x) = PA

i (x)
∏

1�i<j�NA

(xi − xj)
m, (2.55)

where PA
i (x) is a symmetric polynomial in NA variables of some degree d.

Since the degree of the symmetric polynomial expressed as a product on the
right hand side of (2.55) is m(NA − 1) and the degree of Ψm is m(N − 1), one
should have d+m(NA−1) � m(N −1) or, equivalently, d � mNB . Hence, the
polynomials PA

i (x) belongs to ΛmNB

NA
and, by (2.21), the number of linearly

independent such polynomials is at most lm. Consequently, the number of
linearly independent φA

i (x)’s, which is an upper bound for the rank of the
reduced density operator of Ψm, is also at most lm.

One should note that if one could prove Conjecture 2.2, this would then
mean that the rank of the reduced density operator of a FQH system modeled
by the Laughlin state and subject to a particle-cut always reaches this upper
bound. In other words the rank of the reduced density operator is “saturated”.

2.9 New Generating Set for ΛmN

In this section, motivated by the results of the previous section regarding sym-
metric polynomials that vanish under the clustering transformation introduced

§In the rest of this section, the exponential term of the Laughlin wave-function has no
effect and it is suppressed.
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in (2.40) and (2.41), we probe some characteristic features of these kind of
symmetric polynomials. In this section, however, we suppress the subscript B
and simply write N instead of NB . Moreover, in what follows, we assume that
m and N are given positive integers.

From all algebraically independent sets of generators introduced for ΛmN in
Section 2.5, only the elements of the set

{
p1, . . . , pmN

}
, consisting of power-sum

symmetric polynomials pi, have a simple behavior under Cm, namely,

Cm(pi)(w1, . . . , wmN ) = mpi(y1, . . . , yN ). (2.56)

Despite this simple behavior, in order to describe the property of the polyno-
mials in ΛmN that vanish when acted on by Cm, these polynomials are not
convenient to work with. Therefore, we construct a new set of generators for
ΛmN that are suitable in this regard. The strategy is to introduce a family
of polynomials in ΛmN depending on a single real parameter, and show that
any member of this family, corresponding to a non-zero value of the parameter,
constitutes an algebraically independent generating set for ΛmN .

Let x be a real parameter and let n be a non-negative integer. The poly-
nomial r(x)n in ΛmN is defined, in terms of power-sum symmetric polynomials,
by

r(x)n = n!
∑
λ�n

(−x)l(λ) pλ
zλ

, (2.57)

where
zλ :=

∏
i�1

imi(λ) mj(λ)!, (2.58)

and mi(λ) is the multiplicity defined in (2.13). It is clear that r
(x)
n is a sym-

metric polynomial of total degree n. It is shown in [MG15] that the degree of
this polynomial is also n. The first five of these polynomials are listed below:

r
(x)
0 = 1,

r
(x)
1 = −xp1,

r
(x)
2 = x2p21 − xp2,

r
(x)
3 = −x3p31 + 3x2p1p2 − 2xp3,

r
(x)
4 = x4p41 − 6x3p21p2 + 3x2p22 + 8x2p1p3 − 6xp4.

(2.59)

From Eq. (2.57), it is clear that for a given positive integer n, the term cor-
responding to λ = (n) in r

(x)
n is the product of a monomial in x with pn.

Therefore, iterative computation shows that, for a non-zero value of the pa-
rameter x and any positive integer n, the power-sum pn can be written as
a polynomial in r

(x)
1 till r(x)n with functions of x as coefficients. Thus, since{

p1, . . . , pmN

}
is an algebraically independent generating set for ΛmN , so does{

r
(x)
1 , . . . , r

(x)
mN

}
, for any non-zero x. Therefore we proved the following lemma:
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Lemma 2.5. The set
{
r
(x)
1 , . . . , r

(x)
mN

}
, for any non-zero value of the parameter

x, forms an algebraically independent generating set for ΛmN .

The key property of the polynomials r
(x)
n is that they behave nicely under

the action of Cm, namely,
Cm

(
r(x)n

)
= r(mx)

n . (2.60)

This is readily seen by applying Cm on both sides of Eq. (2.57) and using

Cm( pλ) = ml(λ)pλ, (2.61)

which, in turn, is a consequence of Equation (2.56).
For a non-negative integer n, we now define the nth modified power-sum

symmetric polynomial p̃n, as an element in ΛmN , by

p̃n =
(−1)n

n!
r(1/m)
n . (2.62)

The total degree of p̃n is n and, by Lemma 2.5, the set
{
p̃1, . . . , p̃mN

}
is an

algebraically independent generating set for ΛmN . Actually, these polynomials
are engineered to enjoy the following property:

Cm( p̃n) = en, (2.63)

where en is the nth symmetric polynomial defined in (2.24). Eq. (2.63) can be
obtained by applying Cm on both sides of Eq. (2.62), using Eq. (2.60), and the
fact that r

(1)
n = (−1)nn!en. The proof of the latter can be found in [MG15].

We remind the reader that p̃n in Eq. (2.63) contains mN variables, while en in
that equation contains N variables. Hence, we have the following lemma:

Lemma 2.6. The set G =
{
p̃1, . . . , p̃mN

}
is an algebraically independent gen-

erating set for ΛmN and Cm( p̃n) = en, for all integers n with 1 � n � mN .

Based on the fact that, for n > N , en = 0 and what Lemma 2.6 teaches us,
we conclude the following statement:

Corollary 2.7. For any integer n with N + 1 � n � mN , Cm( p̃n) = 0.

The polynomials p̃n have the exact right property that enables us to prove
the following theorem:

Theorem 2.8. A non-zero symmetric polynomial in ΛmN vanishes under Cm
if and only if, when expressed as a polynomial in p̃1 till p̃mN , each monomial
term contains some power of at least one of the polynomials p̃N+1 till p̃mN .
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Proof. First, Let s be a symmetric polynomial in ΛmN such that Cm(s) = 0.
By Lemma 2.5, there exists a polynomial r in mN variables such that

s(w1, . . . , wmN ) = r( p̃1, . . . , p̃mN ). (2.64)

In general, there are two kinds of monomials on the right hand side of the
equation above: those that do contain some power of at least one of the poly-
nomials p̃N+1 till p̃mN , and those that don’t. Thus, s(w1, . . . , wmN ) can be
decomposed uniquely into two parts as follows:

s(w1, . . . , wmN ) = a( p̃1, . . . , p̃N ) + b( p̃1, . . . , p̃mN ). (2.65)

Here a( p̃1, . . . , p̃N ) consists of the monomials on the right side of Eq. (2.64) that
do not depend on any of the polynomials p̃N+1 till p̃mN , and b( p̃1, . . . , p̃mN )
consists of the rest. Based on its construction and Corollary 2.7, b( p̃1, . . . , p̃mN )
vanishes under Cm.

Applying Cm on both sides of (2.65) and using (2.63) yields:

Cm(s)(y1, . . . , yN ) = a(e1, . . . , eN ), (2.66)

and, therefore, a(e1, . . . , eN ) vanishes. We know that the set {e1, . . . , eN},
whose elements are considered as polynomials in ΛN , are algebraically inde-
pendent. Therefore, a is the zero polynomial and, by (2.65), we have:

s(w1, . . . , wmN ) = b( p̃1, . . . , p̃mN ). (2.67)

The converse is obviously true.

Since, for all positive integers n, the total degree of p̃n is equal to n, the
following two corollaries are immediate consequences of Theorem 2.8.

Corollary 2.9. In ΛmN , the polynomial p̃N+1 is the unique (up to an overall
factor) symmetric polynomial of total degree N + 1 that vanishes under Cm.

Corollary 2.10. In ΛmN , there is no non-zero symmetric polynomial with
total degree less than N + 1 that vanishes under Cm.

In other words the kernel of the restriction of Cm to ΛmN,N is trivial. At
this stage it would be instructive to state a brief new version of Conjecture 2.2
here again to compare it with the statement in Corollary 2.10.

Conjecture 1.2. In ΛmN , there is no non-zero symmetric polynomial with
degree less than N + 1 that vanishes under Cm.
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Example 2.11. Consider the simplest non-trivial case where m = 2 and N = 1.
We want to describe all non-zero polynomials in Λ2 that vanish under clustering
transformation C2. Assume that s is such a polynomial. As in Eq. (2.67),

s(w1, w2) = b
(
p̃1(w1, w2), p̃2(w1, w2)

)
, (2.68)

for some polynomial b that each term in b( p̃1, p̃2) contains some power of p̃2.
From Eqs. (2.59) and (2.62),

p̃2(w1, w2) =
1

8

(
p21(w1, w2)− 2p2(w1, w2)

)
=

1

8
(w1 − w2)

2. (2.69)

Thus
s(w1, w2) = (w1 − w2)

2q(w1, w2), (2.70)

where q is some symmetric polynomial in Λ2.

Example 2.12. As another example, consider the case in which m = N = 2.
Let s be a symmetric polynomial in Λ4 such that C2(s) = 0. As in the previous
example,

s = b( p̃1, p̃2, p̃3, p̃4). (2.71)

where b is a polynomial such that each term in b( p̃1, p̃2, p̃3, p̃4) contains at least
some power of p̃3 or p̃4 (or both). So

s = p̃3q1 + p̃4q2 + p̃3p̃4q3, (2.72)

where q1, q2, and q3 are some symmetric polynomials in Λ4 such that q1 does
not involve p̃4 and q2 does not involve p̃3. Moreover

p̃3 =
1

48
( p31 − 6p2p1 + 8p3), (2.73)

and
p̃4 =

1

384
( p41 − 12p21p2 + 12p22 + 32p1p3 − 48p4), (2.74)

each in four variables.

Before ending this section a comment on the Conjecture 2.2, rephrased as
the one on page 43, seems in order. Despite the apparent similarity between
statements of the Corollary 2.10 and the Conjecture 2.2, it turned out that
the proof for Conjecture 2.2 is much harder and highly non-trivial. This is
due to the fact that upon taking linear combinations of symmetric polynomials
the total degree does not change, as long as the resulting polynomial does not
vanish, while the degree can be lowered.



Chapter 3

General Theory of Anyons

An anyon model is an abstract physical theory involving particles living in
(2 + 1)-dimensional space-time. To characterize an anyon model, one has to
specify three pieces of information [Kit06].

• The first is to specify a finite set L, known as the label set, whose elements
are to label the different types of anyons present in the model. Elements
of L are usually called charges or simply labels.

• The second is to specify a set of rules between any two labels. These are
known as fusion rules and they specify the possible total charge(s) when
two anyons of given charges come close and combine (fuse) as well as the
charges of each of the two anyons when one anyon of a given charge splits
into two.

• The third is to specify a set of rules, known as braiding rules, to specify
what occurs when two particular anyons are interchanged.

This chapter contains three sections. Each one of the items above is explained
in more detail in a separate section below.

3.1 The Label Set

This section is about the required structures for the label set L. As mentioned
above, elements of L, which we generically denote by small Roman letters a,
b, etc., label the type of anyons in the theory. Analogy with the more familiar
three-dimensional case makes using the word “type” for anyons more tangible.
In three dimensions, we know that particles come in two different types, namely,
boson-type or fermion-type. Electrons and protons, for example, are fermions
and photons and gluons are bosons. In two dimensions, the situation is similar
except that there are, in principle, infinite number of particle types that could
exist, depending on the phase factor appearing in the wave-function of the
system when two particles are exchanged. Despite this, each anyon model is
required to deal with only finitely many anyon-types. In what comes, we use
the words anyons, particles, and anyon-types interchangeably.

In L, there is exactly one distinguished label, known as the vacuum, which
we denote by 1. The vacuum represents the state of the model corresponding
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to no particle at all. Moreover, for any label a in L, there is a unique associated
label â in L, called the dual to a. Physically, â is the charge of the anti-particle
of the particle with charge a. Particles of charges a and â can be annihilated
to the vacuum or can be created, as a pair, out of the vacuum. The dual to
the vacuum is the vacuum itself, 1̂ = 1. For any anyon a, the dual â may or
may not be equal to a itself, but is required that ̂̂a = a.

3.2 Fusion Rules

Let a and b be labels in L. The fusion of a with b is denoted by a ⊗ b, and
it is defined to be a map that assigns, to each label c in L, a non-negative
integer denoted by N c

ab, such that these integers satisfy the axioms that are
given below. The integers N c

ab are called fusion coefficients. The fusion a ⊗ b
is usually written as follows:

a⊗ b =
⊕
c∈L

N c
ab c. (3.1)

The reader should note that this is just a symbolic equation and it is just
another way to state the same thing, namely, the number associated with label
c by the fusion a ⊗ b is N c

ab. Thus, the symbol ⊕ in Eq. (3.1) does not stand
for a direct sum.

If N c
ab is non-zero, the triple (a, b, c) is said to be admissible. For any two

given labels a and b, labels c for which (a, b, c) is admissible are called fusion
channels of a and b. Moreover, if the outcome of the fusion of a with b turns out
to be c, then c is the fusion channel of a and b. In this case, N c

ab is interpreted
as the number of distinct ways that an anyon of charge c can be produced when
two anyons of charges a and b are fused. If N c

ab > 0, usually a diagram as the
one depicted in Fig. 3.1a, known as a fusion-tree, is drawn to show that two
anyons of types a and b are fused and an anyon of type c is produced in the
μth possibility, μ = 1, 2, . . . , N c

ab, among N c
ab number of distinct possibilities.

With the time axis going vertically downward, this diagram is to be interpreted

a b

c

μ

(a) |ab; c(μ)〉
ba

c

μ

(b) 〈ab; c(μ)|

Figure 3.1: Time axis points downward, and μ = 1, 2, . . . , N c
ab.

as a process in (2 + 1) space-time in which anyons a and b are fused to anyon
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c. In analogy, Fig. 3.1b represents splitting, in time, of anyon c to anyons a
and b. Sometimes the ket notation |ab; c(μ)〉 is used to denote the fusion-tree
in Fig. 3.1a and the corresponding bra 〈ab; c(μ)| is used to denote the one in
Figure 3.1b. If, on the other hand, N c

ab = 0, this then means that there is no
way that an anyon of charge c be an outcome of the fusion of anyons of charges
a and b and, similarly, there is no way that an anyon of charge c can be split
into two anyons of charges a and b.

If for all labels a, b, and c, the numbers N c
ab are either zero or one, the

model corresponding to the fusion rules is said to be a multiplicity-free model.
For multiplicity-free models, the index μ in any fusion-tree of the model is
always equal to one and, as Figs. 3.2a and 3.2b show, is suppressed. In this
case, the corresponding ket and bra are simply denoted by |ab; c〉 and 〈ab; c|,
respectively.

a b

c

(a) |ab; c〉
ba

c

(b) 〈ab; c|

Figure 3.2: Time axis points downward, and μ = 1.

A model of anyons whose corresponding fusion rule has the property that∑
c∈L N c

ab > 1, for some a and b in L, is said to be non-Abelian. Otherwise, it
is said to be Abelian.

We now turn our attention to the axioms demanded for the fusion coeffi-
cients. To make these axioms physically more accessible, let us first see how
physicists interpret fusion rules. When two anyons of charges a and b are fused
to an anyon of charge c, it is interpreted that, if one brings the two anyons
close, then the outcome object, seen from afar, looks as an anyon of charge c.
To see the point, we consider an analogy in three dimensions once more.

Let b stand for a boson and let f stand for a fermion. Consider now a
box including a bunch of electrons and protons and assume that they are well-
separated, do not interact, and are pinned in their positions. Recall that both
proton and electron are fermions, that is, both are of type f . Now take one
electron and one proton and bring them slowly very close. Viewed from distant,
this then would seem as a collective particle—actually a hydrogen atom—which
is a boson. One can imagine that two f -type particles has fused to a b-type
particle.

Another analogy that is also helpful and is very often used in the literature,
is comparing Eq. (3.1) with the corresponding decomposition equation when
adding two angular momenta in quantum mechanics. For example, consider
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bringing two spin-1/2 particles together. The Hilbert space of the total system
is the tensor product of the Hilbert spaces corresponding to each individual
particle and, therefore, is of dimension four. This Hilbert space decomposes
into two Hilbert spaces, one that corresponds to the spin-singlet and one that
corresponding to the spin-triplet. All this can actually be summarized in the
following equation:

2⊗ 2 = 1⊕ 3, (3.2)

comparable to Eq. (3.1). Of course, one should not push this analogy too
far. In contrast to a particle with spin, which has its position-coordinates as
its external degrees of freedom and its spin as its internal degree of freedom, a
single anyon has no degrees of freedom beyond its (external) degrees of freedom
due to taking into account the coordinates of its position in the two dimensional
plane it lives on. Therefore, setting the degrees of freedom due to its position
aside, a single anyon does not possess any degrees of freedom and, consequently,
there is no Hilbert space associated with a single anyon. Hence, the Hilbert
space of a system consisting of two anyons can no longer be considered as the
tensor product of the Hilbert spaces of each individual anyon. However, as is
discussed later, due to fusion rules, one can still associate a Hilbert space with
a collection of two or more anyons, to describe the internal degrees of freedom
associated with this collection.

Here we itemize the axioms demanded for fusion rules. These are somehow
the reflection of our physical intuition about the model.

(i) For any two labels a and b in L, a ⊗ b = b ⊗ a, that is, the fusion is
commutative. Therefore, N c

ab = N c
ba, for any label c in L.

This is physically plausible, we do not want the final charge depends on
whether we take a close to b or b close to a.

(ii) For any label a in L, a⊗1 = a, that is, the vacuum 1 is the identity of the
fusion. Therefore, for any label c, N c

1a = δac, where δ is the Kronecker
delta.

Physically, it means that if an anyon is combined with the vacuum, its
charge is not expected to change.

(iii) For any label a in L,

a⊗ â = 11⊕ (possibly other terms), (3.3)

and, therefore, N1
aâ = 1. Moreover, we also demand that N1

ab = δbâ, that
is, â is the only label with this property.

This can also be understood, if one allows for the possibility of particle-
antiparticle annihilation.
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(iv) For any three labels a, b, and c in L, (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c), that is,
fusion is associative. What is actually meant by this relation is that the
set of all possible fusion outcomes of the expression on the left is equal to
the set of all possible fusion outcomes of the expression on the right. This
translates itself to the following equation among the fusion coefficients:∑

u∈L
Nu

xw Nz
uy =

∑
u∈L

Nu
wy N

z
xu, (3.4)

for all labels x, w, y, and z in L.

This is also physically sound. We demand that the actual outcome of
fusing three anyons does not depend on the order in which the particles
are combined.

One can deduce more relations among the fusion coefficients. For example,
letting x → a, w → b, y → ĉ, and z → 1 in Eq. (3.4), invoking property (iii)
above, and considering the fact that ̂̂c = c, one gets N c

ab = N
̂b
aĉ. Similarly one

can show N c
ab = N ĉ

â̂b
.

3.2.1 Examples of Fusion Rules

Example 3.1 (Fibonacci Fusion Rules). Consider the two-element set L = {a, b}
as the label set together with the following relations:

a⊗ a = a,

a⊗ b = b⊗ a = b,

b⊗ b = a⊕ b.

It is straightforward to check the properties of a fusion rule for ⊗ defined above.
Here a is the vacuum 1 and b is its own dual. Anyon b is usually denoted by τ
in the literature and is called the Fibonacci anyon. This fusion rule corresponds
to a multiplicity-free and non-Abelian anyon model. �

Example 3.2 (Ising Fusion Rules). Consider the three-element set L = {1, σ, ψ}.
Then ⊗ defined by

ψ ⊗ ψ = 1,

σ ⊗ σ = 1⊕ ψ,

σ ⊗ ψ = σ,

along with other trivial relations, defines a fusion rule on L. Every particle is
its own dual, it is multiplicity-free, and non-Abelian. �
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Example 3.3 ([Wan10]). Let G be a finite group with the identity element e
and let, for any g ∈ G, g−1 denote the group inverse of g. It is straightforward
to see that

g ⊗ h =
⊕
k∈G

Nk
gh k, (∀g, h ∈ G),

with Nk
gh := δgh,k, defines a fusion rule on G (as the label set) in which 1 = e

and ĝ = g−1, for every g ∈ G. It is multiplicity-free and Abelian.
Now let L = G

⋃{m}, where m �∈ G [Tam00]. Then ⊗ defined by

g ⊗ h = gh,

m⊗ g = g ⊗m = m,

m⊗m =
⊕
g∈G

g,

for ever g and h in G, is a multiplicity-free fusion rule on L with vacuum e.
The dual of every element in G is its group inverse and m is its own dual. It is
Abelian if and only if G is a group of order one. The reader notes that if the
group G is taken to be Z2, then this reproduces the Ising fusion rules in the
previous example. �
Example 3.4 ( 12 E6 Fusion Rules). Consider the label set L = {a, b, c} with ⊗
defined by

a⊗ a = a,

b⊗ b = a⊕ 2 b⊕ c,

c⊗ c = a,

b⊗ c = c⊗ b = b.

This defines a fusion rule on L where a is the vacuum, both b and c are self-
duals, it is non-Abelian, and it is not multiplicity-free. For details, the reader
is referred to [HH09]. �
Example 3.5 (su(2)k Fusion Rules). Let k be a positive integer. For any labels
a, b, and c in the set Lk := {0, 1/2, 1, 3/2, . . . , k/2}, define the fusion coefficient
N c

ab as follows:

N c
ab =

{
1, |a− b| � c � min{a+ b, k − a− b}
0, othewise.

In other words, for any a and b in Lk, we have

a⊗ b := |a− b| ⊕ (|a− b|+ 1)⊕ · · · ⊕min{a+ b, k − a− b}. (3.5)

Eq. (3.5) defines a multiplicity-free fusion rule on Lk in which 0 is the vacuum
and every element is self-dual. This is Abelian if and only if k = 1. This fusion
rule is the building block of the model that is considered in Chapter 4. Note
that k = 2 corresponds to the Ising case. �
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3.2.2 Fusion Matrix and Quantum Dimension

With each anyon type a in L is associated a non-negative number da, called
the quantum dimension of anyon a. To define da, we introduce the notion of
the fusion matrix Na first. By definition, Na is a square matrix of dimension
|L| whose rows and columns are labeled by elements of L, in some order, and
for every b and c in L, its (bc)th entry (Na)bc equals to the fusion coefficient
N c

ab. Hence, any fusion matrix Na is composed of only non-negative (integer)
numbers. Then, by Perron–Frobenius theorem for matrices with non-negative
entries, Na has a real non-negative eigenvalue that is larger than the absolute
value of all other eigenvalues of Na. The quantum dimension da is defined to
be this eigenvalue.

Example 3.6. For the Fibonacci anyon τ of Example 3.1, the corresponding
fusion matrix is

Nτ =

[
0 1
1 1

]
. (3.6)

Henceforth, dτ = φ, where φ denotes the golden ratio (1 +
√
5)/2. �

Example 3.7. Consider, in the same order, the label set given in Example 3.2.
We have the following fusion matrices:

N1 =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , Nσ =

⎡⎣0 1 0
1 0 1
0 1 0

⎤⎦ , Nψ =

⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦ . (3.7)

Simple calculations show d1 = dψ = 1 and dσ =
√
2. �

Example 3.8. For su(2)k anyons introduced in Example 3.5, for any j in Lk,
the corresponding quantum dimension dj obeys the following formula:

dj =
sin

(
2j+1
k+2 π

)
sin

(
1

k+2 π
) . (3.8)

It is shown, for example, in [Kit06] that the quantum dimensions form
a one-dimensional representation of the fusion algebra, namely, we have the
following key equation:

dadb =
∑
c∈L

N c
ab dc, (∀a, b ∈ L). (3.9)

Using Eq. (3.9), one can see that a |L|-dimensional vector d, whose components
are quantum dimensions of the labels in L, is a common eigenvector of all fusion
matrices with an eigenvalue equal to the quantum dimension corresponding to
that label. In other words:

Na d = da d, (∀a ∈ L). (3.10)
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The norm of the vector d is called the total quantum dimension and it is
denoted by D. More explicitly,

D =

√∑
a∈L

d2a. (3.11)

It is straightforward to see that the associativity of fusion rules is equivalent
to

NaNb = NbNa, (∀a, b ∈ L). (3.12)

Therefore, all fusion matrices can be simultaneously diagonalized. Further-
more, associativity together with the commutativity of fusion rules give rise to
the following equation:

NaNb =
∑
c∈L

N c
ab Nc, (∀a, b ∈ L), (3.13)

among the fusion matrices. Eq. (3.13) actually expresses the fact that fusion
matrices can be considered as a representation of the fusion algebra.

3.2.3 Hilbert Space of Anyon Models and F-symbols

To be able to construct a model of anyons, the first step is to address the
question of how one can associate a Hilbert space with a number of anyons
under consideration. Actually, this is briefly discussed when we talked about
fusion-trees. We now investigate this in a greater detail. We ignore all external
degrees of freedom that a single anyon may have and concentrate ourselves only
on internal degrees of freedom.

To this end, consider a system of two or more anyons. As mentioned earlier,
no internal degrees of freedom is associated with just a single anyon. Consider
two anyons a and b with fusion channel c. The corresponding Hilbert space is
denoted by Hc

ab and it is defined to be the space for which the following set
consisting of fusion kets (or trees):

Bc
ab :=

{
|ab; c(μ)〉 | μ = 1, 2, . . . , N c

ab

}
, (3.14)

forms an orthonormal basis. For the dimension of this Hilbert space we there-
fore have dim(Hc

ab) = N c
ab. In other words, any state in Hc

ab is a linear combi-
nation of the elements of the set above and

〈ab; c(μ)|ab; d(ν)〉 = δcdδμν , (3.15)
Nc

ab∑
μ=1

|ab; c(μ)〉〈ab; c(μ)| = Icab, (3.16)
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where Icab denotes the identity on Hc
ab. The full Hilbert space Hab corresponding

to the pair (a, b), which describes the internal states of these anyons, is defined
to be the direct sum of the partial Hilbert spaces, that is,

Hab =
⊕
c

Hc
ab, (3.17)

where the sum is over all fusion channels c of anyons a and b and, consequently,

dim(Hab) =
∑
c

N c
ab. (3.18)

Since the models that are considered in this thesis are multiplicity-free models,
we continue the discussion in this section only for multiplicity-free models.

Consider now three anyons a, b, and c with overall charge d, and let Hd
abc

denote the associated Hilbert space. Two different bases can be imagined for
this space. One is the set consisting of all fusion-trees as the one shown in
Fig. 3.3a. Note that the intermediate label e must be a fusion channel for b
and c and, in the same time, d must be a fusion channel for a and e. The other
one is the set consisting of all fusion-trees as the one shown in Fig. 3.3b. Here
f must be a fusion channel of a and b, and d must be in the fusion channel of
f and c.

d

a b c

e

(a)

d

a b c

f

(b)

Figure 3.3: In (a), b fuses with c first, then a fuses with e to give d. In (b), a
fuses with b first, then f fuses with c to give d.

One should note that the associativity of fusion rules guarantees the consistency
that one needs here regarding the dimension of Hd

abc determined through each
one of the bases described above. Counting the number of fusion-trees in
Fig. 3.3a gives

dim(Hd
abc) =

∑
e

Ne
abN

d
ec, (3.19)

and counting the number of fusion-trees in Fig. 3.3b gives

dim(Hd
abc) =

∑
f

Nf
bcN

d
af . (3.20)

These two are the same because of Eq. (3.4).
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As is always the case, two different bases of the Hilbert space of a physical
theory are related by a unitary matrix. Here, the basis-transformation matrix
from the basis in Fig. 3.3a to the basis in Fig. 3.3b, is called the F-matrix and
it is denoted by Fabc

d . Therefore,

d

a b c

f =
∑
e

Fabc
d;ef

d

a b c

e , (3.21)

where Fabc
d;ef indicates the (ef)th of the F-matrix and is called an F-symbol. One

notes that Eq. (3.21) is meaningful only if the triples (a, b, f), (f, c, d), (b, c, e),
and (a, e, d) are all admissible. If this is not the case, the F-symbol Fabc

d;ef is
defined to be zero. Eq. (3.21), which is called an F-move, is merely a symbolic
equation and does not provide any information about the actual numerical
values of F-symbols. To get that information, one needs some constraints
among the F-symbols themselves. To this end, we consider four anyons a, b, c,
and d, with overall charge e, and look at different configurations of the fusion-
trees corresponding to these anyon charges. Fig. 3.4 shows two of these possible
configurations.

a b c d

e

v

u

(a)

a b c d

e

y

x

(b)

Figure 3.4: Two possible fusion-trees in which anyons a, b, c, and d fuse to
anyon e.

As Figs. 3.5 and 3.6 show, there are two different ways, using F-moves, that
one can go from the fusion-tree in Fig. 3.4a to the fusion-tree in Fig. 3.4b.

a b c d

e

v

u Fucd
e;yv

a b c d

e

u y
Faby

e;xu

a b c d

e

y

x

Figure 3.5: Two F-moves
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a b c d

e

v

u Fabc
v;wu

a b c d

e

w

v

Fawd
e;xv

a b c d

e

x

w

Fbcd
x;yw

a b c d

e

y

x

Figure 3.6: Three F-moves

To have a consistent theory, these two ways have to be equivalent. This gives
rise to the following equations:

Faby
e;xu Fucd

e;yv =
∑
w∈L

Fabc
v;wu Fawd

e;xv Fbcd
x;yw. (3.22)

These are the Pentagon equations. Before going further, some points about
Pentagon equations worth being mentioned explicitly. For detail, the reader is
encouraged to consult [Bon07].

First, one notes that these equations are actually multivariate polynomial
equations. The Pentagon equations either have no solution at all or they have
infinitely many of them. The latter is due to the gauge freedom of these symbols.
It is straightforward to check that if a set of F-symbols satisfy the Pentagon
equations, then the new set of F-symbols defined by

F̃
abc

d;ef =
kafd kbcf
kabe kecd

Fabc
d;ef , (3.23)

where the k’s with scripts are just complex numbers, satisfy the same Pentagon
equations as well. However, it is shown [Kit06,ENO05] that all the solutions
fall into only finitely many equivalence classes.

Determining the F-symbols for a given set of fusion rules, even with the help
of computers, is a formidable task. In practice, one uses the freedom mentioned
in Eq. (3.23) to, a priori, fix some of the F-symbols. The one that is widely
used in physics literature is to set the matrix Fabc

d equal to the identity matrix,
which acts on the Hilbert space Hd

abc, whenever one of the labels a, b, or c is the
vacuum. This is of course a natural convention for physical theories since any
branch of a fusion-tree labeled by vacuum can simply be ignored. Furthermore,
as mentioned earlier, each F-matrix, being a basis-transformation matrix for a
physical Hilbert space, is invertible and unitary in the first place. To give a
flavor of how to calculate the F-symbols, let us consider the following examples.

Example 3.9 (F-symbols for the Fibonacci anyon model). In this example we
determine the F-symbols corresponding to Fibonacci fusion rules introduced in
Example 3.1. From the fusion rules and the convention mentioned above, we
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have:

F111
1;11 = Fτ11

τ ;1τ = F1τ1
τ ;ττ = F11τ

τ ;τ1 = Fττ1
1;τ1 = Fττ1

τ ;ττ

= Fτ1τ
1;ττ = Fτ1τ

τ ;ττ = F1ττ
1;1τ = F1ττ

τ ;ττ = 1.

There are only five more F-symbols, namely, Fτττ
τ ;11, Fτττ

τ ;1τ , Fτττ
τ ;τ1, Fτττ

τ ;ττ , and
Fτττ
1;ττ , that might be non-zero and yet to be determined. For simplicity, we

denote them by m, n, p, q, and r, respectively. The first four of these are
actually entries of the 2× 2 unitary matrix Fτττ

τ :

Fτττ
τ =

[
m n
p q

]
, (3.24)

and the last one is the only entry of the 1× 1 unitary matrix Fτττ
1 :

Fτττ
1 =

[
r
]
. (3.25)

The unitarity of Fτττ
τ implies that

q = ξ m, p = −ξ n, |m|2 + |n|2 = 1, (3.26)

for some phase factor ξ. Similarly, we have

Fτττ
1;ab = r δaτδbτ , |r| = 1, (3.27)

for any labels a and b, with δ standing for the Kronecker delta. To determine
these F-symbols we now invoke the Pentagon equations. Letting, for example,
a = b = c = d = e = v = y = τ and x = u = 1 in Eq. (3.22) and using the first
part of Eq. (3.27), we get:

m = rpn. (3.28)

It turns out that considering all other possible labelings in Eq. (3.22) gives rise
to only 11 more non-trivial and independent equations. All the 12 equations
are listed below:

n(1− q2 −m) = 0, n(m+ qr) = 0, np−mr2 = 0,
p(1− q2 −m) = 0, p(m+ qr) = 0, m2 + npr = 1,
r2 − rq2 − np = 0, nq(1 + r) = 0, m2 + npq = 0,
q3 − q2 + np = 0, pq(1 + r) = 0, m− npr = 0.

It is straightforward to see that the above system of equations gives rise to two
different family of solutions for the unknowns. These are

m = −φ, np = −φ, q = φ, r = 1, (3.29)

and
m = φ−1, np = φ−1, q = −φ−1, r = 1. (3.30)
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The result m = −φ, which appears in (3.29), is incompatible with the last
equation in (3.26) and, therefore, it is not unitary. It is readily seen that, if
ξ = −1, then Eqs. (3.30) are consistent with Eqs. (3.26) and one finally gets

Fτττ
1;ττ = 1, Fτττ

τ =

[
φ−1 η

√
φ−1

η̄
√

φ−1 −φ−1

]
, (3.31)

where η is an arbitrary phase. Thus, we still have one degree of gauge freedom
η left. One can fix the gauge by setting η equal to, say, one. �
Example 3.10 (F-symbols for the Ising anyon model). The same strategy as
the one followed in the last example can be used to determine the F-symbols
of the Ising anyon model as well. By the convention mentioned earlier, Fabc

d is
the identity matrix of appropriate order, if at least one of the labels a, b, or c is
the vacuum. Of course, in this case, all these identity matrices are actually of
order one. Setting these trivial F-symbols aside, there are 14 more F-symbols
to be determined. Four of them, namely, m := Fσσσ

σ,11, n := Fσσσ
σ,1ψ, p := Fσσσ

σ,ψ1,
and q := Fσσσ

σ,ψψ, are the entries of the following 2× 2 unitary matrix:

Fσσσ
σ =

[
m n
p q

]
. (3.32)

We have the same relations as the ones given in (3.26) for the entries of this
matrix to guarantee the unitarity of this matrix. The following items list par-
ticular assignments to the labels of the Pentagon equations (3.22) together with
the corresponding outcome equations. The assignments are made in a manner
so that the outcome equations involve the entries of the matrix above, which
we want to determine.

• a = b = c = d = v = x = σ and e = u = y = 1:

m2 + npFσψσ
1;σσ = 1, (3.33)

• a = b = c = d = v = x = σ, e = u = 1, and y = ψ:

mp+ pq Fσψσ
1;σσ = 0, (3.34)

• a = b = c = d = v = x = σ, e = 1, and u = y = ψ:

np+ q2 Fσψσ
1;σσ = Fσσψ

1;σψ Fψσσ
1;ψσ, (3.35)

• a = ψ, b = c = d = e = u = x = σ, and v = y = 1:

m = nFψσσ
1;ψσ Fψψσ

σ;σ1, (3.36)
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• a = ψ, b = c = d = e = u = x = σ, v = 1, and y = ψ:

pFψσψ
σ;σσ = q Fψσσ

1;ψσ Fψψσ
σ;σ1. (3.37)

The above equations give rise to the following two solutions:

Fσσσ
σ = ± 1√

2

[
1 1
1 −1

]
, (3.38)

for the F-matrix in (3.32).

Example 3.11 (F-symbols for the su(2)k anyon model). The standard F-symbols
of su(2)k anyon models, which is used in physics literature, is given by the fol-
lowing formula. Note that this formula expresses only non-zero F-symbols. For
the proof, the reader can refer to [Kac89].

Fabc
d;ef =

(−1)a+b+c+dΔ(a, b, e)Δ(c, d, e)Δ(b, c, f)Δ(a, d, f)
√
�2e+ 1�q

√
�2f + 1�q

×
M∑

n=m

(
(−1)n �n+ 1�q!

�a+ b+ c+ d− n�q!�a+ c+ e+ f − n�q!�b+ d+ e+ f − n�q!

× 1

�n− a− b− e�q!�n− c− d− e�q!�n− b− c− f�q!�n− a− d− f�q!

)
,

for all labels in the set {0, 1/2, . . . , k/2}. Here for any real number r, the
so-called q-number �r�q, is defined by

�r�q =
qr/2 − q−r/2

q1/2 − q−1/2
, q := exp

( 2π i

k + 2

)
, (3.39)

and for a non-negative integer n, the q-factorial �n�q! is defined by

�n�q! = �n�q�n− 1�q · · · �1�q, �0�q! := 1. (3.40)

Moreover, for labels a, b, and c from {0, 1/2, . . . , k/2}, with a � b+c, b � c+a,
a � b+ c, and a+ b+ c = 0 (mod 1),

Δ(a, b, c) :=

√
�a+ b− c�q!�a− b+ c�q!�−a+ b+ c�q!

�a+ b+ c+ 1�q!
. (3.41)

Finally, summation-limits m and M are defined by

m = max{a+ b+ e, c+ d+ e, b+ c+ f, a+ d+ f},
M = min{a+ b+ c+ d, a+ c+ e+ f, b+ d+ e+ f}. (3.42)
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It should be mentioned that the F-matrices with entries given by the formula
on the previous page are their own inverses. Moreover, employing this formula,
we get

Fa 1
2

1
2

a =
1√

d1/2da

⎡⎣−√da−1/2

√
da+1/2√

da+1/2

√
da−1/2

⎤⎦ , (3.43)

for any label 0 < a < k/2. The rows of the matrix above correspond to
e = a− 1/2, a+1/2 and the columns correspond to f = 0, 1, respectively. The
F-symbols given in (3.43) are the only ones that we need for the anyon models
discussed in Chapter 4

As the final point of this example, using the q-number notation introduced
above, we have

dj = �2j + 1�q, (3.44)

for the quantum dimensions given by Eq. (3.8). �

3.3 R-Symbols

Since the models investigated in this thesis do not involve exchange or braiding
of anyons, we keep this section short and just mention some basic properties
only for multiplicity-free models.

Consider two anyons a and b sitting on a given plane. Being exchanged in
time, the world-lines of these anyons form a braid in three-dimensional space.
As depicted on the left and right panels of Fig. 3.7, depending on which di-
rection the anyons move during the exchange, two topologically inequivalent
braid can be formed out of their world-lines. We use Rab and R−1

ab to denote
the situations in Figs. 3.7a and 3.7b, respectively.

a b

b a

(a) Anti-Clockwise Braiding

a b

b a

(b) Clockwise Braiding

Figure 3.7: World-lines of anyons a and b being braided in different directions.

Consider now two anyons a and b with total charge c. As mentioned before,
this state is denoted by |ab; c〉 and it is an element of the Hilbert space Hc

ab.
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Recall that, since the model is assumed to be multiplicity-free, this is a one-
dimensional Hilbert space. In this context, Rab can be viewed as a (unitary)
linear operator from the Hilbert space Hc

ab to the Hilbert space Hc
ba. In other

words, Rab|ab; c〉 belongs to Hc
ba. On the other hand, |ba; c〉 is a state in the

Hilbert space Hc
ba, which is also one-dimensional. Therefore,

Rab|ab; c〉 = Rba
c |ba; c〉, (3.45)

for some phase factor Rba
c , called R-symbol. Of course, in general, Rab

c is not
just a phase but an N c

ab ×N c
ab unitary matrix. Eq. (3.45) is usually visualized

as below:

b a

c

= Rba
c

b a

c

. (3.46)

Going from the right fusion-tree in the equation above to the braided fusion-
tree on the left is called an R-move.

As Figs. 3.8 and 3.9 show, there are two different combinations consisting
of F-moves and R-moves that take us from the state on the left to the state on
the right. To have a consistent theory though, these two combinations have to
be equivalent, giving rise to the following set of consistency equations known
as the ‘anti-clockwise’ Hexagon equations for obvious reason:

Ryx
p Fyxz

u;qp Rzx
q =

∑
r

Fxyz
u;rp Rrx

u Fyzx
u;qr. (3.47)

Similarly, considering the clockwise braidings, we get the following ‘clockwise’
Hexagon equations:(

Rxy
p

)−1 Fyxz
u;qp

(
Rxz

q

)−1
=
∑
r

Fxyz
u;rp

(
Rxr

u

)−1 Fyzx
u;qr. (3.48)
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p

Ryx
p

y z x

u

p

Fyxz
u;qp

y z x

u

q

Rzx
q

y z x

u

q

Figure 3.8: Going from the state on the left to the one one the right, RFR



3.3. R-Symbols 61

y z x

u

p

Fxyz
u;rp

y z x

u

r

Rrx
u

u

y z x

Fyzx
u;qr

y z x

u

q

Figure 3.9: Going from the state on the left to the one one the right, FRF

For a consistent anyon model with a given set of fusion rules, the Pentagon
equations and both versions of the Hexagon equations must be satisfied.

Example 3.12. In this example we determine the R-symbols for the Fibonacci
anyon model. As for the F-symbols, braiding with vacuum is also considered
to be trivial, namely, we have

R11
1 = Rτ1

τ = R1τ
τ = 1. (3.49)

Therefore, there are only two undetermined R-symbols Rττ
1 and Rττ

τ left. We
determine them using the Hexagon equations and the corresponding F-symbols
determined in Example 3.9. Letting x = y = z = p = q = u = τ in Eq. (3.47)
and using (3.31), we get the following equation:(

Rττ
τ

)2
+ φ−1 Rττ

τ + 1 = 0. (3.50)

Considering other possibilities in Eq. (3.47), one gets the following three more
equations: (

Rττ
τ

)2 − Rττ
1 = 0, (3.51)

φ
(
Rττ

1

)2 − φRττ
τ − 1 = 0, (3.52)

φRττ
τ Rττ

1 + Rττ
τ − 1 = 0. (3.53)

This system of equations have two sets of solutions, namely,{
Rττ

1 = e
4πi
5 ,Rττ

τ = e−
3πi
5

}
,

{
Rττ

1 = e−
4πi
5 ,Rττ

τ = e
3πi
5

}
. (3.54)

It is straightforward to see that the equations obtained from the clockwise
Hexagon equations for R-symbols have the same form with one difference that,
instead of Rττ

τ , we have
(
Rττ

τ

)−1 and, instead of Rττ
1 , we have

(
Rττ

1

)−1. Despite
this difference, it turns out that the new equations have still the same solutions
given in (3.54). �





Chapter 4

A Non-Abelian Anyon-Chain Model

This chapter, which is based on the second accompanied paper [GA17], intro-
duces a one-dimensional model of a chain of su(2)k anyons, with the special
feature that the number of spin-1/2 anyons in the model can fluctuate, and
then investigates some of the properties of this model.

First, for odd values of k and at a point in the parameter space for which the
Hamiltonian becomes a sum of projectors, we realize that the model possesses
zero-energy ground states and determine these states explicitly, both for open
and closed chains. Numerical computations reveal that, for even values of k,
there are no zero-energy ground states.

Then, by an investigation based on the transfer matrix idea and the Yang–
Baxter equation, and a two-dimensional model in statistical mechanics, intro-
duced by Warnaar et al in 1992 [WNS92], we specify four other points in the
parameter space for which the system is integrable. That the anyon models
are closely related to a special type of two-dimensional models of statistical
mechanics, known as RSOS (restricted-solid-on-solid) models [ABF84], had al-
ready been observed in [FTL+07].

4.1 Introduction

To increase our understanding about topological phases of matter, a good start-
ing point is to study some reasonably simple so-called toy-models that reveal
various aspects of the underlying physics of the more complicated real sys-
tems of interest. This kind of studies has already been proven to be fruitful
to shed light on capturing the physics of interacting quantum many-body sys-
tems during early days of condensed matter physics. Quantum one-dimensional
spin chains, namely, SU(2) spins sitting on the sites of a one-dimensional
lattice, are prototype examples in this regard. For instance, the Heisenberg
one-dimensional spin-1/2 model played an important role in our quantum-
mechanical understanding of magnetism and, in particular, phase transition
between the ferromagnet and anti-ferromagnet phases of matter. The Hamil-
tonian H of this model, in its simplest incarnation, is

H = J
∑
i

Si · Si+1, (4.1)
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where Si and Si+1 are local spin operators actings on sites i and i+ 1, re-
spectively, and J is the only coupling constant. Here only the nearest-neighbor
interactions are taken into account. The interaction term Si · Si+1 assigns en-
ergy J , if the spins on sites i and i+1 are aligned, and assigns energy −J , if they
are anti-aligned. The Hilbert space upon which H acts is the tensor product of
l copies, l being the number of sites, of the Hilbert space corresponding to one
single site. The second accompanied paper introduces one of these toy-models
for non-Abelian su(2)k anyons, in which each site is either empty or occupied
with a spin-1/2 anyon, and investigate some of its physical aspects.

4.1.1 Hilbert Space of su(2)k Anyon Chains

To cook up model-Hamiltonians for one-dimensional anyon chains, the first
thing to be addressed is how to keep track of anyon degrees of freedom. In
other words, one should identify the Hilbert space upon which a particular
anyon model-Hamiltonian acts. We consider only the su(2)k anyons introduced
in Example 3.5 together with the fusion rules given by (3.5). In the context
of anyon chains, considering this class of anyons seems to be a natural choice
due to the following two-fold resemblance that this class of anyons share with
SU(2) spins. This class of anyons have ‘generalized spins’

j = 0,
1

2
, 1,

3

2
, · · · , k

2
, (4.2)

comparable to SU(2) spins

s = 0,
1

2
, 1,

3

2
, · · · , (4.3)

and their fusion rule (3.5) is also comparable to the following combination rule

s1 ⊗ s2 = |s1 − s2| ⊕ (|s1 − s2|+ 1)⊕ · · · ⊕ (s1 + s2), (4.4)

for spins s1 and s2. Actually these similarities provide an analogy as a guideline
from spin-chain physics toward anyon-chain physics. Of course, one should
be careful not to push this analogy too far. As mentioned in Chapter 3, in
contrary to the spin-chain case, the Hilbert space of a number of anyons is
not the tensor product of the Hilbert spaces corresponding to each individual
anyon. As a consequence, there are no analogs of spin local operators Si for
anyons.

Consider now a one-dimensional lattice whose l sites are either empty or
filled with any j-type anyon, where j is any non-zero label chosen from the
list (4.2). In the context of anyon chains, the common language is to represent
the anyon degrees of freedom by drawing a tree-like object, known as a fusion-
chain or a fusion-tree, depicted in Fig. 4.1. If none of the y labels is zero,
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the corresponding chain is called a dense chain, otherwise, it is called a dilute
chain.

x0 x1 xi−1 xi xi+1 xl−1 xl

y1 y2 yi−1 yi yi+1 yi+2 yl−1 yl

Figure 4.1: A typical fusion-tree.

The vertical segments in the fusion-tree represent sites of the lattice. Hence,
based on the lines above, y labels assigned to these vertical segments are either
zero, interpreted as the site is empty, or a non-zero number from the list (4.2),
interpreted as the site is occupied by an anyon of that particular spin. The
values that the x labels can take are, on the other hand, constrained by the
fusion rules (3.5) in the sense that, for all 1 � i � l, xi can take only those
values from the list (4.2) for which it is a fusion channel of xi−1 ⊗ yi. Besides,
for future reference, we agree to refer the part of the fusion-tree in Fig. 4.1 that
is highlighted by the blue dashed-line as the ith part of the fusion-tree.

We now require that the set of all fusion-trees described above constitutes
an orthonormal basis for the Hilbert space associated with the one-dimensional
l-sited lattice of anyons outlined in the last paragraph. Orthonormality is in-
terpreted in the sense that the inner product of two fusion-trees is defined to
be

∏l
i=0 δxix

′
i

∏l
i=1 δyiy

′
i
, where primed and unprimed labels denote the corre-

sponding labels of each one of the fusion-trees, respectively.

4.1.2 Toward the Anyon Chain Hamiltonians

Suppose we want to contrive a Hamiltonian analogous to the one in Eq. (4.1),
but this time for a dense chain of spin-1/2 anyons, that is, a chain for which all
y labels in Fig. 4.1 are 1/2. Since there is no analog of local spin operators Si

for spin-1/2 anyons, we first rewrite the Hamiltonian in a form that is suitable
to model anyon chains. As the calculations below show, in its new dress, the
Hamiltonian (4.1) is a sum of projectors so that each one of the projectors
projects onto a specified and fixed-for-all-sites total spin channel. In its new
form, the Hamiltonian (4.1) would inspire how to write a model Hamiltonian
for spin-1/2 anyons with nearest-neighbor interactions.

Let Si,T := Si + Si+1 denote the total spin of interacting spins on sites i
and i + 1. Since each site is filled with a spin-1/2, si,T is either zero or one
and, consequently, the eigenvalues of S2

i,T are either zero or two. Hence

S2
i,T = 0P

(0)
i + 2P

(1)
i , (4.5)
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where P
(0)
i is the projection onto the spin-singlet and P

(1)
i is the projection

onto the spin-triplet. Moreover, we have

P
(0)
i + P

(1)
i = I, (4.6)

where I is the identity operator. On the other hand,

Si · Si+1 =
1

2

(
S2

i,T − S2
i − S2

i+1

)
=

1

2

(
2P

(1)
i − 3

4
I − 3

4
I
)

= P
(1)
i − 3

4
I. (4.7)

Therefore, ignoring an unimportant overall shift, the Hamiltonian in Eq. (4.1)
can be written as a sum of projectors, namely,

H = J
∑
i

P
(1)
i . (4.8)

Operator P
(1)
i acts locally and, as far as this operator is concerned, only spins

at sites i and i+ 1 contribute.
The above Hamiltonian can indeed be considered as a Hamiltonian that

models the spin-1/2 anyon chain, with nearest-neighbor interactions, provided
that one finds a suitable way to interpret consistently how the projection op-
erator P

(1)
i should act in the case of spin-1/2 anyons. Following the analogy

with the spin-chain case, we let P (1)
i act only on the ith part of the fusion-tree

in Fig. 4.1. The problem is then that the fusion channel of anyons at sites i
and i+ 1 is not explicit, but we want to assign energy E = J , when anyons at
sites i and i + 1 fuse to one, and to assign energy E = 0, otherwise. To deal
with this problem, we can do a local basis transformation on the ith part of the
fusion-tree using an F-move introduced in Chapter 3 and is shown in Fig. 4.2.

xi−1 xi xi+1

yi−1 yi yi+1 yi+2

Fi

F−1
i

xi−1

x̃i

xi+1

yi−1 yi yi+1 yi+2

Figure 4.2: Local basis transformation.

4.2 Our Anyon-Chain Model

In this section, we introduce the models investigated in the second accompanied
paper [KMG17] for a one-dimensional anyon chain, with l sites, consisting of
su(2)k anyons. First, the Hilbert space of the models is introduced and then
the model-Hamiltonian is discussed.
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4.2.1 The Hilbert Space

The general aspects of the Hilbert spaces associated with anyon-chain models
were discussed in Section 4.1.1. In our model, among other possibilities, we
want to allow for the possibility of anyons to hop to the next-nearest site,
provided the latter is empty. We consider the simplest model in which every
site of the chain is either empty or occupied by a spin-1/2 anyon. We also rule
out the possibility that a site is doubly occupied. Hence, for the models we
study, the y labels of the fusion-tree in Fig. 4.1 are either zero or 1/2. This
in turn allows for the simpler ket notation for a fusion-tree in our case. In
other words, knowing x labels suffices to recognize a fusion-tree—because of
the corresponding fusion rules, for any 1 � i � l, yi = 1/2 only if xi−1 �= xi.
Therefore, in our case, the fusion-tree in Fig. 4.1 can be simply denoted by the
ket |x0, x1, , . . . , xl−1, xl〉. Of course, we use this ket notation and the fusion-
tree notation in Fig. 4.1 interchangeably, depending which is suitable for the
particular purpose being considered. For positive integers k and l, we now
declare that the set

B(k, l) :=
{
|x0, x1, , . . . , xl−1, xl〉 | xi ∈ Lk, for every i

}
, (4.9)

with Lk :=
{
0, 1/2, 1, 3/2, · · · , k/2

}
, constitutes an orthonormal basis for the

Hilbert space H (k, l) of the models we study. The orthonormality here means:

〈x0, x1, . . . , xl|x′
0, x

′
1, . . . , x

′
l〉 =

l∏
i=0

δxix
′
i
. (4.10)

In the models discussed in the second paper, the subspace Hcl(k, l) of
H (k, l), whose basis Bcl(k, l) is composed of those elements of B(k, l) with
the periodic boundary condition, x0 = xl, imposed on them, is considered as
well. An anyon chain satisfying the periodic boundary condition is called a
closed chain, otherwise, it is called an open chain. For an open chain with l
sites, the lth part of the chain is not defined whereas Fig. 4.3 shows what we
refer to as the lth part of a closed chain.

yl y1

xl−1 xl = x0 x1

Figure 4.3: The lth part of a closed chain.

4.2.2 The Hamiltonian of the Model

We consider two Hamiltonians, although having the same form, one of them,
denoted by H(k, l), acts on the whole Hilbert space H (k, l) and one of them,
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denoted by Hcl(k, l), acts only on the subspace Hcl(k, l). In what follows we
consider l and k to be given constants. Thus, we suppress them from the
subsequent notations and we denote both Hamiltonians, whether it acts on H
or Hcl, simply by H, and use the subscript “cl” only when necessary.

The Hamiltonians we consider are of the following form:

H =
ν∑

i=0

hi. (4.11)

Here, ν is either l − 1 or l, depending on whether the Hamiltonian acts on H
or Hcl, respectively, and hi, which we call the ith local Hamiltonian, is itself a
sum of nine terms as follows:

hi := hi,μ00 + hi,μ
0 1
2

+hi,μ 1
2
0
+ hi,μ 1

2
1
2

+ hi,J + hi,t + h′
i,t + hi,Δ + h′

i,Δ. (4.12)

Here, we briefly describe how each term acts on a typical element of the basis
B in (4.9). We should first mention that the index i on each term indicates
that the corresponding term acts only on the ith part of the fusion-tree, leaving
other parts of the tree intact. In other words, it acts as the identity operator
on all parts of the fusion-tree except the ith part. In other words, as far as
an operator with index i is concerned, only xi−1, xi, and xi+1 labels in the
basis ket |x0, x1, . . . , xi−1, xi, xi+1, . . . , xl−1, xl〉 play a role. Therefore, in what
follows we use the shorter notation |u, v, w〉 to denote this ket without explicitly
referring to the index i.

Diagonally-Acting Terms The first term in (4.12) assigns energy μ00 only
if sites i and i+ 1 are both empty, namely,

hμ00
|u, v, w〉 := δuvδvwμ00 |u, v, w〉. (4.13)

The next two terms, accordingly, assign energies μ0 1
2

and μ 1
2 0

if site i is
empty and site i+ 1 is occupied and the other way around, respectively.
This can be written in the following form:

hμ
0 1
2

|u, v, w〉 := δuvμ0 1
2
|u, v, w〉, (4.14)

hμ 1
2
0
|u, v, w〉 := δvwμ 1

2 0
|u, v, w〉. (4.15)

Each of these three terms act as a chemical potential term.
The fourth term assigns energy μ 1

2
1
2

if both site i and site i + 1 are
occupied, namely,

hμ 1
2

1
2

|u, v, w〉 := (1− δuv)(1− δvw)μ 1
2

1
2
|u, v, w〉. (4.16)

This term can be viewed as an interaction term.
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Explicit Interaction Term The fifth term in (4.12) models a non-trivial in-
teraction based on the fusion channel of the two anyons sitting on sites i
and i + 1. This is somehow analogous to the interaction term described
in the introduction for the Heisenberg spin-1/2 chain model (4.1). We
require that this term assigns energy J only if sites i and i+ 1 are occu-
pied and the spin-1/2 anyons at these sites fuse to zero. To achieve this,
as discussed in Section 4.1.2, we switch to a basis in which the fusion
channel of the sites i and i+ 1 is explicit and the define hJ as follows:

hJ

( 1
2

1
2

u

z

w

)
:= J δuwδz0

1
2

1
2

u

z

w
. (4.17)

To express how hJ acts on a local fusion-tree, as was done for all previous
terms, we use Eq. (3.21) to write

1
2

1
2

u v w
=
∑
z

Fu 1
2

1
2

w;zv

1
2

1
2

u

z

w
, (4.18)

and then act both sides of this equation by hJ . Using definition (4.17),
we now obtain

hJ

( 1
2

1
2

u v w

)
= Jδuw Fu 1

2
1
2

w;0v

1
2

1
2

u

0

w
· (4.19)

To express everything in terms of the original basis of local fusion-trees,
we use the inverse of an F-move to switch back to the original basis.
As mentioned in Example 3.11, every F-matrix corresponding to these
F-symbols is an orthogonal matrix. Therefore, the right side of the last
equation can be expressed in terms of the original basis and this equation
will then read as follows:

hJ

( 1
2

1
2

u v w

)
= Jδuw

∑
s

(
Fu 1

2
1
2

w,0v Fu 1
2

1
2

w;0s

1
2

1
2

u s w

)
. (4.20)
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Finally, using (3.43) to replace for the F-symbols, one obtains,

hJ

( 1
2

1
2

u v w

)
= Jδuw

∑
s

(√
dvds

dud1/2

1
2

1
2

u s w

)
, (4.21)

which we can take as the definition of the interaction term hJ .

Hopping Terms One feature of the anyon model considered in this thesis is
that it takes into account the possibility of an anyon to hop onto the
nearest site provided the latter is empty. The terms ht and h′

t in (4.12)
represents hopping of an anyon one site to the right and one site to the
left, respectively. This kind of process for anyons was first discussed
in [FTL+07]. In the model considered here, both these hopping processes
are assigned the same energy t. Formally, we have

ht|u, v, w〉 := δvwt |u, u, w〉, (4.22)
h′
t|u, v, w〉 := δuvt |u,w,w〉. (4.23)

Creation and Annihilation Terms The main feature of the anyon model
considered here is that, by a simple mechanism, it allows for the number
of anyons to increase or decrease. This fluctuation in the number of
anyons is taken care of by the last two terms hΔ and h′

Δ in (4.12). This
mechanism is as follows that, through the term hΔ, it allows for the
possibility that at sites i and i + 1 a pair of spin-1/2 anyons be created
out of the vacuum and, through the term h′

Δ, it allows for the possibility
that a pair of spin-1/2 anyons at sites i and i + 1 be annihilated into
the vacuum. For these to be consistent, the fusion channel of the two
anyons has to be zero. In the models considered, the strength of these
creation and annihilation processes are given the same value Δ. This,
of course, guarantees the Hermiticity, or better to say being symmetric
in our case, of the model Hamiltonian in the first place. Formally, the
creation process is defined as follows:

hΔ

( 0 0

u u u

)
:= Δ

1
2

1
2

u

0

u
· (4.24)

Moreover, hΔ is defined to act by zero on any other configuration of a
fusion-tree whose ith part differs from the one on the left hand side of the
equation above. Once more, we use the inverse of an F-move to write the
term on the right of Eq. (4.24) in terms of the original basis elements, and
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use information in Eq. (3.43) to reach at the following explicit relation
for the creation term:

hΔ

( 0 0

u u u

)
= Δ

∑
s

(√
ds

dud1/2

1
2

1
2

u s u

)
. (4.25)

We define the annihilation term as the conjugate of the creation term in
the following sense:

h′
Δ

( 1
2

1
2

u

z

w

)
:= Δ δuwδz0

0 0

u u u
. (4.26)

To write both sides of the above defining equation in terms of the same
basis elements, we apply h′

Δ on both sides of Eq. (4.18) and employ
Eq. (4.26). Substituting the explicit form of the F-symbols encountered,
we then get:

h′
Δ

( 1
2

1
2

u v w

)
= δuwΔ

√
dv

dud1/2

0 0

u u u
. (4.27)

This concludes introducing the model. From the next section, we start analyz-
ing the model by studying it at some special points of the parameter space.

4.3 Analysis of the Model

We now start to analyze the dilute anyon model introduced in the previous
section. A full analysis of the model is not possible due to, on one hand, the
rather large number of parameters and, on the other hand, the quick growth
of the size of the corresponding Hilbert space with both k and system size l.
Hence, we limit our analysis to certain points in the parameter space.

4.3.1 The Hamiltonian as a Sum of Porjectors

In this subsection we choose, among only a few number of choices, a partic-
ular set of values for the parameters of the model Hamiltonians H and Hcl
introduced in the previous section so that, for the values chosen, each local
hamiltonian hi in (4.12) turns into a projector and, consequently, the model
Hamiltonians become a sum of projectors. We first discuss how writing a
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Hamiltonian as a sum of projectors can be helpful in determining the zero-
energy ground states (if any) of the model.

For a Hamiltonian that is a sum of projectors the zero-energy states, if they
exist, are certainly the ground states of the Hamiltonian. This is due to the fact
that eigenvalues of such Hamiltonian are all non-negative. Another property
of practical importance when working with a Hamiltonian H that is expressed
as a sum of projectors is as follows. If H =

∑
i Pi, where each Pi is a projector

in the sense that P 2
i = Pi, then a state |ψ〉 is a zero-energy ground state if and

only if Pi|ψ〉 = 0, for all i. The latter property translates itself to the following
relation among the kernels of the corresponding operators:

ker(H) =
⋂
i

ker(Pi). (4.28)

Therefore, if the Hamiltonian H expressed above does indeed possess zero-
energy ground states, these states can be explored by looking into the kernel
of the constituent projectors Pi, one at a time. To explain this in more detail,
let |ψ0〉 be a zero-energy ground state of H and let

{
|ei〉

}
i

be an orthonormal
basis for the corresponding Hilbert space upon which the Hamiltonian H acts.
Generally, |ψ0〉 =

∑
i ci |ei〉, for complex numbers ci. As mentioned above,

|ψ0〉 must be annihilated by all projectors Pi. The first constraint P1|ψ0〉 = 0
gives rise to a number of equations among the coefficients ci and, generically,
decreases the number of independent coefficients. In other words, this enables
us to express some of these coefficients in terms of the rest. We now rewrite the
linear combination for |ψ0〉 so that the dependent coefficients are eliminated
in favor of independent ones and, consequently, we get a new form for |ψ0〉.
Despite the fact that this new form expresses the same ket |ψ0〉, to keep track
of the steps, we designate this new form by |ψ(1)

0 〉. We now go to the second
step by looking at the second constraint P2|ψ(1)

0 〉 = 0. This new constraint in
turn gives rise to a number of new equations among the coefficients that sur-
vived the previous step and this typically decreases the number of independent
coefficients even more. We then continue in the same manner and take care
of all constraints one after the other. Applying the last constraint and writing
the linear combination for |ψ0〉 in terms of the final independent coefficients,
the generic structure of a typical zero-energy ground state |ψ0〉 reveals itself.
The degeneracy of the zero energy is, due to normalization, one less than the
number of final independent coefficients.

Investigating a model at a single point in the parameter space in which the
Hamiltonian can be expressed as a sum of projectors, provided that it indeed
possesses zero-energy ground sates, is more fruitful than it might seem at the
beginning. This stems from the fact that, generically, the existence of zero-
energy ground states for the Hamiltonians that can be expressed as a sum of
projectors is a signature of the system being gapped. Because of the gap, these
zero-energy ground states capture the underlying physics of the system, not
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only at the points P in the parameter space in which the Hamiltonian can be
expressed as a sum of projectors but also at the points close to P. In other
words, by probing the behavior of the model at point P we could, in principle,
know about the behavior of the system close to P.

One should note that the method described above to determine the ground
states is helpful only if the ground state(s) are of zero energy. The above
strategy has already been employed to determine the zero-energy ground states
of a number of models and has been proven to be valuable in those models. As
an example, one can mention the spin-1 AKLT model [AKLT87].

Now that we know the benefit of writing a Hamiltonian as a sum of projec-
tors, we employ it for our model. To determine the values for the parameters
so that each local Hamiltonian becomes a projector, one should note that the
outer labels xi−1 and xi+1 of the ith part |xi−1, xi, xi+1〉 of any fusion ket are
not affected when acted upon by hi. This makes the determination of the pa-
rameters straightforward, since this allows for considering the local subspaces
spanned by{

|xi−1, xi−1, xi−1 ± 1/2〉, |xi−1, xi−1 ± 1/2, xi−1 ± 1/2〉
},

and {
|xi−1, xi−1, xi−1〉, |xi−1, xi−1 − 1/2, xi−1〉, |xi−1, xi−1 + 1/2, xi−1〉

},

separately. Of course, each of the states |xi−1, xi−1 − 1/2, xi−1 − 1〉 and
|xi−1, xi−1+1/2, xi−1+1〉 individually forms a one-dimensional subspace in its
own. Moreover, in the model considered, we are interested in non-zero values
for J , t, and Δ. Out of a few possible choices left, we picked the following
values:

μ00 = μ0 1
2
= μ 1

2 0
= t =

1

2
, μ 1

2
1
2
= 0 , J =

1

2
, Δ =

1

2
, (4.29)

which, due to assigning the same value 1/2 to all of the first four parameters,
has the benefit that the investigation of the model is simpler.

Doing analytics supported by numerical computations for small system
sizes, we realized that, for the above values for parameters and odd values
of k, both of the Hamiltonians H and Hcl indeed possess zero-energy ground
states for sufficiently large l. More explicitly, H has (k+1)(k+2)(k+3)/6 zero-
energy ground states for l � k and Hcl has (k+1)/2 zero-energy ground states
for l � k+1. Numerical computations reveal that, for system sizes smaller than
the ones mentioned in each case, the number of zero-energy ground states can
be larger than the numbers given above. We also determined, for odd values of
k, the explicit form of all these zero-energy ground states in each case. These
explicit forms are expressed in the subsequent two subsections, respectively.
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For even values of k, numerical computation indicates that, for sufficiently
large system sizes, there are no zero-energy ground states. The difference aris-
ing between the behavior of the model for even values of k and its behavior for
odd values of k should be sought in the difference between the structure of the
fusion rules corresponding to even and odd values of k. As an example of this
difference, we consider the generic relation j ⊗ k/2 = k/2− j. When k is even,
the anyon type j = k/4 satisfies this relation whereas, when k is odd, there is
no anyon type satisfying this relation.

Zero-energy Ground States of H, Open Chain

In this subsection, we assume that k is a given odd positive integer and the
parameters of the model have the values given in (4.29). Numerical calculations
already support the existence of zero-energy ground states for the Hamiltonian
H, which is given by (4.11) for ν = l − 1, and acts on the Hilbert space
H introduced in Subsection 4.2.1. We employ the strategy mentioned in the
beginning of Subsection 4.3.1, to probe these ground states. This can be done
more easily if one decomposes H as the direct sum of (k+1)2 mutually disjoint
subspaces:

H =
⊕

a,b∈Lk

H ab, (4.30)

where H ab denotes the subspace whose basis is the following set:

Bab :=
{
|x0, x1, . . . , xl〉 ∈ B | x0 = a, xl = b

}
, (4.31)

with B introduced in (4.9), and look for zero-energy ground states in each
one of the individual sectors H ab of the total Hilbert space H . This way of
determining all zero-energy ground states by probing them separately in each
one of these individual sectors of the Hilbert space is valid, because the outer
labels x0 and xl of any ket |x0, x1, . . . , xl〉 do not alter when acted upon by
the Hamiltonian H. In other words, all subspaces H ab are invariant under the
action of the Hamiltonian H.

Before giving the general explicit formula for the zero-energy ground states
for a generic odd k and a system of size l � k, it would be instructive to describe
the mathematical structure of these states for the special cases of k = 1 and
k = 3 first.

Let k = 1 first and, consequently, let L1 = {0, 1/2} be the label set. For
any two labels a and b in L1, let |ψab〉 denote a generic zero-energy ground
state in the sector H ab. Thus, |ψab〉 can be written in the following form:

|ψab〉 =
∑
{xi}

Cab(x1, . . . , xl−1) |a, x1, . . . , xl−1, b〉. (4.32)
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Here Cab(x1, . . . , xl−1)’s are, in general, complex numbers and the sum runs
over all states in Bab.

Following the strategy outlined in Subsection 4.3.1, it turns out that for
any given pair of labels a and b there exists a unique zero-energy ground state
in H ab, whose explicit form is given by

|ψab〉 =
∑
{xi}

(−1)#(1/2)|a, x1, . . . , xl−1, b〉, (4.33)

where #(1/2) denotes the number of 1/2 labels in |a, x1, . . . , xl−1, b〉 (including
a and b). Hence, for k = 1, there exists a total of four zero-energy ground
states, one in each sector of the total Hilbert space. The distribution of the
number of these states in each sector, is tabulated in the following matrix:

M (k=1) =

[ 0 1
2

0 1 1
1
2 1 1

]
. (4.34)

Consider now k = 3 and l � 3 and the label set L3 = {0, 1/2, 1, 3/2}.
Following the same strategy along the lines above and making use of the results
of numerical computations for small system sizes as a guide, enabled us to
determine the explicit form of all twenty zero-energy ground states in this case.
Looking into the structure of these ground states reveals that, in contrast to
k = 1 case in which all four ground states have the same structure expressed
by a single formula (4.32), the twenty ground states in this case fall in two
different classes and can be expressed by two formulas, which we discuss in the
next few lines.

It turns out that, for any two labels a and b in L3, there exists a zero-energy
ground state |ψab〉 in H ab with the property that in the expansion of |ψab〉
in terms of the basis states, all basis states in Bab have a non-zero coefficient.
Moreover, the coefficient of |a, x1, . . . , xl−1, b〉 in the expansion of |ψab〉 is

(−1)
[#(1/2)+#(3/2)]

d
− 3

2×#(1,1/2)

1/2 ,

where #(3/2) is interpreted similar to #(1/2), and #(1, 1/2) denotes the num-
ber of ordered pairs in the list below

(a, x1), (x1, x2), . . . , (xl−2, xl−1), (xl−1, b)

that are equal to the ordered pair (1, 1/2). Here d1/2 is the quantum dimension
of an anyon of type 1/2. From Eq. (3.8), it is readily seen that, for k = 3, d1/2
equals the golden ratio (1+

√
5)/2. We call this type of ground states, type-one

ground states.
There is also another type of ground states that appear in some, but not all,

sectors of the Hilbert space. These are the ones with the property that in their
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expansions in terms of basis states, only those basis states |a, x1, . . . , xl−1, b〉
contribute that the set {a, x1, . . . , xl−1, b} is a subset of {1/2, 1} or, in other
words, the labels of |a, x1, . . . , xl−1, b〉 are either 1/2 or 1. Moreover, the coef-
ficient of this basis state is

(−1)
#(1/2)

d
1
2×#(1,1/2)

1/2 .

We call these ground states, type-two ground states.
From what mentioned above regarding type-one and type-two ground states,

in a subspace H ab, if both labels a and b belong to the set {1/2, 1}, there are
two ground states, one of each type, and, if at least one of these labels belongs
to the set {0, 3/2}, there exists only one ground state and it is of the first type.
The last statements can be tabulated in the following matrix:

M (k=3) =

⎡⎢⎢⎣
0 1

2 1 3
2

0 1 1 1 1
1
2 1 2 2 1
1 1 2 2 1
3
2 1 1 1 1

⎤⎥⎥⎦. (4.35)

We finalize this subsection by outlining the results regarding the explicit
form of the zero-energy ground states for a generic odd k and for a system of size
l � k. In the general case, as mentioned earlier, there are (k+1)(k+2)(k+3)/6
number of zero-energy ground states and it turns out that they fall into (k+1)/2
different types. Let n, 1 � n � (k+ 1)/2, be given and let a and b be labels in
Lk. If both a and b belong to the following set:

A =
{n− 1

2
, n+ 1

2
, · · · , k − (n+ 1)

2
, k − (n− 1)

2

}
, (4.36)

then there exists a unique zero-energy ground state |ψab〉 in H ab, which we call
a type-n ground state, with the property that in the expansion of |ψab〉 in terms
of elements of Bab, only those basis states |a, x1, . . . , xl−1, b〉 have non-zero
coefficients for which the set {a, x1, . . . , xl−1, b} is a subset of A. To express
these coefficients explicitly in an efficient way, we introduce some notation
first. Let k be an odd positive integer and let n be an integer such that
1 � n � (k + 1)/2. For i = n, n+ 1, . . . , (k + 1)/2,

D(k, n, i) := d
1/2
1/2 d

−1
(k−1)/4 d

−1/2
(i−1)/2 d

−1/2
i/2 d(i−n−1)/4 d(k−n−i)/4, (4.37)

if i− n is odd; and

D(k, n, i) := d
1/2
1/2 d

−1
(k−1)/4 d

−1/2
(i−1)/2 d

−1/2
i/2 d(n+i−2)/4 d(k−n+i+1)/4, (4.38)
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if i − n is even. The coefficient of |a, x1, . . . , xl−1, b〉 in the expansion of the
type-n ground state |ψab〉 then is

(−1)m
(k+1)/2∏

i=n

[D(k, n, i)]θi , (4.39)

where m is the number of half-integers in |a, x1, . . . , xl−1, b〉,

θi := #
( i

2
, i− 1

2

)
+#

(k − i+ 1

2
, k − i

2

)
, (4.40)

for n � i � (k − 1)/2, and

θ(k+1)/2 := #
(k + 1

4
, k − 1

4

)
. (4.41)

Here #(r, s), for any numbers r and s, refers to the number of ordered pairs in
the following list:

(a, x1), (x1, x2), . . . , (xl−2, xl−1), (xl−1, b)

that are equal to (r, s). In addition, the matrix M (k), analogous to matrices
(4.34) and (4.35), that tabulates how different types of ground states distribute
over various sectors of the Hilbert space has entries mij accessible by the fol-
lowing relation:

mij =
1

2

[
k + 2−max{|k − 4i|, |k − 4j|}

], (4.42)

where i and j run over the values 0, 1/2, . . . , k/2.

Zero-energy Ground States of Hcl, The Periodic Chain

In this subsection, k is again assumed to be a given odd integer and the pa-
rameters, as before, have the values given in (4.29). The Hamiltonian Hcl,
which again is given by (4.11), has one term hl more than the Hamiltonian H
investigated in the previous subsection and it acts on Hcl instead of H . Let us
recall that this additional term in the Hamiltonian acts on the lth part of the
fusion-tree and affects the label x0 = xl. Therefore, any zero-energy ground
state |ψ〉 of Hcl, which again numerical computations indicate the existence of
such states for l � k+1, has to satisfy one more constraint, namely, hl|ψ〉 = 0.
Hence, one would expect that the degeneracy of such states to be smaller than
the degeneracy of such states in the previous case. It turns out that the zero-
energy ground state of the Hamiltonian Hcl can be labeled by an integer n,
1 � n � (k + 1)/2. We call this the ground state of type n and denote it by
|GSn〉. In the expansion of |GSn〉 in terms of elements of the basis Bcl, only
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those basis states contribute whose labels are from the set A in (4.36). More-
over, if |x0, x1, . . . , xl−1, xl〉 is a state in Bcl, that is, if x0 = xl, and if all the
labels of this state belong to the set A, then the coefficient of this state in the
expansion of |GSn〉 is given exactly by the same expression (4.39) with slight
change in how it should be interpreted. This time m refers to the number of
half-integers in the list x0 till xl−1 and θi, i = n, n+1, . . . , (k+1)/2, although
given by the same relations (4.40) and (4.41), but this time #(r, s) refers to
the number of ordered pairs in the list (x0, x1), (x1, x2), . . . , (xl−2, xl−1) that
are equal to the ordered pair (r, s).

4.3.2 Integrability of the Model

This section is devoted to the discussion around the integrability of the intro-
duced model. Roughly speaking, a quantum system is said to be integrable if
it accommodates “sufficient” number of commuting quantum operators (con-
served charges) so that each one of them commutes with the Hamiltonian of the
system as well. By the sufficient number here, one would mean the number of
conserved charges that is sufficient to enable one to calculate some quantities of
physical interest regarding the system, like the energy spectrum of the system.

The route that is followed in this subsection to study the integrability issue
of the model passes through the notions of Temperley–Lieb algebra, Yang–
Baxter equation, and the closely related notion of transfer matrices. Based
on these, we explore four points in the parameter space at which the model is
integrable.

Consider a family of matrices {Ri(u)}i∈N, called R-matrices, depending on
a parameter u, called the spectral parameter, which is, in general, a complex
number. Moreover, suppose that these matrices fulfill the equation

Ri(u)Ri+1(u+ v)Ri(v) = Ri+1(v)Ri(u+ v)Ri+1(u), (4.43)

known as the Yang–Baxter equation. Using the R-matrices, we now define a
new one-parameter family of matrices {T (u)}u, known as transfer matrices, as
follows:

T (u) :=
∏
i

Ri(u). (4.44)

It follows from Eq. (4.43) that

[T (u), T (v)] = 0, (4.45)

for all values of the parameters u and v. If now one defines the Hamiltonian
HR through the transfer matrix T (u) according to

T (u) = e−uHR+o(u2), (4.46)
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then clearly

[HR, T (u)] = 0, (4.47)

for all values of u. Therefore, we have a large number of commuting observ-
ables T (u), one for each value of u, that all of them commute with HR and,
consequently, one can expect that the system described by the Hamiltonian
HR is integrable. In addition, with the aid of Eq. (4.44), the explicit form of
the Hamiltonian HR defined in (4.46) is

HR = −d lnT (u)

du

∣∣∣
u=0

= −
∑
i

R−1
i (u = 0)

dRi(u)

du

∣∣∣
u=0

. (4.48)

Before applying the above recipe to our model, which turns out to be more
complicated, we consider first the simpler case of the dense anyon chain. We
recall that a dense anyon chain is the one in which all sites of the chain are
filled with spin-1/2 anyons.

Example 4.1 (Integrability of the dense su(2)k anyon chain). Consider an anyon
chain with l sites where each site is occupied with a spin-1/2 anyon. The Hilbert
space corresponding to this chain is then the space whose basis consists of all
fusion-trees in Fig. 4.1 for which the labels are from Lk and, in particular,
y labels are equal to 1/2. We look at a model for this chain in which only
next-nearest neighbor interactions are taken into account. We require that this
interaction assigns energy +1 when two neighboring anyons fuse to zero and
assigns zero energy, otherwise. In other words, the Hamiltonian Hdense that we
consider for this system is

Hdense =
l−1∑
i=1

hi,J=1, (4.49)

where hi,J=1 is given by Eq. (4.17) for J = 1. We now show that the above
Hamiltonian, up to a shift and an overall scaling factor, can be obtained from
Eq. (4.46) for an aptly chosen set of R matrices and, consequently, according
to what mentioned, the model is integrable.

Consider the operators ei defined by

ei = d1/2 hi,J=1, (i = 1, 2, . . . , l − 1), (4.50)

and the one-parameter family of operators Ri(u) defined by

Ri(u) = sin
( π
k + 2

− u
)
I + sin(u) ei. (4.51)

Here d1/2 is the quantum dimension of spin-1/2, k is the same as in su(2)k, I
is the identity operator, and the subscript i indicates the part of the fusion-
tree on which the corresponding operator acts. Using Eq. (4.21) for J = 1,
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it is straightforward to check that the operators ei satisfy the Temperley–Lieb
algebra

e2i = d1/2 ei , for all i,
eiei±1ei = ei, for all i,

[ei, ej ] = 0, for |i− j| � 2.

(4.52)

Using only these algebraic properties, one can show that Ri operators, intro-
duced in (4.51), satisfy the Yang–Baxter equation. These R-matrices then can
be used in (4.48) to produce a Hamiltonian corresponding to an integrable
system. Using (4.51), the Hamiltonian HR obtained from (4.48) is

HR = 2 cot
π

k + 2

l−1∑
i=1

(1
2
I − 1

d1/2
ei
)
= 2 cot

π
k + 2

l−1∑
i=1

(1
2
I − hi,J=1

)
.

Hence, the Hamiltonian of the dense anyon chain can be written as:

Hdense = αHR + β I, (4.53)

where α = − tan( π
k+2 )/2 and β = (l − 1)/2 and, hence, the dense anyon

chain model introduced above is integrable. For further details regarding this
example, the reader is referred to [FTL+07]. �

The reader notes that the triumph of the method described above to show
the integrability of the dense anyon chain model is, to large extent, indebted
to the smart specification of R-matrices given in (4.51) and also the educated
identification made in (4.50). In the case of the dense anyon-chain model,
these were relatively simple due to the fact that there is only one type of
term, namely, the interaction term, present in the Hamiltonian. Our goal is
to adopt the same strategy to investigate the integrability of the dilute anyon-
chain model introduced earlier. Due to the existence of a fairly large number of
terms involved in the Hamiltonian of the dilute anyon-chain model, determin-
ing the correct expression for the corresponding R-matrices and recognizing
identifications similar to the ones given in (4.50) for dilute anyon-chain model,
becomes more complicated in this case. We realized similarities between a
restricted solid-on-solid (RSOS) model introduced in [WNS92] and the dilute
anyon model we are interested in. This similarity is based on the graphical
representation introduced in [WNS92] to investigate the corresponding RSOS
model.

To describe the idea of this kind of graphical representations, we start with
a simple case first. This is the graphical representation of the Temperley–Lieb
algebra. We introduce some pictures to serve as operators and describe the
graphical rules to multiply them together. Consider l sites and draw a vertical
line segment out of each site as depicted in Fig. 4.4 and call it the identity
operator I.
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I =

1 2 i − 1 i i + 1 i + 2 l − 1 l

Figure 4.4: Graphical representation of the identity operator.

In addition, consider the operator ei, i = 1, . . . , l−1, as the one given in Fig. 4.5
in which the sites i and i + 1 are connected by semicircles at the top and the
bottom.

ei =

1 2 i − 1 i i + 1 i + 2 l − 1 l

Figure 4.5: Graphical representation of the ei operator.

We now assign the following rules for multiplying the non-trivial operators ei.
To multiply two operators, we glue the picture corresponding to the operator
on the left, on top of the picture corresponding to the operator on the right,
respecting two additional rules. The first rule is to consider any two pictures
that can be continuously deformed to one another to be the same. The second
rule is to consider a closed loop as a factor of some given number d. As an
example consider the l = 4 case. We, for example, then have the following two
relations:

e1e2 = = = ,

e21 = = = d = d e1.



82 Chapter 4. A Non-Abelian Anyon-Chain Model

We now start investigating the integrability of the dilute anyon-chain model.
Motivated by the graphical representation given in [WNS92] and having a
glance at the dilute anyon-chain model, we introduce nine type of graphical
operators whose ith part is depicted in Fig. 4.6.

e0,i =

i i + 1

, er,i =

i i + 1

, el,i =

i i + 1

, elr,i =

i i + 1

e−,i =

i i + 1

, e+,i =

i i + 1

, ea,i =

i i + 1

ec,i =

i i + 1

, ei =

i i + 1

Figure 4.6: Operators corresponding to the dilute anyon-chain model.

At other sites that are not explicitly shown in the figure above, a straight line
segment is assumed. As becomes clear shortly, these operators will be related
to the terms hi,μ00

, hi,μ
0 1
2

, hi,μ 1
2
0
, hi,μ 1

2
1
2

, h′
i,t, hi,t, hi,Δ, h′

i,Δ, and hi,J in the
local Hamiltonian (4.12), respectively.

To multiply the operators in Fig. 4.6, as before, we stack the picture cor-
responding to the operator on the left, on top of the picture corresponding
to the operator on the right. Again two pictures that can be continuously
deformed to one another are considered to be the same. This time, a closed
loop corresponds to a d1/2 factor, the quantum dimension of 1/2 anyon type,
and a dashed closed loop corresponds to a d0 = 1 factor. One new rule that
we require in this case is that the product of two operators does not vanish
only if the operators match in the sense that if at some site i from the pic-
ture below a dashed (solid) line is terminated, the line originated from the
same site i in the picture above must be a dashed (solid) line as well, for all
i. For example, eα,ie+,i = 0 for all α �= r,−; in addition, e−,ie+,i = el,i and
er,ie+,i = e+,i. Moreover, it is straightforward to convince yourself that the
operators e0,i, el,i, er,i, and elr,i act trivially on the matching operators. For
example, e0,iea,i = ea,i and ec,ie0,i = ec,i. One can also mention

ea,iec,i = d1/2 e0,i, ea,iei = d1/2 ea,i,

ec,iea,i = ei, eiec,i = d1/2 ec,i,
(4.54)

as other non-trivial relations between two operators acting on the same site.
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Employing the analogy with the dilute loop model considered in [WNS92],
we consider the following R-matrices:

Ri(u;λ) := [sin(2λ) cos(3λ) + sin(u) cos(u+ 3λ)] ei,0

+ sin(2λ) cos(u+ 3λ) (ei,l + ei,r) + sin(2λ) sin(u) (ei,a + ei,c)

+ sin(u) cos(u+ 3λ) (ei,+ + ei,−) + sin(u+ 2λ) cos(u+ 3λ) ei,lr

+ sin(u) cos(u+ λ) ei,

defined in terms of the operators in Fig. 4.6, which except for the spectral pa-
rameter u, they also depend on an auxiliary parameter λ. Using the multiplica-
tion table of the e operators and employing Mathematica, it is a straightforward
but a tedious task to verify that, the above matrices satisfy the Yang–Baxter
equation (4.43) only if −2 cos(4λ) = d1/2, or by Eq. (3.8), only if

λ = ±π
k + 2± 1

4(k + 2)
· (4.55)

Let λ take one of the values above. To construct the Hamiltonian HR given
by (4.48), we first note that

R−1
i (0;λ) =

1

sin(2λ) cos(3λ)
(e0,i + el,i + er,i + elr,i)

−1

= csc(2λ) sec(3λ) I,

and
dRi

du
(u;λ)

∣∣∣
u=0

= cos(3λ) e0,i − sin(2λ) sin(3λ) (el,i + er,i)

+ sin(2λ) (ea,i + ec,i) + cos(3λ) (e+,i + e−,i)

+ cos(5λ) elr,i + cos(λ) ei.

Therefore,

HR =
∑
i

{
− csc(2λ) e0,i + tan(3λ) (el,i + er,i)− sec(3λ) (ea,i + ec,i)

− csc(2λ) (e+,i + e−,i)− csc(2λ) sec(3λ) cos(5λ) elr,i

− csc(2λ) sec(3λ) cos(λ) ei
}.

On the other hand, using relations in (4.54) as a guide and a case-by-case
check, one can verify that the operators

1

μ00
hi,μ00

, 1

μ0 1
2

hi,μ
0 1
2

, 1

μ 1
2 0

hi,μ 1
2
0
, 1

μ 1
2

1
2

hi,μ 1
2

1
2

,

1

t
h′
i,t

, 1

t
hi,t,

√
d1/2

Δ
h′
i,Δ

,√
d1/2

Δ
hi,Δ, d1/2

J
hi,J ,
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obey the same algebraic properties met by operators in Fig. 4.6, respectively.
Hence, if one replaces the e operators in HR by their corresponding counterparts
from the list above, and letting

μ00 = − csc(2λ), t = − csc(2λ),
μ0 1

2
= μ 1

2 0
= tan(3λ), Δ = −

√
d1/2 sec(3λ),

μ 1
2

1
2
= − csc(2λ) sec(3λ) cos(5λ), J = −d1/2 csc(2λ) sec(3λ) cos(λ),

with λ being one of the values given by (4.55), then the Hamiltonian HR,
which is integrable by construction, coincides with the Hamiltonian of the dilute
anyon-chain model. Consequently, the dilute anyon-chain model is integrable
at, at least, the four points of the parameter space specified by the relations
given above, for each λ in (4.55).

Identifying the Critical Points

In this section, we investigate whether or not the dilute anyon-chain model is
critical at the points of integrability recognized in the previous section and, if
so, we determine the corresponding conformal field theory (CFT) that describes
the model at that particular critical point [FMS12,BP09]. The strategy that we
follow in this section to accomplish this task—limiting ourselves to k = 1, 2, 3
cases and employing the exact diagonalization for systems of small size—is to
look at the low-lying part of the energy spectrum of the dilute anyon system at
these integrable points and compare the spectrum with the CFT predictions for
critical one-dimensional systems. The energy E(l), to order 1/l, of the states
of a one-dimensional system of size l at a critical point describable by a CFT
is given by

E(l) = Esl −
π vc

6l
+

2π v

l
(2hi + n) + · · · , (4.56)

where Es, the energy per site, and v, the velocity, are non-universal constants.
Moreover, c denotes the central charge of the corresponding CFT, hi’s are the
scaling dimensions of the CFT fields, and n is a non-negative integer, which is
zero in the case of the primary fields and it takes the positive value m for the
descendant fields at level m. Because of the non-universal constants in (4.56) for
E(l), one cannot directly compare the data gained by the exact diagonalization
of the Hamiltonian with the above CFT prediction of the energy spectrum. To
overcome this problem, we pursue the following steps.

For a given small system size, we first exactly diagonalize the Hamiltonian
to obtain the low-lying part of the energy spectrum and sort it in an ascending
order. We then shift the spectrum such that the ground state energy becomes
zero. To see now whether a particular CFT indeed describe the model under
consideration, we rescale the shifted spectrum such that the energy of the
first excited state becomes 2hlow, where hlow denotes the lowest non-vanishing
scaling dimension of that CFT. We then compare the low-lying part of the
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shifted and rescaled spectrum with the energies obtained from E = 2hi + n
for that CFT. A considerable match, then implies that the particular CFT
considered gives a good description of the model.

To see why the strategy outlined above, which will be the basis of recog-
nizing the proper CFT for the dilute anyon-chain model, does in fact work,
first note that the CFT corresponding to a physical model (if it exists) has to
be unitary. Hence, the scaling dimension of any field is greater than or equal
to the scaling dimension h0 of the identity field, which is equal to zero. The
lowest energy E0 obtained from (4.56) then corresponds to zero value for both
n and hi and, therefore, E0 = Esl − (π vc)/(6l). If one now shift the energies
so that E0 is set to zero, then we have E = (2π v/l)(2hi + n) and, hence, for
the next energy E1 we have E1 = (2πv/l)(2hlow). Therefore, setting E1 equal
to 2hlow is equivalent to setting 2πv/l to one and that in turn is equivalent to
having E = 2hi + n, as desired.

Before starting the analysis, noticing one point simplifies the investigation.
The values of λ in (4.55) come in two opposite pairs ±λ1 and ±λ2, where

λ1 := π
k + 3

4 (k + 2)
, λ2 := π

k + 1

4 (k + 2)
· (4.57)

Furthermore, changing the sign of λ in the relations given for the parameters
in terms of λ at the top of the last page, changes the sign of all the parameters
except Δ. On the other hand, numerical calculations indicate that the sign of
the Δ terms in the Hamiltonian does not affect the energy spectrum. Therefore,
the spectrum of H for −λ is the same as the spectrum of −H for λ. Hence, in
the analysis that follows, instead of considering the four values for λ given by
(4.55), we can consider only the two values for λ given in (4.57), provided that
in each case we take into account not only the corresponding Hamiltonian but
also minus the Hamiltonian as well. Hence, in what follows, we investigate ±H1

and ±H2, where H1 and H2 denote the Hamiltonian of the dilute anyon-chain
model for λ1 and λ2, respectively.

The strategy outlined in the previous paragraph of how to identify the
CFT corresponding to a critical system works if one has a prior guess, to
compare the data with, regarding a suitable CFT that describes the system.
In the case of the dilute loop model considered in [WNS92], the system is
critical at all four points corresponding to ±λ1 and ±λ2. Moreover, the central
charges corresponding to these points given in [WNS92], expressed in terms of
parameter k, are as follows:

λ c
π (k+3)
4 (k+2) 1− 6

(k+2)(k+3)

π (k+1)
4 (k+2) 1− 6

(k+1)(k+2)

λ c

− π (k+3)
4 (k+2)

1
2 + 1− 6

(k+1)(k+2)

− π (k+1)
4 (k+2)

1
2 + 1− 6

(k+2)(k+3)
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These central charges point in the direction of unitary minimal-model CFTs.
The unitary minimal models Mm are labeled by an integer parameter m � 3
and the central charge of Mm, which is given by

c = 1− 6

m(m+ 1)
· (4.58)

Moreover, the primary fields of the minimal model Mm is denoted by φr,s,
labeled by two integer parameters r and s, where 1 � r � m and 1 � s � m−1.
In the minimal model Mm, labels (r, s) and (m + 1 − r,m − s) corresponds
to the same primary field and, therefore, there are only m(m − 1)/2 primary
fields for Mm. The scaling dimension hr,s of the primary field φr,s is given by

hr,s =
[mr − (m+ 1)s]2 − 1

4m(m+ 1)
· (4.59)

The reader should note that the central charge, in its own, is not in general
sufficient to determine the corresponding CFT. This is why, in the second
accompanied paper, we still needed to investigate the situation for the dilute
anyon-chain model considered in the paper. There, we got the following results.

For each value of k, the points corresponding to ±λ1 are critical points. At
λ1 the system is described by the simple minimal model Mk+2, and at −λ1 the
system is described by the product of two minimal models M3×Mk+1, where
we identify M2 with the completely trivial CFT, namely, the one containing
just the vacuum state. We also found that, for k = 1, the point corresponding
to λ2 is not a critical point, but, for k � 2, it is critical and the system is
described by the minimal model Mk+1. Finally, for the point corresponding
to −λ2, we did not succeed in identifying a CFT for the model. For further
details, the reader is referred to [GA17].
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Chapter 5

PT -Symmetry and Quantum Star-Graph

This chapter consists of three sections. In Section 5.1, the notion of a PT -
symmetric Hamiltonian is introduced. We then see that the spectrum of a
PT -symmetric Hamiltonian has reflection symmetry with respect to the real
axis of the energy complex plane. Investigating whether or not the converse of
the latter statement is true, is a harder problem. This motivates the material
in the subsequent sections.

Section 5.2 is a very short introduction on quantum graphs. Quantum
graphs are graph-shape objects together with a differential operator and a
set of equations, known as vertex conditions, that define the domain of the
operator.

Section 5.3, which is based on the third accompanied paper [KMG17], de-
scribes a simple model in the context of quantum graphs. As is explained in
this section, this models a non-Hermitian operator whose spectrum has reflec-
tion symmetry and it is indeed PT -symmetric, where P is an edge permuting
operator and T is the anti-linear operator of complex conjugation. In other
words, we introduce a model for which reflection symmetry of the spectrum
implies PT -symmetry.

5.1 PT -Symmetric Quantum Mechanics

It is an axiom of quantum mechanics that physical observables are represented
by Hermitian operators. Hermiticiy of the operator in fact certifies reality
of the spectrum of the corresponding observable, as is required by a physical
theory. In other words, Hermiticity of an operator is a sufficient, but not
necessary, mathematical condition that guarantees the reality of the spectrum
of the operator. In 1998, Bessis and Zinn-Justin conjectured that the spectrum
of the eigenvalue problem

Hψ(x) = E ψ(x), ψ ∈ L2(R), (5.1)

with H being the non-Hermitian operator

H = P 2 + iX3, (5.2)

and P and X being the momentum and the position operators, respectively,
is entirely real and positive. Soon afterward, Bender and Boettcher observed
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numerically that the spectra of the following class of Hamiltonians:

H = P 2 − (iX)N , (5.3)

are entirely real and positive for N � 2 [BB98]. Finally, in 2001, a relatively in-
tricate proof of this conjecture, exploiting ODE/IM correspondence, was given
by Dorey et al [DDT01].

The reality of the spectra of the above class of Hamiltonians was interpreted
by Bender and Boettcher due to the fact that the above Hamiltonians are PT -
symmetric in the sense that

[H,PT ] = 0, (5.4)

where P is the parity operator that sends x to −x and p to −p, and T is the
time-reversal operator that sends p to −p and i to −i. The latter is needed for
the consistency of the commutation relation [X,P ] = i. Note also that:

P2 = T 2 = (PT )2 = I. (5.5)

To see why the commutation relation (5.4) may gives rise to a real spectrum
for H, we reason, along the lines of [MS04], as follows.

Let H be a PT -symmetric Hamiltonian and let |ψ〉 be a common eigenstate
of H and PT with eigenvalues E and λ, respectively. We then, using Eq. (5.5),
have

|ψ〉 = PT PT |ψ〉 = PT (λ |ψ〉) = λ∗λ |ψ〉,
and, therefore, |λ| = 1. On the other hand,

0 = (HPT − PT H)|ψ〉 = λ(E − E∗)|ψ〉,

and E = E∗, that is, E is real. Consequently, if H is PT -symmetric and if
H and PT are simultaneously diagonalizable§, then H has a spectrum that is
entirely real. Of course, to determine if H and PT are simultaneously diago-
nalizable is a highly non-trivial problem.

Consider now the PT -symmetric Hamiltonian H that is not simultaneously
diagonalizable with PT . Then there exists an eigenstate |χ〉 of H that is not an
eigenstate of PT . Since |χ〉 is not an eigenstate of PT , |φ〉 := PT |χ〉 is a non-
zero state that is not parallel to |χ〉. Since H is assumed to be PT -symmetric,
we have

0 = (HPT − PT H)|χ〉,
which implies

H|φ〉 = E∗ |φ〉, (5.6)

where E is the eigenvalue of H corresponding to |χ〉. In other words, E∗ is also
an eigenvalue of H. Moreover, if E is a non-degenerate eigenvalue of H, then

§Note that (5.4) in its own does not in general imply that H and PT are simultaneously
diagonalizable, since PT is an anti-linear operator rather than being a linear operator.
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acting on both sides of (5.6) by PT implies that E∗ is also non-degenerate.
One can show that, if E is a d-fold degenerate eigenvalue, then E∗ is also d-fold
degenerate. The general conclusion regarding the spectrum of a PT -symmetric
Hamiltonian is then as follows.

The spectrum of a PT -symmetric Hamiltonian H is either entirely real,
and this occurs when H and PT are simultaneously diagonalizable, or it con-
sists of two disjoint parts. One part is a subset (possibly empty) of the real
numbers and onex other part is a list of non-real numbers whose elements can
be grouped in conjugate pairs, and this occurs when the PT symmetry of H is
spontaneously broken, that is, when H and PT are not simultaneously diagonal-
izable. Both cases above can be unified as follows that if H is PT -symmetric,
then the spectrum of H has reflection symmetry with respect to the real axis.

From the discussion above, one notes that, even if the Hamiltonian H is non-
Hermitian, it is still possible for H to have an entirely/partly real spectrum. As
mentioned earlier, this is due to the fact that the Hermiticity, which is a purely
mathematical constraint on the Hamiltonian, is in fact a sufficient but not a
necessary condition for the reality of the spectrum of H. This was the insight of
Bender and Boettcher that associated the reality of the spectrum with a more
sensible and physical constraint on the Hamiltonian, that is, PT -symmetry of
the Hamiltonian.

A natural question at this stage would be whether or not one can conclude
the opposite statement. In other words, if one knows that the spectrum of a
non-Hermitian Hamiltonian H has reflection symmetry with respect to the real
axis, is it necessarily true that H is PT -symmetric? In the next section and in
the context of quantum graphs, we investigate an example of a non-Hermitian
operator for which the converse statement turns out to be true as well.

5.2 Quantum Graphs

Although some of the problems that are classified nowadays under the title of
quantum graphs have appeared in the literature since 1930s in different areas
of physics, mathematics, and chemistry [Pau36]; it is only two decades that
quantum graphs has found its role as an independent and fast growing field
of research in mathematical physics and science. A main reason for this surge
of interest to the field is due to the diversity of its applications and the fact
that many problems in science can be modeled naturally in the language of
quantum graphs.

In this section, we give a brief introduction to the concepts that are neces-
sary to state the problem we want to solve. For a more thorough introduction
the reader is referred to [BK13,Kur]

The reader might recall the definition of a graph, which we call a discrete
graph, from her elementary courses in discrete mathematics. A discrete graph
G is an ordered pair (V,E) composed of a non-empty finite set V , called the
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of the differential operator D. The metric graph Γ is then called the underlying
metric graph.

Depending on the phenomenon that one would like to describe, one may
consider different differential expressions for D, and also different VCs. The
most widely used differential expressions are the Laplace, the Schrödinger, and
the magnetic Schrödinger operators described below.

(i) The Laplace operator D:

D := − d2

dx2
· (5.7)

This operator corresponds to the free particle.

(ii) The Schrödinger operator Dv:

Dv := − d2

dx2
+ v(x), (5.8)

where v(x) is the electric potential.

(iii) The magnetic Schrödinger operator Dv,a:

Dv,a :=
(
i
d

dx
+ a(x)

)2

+ v(x), (5.9)

where a(x) is the magnetic potential.

Obviously, the Laplace and the Schrödinger operators are special cases of the
magnetic Schrödinger operator for zero electric potential and/or zero magnetic
potential. In this thesis, however, we consider the Laplace operator and denote
it by L.

There are also different VCs considered in different contexts. In a quantum
graph (Γ,D,VC), the VCs are usually chosen so that the operator D be a
self-adjoint operator on Γ, but, as it is the case in this thesis, this is not a
necessity. The VCs considered in this thesis are the standard VCs and Robin
VCs introduced below.

Let f = (f1, . . . , fN ) be a function defined on a metic graph with N edges
and let v be a vertex of this graph of degree d on edges ej1 till ejd .

(i) The standard VCs at the vertex v are the following relations:

fj1(v) = · · · = fjd(v), (Continuity at v)

∂nfj1(v) + · · ·+ ∂nfjd(v) = 0, (Current conservation at v)
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where ∂n denotes the normal derivative defined as follows:

∂nfjk(v) =

⎧⎨⎩
+f ′

jk
(v), if v is the left end point of the interval ejk ;

−f ′
jk
(v), if v is the right end point of the interval ejk .

In other words, the normal derivatives are taken in an outgoing direction,
namely, they are taken in the directions away from the vertex and into
the edge.

(ii) The Robin VCs with given parameters hj1 till hjd at the vertex v are the
following relations:

∂nfji(v) = hi fji(v), 1 � i � d.

One main theme in studying a quantum graph (Γ,D,VC) is to look at
the spectrum of the differential operator D subject to the given set of vertex
conditions VC. A complex number λ is an eigenvalue of the quantum graph
(Γ,D,VC) with N edges, if there exists a non-zero N -tuple (u1, . . . , uN ) satis-
fying all given vertex conditions VC such that Duj = λuj , for all j.

5.3 Quantum Equilateral Star-Graph

Inspired by the results in the context of PT -symmetric quantum mechanics
described in the previous section regarding non-Hermitian Hamiltonians with
real spectrum, we investigate similar ideas by looking at a simplified model in
the context of quantum graphs. In particular, we cook up a model of a quantum
graph for which the reflection symmetry of the spectrum of the corresponding
operator with respect to the real axis is indeed equivalent to PT -symmetry,
in the sense that is defined later, of the underlying metric graph. The metric
graph that we consider here is the equilateral star-graph depicted in Fig. 5.2
and the corresponding operator the one-dimensional Laplace operator −d2/dx2.
The corresponding vertex conditions are the standard vertex condition at the
internal vertex together with Robin vertex conditions, with at least one non-
real Robin parameter, at the external vertices. As becomes clear shortly, on
the domain specified by the above vertex conditions the Laplace operator is in
general not self-adjoint.

Let N be an integer larger than two. Consider the Hilbert space

H := L2(0, 1)× · · · × L2(0, 1), (5.10)

as the Cartesian product of N copies of the space L2(0, 1), which is the space
consisting of square-integrable complex-valued functions defined on the interval
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(0, 1), equipped with the following inner product:

〈u ,v 〉 :=
N∑
i=1

∫ 1

0

u∗
i (x)vi(x) dx, (5.11)

for every u = (u1, . . . , uN ) and v = (v1, . . . , vN ) in H . Let h1 till hN , known
as Robin parameters, be given complex numbers and let h denote the N -tuple
(h1, . . . , hN ). We now consider the Laplace operator Lh = −d2/dx2 with
the domain Dom(Lh) consisting of all N -tuples u = (u1, . . . , uN ) such that
each component uj belongs to the Sobolev space W 2

2 (0, 1) and, moreover, the
components satisfy standard vertex conditions at the internal vertex, namely,

u1(1) = u2(1) = · · · = uN (1),

u′
1(1) + u′

2(1) + · · ·+ u′
N (1) = 0,

(5.12)

and the Robin vertex conditions at the external vertices, namely,

u′
j(0) = hj uj(0), 1 � j � N. (5.13)

In the context of quantum graphs, what mentioned above can easily be
visualized as the following equilateral star-graph subject to standard vertex
conditions at the internal vertex and Robin vertex conditions, with parameters
h1 till hN , at the external vertices, with the Laplacian Lh as the operator
acting on it.

1
00

0

0

0

0

e1
e4

e3

e5

e2

eN

Figure 5.2: Star-graph Γ with N edges.

Using integration by parts, for u and v in Dom(Lh), we obtain

〈Lhu ,v 〉 − 〈u , Lhv 〉 =
N∑
i=1

(h∗
i − hi)u

∗
i (0)vi(0), (5.14)



96 Chapter 5. PT -Symmetry and Quantum Star-Graph

which does not in general vanish, since we allow for complex Robin parameters.
Therefore, Lh defined above is not necessarily self-adjoint and the spectrum of
Lh might contain non-real eigenvalues.

5.3.1 Definitions and Notations

To investigate the relation between the symmetries of the underlying metric
graph Γ in Fig. 5.2 and the reflection-symmetry of the spectrum of Lh with
respect to the real axis, we need to define a few notions and fix some notations
first.

We use boldface letters to indicate N -tuples. In this context ci, for example,
denotes the (N − 1)-tuple obtained from c by suppressing its ith component.

An N -tuple is said to be invariant under conjugation if the non-real compo-
nents of it can be grouped in conjugate pairs. For example, c = (−i, 3, i,−i, i)
is invariant under conjugation, whereas d = (2, 3i, 3i,−3i) is not.

The anti-linear operator T acting on H is the time-reversal operator de-
fined by

T u = u∗, u ∈ H , (5.15)

where u∗ denotes the N -tuple obtained from u by conjugating all its compo-
nents.

For 1 � i � j � N , the linear operator Pi,j , which is called the (ij)th edge
permutation operator, is an operator with domain H that interchanges the ith
and the jth components of the N -tuple on which it acts, and does not affect
other components. Moreover, for 1 � i � N , Pi,i is the identity operator idH

on H .
A linear operator S acting on H is called a symmetry of Lh if LhS = SLh.

The operator Lh in this case is said to be S-symmetric. The relation LhS =
SLh implies that, for S to be a symmetry of Lh, Dom(Lh) has to be invariant
under the action of S, that is, S

(
Dom(Lh)

)
⊆ Dom(Lh).

We recall the definition of the mth elementary symmetric polynomial from
Subsection 2.5.2. Since, in this chapter, the mth edge of the star-graph Γ
is denoted by em, we use sm, instead of em, to denote the mth elementary
symmetric polynomial. For a non-negative integer m, the mth elementary
symmetric polynomial sm(x1, . . . , xN ) in N variables x1 till xN is defined to
be the constant polynomial that is equal to one, if m = 0; the zero polynomial,
if m � N + 1; and it is defined by:

sm(x1, . . . , xN ) =
∑

xi1· · ·xim ; (5.16)

otherwise. The sum is over all indices i1 till im such that 1 � i1 < · · · < im � N .
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5.4 The Main Theorem

The rest of this chapter is devoted to explaining the strategy pursued in the
third accompanied paper [KMG17] to prove Theorem 5.4, which is the main
result of the paper. This theorem relates the reflection symmetry, with respect
to the real axis, of the spectrum of Lh to a certain symmetry, namely, PT -
symmetry, of this operator, where P is a symmetry of the underlying metric
star-graph Γ of Fig. 5.2.

Theorem 5.4. The spectrum of the operator Lh has reflection symmetry with
respect to the real axis if and only if Lh is PT -symmetric, where P is a sym-
metry of the underlying metric star-graph Γ.

5.4.1 Proof of the “only if” part of Theorem 5.4

The proof of the “only if” part of the above theorem is rather straightforward.
In fact, the statement expressed in the “only if” part of this theorem follows
from the following more general argument, whose proof is given in Appendix
A of [KMG17].

Proposition 5.5. Let AT , where A is an invertible linear operator defined
on a Hilbert space H and T is the time-reversal operator, be a symmetry for
a linear operator L acting on H, namely, AT L = LAT . Then if λ is an
eigenvalue of L with degeneracy d, then λ is also an eigenvalue of L with the
same degeneracy d.

5.4.2 Proof of the “if” Part of Theorem 5.4

The proof of the “if” part, which claims the reflection symmetry of the spectrum
of Lh with respect to the real axis implies its PT -symmetry, is much harder. In
the following, we just outline the the strategy employed in [KMG17] to prove
this by just reviewing the ideas of the proofs in each step.

First, consider the following theorem, which relates the reflection symmetry
of the spectrum of Lh to the reality of the elementary symmetric polynomials
s1(h) till sN (h):

Theorem 5.6. If the spectrum of the operator Lh has reflection symmetry with
respect to the real axis, then, for all 1 � m � N , sm(h) is real.

We first show that the “if” part of Theorem 5.4 follows from the theorem above
and, then, concentrate ourselves on the proof of this theorem instead. To do
this, we first prove two lemmas. The first one is

Lemma 5.7. If h is invariant under conjugation, then there exists a symmetry
P of the underlying metric star-graph Γ such that Lh is PT -symmetric.
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The idea of the proof of this lemma is that, if h is invariant under conjugation,
then Lh is PT -symmetric, where P is a product of edge permutation opera-
tors, defined by P =

∏m
j=1 P2j−1,2j . Here m denotes the number of complex

conjugate pairs in h and, without loss of generality, we have assumed that the
components of h are such that h2j = h∗

2j−1, for 1 � j � m.
The second lemma is:

Lemma 5.8. An N -tuple c = (c1, . . . , cN ) consisting of complex numbers is
invariant under conjugation if and only if, for all 1 � m � N , sm(c) is real.

To prove this, we employ the identity
∏N

j=1(x+cj) =
∑N

k=0 sk(c)x
N−k and

symmetry properties of elementary symmetric polynomials s1(h) till sN (h).
It is now readily seen that Theorem 5.6 together with Lemmas 5.7 and 5.8,

implies the “if” part of the main Theorem 5.4. Therefore, to prove the “if”
part of Theorem 5.4, we only need to prove Theorem 5.6. In what follows, we
briefly discuss the general ideas of the proof. For the actual proof, the reader
is referred to [KMG17].

A natural starting point toward a proof of Theorem 5.6 is to determine the
secular equation of Lh, whose solution set is the spectrum of Lh. If λ := z2 is
a non-zero eigenvalue of Lh, then there exists a non-zero u in Dom(Lh) so that
Lhu = z2 u. Writing the latter equation in terms of components, we come to
the following N second order differential equations:

− d2

dx2
ui(x) = z2 ui(x), i = 1, 2, . . . , N, (5.17)

with the general solutions

ui(x) = Ai cos zx+Bi sin zx, i = 1, 2, . . . , N. (5.18)

Applying the vertex conditions (5.12) and (5.13) on the solutions above and
requiring that u is non-zero, the secular equation of Lh is Dh(z) = 0, where

Dh(z) :=
N∑
i=1

(
βhi

(z)
N∏
j=1
j �=i

αhj
(z)

)
, (5.19)

and

αhi(z) := z cos zx+ hi sin zx,

βhi(z) := −z sin zx+ hi cos zx.
(5.20)

The details of the calculations that give rise to Eq. (5.19) are given in Section 4
of [KMG17]. From this equation, it is seen that Dh is an entire function of z.
In addition, we have (

Dh(z
∗)
)∗

= Dh∗(z). (5.21)
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It is now straightforward to see that, if all Robin parameters are zero, that
is, if h = 0, then Eq. (5.19) reduces to

D0(z) = −N zN sin z(cos z)N−1, (5.22)

with the following solution set:{
n π | n is an integer

}⋃{
n π + π/2 | n an integer

}
. (5.23)

The roots n π are each of multiplicity one and the roots n π + π/2 are each of
multiplicity N − 1. In what follows, we focus on the first set of roots that are
easier to handle.

Consider now the case in which at least one of the Robin parameters is non-
zero, and let z̃n(h), for some positive integer n, denote a root of the secular
equation Dh(z) = 0. In [KMG17], we show that this root can be written as

z̃n(h) = n π +Δn(h), (5.24)

where the deviation term Δn(h) takes the following form:

Δn(h) =
a1(h)

n
+

a3(h)

n3
+

a5(h)

n5
+ · · · , (5.25)

for some coefficients ai(h) and for sufficiently large n. This can also be under-
stood perturbatively as follows. Using the following proposition:

Proposition 5.9. Let c = (c1, . . . , cN ), and let i and j be integers such that
1 � i � N and 0 � j � N − 1. Then

ci sj(ci) = sj+1(c)− sj+1(ci), (5.26)
N∑
i=1

sj(ci) = (N − j) sj(c), (5.27)

whose proof is given in Appendix B of [KMG17], one can write Dh(z), given
in (5.19), as follows:

Dh(z) = −N zN sin z(cos z)N−1 + zN
N∑

k=1

sk(h)

zk
fk(z), (5.28)

where

fk(z) := (k −N sin2 z)(sin z)k−1(cos z)N−k−1, k = 1, 2, . . . , N. (5.29)

The derivation of the above relations is given in [KMG17]. Therefore, for any
non-zero z, we have

Dh(z)

zN
= −N sin z(cos z)N−1 +

N∑
k=1

sk(h)

zk
fk(z). (5.30)
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For any positive integer n, n π is a root of the first term on the right side
of (5.30). On the other hand, we have:

∣∣∣sk(h)
zk

∣∣∣ � (
N

k

)(
h

|z|

)k

, (5.31)

where h := max
{
|h1|, . . . , |hN |

}
. Thus, the second term on the right side

of (5.30) can be made arbitrarily small by choosing z inside a circle of some
fixed and small radius centered at n π, for sufficiently large n. Since this term
is continuous, one would then expect that the equation Dh(z) = 0 has a root
that is arbitrary close to n π for an n that is large enough.

To finalize the proof of Theorem 5.6, one needs to investigate the structure
of the coefficients ai(h) in (5.25). We Taylor expand the right side of (5.28)
at z = 0 and then substitute n π + Δn(h), with Δn(h) given by (5.25), into
the Taylor expansion, and write the outcome as a series in n. It turns out that
the powers of n that appear in this expansion are nN−2i+1, i = 0, 1, 2, 3, . . ..
For z̃n(h) = n π +Δn(h) to be a root of the secular equation Dh(z) = 0, it is
necessary and sufficient that the coefficients of all powers of n mentioned above
vanish. We get the following result:

a2i−1(h) = s1(h)Fi

(
s1(h), . . . , si−1(h)

)
+

i

π2i−1N i

(
s1(h)

)i−1
si(h), (5.32)

for i = 2, 3, 4, . . ., where Fi is a polynomial of degree 2i in i−1 variables, whose
coefficients are real-valued rational functions of N . In addition, we get

a1(h) =
1

πN
s1(h). (5.33)

The important point that reveals itself in Eqs. (5.32) and (5.33) is that si(h)
appears, for the first time, in the equation for a2i−1(h) and it appears there
with exponent equal to one. Since the spectrum of Lh is assumed to possess
reflection symmetry with respect to the real axis, Dh(z) = 0 if and only if
Dh(z

∗) = 0 and, by Eq. (5.21), this is equivalent to Dh∗(z) = 0. Thus, z̃n(h)
is a root of Dh∗(z) as well.

One can now repeat the same procedure mentioned on the paragraph pre-
vious to Eq. (5.32) on Dh∗(z) instead. This together with sm(h∗) = s∗m(h),
for m = 1, . . . , N , then give rise to the following equations:

a1(h) =
1

πN
s∗1(h), (5.34)

and

a2i−1(h) = s∗1(h)Fi

(
s∗1(h), . . . , s

∗
i−1(h)

)
+

i

π2i−1N i

(
s∗1(h)

)i−1
s∗i (h), (5.35)
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for all i greater than one.
Eqs. (5.33) and (5.34) imply that s1(h) is real. Assume now that s1(h) till

sk−1(h), 2 � k � N , are real. Eqs. (5.35) and (5.32), then imply that sk(h) is
also real. Hence, all polynomials s1(h) till sN (h) are real and Theorem 5.6 is
then proven.

In conclusion, we showed that the spectrum of the operator Lh, which is not
necessarily self-adjoint, has reflection symmetry with respect to the real axis if
and only if the N -tuple h = (h1, . . . , hN ), consisting of the Robin parameters,
is invariant under conjugation.
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