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Abstract

The toric-code is an example of a stabilizer error correcting code that hypothetically
can be used in topological quantum computing. More specifically, it is defined
on a two dimensional Z2 lattice wrapped around a 2-torus. Due to the special
boundary conditions possessed by objects of such topology, one feature of the system
is that it’s topologically ordered. It also has a gapped degenerate ground state that
can be used to represent qubits, which simply is short for quantum bits, in which
topologically protected quantum information can be encoded. The excitations of the
model can be regarded as errors which is detected through measurements by means
of local operators. The system can also be considered as a string-net condensate
where the excitations are located in the ends of the strings. These quasi-particle
excitations are of anyonic nature with non-trivial braiding statistics. Hence, when
tracing out the world lines by excitations that are interchanged, the paths will form
knots with non-trivial topology which allows for an arbitrary complex phase to be
acquired by the quantum state. Because of this one can use different braids as
implementations of logical operators so that the information can be processed. In
this thesis work, however, the main focus lies on generalizations and manipulations
of the original toric-code. In order to perform powerful quantum computations the
braiding statistics has to be non-abelian and since this requirement is not met by
the original toric-code, the system has to be manipulated somehow. It has been
shown that topological defects, or twists, can be created by performing dislocations
in the lattice which mimics the behaviour of non-abelian anyons. In this system the
concept of fusion can be used to represent protected qubit states since the fusion
outcome that corresponds to two or more twists always is indefinite. Further we will
generalize the lattice from having only two degrees of freedom per lattice site, to
a system which comprises an arbitrary number degrees of freedom per lattice site.
The excitation spectrum will be derived, and we will also see how to move these
excitations around which allows us to compute the braiding rules and the fusion
category of the model.
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Chapter 1

Introduction

The last century has truly been an era characterized by success in the field of physics.
Not only did Einstein formulate the mathematical foundation of the theories of
relativity, which forced us to abandon our view of space and time, but also the theory
of quantum mechanics, which perhaps was even more groundbreaking, was developed
as well. These theories were two crucially important milestones in the development
of physics, which today constitute the basis of the modern theory. Just like relativity,
quantum mechanics is a beautiful subject, which has provided us with a peephole
into the microscopic world, and revealed that the very nature of our physical reality
reaches far beyond the human intuition. Nevertheless, apart from all philosophical
aspects, it does also make up one of the cornerstones of modern technology and
engineering. Almost all electronic devices are built up from components, such as
semi-conducting transistors, in which quantum mechanics plays a key role. Another
interesting, and ingenious, application is in the field of computation which has given
rise to the emergence of a new discipline in physics, which we nowadays refer to as
quantum computing. The field of quantum computing is a vibrant research area, in
which physicists are trying to make use of the superposition feature that is possessed
by systems in the quantum regime, and use such system to represent quantum bits, or
qubits, of information. This would make it possible to process a huge amount of data
if compared to a classical computer, which will result in an explosive amplification
in terms of computational power. However, in order to wrap ones head around the
main idea behind quantum computing, one will probably have to abandon the way
one thinks about a conventional computer to fully grasp the concept. Not only is the
construction and the components different from a classical computer, but the basic
principles at a theoretical level as well. The main approach is way more physical
than in classical computer science, which means that one will have to regard the
subject from the eyes of a physicist rather than from the ones of a computer scientist.

In this thesis work I have studied a special type of hypothetical quantum com-
puter, which is at its heart based on the mathematical principle of topology, hence
the name topological quantum computer. The field of topological quantum comput-
ing is an extremely wide and diverse subject which combines several disciplines of
physics and mathematics at a fundamental level together with cutting edge engi-
neering. For this particular reason I find the subject not only to be challenging,
but also very rewarding and fruitful. It may be natural, however, to question the
whole idea about quantum computing, and why it might benefit us. The variety of
amazing things that can be achieved with a modern classical computer is numerous
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Chapter 1. Introduction

and it is without doubt that the computer has shaped out society ever since the
British mathematician Alan Turing invented it during the second world war. It was
indeed a great achievement which had a major impact on the war and how it finally
could be brought to an end. Aside from this historical remark, the computer has
continued to serve the human society ever since, and one could maybe even say that
it is responsible for the paradigm shift that has taken place in science and technol-
ogy during the second half of the nineteenth century. So what do we need quantum
computers for? Are not classical computers enough? Even if modern computers are
powerful enough in most cases, the quantum computer would certainly open doors
to a completely new world with new opportunities. Basically, a quantum computer
can tackle any problem on a scale far beyond the best classical computers that we
have today. The potential is enormous. But of course, there is a catch. Just like a
classical computer is prone to errors, so is a quantum computer. This means that
even if we succeed to build the computer itself, we will still need error correcting
codes that correct the errors in order for the computer to operate at a satisfactory
level. The so called Toric-code is a well studied example of such a code which is
defined on a torus-shaped two dimensional spin-1

2
lattice. One powerful features of

this system is that it possesses topological order, which makes the phases gapped
and the ground state degenerate [20]. These properties make the realization of topo-
logically protected qubits possible so that information can be stored safely. It also
possesses anyonic excitations with fractional exchange statistics which, as we shall
see, can be used to implement logical gates that allows the computer to process the
information.

The study of topological phases is a remarkably interesting research area which
has proven that matter is even more complex than what we first thought. According
to Landau’s theory, different states of matter can be characterized by an order
parameter which value will vary with the temperature so that the free energy is
minimized, and the system remains in equilibrium. Moreover, as the temperature
is lowered, the order parameter will go from zero to a non-vanishing value when
the system leaves the disordered phase, and enters the the ordered one. When such
transitions take place, certain symmetries possessed by the disordered phase will
brake which thus act as a signature of the phase transition. By studying broken
symmetries, group theory has allowed us to classify 230 different three dimensional
crystal structures in nature [8]. One good, and well known example of this, is when
water freezes to ice. In the liquid state the system possesses continuous transnational
symmetry, but as fast as the temperature is lowered below 0◦C, the liquid will
start to crystallize into an ordered structure which only have discrete transnational
symmetry. Landau’s theory is also applicable to more exotic states of matter such as
Bose-Einstein condensates, superfluids and superconducting phases. For a long time
we thought that all types of phases could be distinguished by means of Landau’s
theory, but that idea had to be abandoned when topological phases of matter, and
general quantum phases, were discovered which gave rise to some new types of
quantum materials that couldn’t be classified in this way. Such phases are very
different in their nature which sometimes requires a more delicate mathematical
framework. Quantum phases that cannot be described adequately with Landau’s
theory are distinguished by projective symmetry groups, or PSG’s, which means that
different quantum phases still can possess the same symmetry but different PSG’s
[37]. In the same way as broken symmetries have allowed us to classify different
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crystal structures, the PSG description has allowed us to identify over 100 different
spin liquids which all have the same symmetry [37]. Anyway, the excitement of
quantum and topological order does not stop here. Some indications are pointing
towards the existence of new quasi-particles that might be even more fundamental
than those we know today in the Standard model [37]. It has also been proven
that wave equations, such as the Navier and Euler equations for quantum solids and
liquids, can be recovered by considering different kinds of organizations, or orders,
of particles [35]. Even Maxwell’s equations of light in electrodynamics can be found
by organizing bosons into string-net condensates, so that the motion of the waves
in the string-net liquid is governed by just this set equations [35, 38]. It seems like
different types of order leads to different kinds of waves and particles, so maybe
we have looked at it wrong and all elementary particles originates from more exotic
orders at the most fundamental level. If this is the case, we will face a new revolution
in physics, and once again, we will be forced to fundamentally change the way we
look at the universe.
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Chapter 2

Quantum mechanics as a means
for computation

The main purpose of this Chapter is to review the most important aspects of quan-
tum computing and error-correction theory. We will start off by comparing classical
bits, and the their quantum mechanical counterpart, the qubits, and motivate why
qubits are superior to bits in terms of information storage capacity. We will then
continue the Chapter by providing a review of classical error-correction theory and
then generalize the idea to a quantum system, in which the information is encoded
in qubits, and see how errors in such systems can be detected and treated.

2.1 Bits vs. Qubits

2.1.1 Bits

In a conventional computer the fundamental concept of information are known as
bits [25], which constitute the basic units. A bit can take any of the two values 0
or 1 and can thus be used to answer binary questions where we, at least, will half
the uncertainty of the answer for each step [13]. A very basic example where one
single bit is enough to answer the question completely, is what the outcome will be
from one single coin toss. We already know in beforehand that the answer will be
either heads or tails, so if we assign, for example, 1 to the answer heads and 0 to
the answer tails, we won’t need to ask any further questions since even if we answer
wrong, we know that the correct answer must be the other. In terms of binary
trees, this process will only have two branches. However, in more complicated cases
we will only be able to reduce the uncertainty to half of the initial. To illustrate
this with a simple example, imagine that you are asked to guess a number between
one and six. Then you can use the numbers 1 and 0 to ask whether the value is
equal to 4 or greater, or if the value is less than four. If you, for example, ask if
it’s less than four and you are right, you will know that the correct answer will be
either one, two or three. This procedure can be repeated until you are only left with
two choices, just like in the coin tossing example, and you will find out the correct
answer in the next step. This example would require three bits in order to reach the
correct answer with hundred percent certainty and in the corresponding binary tree
there would exist 23 = 8 distinct paths or possibilities. Thus, if we know how many
possibilities there are we can go backwards to figure out how many questions that

4



2.1. Bits vs. Qubits

are needed in order to find the right answer. Since there always are 2 possibilities in
each step, and we know that the total number of possibilities is k, then we just have
to solve the equation 2n = k for n, which can easily be done by taking the logarithm
in base 2 of each side which yields n = log2(k). So in conclusion, if the total number
of possibilities k is known, the number of questions that have to be asked in order to
arrive at the correct answer is given by n = log2(k) for any value of k. However, in
order for the computer to execute the requested computation, the information has to
be processed properly which is usually done by means of logic circuits. Such circuits
are built up from logic gates connected by wires through which the information-
encoded current is running. These logic gates are, in theory, based on Boolean logic
and are implemented by transistors which determine the output signal. Basically,
there are three fundamental logic gates known as the OR-gate, the AND-gate and
the NOT-gate. The OR-gate takes two signals as input and if either of the signals
has value 1 (true in Boolean logic), the output signal will be 1 as well. If, on the
other hand, both inputs are 0 (both are false in Boolean logic), the output will be
0. The AND-gate also takes two inputs and the output will only be 1 if both inputs
are 1, and 0 otherwise. The NOT-gate, however, works a little bit different. This
gate only takes one signal as input and its operation flips the input value. Hence, if
the input is a 1 the output will be a 0, and vice versa.

2.1.2 Qubits

Quantum information is based upon an analogous concept called qubits, which is
simply short for quantum bit [25]. Just like a bit, a qubit has states as well, but
as we shall see it’s much richer in the sense of information. We are also forced to
employ some more mathematics due to the more abstract nature of qubits. If we
start by just regarding a qubit as a mathematical object without, yet, any physical
significance, we can define it as

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where |0〉 and |1〉 correspond to different quantum states (in the Dirac notation)
and α and β are two complex numbers [25] satisfying |α|2 + |β|2 = 1, due to the
probabilistic normalization. So how is Equation (2.1) to be interpreted? We see
that in the special cases when either α or β is zero, the qubit must either be |1〉 or
|0〉, respectively, and hence it behaves like a bit. But α and β can take any value in
the complex plane as long as |α|2 + |β|2 = 1 is satisfied which means that a qubit,
mathematically speaking, in general is a linear combination of the two orthogonal
states which, in this context, also are known as the computational basis states [25].
We say that a qubit can be in a simultaneous quantum superposition of two states,
which entails that if we generalize to a multiple qubit system with n quibits, it can
simultaneously be in 2n states, whereas n bits still only can be in one state, so n
qubits corresponds to 2n classical bits in total. Hence we may say that qubits obey
”quantum mechanical” logic rather than Boolean logic. Moreover, since a qubit
state is constructed from two basis states, it means that it lies in a plane, or in
a two dimensional Hilbert space H2. Thus, in the general case with n qubits the
full 2n-dimensional Hilbert space is given by the tensor product of each one of the
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Chapter 2. Quantum mechanics as a means for computation

individual qubit Hilbert spaces, i.e.

H2n =
n⊗
i=1

H2
i = H2

1 ⊗H2
2 ⊗ ...⊗H2

n︸ ︷︷ ︸
n times

, (2.2)

which is spanned by all possible direct products of the computational basis states
on the form |i1, i2, .., in〉 = |i1〉 ⊗ |i2〉 ⊗ ... ⊗ |in〉, where each ik ∈ {0, 1} [14]. Just
like in a classical computer, a quantum computer also needs logic gates that have to
be implemented somehow. The OR- and the AND-gates basically work, at least at
a mathematical level, analogous to the classical ones [25]. The NOT-gate, however,
requires some more cautiousness. From a mathematical point of view we want to
define an operator U that turns the |0〉 into the |1〉 in the qubit state, and vice versa
[25]. The question we have to ask ourselves is how such an operator acts on the
qubit, and the answer is that it acts linearly [25], i.e.

U : |ψ〉 = α |0〉+ β |1〉 → |ψ′〉 = α′ |1〉+ β′ |0〉 . (2.3)

This linearity may seem natural but the truth is that it’s a non-trivial feature which
lies in the nature of quantum mechanics, and is by no means obvious1 [25]. If we
further think about the mathematical properties such a transformation must have,
one may conclude that it has to be unitary, due to the normalization condition:
|α′|2 + |β′|2 = 1. In other words it must satisfy UU † = I where U † being the
Hermitian conjugate of U and I being the dientity operator. This is because all
unitary transformations have eigenvalues lying on the unit circle in the complex
plane so that the transformation won’t affect the normalization. However, there is a
catch. In the end of the computational process the quantum state is measured which
means that it will be forced to collapse into one of its basis states with a certain
probability, due to one of the fundamental postulates of quantum mechanics. This
is unwanted since all the other information will get lost so the trick is to protect the
information in a way so that the qubit is in a basis state when the measurement is
carried out.

Worth to point out though is that it’s not the speed of each individual computa-
tion that is faster in a quantum computer than in a classical one, it’s the number of
computations required to arrive to the final result that is exponentially higher in a
classical computer which makes the quantum computer way more efficient, in most
cases. It is now about time to go into the physics and ask ourselves how a quantum
bit can be realized physically. As we already have discussed a qubit is a superpo-
sition of two distinct quantum states so to realize a qubit we have to initialize a
quantum system in such a way that this is satisfied. This can be achieved in many
ways and to get a feeling of how such a realization can be obtained a few examples
will be mentioned. For example one could prepare a system of atomic nuclei in a
uniform magnetic field such that their spins are pointing along the direction of the
field which thus corresponds to the ground state. Then an orthogonal oscillating
field with the resonance frequency of the nuclei can be applied for a short period of
time, so that the spins will be excited ”half way” to the full excited states. Thus,
each nucleus in the system will end up in a quantum superposition of the ground
state and the excited state which results in a system that realizes a set of qubits.
One could also use the two polarizations of a photon as states [25, 7], or excite an

1It is also very well motivated empirically [25].
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2.2. Algebraic coding theory

electron in an atom half way between two quantized energy states by radiating a
beam of light of suitable frequency on it [25, 7]. Nevertheless, in this thesis work
we are going use a concept called fusion to represent qubit states. Briefly one can
say that the main idea is built upon bringing two anyons together, or fuse them
together, which can result in several distinct outcomes that defines the two qubit
states. This idea will be discussed more rigourusly in Chapter 4. Also note that
since it’s possible to initialize a quantum system in not only two states, but in an
arbitrary number of states, the concept of a qubit can be further generalized to a
state living in a Hilbert space of arbitrary dimension so that

|ψ〉 = α0 |0〉+ α1 |1〉+ ...+ αm |m〉 =
m∑
i=0

αi |i〉 . (2.4)

This generalization of a qubit is known as a qudit, and since the corresponding qudit
Hilbert space is mn dimensional the amount of information that can be encoded in
a general qudit increases dramatically with m which thus allows for even more
powerful computations.

2.2 Algebraic coding theory

Before proceeding to the Quantum double models in Chapter 5, which might be
considered to be the essential part of this thesis work, a brief introduction to error
correction theory is provided here. We shall start our discussion by introducing some
basic concepts in classical error correction theory and then we will advance towards
quantum error correction theory. One of the major problems that need to be solved
in order to succeed with the quest of building a well working quantum computer,
is to overcome the challenge of constructing an error correction code that allows
the computer to store clean information in the memory. In general, it’s impossible
to isolate a physical system completely from its surroundings which, of course, will
lead to irreducible noise, due to various interactions with the environment. Hence,
we must approach this problem from another angle and instead aim at constructing
a scheme that automatically deals with errors and tries to correct them. Such
schemes are known as error correcting codes and these codes play a crucial role in
the process which makes it possible perform satisfactory computations. Throughout
the Sections in this Chapters we will mainly follow Chang (Ref. [7]) and Preskill
(Ref. [28]).

2.2.1 Classical error correction theory

We shall start this Section by providing an extremely simple example to keep in
mind along the way. Imagine that you receive a letter from an acquaintance and
when you open the envelope and starts to read it, you realize that for some reason
a few letters are missing. In that case, would you be able to read it anyway? The
answer is probably yes, even if it of course depends on how many missing letters
there are. When you try to read the text your brain will automatically try to fill in
the gaps in such a way that each word makes sense in the sentence it corresponds
to. So even if pieces of information are missing, or somehow distorted, it can still
be possible to decode a message. This is the very essence of what error correction
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Chapter 2. Quantum mechanics as a means for computation

coding really is about. First the code has to identify the error and then it will,
logically, figure out the most probable pieces of information that is missing. In that
way the computer can store information safely whilst it waits for the opportunity
to come when it might be needing it. When a computer is working it often has to
compare data obtained from computations that are separated in time, which means
that it has to store some information temporary. Therefore, if some information
get lost or distorted whilst the computer is processing other computations that are
necessary, it is highly likely that the final output will be complete rubbish. In
classical information systems, bits of information are transmitted through channels
[7] in which they are subject to noise, which can cause the bits to flip so that a
0-bit becomes a 1-bit or the other way around [7]. Therefore, the received piece
information might not be the same as the one that was sent. This process can be
illustrated in a so called block-diagram which is depicted in Figure 2.1.

Figure 2.1: Block-diagram illustrating the effect of noise that the channel is subject
to.

Furthermore, by assigning the probability p to the event corresponding to a flip
of the bit, we can formulate a model of the noisy channel (see Figure 2.2), called the
binary symmetric channel [7], to illutrate the main idea behind error correction.

Figure 2.2: Diagram over the binary symmetric channel. Each bit will flip with
probability p and thus remain the same with probability 1− p.

At this point we have only discussed error correction in a superficial way and it’s
time to phrase it in mathematical terms, which can naturally be done by invoking
some linear algebra. If we let A be a set containing information which constitutes of
strings of bits, and E be an encoding operator which maps A onto a code space C,
then the elements contained in C are the code words. We may also introduce a set
of noise oparators N = {I,N1, N2, .., Nm} [7], where I is an identity operator which
simply maps each element back onto itself. This set of noise operators transforms the
set of code words C into a new set Cnoise which is a collection of noise corrupted code
words [7]. We also need a decoding operator D which decodes the noise corrupted
code words in Cnoise into strings of bits [7]. Hence, the received decoded code words
will be subject to errors which have to be corrected. Therefore an error correcting
code need to be designed and a basic concept that such codes often are based on is the
concept of adding redundancy [7]. This basically means that additional information
is added so if some strings get distorted by noise, they can be recovered again. An
example could be that a 1 is added to the end of the message when the sum of the
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2.2. Algebraic coding theory

bits in the string is odd, and a 0 otherwise. Thus by summing up the bits in the
received string we know if the string has been distorted or not. Now, let the set
v1, v2, .., vk constitute a basis of C such that any code word in C can be written as
an n-dimensional linear combination in this basis, i.e. [28]

c(α1, α2, .., αk) =
k∑
i=1

αivi, (2.5)

where αi ∈ Z2 ∀ i. Moreover, we can introduce a so called generator matrix ~G [28, 7]
in which we put the basis vectors vi so that

~G =


v1

v2
...
vk

 . (2.6)

Now, with this matrix notation introduced, each code word in Equation (2.5) can
instead be expressed as [28]

c(α) = α~G, (2.7)

where α = (α1, α2, .., αk). The transformation in Equation (2.7) can be regarded as
a map f that takes a k-bit message α and maps it onto a code word of length n [27]

f : Zk2 → Zn2 . (2.8)

In other words, the generator matrix encodes the k-bit message α in the set of code
words C. Furthermore, we may introduce an (n − k)×n matrix ~H which satisfies
[28, 7]

~Hc(α) = 0, (2.9)

for all vectors c ∈ C, and only those vectors [28]. If we can find such a matrix, it
holds for any element in C that is subject to noise, and hence mapped onto Cnoise,
that Equation (2.9) will not be satisfied and we thus know that the information is
damaged. This matrix is a so called parity check matrix of C [28]. Formally this

means that if we add an error vector e to a string c and act with ~H, we have that

~H(c+ e) = ~Hc+ ~He = 0 + ~He = ~He 6= 0, (2.10)

which is called the syndrome [28]. Moreover, if we form a set of errors ε = {e1, e2, .., em}
it is always possible to recover the original information if and only if all syndromes
~Hei are unique, or equivalently, for any two distinct errors ej and ek, it must hold

that ~Hej 6= ~Hek [28]. The message can thus be recovered by flipping back the bits
which simply is done by adding the errors to the noise affected bits and then take
that value modulo 2, i.e.

c(α) + ei → (c(α) + ei) + ei ≡ c(α) (mod 2). (2.11)

9



Chapter 2. Quantum mechanics as a means for computation

So if two syndromes corresponding to two distinct errors ei and ek are equal, there
is a possibility that we are led to the ”wrong” error so when we try to fix it, we may
perform the following operation

c(α) + ej → (c(α) + ej) + ek 6≡ c(α) (mod 2), (2.12)

and hence we fail to recover the original message.

2.2.2 Quantum error correcting theory

Just like a classical computational processes suffers from errors originating from
various sources, so does a quantum computational process. The fact is that a process
executed by a quantum computer is extremely fragile since it’s not only prone to
errors coming from imperfections in the operations performed on the information,
but errors, or information loss, due to quantum mechanical decoherence as well.
Thus, in order to build a feasible quantum computer one needs to construct error
correcting codes that take care of both these types of errors from different origins.
Similarly, as in the case of classical bits, the concept of redundancy can be used
in quantum error correction where we have to construct a map between the k-
dimensional qubit space Hk to a ”redundant” n-dimensional code space Hn

c , where
n > k [28]. This redundancy is implemented by adding qubits called ancilla qubits
[7] to the qubit state by taking the tensor product. Thus if let Ha denote the ancilla
qubit space, the full code space is given by Hn

c = Hk ⊗Ha. A general state in this
space is thus denoted by

|ψ〉 ⊗ |a〉 = (α |0〉+ β |1〉)⊗ |a〉 , (2.13)

where |a〉 usually is set to |0〉. Before an error is to be corrected one has in some
way detect it first, just like in classical error correction theory. So how do we do
that? The task is to construct decoding operators D, such that if we let N be a
noise operator and E be an encoding operator, we aim to obtain the following map
[7]

DNE : |ψ〉 ⊗ |a〉 → |ψ〉 ⊗ |s〉 (2.14)

where |ψ〉 is the piece of information we would like to retrieve and |s〉 is the syndrome
we wish to associate to the noise N , so that the error can be corrected [7]. Now,
the next question to answer is how we can design such a decoding operator. To
answer this question we first need to introduce a set of matrices known as the Pauli
matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.15)

However, in the context of quantum computing it is customary to use the following
notation: σx = X, σy = Y and σz = Z. Therefore this will be employed form now
on. Together this collection of matrices spans the su(2) Lie algebra defined by the
following commutation relations2

[X, Y ] = 2iεxyzZ {X, Y } = 21δxy, (2.16)

2Here εxyz denotes the Levi-Civita permutation symbol.
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2.2. Algebraic coding theory

which after performing an infinite power series expansion, exponentiates to the
SU(2) Lie group. The significance of this set of matrices, in this context, is that
they represent observables in the qubit Hilbert space, which further implies that the
pure qubit states are eigenstates of these matrices, with corresponding eigenvalues
±1. Lets now focus on X and Z. If we consider these two matrices we note that
when acting on a general qubit state |ψ〉, they will transform the state according to

X |ψ〉 = α |1〉+ β |0〉 , Z |ψ〉 = α |0〉 − β |1〉 (2.17)

so we see that the X operator flips the qubit whereas the Z operator contribute by
a flipped phase. Furthermore we have that Y = iXZ, so the Y operator can be
interpreted as phase flip followed by a qubit flip. In fact any second order unitary
transformation can be regarded as a qubit error, but since the Pauli matrices spans
the algebra, any error can be mathematically formulated as a linear combination of
the Pauli basis. In conclusion, we thus only have two distinct types of errors: qubit
flip and phase flip. Let us now consider the code space Hc. In view of Equation
(2.9) in the previous Subsection, where the parity-check matrix was defined, a similar
object can be defined for qubits of quantum information in this space. Assume that
we have a set of objects that, under action, leaves the states in the code space
invariant if and only if the state in question is unperturbed. This would mean that
errors could be detected upon action of such objects on the states in the code space,
similarly as with parity-check matrices in the classical case. In fact, one can easily
show that such a set of objects possesses group structure and if we let |ψ〉 be a state
in the code space, we can define this group as

S = {Si | Si |ψ〉 = |ψ〉 ∀ Si}. (2.18)

In group theory one says that Si stabilizes |ψ〉, since it leaves the state invariant
under group action. Moreover, the stabilizer of |ψ〉 is the subset of all elements
in the Pauli group [28] that maps |ψ〉 to itself when computing the orbit under the
action of the group. Thus, since this set of Pauli operators possesses group structure
we will for that reason call this set the stabilizer group of |ψ〉. In addition, error
correcting codes that are based upon this idea are known as stabilizer codes. Now,
for instance, let us assume that qubit 1 or 2 has been subject to an error X1 or X2.
Thus by acting upon such a perturbed state with the operator Z1Z2, the error can
be detected since Xi and Zj anti-commutes if i = j and commutes otherwise. This
is because tensor products are implied so that

Xi = I ⊗ I ⊗ ..⊗ I︸ ︷︷ ︸
i−1 factors

⊗X ⊗ I ⊗ ..⊗ I ⊗ I︸ ︷︷ ︸
n−i factors

and

Zj = I ⊗ I ⊗ ..⊗ I︸ ︷︷ ︸
j−1 factors

⊗X ⊗ I ⊗ ..⊗ I ⊗ I︸ ︷︷ ︸
n−j factors

.

Hence, in general, if we have a perturbed state |χ〉 = Ei |ψ〉, where Ei being the
error, we have that Si |χ〉 = Si(Ei |ψ〉) = (SiEi) |ψ〉 = −(EiSi) |ψ〉 = −Ei(Si |ψ〉) =
−Ei |ψ〉, so Ei |ψ〉 is an eigenstate of Si with eigenvalue -1 [15]. As a result, if we
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measure Si of the perturbed state we will get [15]

〈χ|Si |χ〉 = 〈ψ|E†iSiEi |ψ〉 = 〈ψ| (−SiE†iEi) |ψ〉 = −〈ψ|Si |ψ〉 = −〈ψ| |ψ〉 = −1,
(2.19)

where the unitarity property of Ei, i.e. E†iEi = E−1
i Ei = 1, and the orthogonality

condition of the states 〈ψa| |ψb〉 = δab, were applied. Thus if we measure the eigen-
value of the stabilizer operator we know that the state is perturbed if the eigenvalue
is -1, and unperturbed if the eigenvalue 1. In conclusion the two types of errors can
be detected by measuring the eigenvalues of the operators in the stabilizer group,
which depends on whether the ancilla qubit was flipped or not [28], and can thus be
corrected upon action of an appropriate Pauli matrix.
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Chapter 3

Particle statistics and topology

In the Standard model of particle physics, we only allow for a certain collection of
elementary particles to occur naturally in the universe. However, it has been proven
that under very special conditions, such as in two dimensional materials, the emer-
gence of other types of particles, or more exactly quasi-particles, becomes possible.
These particles are called anyons which possess some rather special features that
will be discussed in this Chapter.

3.1 Fermionic and bosonic statistics

The question ”what is an anyon?” might be easiest to answer by explaining what an
anyon is not. Already in quantum mechanics and particle physics at a very intro-
ductory level, students learn that elementary particles generally are categorized into
two fundamental groups known as fermions and bosons, and what characterizes the
particles in these two distinct groups are their spin properties and how their joint
wave functions behaves under particle exchange. We have learned that fermions
are half-integer spin particles and that their wave function exhibits anti-symmetry
under particle interchange, while on the other hand, bosons are integer spin par-
ticles with a symmetric wave function under interchange of two identical particles
[4]. This relation between the spin of the particles and the interchange symmetry
is known as the spin statistics theorem [26] and is one of great achievements of rel-
ativistic quantum field theory. One says that fermions obey Fermi-Dirac statistics
and bosons obey Bose-Einstein statistics. However, this theorem is only valid in
three spatial dimensions or more, and it has been shown that in two dimensional
physical systems1, more exotic excitations are possible. These excitations, which are
called anyons, can be regarded as types of quasi-particles and one feature that makes
these particles so special is their nature under particle interchange. As already men-
tioned, the wave functions corresponding to fermions and bosons are very restricted
in terms of interchange symmetry, since they have to be anti-symmetric and sym-
metric respectively under interchange. Formally this means that if we let a unitary
permutation operator Pi,j, which swaps the particle positioned at xi and the particle
positioned at xj, act on a fermionic n-particle state Ψf (x1, x2, .., xi, .., xj, ..xn), we
get a new state

Pi,jΨf (x1, x2, .., xi, .., xj, .., xn) = −Ψf (x1, x2, .., xj, .., xi, .., xn), (3.1)

1Or in one dimension.
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while for a bosonic n-particle state Ψb(x1, x2, .., xi, .., xj, ..xn) the new state becomes

Pi,jΨb(x1, x2, .., xi, .., xj, .., xn) = Ψb(x1, x2, .., xj, .., xi, .., xn), (3.2)

for any positive integers i, j≤n. Furthermore, since the particles are indistinguish-
able, the Hamiltonian of the system will be left invariant under such permutation
operations [4].

3.2 Exotic statistics

In our natural three dimensional world, according to the spin statistics theorem, the
only possible excitations are either of fermionic or bosonic nature. Thus, it may be
natural to ask: what happens if we create a two dimensional surface embedded in
the three dimensional space? If this can be achieved, particles created on this surface
will get trapped, and thus constrained to move around in two dimensions where the
spin statistic theorem no longer is valid. Due to this, more exotic excitations are
possible to appear which we will try to justify in this Section2.

3.2.1 Topological considerations about the configuration space

In this thesis work we will only present a superficial motivation for the emergence of
exotic excitations and will not go into the details so for a more detailed treatment,
see Leinaas and Myrheims paper in Ref. [22]. Basically, the main idea that their
argument was based upon, was that the particle configuration space will be affected
by the special boundary conditions in two dimensions. A general configuration space
Vn for n distinguishable particles simply is the cartesian product of n single particle
configuration spaces R2

Vn = R2×R2×...×R2︸ ︷︷ ︸
n times

, (3.3)

where R2 denotes the ordinary two dimensional Euclidean space. However, if the
particles are identical this space will be redundant, since basic combinatorics yields
n! identical combinations which are the same up to permutation. Hence, the con-
figuration space W for n identical particles should be given by

Wn = V/Sn, (3.4)

where we have ”divided out” the action of the symmetric group Sn on n letters [22].
Now if we, for simplicity, restrict our discussion to two particles, then it turns out
that the wave function is singular in the center of mass point [22]. Therefore this
singularity has to be removed from the space and as we shall see, this manipulation
has some rather significant consequences depending on the dimensionality of the
space. Thus, if we remove all configurations from V where the positions of these

2In 1977 the Norwegian physicists Jon Magne Leinaas and Jan Myrheim published a paper on
this subject where they provided a rigorous mathematical explanation for the phenomenon, so for
a more detailed treatment I refer to their paper in Ref. [22].
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two particles coincide we’ll get a new space V − {0}. Further with the identical
permutations divided out we can write

W ′
2 = (V − {0})/S2, (3.5)

or in general for an n-particle system

W ′
n = (V − {0})/Sn, (3.6)

so the n-particle Hilbert space in which the n-particle state lives is thus defined by
the tensor product of the n individual single particle Hilbert spaces

H =
n⊗
i=1

Hi = H1⊗H2⊗...⊗Hn︸ ︷︷ ︸
n times

, (3.7)

and is spanned by a basis which constitutes of square integrable complex-valued
functions over the punctured configuration space W ′, i.e. L2(W ′).

3.2.2 Why anyons?

Let us consider a three dimensional space in which we have removed a point. Then,
if we regard an arbitrary pair of curves connecting any two point in this space, this
pair of curves will form a closed loop and we will always be able to contract this loop
continuously to a single point without crossing the removed point (see Figure 3.1).
We then say that a set consisting of all such contractible loops form a homotopy
class. This is, however, not the case in two dimensions. If we consider the same
set-up, but now in a two dimensional plane, in which the removed point is enclosed
by the loop, it is not very difficult to realize that the loop cannot be shrunk to a
single point. The main reason for this is simply that the loop is trapped in the
plane around the removed point and there is no way to pass it. In Figure 3.1 we
can see that loop A around B, in three dimensions, can be lifted off the plane and
thus be shrunk to a point [31], whereas the loop is confined to the plane in the two
dimensional case which makes the loop non-contractible.

Figure 3.1: In three dimensions the loop A around B can be lifted off the plane and
contracted to a single point.

Mathematically this means that if we remove a point from a two dimensional
plane, the plane won’t be simply connected anymore [22, 40]. In fact, the plane
will be infinitely connected and has no longer a trivial topology [22, 40]. This is a
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crucial insight since it entails that the topological properties of such a space strongly
depends on the dimension of it. Therefore, it may seem natural to assume a connec-
tion between the dimensionality and the interchange symmetry of a multi particle
state. As a consequence of the non-trivial topology in two dimensions, the order
in which the quantization and symmetrization is performed does matter. Usually,
when dealing with three dimensional systems, one does not have to bother about
this but in two dimensions it is important that the symmetrization is performed
before the quantization, due to the special topological features of the corresponding
configuration space [22]. This will, however, result in fewer restrictions on the inter-
change properties, and a continuum of intermediate states between the symmetric
and anti-symmetric ones will be allowed. Mathematically, what happens, is that the
state picks up a complex phase under particle interchange so that

Pi,jΨa(x1, x2, .., xi, .., xj, ..xn) = eiπαΨa(x1, x2, .., xj, .., xi, ..xn), (3.8)

where α ∈ [0, 2), since the modulus of the state must be invariant under interchange
since the configuration is identical. Worth to point out is that we recover Fermi-Dirac
statistics for α = 1 and Bose-Einstein statistics for α = 0. These types of states
are called anyonic states and their statistics is thus ranging continuously between
the Fermi-Dirac and the Bose-Einstein ones. Note that the emergence of anyonic
statistics is purely a result of the topology of the manifold. This is truly a beautiful
example of how something real and observable appears as a physical manifestation
of an underlying abstract mathematical structure. Anyons are generally grouped
into two types which we call abelian anyons and non-abelian anyons. The feature
that distinguishes these two species is the structure of their respective permutation
symmetry group, or more precisely if the group is commutative or not, hence the
term abelian. As a result, the phase acquired in Equation (3.8) becomes non-trivial
in the non-abelian case and may depend on the order in which the anyons are
permuted. In this thesis work we will mainly focus on the non-abelian species and
how it could be applied in the field of quantum computation.

3.3 Permutation of anyons

From a technical point of view, it turns out that non-abelian anyons are more suitable
to use when encoding information, and in order to understand why, we need to
discuss the differences between the abelian and non-abelian anyons with some more
rigour. We shall start building our analysis on rather superficial considerations,
which will lead us to a motivation for the emergence of the abelian phase, and then
we will try to generalize our analysis to a non-abelian case. But before we go into
further details about the mathematical structures that distinguish the abelian from
the non-abelan case, a little bit of formalism needs to be introduced.

3.3.1 Feynman’s path integral formalism and topological
equivalence

A wave function that corresponds to a quantum mechanical system, roughly speak-
ing, describes the probability of finding the system in a certain state in space and
time. This function is usually found by solving the corresponding wave equation that
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governs the system, but for our purpose, there is a more suitable way of interpreting
this probability. In the mid-1900s, Richard P. Feynman developed an alternative
way to express the wave function of a quantum system where he suggested that
the probability amplitude for a particle to propagate from one space-time point to
another, could be expressed as a sum over all possible paths which connect the two
points [4]. By expressing the evolution from a starting point to an end point in
terms of discrete propagators through time-slicing [4], and then taking the limit
where each increment goes to zero, one finds that the full propagator from point
(r0, t0) to point (r, t) can be written [4]

G(r, t; r0, t0) =

∫ r(t)

r(t0)

e
i
~S(~r(τ))D[r(τ)], (3.9)

where the integral is carried out over the functional of all possible paths connecting
(~r0, t0) and (~r, t), and S[r(τ)] is the action defined by S[r(τ)] =

∫
r(τ)
L(τ)dτ and

L(τ) is the Lagrangian of the system. Moreover, the wave function at (~r, t), given
the state at (~r0, t0), can now be expressed as [4]

ψ(r, t) =

∫ (r,t)

(r0,t0)

G(r, t; r′, t0)ψ(r′, t0)dr′. (3.10)

Now, as earlier discussed, the emergence of anyons can be deduced from the fact
that the particle configuration space in two dimensions, with the singular point
excluded, is multiply connected. Graphically this means that not all closed curves
in the plane can be continuously deformed into one another without crossing the
removed point. This phenomenon gives rise to a classification of paths where all
paths that can be deformed into one another are grouped together into sets. A
deformation, or transformation, of this type can be regarded as a map and thus
constitute an equivalence relation amongst all such paths. In algebraic topology
such classes of paths are referred to as homotopy classes, since two paths are said
to be homotopic if and only if they obey the equivalence relation defined above
[16]. Another way to prove whether two configurations of paths belong to the same
homotopy class or not, is to compute the Kauffman invariants for the knots involved
in the configurations, and thus see if the results are the same or if they differ. A
graphical representation of topological equivalence is viewed in Figure 3.2.
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Figure 3.2: Illustration of the concept of homotopy. A path-homotopic map F :
I × I → X maps elements in I × I to a set of homotopic paths in X.

Thus, one may ask oneself what this has to do with the path integral formulation.
As a matter of fact, the path integral is deeply related to the partitioning of the
equivalence classes. We already know from the definition of Feynman’s path integral
that each path will contribute by a complex phase, and as it turns out, the phases
derived from two homotopic paths will be identically the same [21]. This subtle
insight basically entails that each homotopy class can be assigned a unique phase,
so in a way, one can say that the path integral defines a partition on the set of paths
by assigning each homotopy class a corresponding complex phase.

3.3.2 The fundamental group and braiding

When a multi-particle system of anyons undergoes a permutation, one can interpret
these permutations as topological interactions and group theory provides the right
language capture the mathematical structure and behavior. We are now familiar
with the concept of homotopy and that paths can be categorized into classes defined
by a certain equivalence relation. Furthermore, if we take one element from each
homotopy class and form a set O of non-homotopic paths as well as defining an
operation ’◦’ that composes two paths in a suitable way, this set together with the
operation ’◦’ will form a group [16]. The natural way to define this operation is
simply to let it compose two paths such that if a and b are two elements (loops) in
the group, then these elements will form a new element a ◦ b = c which also lies in
the group, in such a way that one first follows loop a and then loop b. Lets define
this group by3 [31]

π1(W ′) = (O, ◦), (3.11)

where W ′ is the modified configuration space defined in Equation (3.6). In the field
of algebraic topology, this group is known as the fundamental group [16]. Now, since
each loop around the removed point can be identified by a winding number, which
simply is an integer, this group should be isomorphic to the group of integers under

3For a formal mathematical definition, see Appendix A.
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addition (Z,+) [31], i.e.

π1(W ′) ' (Z,+), (3.12)

and from this relation it becomes clear that π1(W ′) has to be abelian since (Z,+)
obviously is. This isomorphic relation to the group of integers also becomes trans-
parent when spitting up the propagator defined in Equation (3.9) into an infinite
number of discrete sums over paths ending at the same points (up to exchange) so
that [31]

G(r, t; r0, t0) =
∑

direct paths

e
i
~S + eiθ

∑
one exchange

e
i
~S + ei2θ

∑
two exchanges

e
i
~S + .. (3.13)

where the first sum is carried out over direct paths starting and ending in the same
point without any exchange, the second sum corresponds to all paths involving one
exchange, and so on. Thus, for the propagator defined in this way, we can identify
a corresponding anyon, an abelian anyon. However, there is a more fruitful repre-
sentation of this algebraic structure which provides a pictorial way of interpreting
the interactions. This representation is known as the braid group and is also isomor-
phic to π1(W ′). In three dimensions when the configuration space with the singular
point excluded is doubly connected [40], we know that there only exists two homo-
topy classes of paths, and therefore, according to the path integral formulation, we
only have two distinct phases. This conclusion can also be deduced from graphical
considerations since two exchanges correspond to a closed loop, and since the loop
is contractible in three dimensions, the exchange operator squared P 2 should be
the identity operator, which means that we must have P = ±I. Mathematically,
what this says, is that bosons and fermions transform as unitary representations of
the permutation group SN , which is the group consisting of all permutations of N
fermions or bosons [31]. On the other hand, in the two dimensional case, when the
configuration space is infinitely connected, anyonic statistics is allowed to emerge
which introduces an arbitrary phase and thus yields a much richer classification
[40]. As a result, anyons transforms as unitary representations of the braid group
BN [18, 31] instead of the ordinary symmetric permutation group. The elements
of BN form a set consisting of all unique and disconnected trajectories evolving
through space-time, and the group multiplication law is defined in such a way that
one simply connects two trajectories by linking them together. Or more formally,
if we first act with an element sa on a multi-particle state followed by acting with
another element sb, where sa, sb ∈ BN , we will first swap particle a and a + 1 and
then b and b + 1. This is shown graphically in Figure 3.3 where we let an element
act on its own inverse, which thus yields the identity element.

If we let
{
σk
}N−1

k=1
be the set of generators of BN [40], where N is the number of

particles, then we have to require that they obey the following algebra [40]{
σiσj = σjσi, |i− j|≥2
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ N − 2

where |i|, |j| ≤ N . The first of these two relations simply says that two gener-
ators commute if they aren’t neighboring elements in the set. This can easily be
understood graphically by considering a chain of particles. If one exchanges particle
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Figure 3.3: An element sa is acted upon by its own inverse sb = s−1
a through compo-

sition which results in the identity element with time flowing in the upward direction.
sb is composed with sa just by putting it on top on sa. If one follows each strand
in the resulting element one will come back to the original position without getting
tangled up with the other strand which allows us to separate the strands completely,
and thus get the identity.

i with particle i + 1, and then exchange particle j with particle j + 1, one may
quickly realize that this operation could just as well have been performed in the
reversed order, and we would still end up with the same result if the particles aren’t
neighbors. Moreover, the second one is a consistency relation which is known as the
Yang Baxter equation [40, 31] and is illustrated pictorially in Figure 3.4.

Figure 3.4: A pictorial representation of the Yang Baxter equation with the time
flowing in the upward direction.

The fact is that it’s actually these braids that implement the logic gates we
discussed in Chapter 2. In order to process the information encoded in the qubits,
one can perform braids on the anyons in the system in a suitable manner and then
bring them together pairwise, or fuse them, when reading out the computer. The
concept of fusion, however, will be discussed in more detail in Chapter 4 and will
not be treated here.

3.3.3 The Chern-Simons Lagrangian

As already mentioned in Section 3.2.1, the phase can be non-trivial and may depend
upon the path as well as the start and end point, which might give rise to even more
exotic phenomena. Lets return for a wile to the path integral discussion. From
our analysis we saw that the propagator could be split up into an infinite number of
discrete sums over direct paths and multiple exchange paths, and that each path in a
given homotopy class could be assigned a common complex phase. What assumption
did we make that led us to that conclusion? Or more precisely, why did we acquire
a trivial phase? If we study the propagator in Equation (3.9) it’s easy to trace back
the origin of the phase and see that it has to come from the action. Therefore, to
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answer this we need to study the action and write down the Lagrangian explicitly.
Generally, for bosonic or fermionic fields, the corresponding Lagrangian L0 takes
the following form

L0 =
N∑
i=1

(
m

2
~̇ 2ri − V (~ri)), (3.14)

but in a punctured (2+1)-dimensional manifold, where ’1’ being the time dimension,
an extra interaction term need to be added due to the topological effects in the
system. This can be modelled by means of the Chern-Simons interaction which is
a topological quantum field theory (TQFT), and is in (2+1)-dimensions defined as
[40, 34]

LCS =
µ

2
εκνρAκ∂νAρ, (3.15)

where εκνρ being the Levi-Civita permutation symbol and Aα a vector potential.
Thus, it may be natural to draw the conclusion that the trivial phase acquired derives
from this term, which is also the case. This can be shown simply by computing the
factor e

i
~S, where the action S is defined as S =

∫
dx3(L0 + LCS). By doing so, one

finds that S =
∫
dx3(L0 + LCS) =

∫
dx3L0 + ∆Φ, so the exponent simply becomes

the ordinary one plus a constant term ∆Φ, which will yield a constant complex phase
ei∆Φ. So why is that? Well, the above introduced Chern-Simons interaction is an
abelian gauge theory, and will thus contribute by a trivial phase factor. So in order
to obtain a non-commutative phase we need to extend the theory to a non-abelian
gauge theory. This can be done in a natural way by adding an extra term to the
Lagrangian so that [40, 34]

LCS =
µ

2
Tr[εαβγAα(∂βAγ +

1

3
g[Aβ, Aγ])], (3.16)

where g denotes the invariant volume factor [40]. Before we continue our discussion
some rather interesting, and quite remarkable, features about the Chern-Simons
term should be pointed out in order to justify its significance. The fact is that this
term is not only Lorentz invariant, but generally covariant [40]. This means that
it’s not only invariant under a coordinate transformation to a system defined by a
flat metric, it’s actually invariant under a coordinate transformation to a system
defined by an arbitrary metric, even systems in which the space-time is curved [40].
Another interesting property of the non-abelian Chern-Simons term is that if one
performs a gauge transformation Aµ→g−1Aµg + ig−1∂µg on the vector potential,
something very interesting happens [34]. By doing so, an extra term will emerge in
the Lagrangian and this term takes the form [34]

w(g) =
π2

24

∫
dx3εµνρTr[g−1∂µgg

−1∂νgg
−1∂ρg]. (3.17)

So what is the interpretation of this function? The case is that by performing such
a gauge transformation, what happens is that it winds around space-time and this
function works as a counter [34]. In other words, it counts the number of windings.
Now, if we return to the essentials, if one computes the corresponding action to the
non-abelian Chern-Simons term one will find that the phase becomes non-trivial, as
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Chapter 3. Particle statistics and topology

we required. More precisely, it will take the form4 eiΦλT
λ
σ κ , and as a result the non-

abelian statistics constitute a higher dimensional non-abelian representation of the
braid group, whereas abelian statistics is a one dimensional abelian representation
[40]. Therefore, the order in which the permutation is executed really does matter.
Formally this means that if we let Uαβ and Uγλ be two elements of a unitary rep-
resentation of the braid group, which swaps particle α with particle β and particle
γ with λ, respectively, then it does not holds that [Uαβ, Uγλ] = 0 for all α, β, γ, λ.
Hence, the non-abelian statistics provides a far more exotic and rich representation
which allows us to perform more complex operations.

4The object Tλσ κ is a tensor of rank 3.
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Chapter 4

The algebraic framework

In this Chapter we will discuss anyons from a field theoretic point of view where
symmetries play a crucial role. Symmetry analysis in quantum field theory and
particle theory has been proven to be very fruitful and one may even say that it
constitutes one of the cornerstones of the subject. The idea of symmetries, through
the concept of spontaneous symmetry breaking, will lead us to a classification of the
different excitations in our model. In a gauge theory, the Lagrangian of the field
in question is invariant under some symmetry group G, but the degenerate ground
state may only be invariant under a subgroup H of G, H ⊂ G [9]. Then in the
low temperature regime, the invariance under G will, due to the Higg’s mechanism,
undergo breakdown to its residual subgroup H and according to the Goldstone’s
theorem, each generator of the broken group will be responsible for the emergence of
a new excitation. Symmetry breaking may also manifest itself through ”particle-like”
excitations of a topological nature which can give rise to more exotic phenomena
[9]. In addition, we will also account for the interactions among the excitations and
formulate some rules, called fusion rules, which determine the outcome, or fusion
product, when particles are brought together. We will also discuss how the quantum
states that correspond to such fusion outcomes can be used as representations for
qubits and qudits. In Section 4.1-4.2 we will mainly follow Wild Propitius (Ref. [3]
and [9]) and Preskill in Section 4.3 (Ref. [29]).

4.1 Planar field theory and symmetry breaking

Let us consider a gauge theory in which we formulate a Lagrangian containing a
potential V (Φ) of the Higgs field Φ , which is invariant under some continuous
gauge group G of transformations [3]. This symmetry group can spontaneously
brake down to a discrete subgroup H ⊂ G by the non vanishing vacuum expec-
tation value of the Higgs field Φ, which may only be invariant under H [3, 9, 1].
Then, new excitations emerge as fingerprints which in this case come in the form
of topological defects, or vortices, which carry magnetic flux [3]. Note that these
excitations are purely topological in nature and do not depend on whether the La-
grangian includes matter-coupled gauge fields or not. These topological defects are
in (2+1)-dimensions (where ’1’ corresponds to the time) anyonic quasi-particles and
are labeled by the elements of the homotopy group1 π1(G/H) of G/H [9, 1]. This

1For definition see section 3.3.2.
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statement is based on the assumption that each ground state can be reached from
another ground state in the degenerate manifold by a transformation in G, which
makes the ground state manifold isomorphic to the quotient group of cosets G/H
[9, 1], and since the states can be transformed into one another by non-contractible
maps, we can use π1(G/H) to label the vortices [2, 1]. But this group, however, is
actually isomorphic to H [9], i.e. π1(G/H) ' H, which entails that we just as well
can characterize the vortex states by the elements h, where h ∈ H. However, as
we later shall see, this label is not good in the case when H is non-abelian, since
it will not be gauge invariant in general. Moreover, if we generalize the Lagrangian
and include matter-coupled gauge fields [9], electric point charge excitations are also
possible to appear which may be labeled by some irreducible representation Γ of H.
However, note that the terms ’electric charge’ and ’magnetic flux’ are used merely
as generalizations of the excitations involved Aharanov Bohm experiment, and may
not be adequate descriptions in general. Now, let us consider the Aharanov Bohm
setup in which we let an electric charge e circle around a magnetic flux tube h
along an enclosed loop of arbitrary shape. This can, for example, be a achieved
by interchanging the particles twice. Thus, due to the magnetic flux, the state will
undergo a gauge transformation mediated by an operator a ∈ H. Imagine now that
you measure the flux h before, respectively after e has circled around h. Since the
measurement should be the same, it must hold that ah = ha, or equivalently

h = a−1ha, (4.1)

so more precisely one might say that the flux transforms by conjugation which
suggests that it should be labeled by the conjugacy classes Cc = {a−1ha | a ∈
H} [3] of H, and not H itself, in order to obtain gauge invariance. Note that
the transformation is trivial if the group in question is abelian since thus we get
h → a−1ha = ha−1a = h. Hence, the elements h ∈ H still work as ”good” labels
for abelian anyons whereas in the non-abelian case, we have to use the conjugacy
classes Cc of H as labels, since the flux measurement only will commute with the
corresponding centralizer subgroup, so let us stick to the general case and let the
conjugacy classes label the flux. Moreover the change in structure of the represen-
tation when the flux is non-abelian is known as flux metamorphosis [9, 3, 2] and can
be observed experimentally.

4.1.1 Braiding of fluxes and charges

One interesting and for our purpose relevant feature of a pair of particles is the
transformation under braiding, and especially braiding involving magnetic fluxes.
Lets start by considering a pair of vortices denoted by the states |v1〉 and |v2〉, and
let us act with an element R12 in the braid group defined in Section 3.3.2, then
the total flux should be invariant so if we braid v1 and v2, the joint state should
transform as

|v1〉 |v2〉 → |v1v2v1
−1〉 |v1〉 (4.2)

so that the ordered product v1v2v1
−1v1 = v1v2 is preserved [3]. We have already

concluded that fluxes are labeled by the conjugacy classes Cc and due to the de-
generacy, the fluxes will carry a vector space V c, which is spanned by the fluxes
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4.1. Planar field theory and symmetry breaking

labeled by the elements in Cc [3, 9]. Hence, each flux can be formulated as linear
combination of an orthogonal basis of flux eigenstates {h1, h2, ..., hn} such that

〈hi| |hj〉 = δij, ∀ hi, hj ∈ Cc. (4.3)

Moreover, if we want to figure out the exact statistics under braiding of two fluxes
we need to study the action in this vector space. Let us now instead consider the
interchange between an electric charge in the state |e〉 and a magnetic flux in the
state |v〉. The electric charge is labeled by the irreducible representation Γ of H,
and just as the label of the magnetic flux, this representation is not unique which
suggests that the electric charges carry an intrinsic vector space as well, which we
may denote by V e. So by swapping an electric charge and a magnetic flux by the
action of R12, the state of the electric charge might be rotated so the joint state
should transform as [9]

|e〉 |v〉 → |v〉 |Γhe〉 , (4.4)

where |Γhe〉 is the rotated state.

4.1.2 Dyonic excitations and their representations

So far in this Chapter we have argued that two types of particles, electric charges and
magnetic fluxes, emerge due to the symmetry breakdown and we have also discussed
how their respective states transform under interchange. A natural question that
arises now is if these particles are the only ones, or could there possibly exist other
excitations? This question has a non-trivial answer, which in a sense, is both yes
and no. It is indeed true that the full particle spectrum exclusively consists of
particles of such a nature described earlier in this Section, but the fact is that they
don’t have to be pure [3]. What is meant by this is simply that particles with
both magnetic flux and electric charge also are meaningful objects. Furthermore,
in order to figure out how to label these particles, also known as dyons, we have
to study the structure of H in more detail. Since a dyon is a composition of an
electric charge and a magnetic flux, it’s natural to think that the dyon should, in
some way, be labeled by a composition of their respective representations. This is
also the case, but not in the trivial way. If we consider Equation (4.1) we note
that h is invariant if b and h commute. Of course these always exists at least one
such an element b, namely the identity, but if there exist other non-trivial elements
that commute with h, it means that h transforms invariantly under conjugation
with all those elements. Mathematically speaking, if we form a set with all such
elements, that set will actually possess group structure, and more specifically, it
will be a centralizer subgroup Zh ⊂ H of h. Because of this, the adequate way to
label the dyons, should be by composing the conjugacy classes Cc together with the
irreducible representations ζ of the different irreducible components of Zh, contained
in Γ [9]. Hence, the dyons may adequately be labeled by (Cc, ζ) where Cc runs over
the different conjugacy classes of the flux and ζ over the irreducible representations
of each corresponding centralizer subgroup [9]. So in conclusion we can characterize
the full excitation spectrum by

(Cc, ζ), (4.5)
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in which we have pure magnetic flux sectors when the corresponding centralizer is
trivial, i.e only the identity element, and pure electric charge sectors if the corre-
sponding conjugacy class is trivial, and in all other cases we will have a mixture which
we call dyons and denote by ε. No excitations, or a vacuum, is also possible when
both representations are trivial. Hence, the pure sectors can be interpreted as spe-
cial cases of the more general dyonic sector denoted by the states {|eζi , vcj〉}dim(ζ),n

i,j=1 ,

where the set {eζi}dim(ζ)
i=1 constitutes the basis of the representation ζ. Similarly as

the pure excitations carry an intrinsic vector space, so do the dyons. This vector
space V d can thus be formulated as the tensor product of V ζ and V v

V d = V ζ ⊗ V v, (4.6)

where V ζ is the space spanned by the irreducible representations ζ of the corre-
sponding centralizer subgroups. Hence, the pure sectors are confined to rotate in
their corresponding subspaces of the full vector space V d. However, we won’t dis-
cuss the transformation properties of the dyons under braiding in this section since
it requires some more theory that will be covered in the next Section.

4.2 A unified framework through the Hopf alge-

bra

In the previous Sections in this Chapter we discussed how the symmetry breakdown
of a group G to a discrete subgroup H ⊂ G of our field theoretic model, lead to
a certain spectrum of excitations. The first one we discussed was the topological
flux vortex, and then we argued that if we were to add a mass-coupled gauge field
to the Lagrangian, a second type of excitation would emerge, namely the electric
point charge. We found that the former could properly be labeled by the conjugacy
classes of the elements in the residual discrete subgroup H, whereas the latter were
labeled by the unitary irreducible representations of H. Furthermore, we also saw
how these excitations could be composed to form a third quasi-particle species,
the dyon, and that the pure excitations could be considered as special cases of
a more general and complex structure (Cc, ζ). This invites the idea of trying to
find a more general framework with additional structure, such that the different
excitations can be unified in a single representation Πc

ζ . Luckily, this can be achieved
by performing an extension of the discrete group H to the quantum group D(H)
[3, 9] by applying the Drinfeld quantum double construction to the Hopf algebra2

and its dual [3, 11, 12]. As we shall see, each part of this structure has a physical
interpretation that fits perfectly into our model. This algebra is spanned by a
basis which constitutes of the gauge transformations corresponding to the electric
charge a ∈ H and the projection operators Ph which project out the flux of the
corresponding state [9]. These projection operators are defined as

PhiPhj = δijPhi , (4.7)

for any hi, hj ∈ H. Moreover, since we have showed that the gauge invariance of
flux measurements requires the flux to transform under conjugation, we must also

2See Appendix B for definition.
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have that

aPh = Paha−1a, (4.8)

so the quantum double is spanned by the set {Pha}a,h∈H . Thus, by means of Equa-
tion (4.7) and (4.8), we can form a product of two such element given by

PhiaiPhjaj = δhi,aihjaiPhiaiaj. (4.9)

We are also interested in to see how such a state transforms under the joint action
of a symmetry transformation a followed by projection Ph, but to do so, some more
notation need to be introduced. Let us denote by {hci}ni=1 the elements contained

in the conjugacy class Cc so that hci = acih
c
j(a

c
i)
−1, and by {|eζi , vcj〉}

dim(ζ),n
i,j=1 the basis

of the vector space V d defined in Equation (4.6). Thus, if we consider the action of
the joint operator on some state |eζi , vcj〉, it yields a new state according to [3, 9]

Πc
ζ(Pha) |eζi , vcj〉 = δv,avia−1 |ζ((acm)−1haj)e

ζl , avia
−1〉 , (4.10)

where acm is defined by hcm = ahja
−1. So in conclusion we have that Πc

ζ constitute a
joint representation corresponding to the centralizer ζ of h in Γ and the conjugacy
class Cc.

4.2.1 Coproduct of particle states

In order to generalize the action defined in Equation (4.10) to a many-particle state,
we need to compose the action into a suitable tensor product. This can be done
ideally by means of the coproduct that the Hopf algebra is equipped with. If we,
for simplicity, start by considering a two particle state we want to generalize the
operator in Equation (4.10) such that it acts within the vector space that is built up
by the tensor product of the corresponding vector spaces of each respective particle.
According to the definition of the single dyonic vector space defined in Equation
(4.6), we must have in the case of two dyons, that the operator acts within

(V ζ ⊗ V v)1 ⊗ (V ζ ⊗ V v)2 = V d
1 ⊗ V d

2 . (4.11)

Thus, by introducing the morphic coproduct defined by

∆ : D(H)→ D(H)⊗D(H), (4.12)

we can map the action corresponding to a gauge transformation followed by a flux
projection, i.e. Pha, through ∆ so that [9, 3]

∆(Pha) =
∑

all hi,hj=h

Phia⊗ Phja, (4.13)

where the sum is carried out over all projections where hi and hj are equal to h.
Thus, the two particle generalization of Equation (4.10) is given by∑

all hi,hj=h

Πc1
ζ1

(Phia)⊗ Πc2
ζ2

(Phja). (4.14)

It may now be natural to ask how to interpret the action of this operator on a
two particle state. When acting with this, it acts separately on the states so that
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each electric part is gauge transformed and then the projection operator projects
out the flux from each state [3]. This implies that even if the particles are fused
together locally, the global properties will still be conserved. Now, before we go
on and generalize Equation (4.14) to a system consisting of an arbitrary number of
particles, we should start by adding just one in order to see how the representation
of a third one can be composed with the initial two-particle representation. The
map defined in Equation (4.12) also possesses a coassociative property so that

(1⊗∆) ◦∆ = (∆⊗ 1) ◦∆. (4.15)

By applying this feature we can treat the initial quantum double basis elements,
corresponding to the initial two particles, as a single one and then implement the
coproduct once again with the initial joint two-particle elements together with the
third which thus yields

(1⊗∆)◦∆(Pha) = (∆⊗1)◦∆(Pha) =
∑

all hi,hj ,hk=h

(Ph1a)⊗ (Ph2a)⊗ (Ph3a), (4.16)

so the three particle generalization of the operator in Equation (4.10) is given by
the operator ∑

all hi,hj ,hk=h

Πc1
ζ1

(Phia)⊗ Πc2
ζ2

(Phja)⊗ Πc3
ζ3

(Phka), (4.17)

which now acts within the vector space defined by

(V ζ ⊗ V v)1 ⊗ (V ζ ⊗ V v)2 ⊗ (V ζ ⊗ V v)3 = V d
1 ⊗ V d

2 ⊗ V d
3 . (4.18)

Of course, the same technique can be used multiple times to build up an n-particle
representation of the same operator. Hence, the action of an n-particle representa-
tion will simply be an n-particle generalization of the action on a two particle state,
namely a gauge transformed electric part and the flux being projected out for each
one of the particles, so that the global properties are conserved after each fusion
process [3]. However, these multi-particle representations are in general reducible
[3, 9], which entails that they can be decomposed into direct sums over irreducible
ones. Thus, in the two particle case we have that

Πck
ζk
⊗ Πcl

ζl
=
⊕
cm,ζn

N ckclζn
ζkζlcm

Πcm
ζn
, (4.19)

where N ckclζn
ζkζlcm

is the multiplicity of each Πcm
ζn

, i.e. a positive integer, which we
later shall see defines the dimension of the protected topological Hilbert space. This
relation defines the so called fusion rules which describes the outcome Πcm

ζn
as a result

of Πck
ζk

and Πcl
ζl

being fused together. It could also be used the other way around,
namely to work out the decay products Πck

ζk
and Πcl

ζl
of particle Πcm

ζn
. Furthermore,

the multiplicity objects N ckclζn
ζkζlcm

can be computed as [9, 10]

N ckclζn
ζkζlcm

=
1

|H|
∑
a,h

Tr[Πck
ζk
⊗ Πcl

ζl
(∆(Pha))]Tr[Πcm

ζn
(Pha)]∗ (4.20)
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where |H| denotes the order of H and the star refers to complex conjugation. We will
return and discuss more about this in Section 5.2.3 and 5.4.3 where we will motivate
why fusion states are suitable as a basis of fault-tolerant quantum computation.

4.2.2 Braiding of dyons

At this stage, we have unified the descriptions of the pure sectors into a more
general sector, the dyonic sector, in a single framework. Hence, we are now ready
to discuss the transformation properties of dyonic particles under braiding. Again,
if we restrict our discussion to the two particle case, we can write the two-particle
braiding operator as a composition of a permutation operator σ and a two-particle
D(H)-element such that [3]

Rζiζk
cjcl

= σ ◦ (Πck
ζk
⊗ Πcl

ζl
)(R), (4.21)

where R ∈ D(H)⊗D(H) is the universal R-matrix defiend by [9]

R =
∑
a,h

Pa ⊗ Pha. (4.22)

If we let this operator act on a state |eζi , vcj〉 |eζk , vcl〉, the state will transform as
[3, 9]

Rζiζk
cjcl
|eζi , vcj〉 |eζk , vcl〉 = |vcjvcl(vcj)−1, ζk((aclm)−1vcjacl)eζki 〉 |eζi , vcj〉 , (4.23)

where aclm is defined by vclm = vc
j
vcl(vc

j
)−1. If we consider this expression a few

remarks can be pointed out. First, the magnetic part of the vector transforms
under conjugation which means that the magnetic part of the dyon undergoes flux
metamorphosis, just as in the case of two pure magnetic states in Equation (4.2).
Secondly, we may also note that the electric part of the state is gauge transformed in
the same manner as in Equation (4.4) when a pure electric charge encircled a pure
magnetic vortex. Moreover, if we consider Equation (4.13) together with Equation
(4.22) one can also check that the braid operator satisfies the following relations [9]

R∆(Pha) = ∆(Pha)R (4.24)

(1⊗∆)(R) = R1R2 (4.25)

(∆⊗ 1)(R) = R2R1 (4.26)

where R1 = 1 ⊗R and R2 = R⊗ 1. These relations are referred to as the quasi-
triangular conditions which thus make the quantum group a quasi-triangular Hopf
algebra. The first one of these relations basically tells that the braid operator com-
mutes with the elements in D(H), which means that the symmetry transformation
will not be affected and that the total flux will be conserved. The last two relations,
however, state that it does not matter if we braid one particle across two other ones
before they are fused together or if you fuse them first and then braid the fused par-
ticle with the first one, the end result will still be the same. This property can be
nicely demonstrated pictorially and is depicted in Figure 4.1. The quasi-triangular
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conditions also ensures that R1 = 1 ⊗ R and R2 = R ⊗ 1 satisfy the Yang Bax-
ter consistency equation [3, 9] which was discussed in Section 3.3.2 and depicted in
Figure 3.4, i.e.

R1R2R1 = R2R1R2. (4.27)

Hence, the braid operator introduced in Equation (4.23) forms a unitary representa-
tion of the braid group. However, since the objects Πc

ζ generally are reducible, so are

Rζiζk
cjcl

. As a result of this, when acting upon a multi-particle state, Rζiζk
cjcl

will split
the full multi-particle Hilbert space up into a direct sum of irreducible subspaces
[9]. Moreover, the exact braiding properties further depend on the dimensionality
of each respective subspace. If we are dealing with more than two particles the
vector space spanned by their representations will have more than one dimension
which results in a non-abelian braiding statistics, whereas if the number of particles
is lesser than 3 the corresponding vector space will be one dimensional which makes
the braiding statistics abelian [9].

Figure 4.1: The upper figure illustrates how the braiding between 1 and the fusion
product of 2 and 3 yields the same result as if the braiding would take place before
the fusion of 2 and 3, which is formally described in Equation (4.25). The lower
picture illustrates the same principle described in Equation (4.26) in which 1 and 2
are fused together and braided before, and after, with 3.

4.2.3 The counit and the antipode

So far we have discussed three types of excitations: the electric charge, the magnetic
vortex and the dyon. We also saw that the electric charge and the magnetic vortex
could be interpreted as special cases of the dyon, which is the fusion product of the
two. Mathematically these pure excitations emerge when one of the representations
in the composition is trivial. Hence, it might be natural to ask what kind of particle
we get when both representations are trivial. The answer to this question is of course
the vacuum, or no particles, which we denote by 1. Now, since the fusion between
the vacuum and any particle should be trivial itself, we may demand that particles
that are fused with the vacuum should be left unchanged. Furthermore, the Hopf
algebra is equipped with a function called the counit defined by [30]

ε : D(H)→ C, (4.28)
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which we will see represents the vacuum. Let I be the identity map, then we have
the following isomorphisms [30]

D(H)
∆−→ D(H)⊗D(H)

ε⊗ I−−→ k ⊗D(H) ' D(H) (4.29)

and
D(H)

∆−→ D(H)⊗D(H)
I ⊗ ε−−→ D(H)⊗ k ' D(H) (4.30)

where k ∈ C. Thus, if we interpret the above isomorphisms as equations we are
demanding that [30]

(ε⊗ I) ◦∆ = I = (I ⊗ ε) ◦∆, (4.31)

so the counit does indeed represent the vacuum in mathematical terms. Moreover,
we know that each particle has an anti-particle, which if brought together with, will
annihilate to a vacuum state. Such anti-particles also have a nice mathematical
analogue in the Hopf algebra called the antipode. This function, which we will
denote by S, is an endomorphic map which thus maps the quantum group back
onto itself, i.e.

S : D(H)→ D(H), (4.32)

such that for any element a ∈ D(H), S maps a to its corresponding inverse element
so that S(a) = a−1. In other words, S takes D(H) to its inverse which yields the
following equivalence [30]

(S ⊗ I) ◦∆ = ε = (I ⊗ S) ◦∆. (4.33)

Hence, the antipode enables a mathematical treatment for anti-particles. We have
now seen how the different parts of the Hopf algebra structure naturally provides a
complete algebraic description of our model, where each part of the algebra have a
natural physical interpretation.

4.3 Topologically protected fusion spaces

Before we jump right into the theory that will be discussed in this Section, we may
remind ourselves what it is we want to achieve. A lot of theory have been discussed so
far with one main objective, namely to find a protected space in which fault-tolerant
quantum computations can be executed. Nevertheless, this has been necessary in
order to complete the quest of finding such a space, that we are now starting to
touch upon. If we return to Section 4.2.1 where the fusion rules in Equation (4.19)
were introduced, a new object emerged which describes the multiplicity of the fusion
product. This object was further defined in Equation (4.20) and will play a key role
throughout this Section. Let us, for simplicity, consider a system consisting of two
particles labeled by the letters a respectively b, which can be fused together and
form a third particle labeled by the letter c. Analogous to Equation (4.19), we can
now write the fusion of a and b as an ordinary sum over all possible outcomes c with
multiplicity N c

ab

a× b =
∑
c

N c
abc. (4.34)
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Since it does not matter in which order a and b are fused together, N c
ab should be

symmetric under interchange of a and b so that N c
ab = N c

ba. Moreover, this object
describes in how many distinguishable ways particle c can be produced under a
fusion process involving a and b. In other words, if N c

ab = 0, c cannot be produced
under such a process and if N c

ab = 1, there is one unique way to form c from a and
b and if N c

ab > 1, there are N c
ab distinguishable ways to produce c [29]. Hence we

can form a vector space built up from the orthonormal states corresponding to the
N c
ab different distinguishable ways to produce c, which we will call the fusion space.

Lets denote a fusion state in such a space by |ab; c, µ〉, where µ is ranging from 1
to N c

ab, and the fusion vector space constructed from the N c
ab different fusion states

by V c
ab. These states can be represented graphically which provides a more concrete

notation to interpret. A general two particle ket-vector together with its conjugate
counterpart, the corresponding bra-vector, is depicted in Figure 4.2 and 4.3.

Figure 4.2: Fusing a and b into c. Figure 4.3: Splitting c into a and b.

In terms of fusion spaces we can now formulate a condition for a model to be
non-abelian. If there only is one possible particle c that can be formed from a and b,
and if this particle only can be formed in one unique way, the model will be abelian
and non-abelian otherwise [29]. Hence, the model is non-abelian if and only if the
following holds

dim(
⊕
c

V c
ab ) =

∑
c

N c
ab > 1, (4.35)

for some a and b. So in a non-abelian model we know that if two particles are fused
together, there must be several outcomes c. Therefore the fusion spaces in non-
abelian models will always be multi-dimensional which makes them more suitable
for quantum computations than their abelian counterparts, which always have a
definite fusion outcome, since much more information can be stored in a higher
dimensional space. Furthermore, we can also define a unitary charge conjugation
operator C which maps a label onto its conjugate so that [29]

Ca : a→ ā→ a. (4.36)

Graphically speaking, this operation reverses the direction of the arrow represent-
ing the world line of the corresponding particle [24]. In other words, if the fusion
ket-vector depicted in Figure 4.2 is acted upon by Ca, the resulting state would cor-
respond to the process in which particle b decays into particle ā and c. Hence, the
conjugation operator acts as a raising and lowering operator on the indices of the
corresponding fusion space. This property induces a chain of isomorphisms among
the fusion spaces [29]

V c
ab ' V āc

b ' V āb̄
c̄ ' V 1

abc̄ ' V āb̄c
1 ' ... (4.37)
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4.3. Topologically protected fusion spaces

since the upper indices correspond to the labels of the outgoing particles and the
lower ones to the labels of the ingoing particles. Furthermore, the index ’1’ corre-
sponds to no particles, or the vacuum. Hence, the space V 1

abc̄ is spanned by all states
that correspond to the annihilation of a,b,c̄ when fused together, and the space V āb̄c

1

is spanned by all states corresponding to the creation of ā,b̄,c from the vacuum. Of
course, if a particle with some label, say a, are trivially ”fused” together with the
vacuum 1, the outgoing particle will still be identical to a, i.e. a × 1 = a, and the
corresponding fusion space will thus be V a

a1. Note that the fusion spaces only depend
on the labels of the incoming particles and nothing else which means that any fu-
sion state is completely independent of the paths of the incoming particles since the
fusion product only will depend on the particle species and state. As we have earlier
discussed in this Chapter, the joint state of the particles change under braiding pro-
cesses which means that as long as we braid the particles properly, we will obtain
the desired fusion product. So even if the particles are subject to small external per-
turbations, the end product will be the same as long as the braids traced out by the
world lines belong to the correct homotopy class, and the computer will execute the
requested computation. This non-local storage of information is the very principle
that topological quantum computing is based upon. One initializes it by preparing
pairs of anyons and then perform a sequence of exchanges on the system after which
the anyons are brought together pairwise, and since we are guarantied to end up
with the desired fusion product if we succeed to braid the particles accurately, the
quantum information will not be affected by noise coming from the environment
which otherwise would cause decoherence. In other words, the information will be
protected by topological equivalence which results in a robust fault-tolerant system
that is immune to errors.

4.3.1 Many-particle systems

Consider now instead an initial set consisting of three particles a, b and c, which
can be fused together and thus form a fourth particle d. Since we know that the
total charge is an intrinsic property of the three particles [29], one should be able to
obtain d in two distinct ways. We could either fuse a and b first and then fuse the
resulting particle with c, or we could fuse b and c first and then fuse their product
with a. Mathematically speaking, this property is known as associativity and can
formulated as

(a× b)× c = a× (b× c). (4.38)

Hence, if we label the fusion product of a and b by e and the fusion product of b
and c by e′, the fusion space V d

abc can be decomposed into a direct sums in two, up
to isomorphism, identical ways [29]

V d
abc '

⊕
e

V e
ab ⊗ V d

ec '
⊕
e′

V e′

bc ⊗ V d
ae′ , (4.39)

and to each one of these subspaces we may introduce a basis

|(ab)c→ d; eµν〉 ≡ |ab; e, µ〉 ⊗ |ec; d, ν〉 (4.40)

|a(bc)→ d; e′µ′ν ′〉 ≡ |ae′; d, ν ′〉 ⊗ |bc; e′, µ′〉 (4.41)
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where µ, ν, µ′ and ν ′ denote in which way among the different Nd
abc distinct ways

the respective fusion product is formed. These basis sets can be related through a
matrix transformation F d

abc, also known as the F-matrix, such that [29]

|(ab)c→ d; eµν〉 =
∑
e′,µ′,ν′

(F d
abc)

e′µ′ν′

eµν |a(bc)→ d; e′µ′ν ′〉 . (4.42)

This action performed by the F -matrix can also be expressed graphically as in the
figure below (Figure 4.4).

Figure 4.4: The action of the F -matrix viewed graphically.

In a real quantum computer, however, we will probably need more than two
anyons in order to maximize the computational power. It is therefore of interest to
consider larger systems of particles and how we can formulate a braiding operation
on such a system. To do this we may, for convenience, define a standard basis for an
n-particle Hilbert space V c

a1,a2,..,an
with total charge c [29] so that the basis vectors

are constructed in such a way that if we put the anyons on a line, we first fuse a1

and a2 which yields a new particle b1, which is fused together with a3 to form b2,
and so on until we finally fuse bn−2 together with an. This basis is visualized in a
pictorial notation in Figure 4.5.

Figure 4.5: Chain consisting of n anyons which are fused together from left to right.

Note that our choice of basis was nothing but a matter of convenience. In fact, the
order in which we fused the particles could have been arbitrarily chosen. However,
the vector space V c

a1,a2,..,an
spanned by this basis is isomorphic to the decomposition

into a multiple direct sum of the tensor product among all fusion subspaces, over
all possible fusion outcomes bi [29], so that

V c
a1,a2,..,an

'
⊕
b1

⊕
b2

· · ·
⊕
bn−2

V b1
a1a2
⊗ V b2

b1a3
⊗ · · · ⊗ V c

bn−2an
. (4.43)

The dimension of this vector space grows exponentially with the number of particles
in the system which makes the many particle topological Hilbert space a suitable
arena for powerful quantum information processing [29]. Therefore, it is of highest
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importance to understand how braiding can be performed in such a complex space
in order to realize topological quantum computing. The key insight is to observe
that when permuting the particles (or labels), we go from one basis to another
which means that a permutation operator works as a map from one vector space
spanned by the initial states to another spanned by the states that correspond to the
permuted labels. Up to this point, however, we have only discussed braiding in the
two particle case where the R-matrix was introduced (see Equation (4.22)). Hence
we must find a way to generalize the action of R so that we can permute the labels in
a many particle state. So how can this be achieved? Well, we can use the F -matrix
to go to a basis in which R is block diagonal, perform the braiding, and then go
back to the initial basis by the action of the inverse of F [29]. Thus, the braiding
operator Bn, acting on an n-particle state, can be defined as Bn = F−1

n RnFn. Now,
if we for example consider a three particle space in which the particles are labeled
by a, b and c and we want to braid particle b and c by the action of B, we have the
following map

B : V d
acb → V d

abc, (4.44)

or more explicitly3 [29]

B |(ac)b→ d; e〉 =
∑
g

∑
f

|(ab)c→ d; g〉 ([F d
abc]

g
f )
−1Rf

bc(F
d
acb)

f
e =

∑
g

|(ab)c→ d; g〉 (Bd
abc)

g
e

(4.45)
where

(Bd
abc)

g
e =

∑
f

([F d
abc]

g
f )
−1Rf

bc(F
d
acb)

f
e , (4.46)

so in conclusion the representation of the braid group in an n-particle space is
completely characterized by the R- and F -matrices [29]. Moreover, one single F -
matrix can be decomposed in different ways which give rise the consistency relation
[24]

∑
δ

[F fcd
e ](gβγ)(lδν)[F

abl
e ](fαδ)(kλµ) =

∑
hσψρ

[F abc
g ](fαβ)(hσψ)[F

ahd
e ](gσγ)(kλρ)[F

bcd
k ](hψρ)(lµν)

(4.47)
which, for obvious reasons, is called the pentagon equation (see Figure 4.6).

3Note that we have suppressed the indices corresponding the different fusion states.
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Figure 4.6: The pentagon equation. If one starts from the left the end result will be
the same independent of which one of the upper or lower paths one takes.

Hence, by searching for solutions to the pentagon equation, given the fusion rules
of the model, one can find all equivalent pair of sequences of transformations from
one given space to another which together form the fusion categories [24]. A similar
argument, involving the R-matrix, gives rise to two other important consistency
relations known as the hexagon equations [24]∑

λγ

[Rac
e ]αλ[F

acb
d ](eλβ)(gγν)[R

bc
g ]γµ =

∑
fσδψ

[F cab
d ](eαβ)(fδσ)[R

fc
d ]σψ[F abc

d ](fδψ)(gµν) (4.48)

and∑
λγ

[(Rca
e )−1]αλ[F

acb
d ](eλβ)(gγν)[(R

cb
g )−1]γµ =

∑
fσδψ

[F cab
d ](eαβ)(fδσ)[(R

cf
d )−1]σψ[F abc

d ](fδψ)(gµν).

(4.49)
These relations also have nice graphical representations (which their name obviously
derives from) which are depicted in Figure 4.7.

Figure 4.7: The hexagon equations. The left one corresponds to Equation (4.48) and
the right one to (4.49).
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Technically these relations illustrate that lines are allowed to slip over/under
braids [24] which leads to compatibility between fusion and braiding. The con-
sistencies enforced by the pentagon and hexagon equations dictate that any two
sequences of R and F -transformations, that solve the pentagon and hexagon equa-
tions, and maps the initial space onto the final one within some category, must be
equivalent [29]. This statement is known as MacLane’s coherence theorem [24, 29]
and is indeed very powerful. Roughly speaking, it states that no further require-
ments need to be enforced on the F and R-matrices other than that they solve the
pentagon and hexagon equations, for the resulting morphic maps to be equivalent.
Thus, a good starting point when an anyon model is to be constructed is to in-
troduce a fusion rule by assumption and then search for solutions to the pentagon
and hexagon equations. If one finds a unique set of solutions the assumption must
have been correct and if the equations are unsolvable, the fusion rule in question
must conflict with the fundamental principles of quantum physics and may thus be
discarded [29]. It might also be possible to find several distinct sets of solutions
which, in that case, correspond to different unique models but with the assumed
fusion rule in common.
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Quantum double models

We have now come to the stage where we will introduce the concept of topological
order and, from a mathematical point of view, discuss how to distinguish different
topological phases. We know that classical phases can be studied by means of
Landau’s theory, but as we shall see, the nature of topological order is rather different
from classical order which signals a need for a new mathematical framework. More
specifically, we will study a well known model known as the Toric-code model, which
exhibits topological order. We will also introduce topological defects to the model
and see how these realize non-abelian quasi-particles, such as Majorana fermions,
which can be used to encode protected quantum information. This will first be
done in a Z2 lattice model which comprises 2 degrees of freedom per lattice site and
then we will generalize to a ZN model with N degrees of freedom per lattice site.
However, we will start this Chapter by providing a brief introduction to topological
phases in general before we go into the specific models.

5.1 Topologically ordered systems and string-net

condensates

As we already know from Chapter 2 the fundamental units of information in a
quantum computer are known as qubits (or qudits for higher dimensions). It is thus
of highest interest to store the information encoded in these qubits as robustly as
possible. In other words we want to protect it somehow which can be achieved if the
qubit states are separated from the other non-computational states [20]. In many
physical systems, e.g. a spin-1

2
particle, the degeneracy of the system is protected by

symmetry [20]. Since, in absence of any perturbations, the particle can point both
up and down, and none of the directions are energetically favourable, it is protected
by SU(2) symmetry. However, symmetries usually break due to noise, which in the
case of the spin-1

2
particle can be an external magnetic field so that the ground state

becomes the state pointing along the direction of the the field. So in order to obtain
more reliable qubits the degeneracy must be protected more robustly. Thus, instead
of symmetry, another way to provide stronger protection is to use the principle of
topology. Therefore we will study systems that possess topological order, since a
common feature of such systems in the thermodynamical limit is that their ground
state degeneracy only depends on the topology of the manifold in which the system is
embedded [19]. These degenerate ground states will span a protected subspace of the
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5.1. Topologically ordered systems and string-net condensates

full Hilbert space. In that way the degeneracy cannot be lifted by any perturbation
of the Hamiltonian (assuming that the perturbation is smaller than the energy gap
to the excited non-computational states) and as a result, the states will be well
protected. This is, however, a rather phenomenological description of the principle
of topological order, which at a deeper level has its origin in patterns of long range
entanglements [36, 39]. This concept will not be discussed in a rigorous manner
so we will merely aim to provide an intuitive explanation through an example that
is presented in Ref. [39]. Let us consider a fermionic superfluid in which fermions
move around in pairs, the two fermions in each pair move around according to the
same rules and thus follows the same pattern. Imagine now that we have a system
in which all particles are somehow connected so that every particle is moving around
relatively to all other particles in a very systematic and organized way [39]. This
behaviour will result in a global pattern that all particles participate in. This is, at
least at a superficial level, the essence of topological order. Moreover, if two global
patterns are not connected by some local unitary transformation, they correspond
to two distinct topological phases [39]. On the other hand, if the patterns are
connected by a unitary transformation, they belong to the same phase which makes
it suitable to associate each topological phase with a tensor category [23]. Thus,
for instance, if we consider a quantum spin liquid1 consisting of interacting spin-1

2

particles, the ground state of the system is a superposition of all possible closed
string configurations [19, 39]:

where each loop is formed by particles with spins pointing in the same direction.
We call such phase a string-net condensate [39, 23] which due to its global pattern
of motion correspond to a non-trivial topological phase [39]. So how come such
a system exhibits a global movement pattern? The answer lies in the rules that
the strings are subject to as they move around. The first rule might be that the
configurations always form closed loops in the ground state and the second rule
could be that if we deform or reconnect loops, the amplitudes will not change in the
wave function [39]. Hence, the ground state wave function that governs the system
is a super position of all closed, and topologically inequivalent, loops which all have
the same amplitude and thus gives rise to a global pattern. Note that these rules
are merely an example of how a pattern, and thus a topological phase, can emerge.
The rules could just as well be different which would result in a system possessing
another pattern and topological phase. If the system contains non-closed strings it
will be in an excited state in which the ends of the strings are topological defects
which can be interpreted as quasi-particle excitations [39]. Thus since the closed
loops and open strings never carry fractionalized quantum numbers, it might be
the case that the topological excitations in the ends do [39]. This means that such
strange excitation may have properties different from ordinary elementary particles,
e.g. fractionalized charge and anyonic exchange statistics.

1A spin liquid can be regarded as disordered system of interacting spins. Similarly as liquid
water is disordered state if compared to ice, a spin liquid is disordered state if compared to a
ferromagnet.
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Chapter 5. Quantum double models

Now, let us consider a Z2 spin liquid embedded on two 2-dimensional surfaces
of different topology: a 2-sphere and a 2-torus with genus g = 1. On the 2-sphere
we cannot form independent loops since all loops can be deformed into one another
which will result in a unique ground state [39]. On the 2-torus, on the other hand,
we can form two distinct and independent loops (see Figure 5.1).

Figure 5.1: 2-torus with genus g = 1 on which the two independent non-contractible
loops are marked out in blue and red.

These have conserved numbers defined by the Wilson loop function

wl =
∏
j∈l

sj, l = l1, l2 (5.1)

where sj = ±1 labels the σz basis [20]. Therefore, since we can create a particle-
antiparticle pair2, and carry one of the particles along two independent, and topo-
logically inequivalent loops, having either wl = 1 or wl = −1, and then annihilate
the particles, the ground state degeneracy on a 2-torus (with genus g = 1) must be
4 [20, 39]. These 4 states correspond to: no loops, a red or a blue loop and both a
red and a blue loop. On a general Riemann surface, however, with arbitrary genus
g, the ground state degeneracy is given by (2 · 2)g = 4g [20, 19, 39].

5.1.1 Classification of topological phases

The nature of topological order is rather different from classical order so it may not
be that surprising that it might require a different and more subtle mathematical
framework than Landau’s theory in order to classify different topological phases.
We know that classical phases are characterized by an order parameter which value
depends on whether the symmetry of the system is broken or not. One can thus
say that symmetry breaking acts as a signature when a phase transition takes place.
However, it was later discovered that some systems can be in different phases but
still exhibit the same symmetry, which pointed towards the existence of a new type
of order [37, 36].

2How to do this is discussed in Section 5.2.2.
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We will now mainly follow Ref. [37] and [36] and provide an example of how
different topological phases of a strongly interacting spin-1

2
system can be classi-

fied. For simple fermionic systems the ground state wave function can usually be
formulated by means of a Slater determinant, but for more complex ones, such as
spin liquids, it is much more complicated. Hence, instead we will use a slave-boson
approach to find an approximate wave function [36]. Let us start by introducing a
mean-field Hamiltonian ansatz with nearest neighbor interactions [37]

Hmean =
∑
<i,j>

(ψ†I,iχ
IJ
ij ψJ,j + ψ†I,iη

IJ
ij ψJ,j + h.c.), (5.2)

where I, J = 1, 2 and ψK,k denotes the fermion operators. The ground state wave

function |Ψ(χij ,ηij)
mean 〉 of this Hamiltonian is much simpler than the original one which

makes it possible to obtain it through a Slater determinant. Then if we employ a
slave-boson technique and view the system as a boson model in which the up and
down states are identified with the presence and the absence of a boson, respectively,
a many-body boson wave function can be obtained through the projection [37]

Φ(χij ,ηij)(i1, i2, ..) = 〈0|
∏
n

b(in) |Ψ(χij ,ηij)
mean 〉 , (5.3)

where b(i) = ψ1,iψ2,i so the wave function can be interpreted as the bound state of
two fermions [36]. We have now written down an approximate wave function of the
system which is much simpler to handle than the real wave function. This strongly
interacting spin system possesses topological order which means that different phases
of the system still can exhibit the same symmetry. So instead of symmetry, we
have to look for some other universal property in order to characterize the different
phases. It is sufficient to study the mean-field ansatz (χij, ηij) of complex matrices,
which is a rather simple set of objects, and thus search for operations that leave
the ansatz invariant under its action [37]. Such a set of objects is referred to as a
projective symmetry group (PSG). However, the ansatz does not correspond to a one-
to-one labeling since two mean-field ansatzes can be connected by an SU(2) gauge
transformation, which gives rise to identical boson wave functions [36]. Therefore,
if we consider a spin system, it is sufficient for it to obey translational symmetry
up to an SU(2) transformation of the ansatz, for the system to be regarded as
translational invariant [36]. Thus we may impose that the ansatz is invariant under
a translation followed by a gauge transformation. The difference from classical order
now starts to become transparent. If we consider two spin systems which possess
the same translational symmetry, it might be the case that their ansatzes remain
invariant under the action of a composition of the same translational operation but
different gauge transformations [36]. In other words, even if two systems possess the
same symmetry, their respective PSG can still be different! The conclusion we can
draw from this is that the PSG provides a more powerful tool to distinguish more
subtle structures of the systems we are studying, which allows us to detect more
exotic types of order, such as topological order. Moreover, different PSG’s cannot
be transformed into one another so phases characterized by different PSG’s really
are different states of matter even if they possess the same symmetry.
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5.2 The Toric Code on a Z2 spin lattice

In Chapter 4 we studied the quantum double and discussed the excitations of the
model in terms of fusion and braiding. The Toric-code is an example of a well studied
quantum double model (a quantum double of Z2) which possesses topological order.
This model, which first was introduced and studied by Kitaev (1997) [5], is a 2-
dimensional Z2 lattice model embedded on a 2-torus with genus3 g = 1. The
Hamiltonian of the model reads [18, 20, 19]

H = −Je
∑
s

As − Jm
∑
p

Bp, (5.4)

which consists of four-body star and plaquette interaction terms with coupling
strength Je and Jm respectively (see Figure 5.2), defined as

As =
∏

j∈star(s)

σxj (5.5)

and

Bp =
∏
j∈∂p

σzj (5.6)

where σx and σz represent the Pauli matrices defined in Equation (2.14) which act
on the spins living on the edges of the lattice.

Figure 5.2: The ordinary Toric-code lattice with a star (red) operator and a plaquette
(blue) operator marked out.

However, instead of studying the original formulation defined by the Hamiltonian
in Equation (5.4) we will, for convenience, use a more symmetric model due to Wen4

in which the Hamiltonian is defined by [37, 5]

H = −J
∑
k

Ak, (5.7)

where Ak = σxkσ
z
k+iσ

x
k+i+jσ

z
k+j and k denotes the lower left corner of each plaquette

and i, j are unit vectors. As one can see, this Hamiltonian only contains plaquette
operators and describes the four-body interactions among the sites belonging to each
plaquette in a ”chessboard” lattice (see Figure 5.3).

3We will from now on assume that the torus in question always is a 2-torus with g = 1, and
thus just refer to it as a torus.

4See Ref. [37].
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Figure 5.3: Wen’s chessboard lattice with a plaquette operator marked out.

The reason why the lattice looks like this will become clear in the next Subsection
where the excitations will be discussed. Another important difference between this
lattice and the original one due to Kitaev is that the degrees of freedom lives on the
vertices in this, whereas they live on the edges in the original one. If one consider
Figure 5.3, one can see that every plaquette share two sites with each one of its
adjacent neighbors. More specifically, two adjacent plaquattes will act with different
Pauli operators on the sites shared, which will lead to a total factor of (−1)2 = 1
due to the anti-commutation relation among the Pauli matrices when swapping the
order of the operators. Hence every plaquette will commute with all of the adjacent
plaquettes. In addition, all plaquettes will trivially commute with themselves and
of course also with all non-adjacent ones, so in conclusion we have that all plaquette
operators in the Hamiltonian must commute with one another. This further entails
that all terms in the Hamiltonian can be simultaneously diagonalized which allows
us to solve it term wise since all terms share eigenstates.

5.2.1 The ground states of the model

In order to find the ground state of the model, let us consider the Hamiltonian
defined in Equation (5.7). What we want is to minimize the energy and due to
the design of the Hamiltonian we can easily conclude that the minimal energy is
obtained when the eigenvalues of each term in the Hamiltonian is equal to one5,
since the eigenvalue of each plaquette is ±1 in a Z2 model, i.e. Ak |Ψ〉 = ± |Ψ〉.
Hence the ground state of the model is a stabilizer state of the Hamiltonian. Thus,
if we let H denote the full Hilbert space, the basis of the protected subspace L ⊂ H
are the stabilizer states

L = {|φ〉 ∈ H | Ak |φ〉 = |φ〉 , ∀ k}, (5.8)

so the ground state energy must thus be given by E0 = −JNp, where Np is the
number of plaquettes in the lattice. Moreover, the ground state manifold of the
Toric-code possesses two important features [41]:

1. It is 4-fold degenerate.

2. The degeneracy of the ground state is protected by topology.

The first one of these was already discussed in Section 5.1 where we introduced
Wilson loops (see Equation 5.1) and argued that all such non-contractible loops

5Assuming that J > 0.
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will have eigenvalue ±1, and since there always are two independent loops per hole,
the ground state degeneracy for a general Riemann surface is (2 · 2)g = 4g where g
denotes the genus of the surface. Thus, for a standard torus with g = 1, we have a
ground state degeneracy equal to 41 = 4. In other words, the ground state can be
interpreted pictorially as a superpostion of all closed loop configurations which form
a string-net condensate. The second point is a little bit more complicated to show
and the main argument that can be used to prove it is that any perturbation can be
written as a sequence of Pauli matrices. One can then show that such an arbitrary
perturbation acts as a map from the ground state manifold back to itself6. Now, let
us write down the ground state explicitly which is a linear combination of all basis
vectors of L , i.e.

|Ψ0〉 =
∑

|φ〉:Ak|φ〉=|φ〉 ∀k

ck |φ〉 , (5.9)

where ck are equal weight normalization constants such that
∑

k |ck|2 = 1 [20].
Finally, let us point out that the topological order of the system will be different
if the sign of the coupling constant J is changed. We have in the above solution
assumed that J > 0, so if we let J < 0 the underlying PSG will be different [37]. This
can be shown by regarding the system as a hard-core boson model and introduce a
mean-field Hamiltonian similar to the one in Equation (5.2). A detailed analysis of
this is carried out in Ref. [37].

5.2.2 The excitations of the model

Let us now discuss the excitations, or syndromes, of the model and how they are
created. Since we have already concluded that the ground state corresponds to the
positive eigenvalues of the plaquettes, the excitated state must correspond to the
negative ones. In other words, we may say that a plaquette holds an excitation if
and only if Ak |ψ〉 = |ψ〉 is violated [19]. As already mentioned, the Toric-code is
a quantum double of Z2 [5], which means that it has two elementary quasi-particle
excitations7, namely e and m. These two can further be fused together to create
a dyon ε, and as we shall see in the next Subsection, they produce a vacuum 1

when they are fused with themselves. In the original Toric-code lattice the electric
charge e lives on the vertices of the lattice whereas the magnetic flux m lives on
the plaquettes [20, 19]. However, in the lattice we are working with, we will assign
the white plaquettes to the e particles and the black ones to the m particles. Note
that this choice is completely arbitrary and one could just as well have assigned the
plaquettes to the particles the other way around. As we discussed in the previous
Section, excitations of topologically ordered systems are always created in pairs. So
how can we create them? If we consider the structure of the Hamiltonian, we see
that the σx and σz operators are located in a diagonal fashion in the lattice which
means that, for instance, if we act on a σx-site with a σz-operator, the two plaquettes
on the diagonal which share that σx-site will end up in an excited state (assuming
that both of them initially were in the ground state), since the two operators anti-
commute. Or more formally, if we for example act on the σxk -site in the ground state

6 For a detailed proof of this statement I refer to Ref. [41]
7These are in fact abelian anyons.
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|φ〉 with σzk, we see that if we measure the eigenvalue by the action of the plaquette
operator, we get

Ak(σ
z
k |Ψ0〉) = (Akσ

z
k) |Ψ0〉 = (−σzkAk) |Ψ0〉 = −σzk(Ak |Ψ0〉) = −(σzk |Ψ0〉), (5.10)

since Ak = σxkσ
z
k+iσ

z
k+i+jσ

z
k+j so that Akσ

z
k = −σzkAk and Ak |φ〉 = |φ〉. What we

have achieved by doing this is to create two topological charges on these two pla-
quettes and this process can be continued by acting on other sites with appropriate
Pauli operators. In this way one can form strings of arbitrary length along which
excitations can be moved since every time one excites a plaquette by acting on a
site that is shared with another excited plaquette, the exciation on the initially ex-
cited plaquette will annihilate and a new excitation will be produced on the new
plaquette, due to the Z2 structure of the lattice. Thus if a quasi-particle pair is
created, the error can be corrected by moving one of the particles around in a loop
and then annihilate it with the other one. Note that according this construction,
excitations on white plaquettes can only be moved to other white plaquettes, and
the same holds of course for excitations on black plaquettes, so we are assured to
avoid ambiguity. An example of such processes is depicted in Figure 5.4 where two
arbitrary strings are created across the white and black plaquettes respectively.

Figure 5.4: Two examples of string operators which move excitations on black pla-
quettes (red string) and white plaquettes (blue string).

An interesting, and for our purpose, important feature of such strings is that they
are not sensitive to perturbations. This means that the excitations are independent
of the string paths as long as the strings are topologically equivalent. In other words,
we can choose any string in a given homotopy class and still get equivalent results
as long as the end points of the strings are the same8.

8Assuming that the string is not crossing any excited plaquettes.
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To prove this, let us first define a string Se1 as in Figure 5.5.

Figure 5.5: Defining Se1.

Now, if we define another string Se2 = AkS
e
1, where Ak corresponds to the black

plaquette next to the right of the leftmost charge, it should look like the one in
Figure 5.6.

Figure 5.6: Defining Se2 = AkS
e
1 |Ψ0〉.

As one can see, the plaquette operator Ak in Se2 = AkS
e
1 shares two sites with Se1,

which means that they have to commute. Further, if we assume that the system was
in its ground state |Ψ0〉 before the charges were created, it holds that Ak |Ψ0〉 = |Ψ0〉,
which thus finally yields that

Se2 |Ψ0〉 = AkS
e
1 |Ψ0〉 = Se1Ak |Ψ0〉 = Se1 |Ψ0〉 , (5.11)

so in conclusion it must be true that these two topologically equivalent strings yield
the same result. Note that Se2 could have been chosen arbitrarily and that the same
technique would still apply to prove the equivalence. The simple choice of Se2 was
nothing but a matter of convenience to illustrate the principle. Also, note that the
same holds, of course, for magnetic strings. Another important property possessed
by strings in this model is that when a string corresponding to the black plaquettes
Sblack and a string corresponding to the white plaquettes Swhite cross each other an
odd number of times, they will anti-commute, and otherwise commute. In conclusion
we can thus formulate two important rules that can be used when strings are to be
constructed [5]:

1. Strings are allowed to be continuously deformed into other strings as long they
belong to the same homotopoy class.

2. Sblack and Swhite anti-commute when they intersect an odd number of times,
and commute otherwise.
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In addition, if the string that has been constructed form a closed and non-contractible
loop, we go from one ground state to another, which of course also is an important
feature of the model.

5.2.3 Fusion and braiding

Since we now know how to move the excitations around, the execution of fusion
and braiding processes is fairly straight forward. Let us consider two elementary
excitations of the same type, say e, separated with some distance. Thus, in order to
fuse these together, we have to construct a string that starts on the plaquette which
corresponds to the first excitation and ends at the plaquette which corresponds to
the second excitation. Note however, as proven in the last Subsection, that the
choice of string can be arbitrarily made as long as it belong to the right homotopy
class and starts and ends on the right plaquettes. For that reason, let us choose the
shortest and simplest path between the excitations as depicted in Figure 5.7. Now,
since the first excitation will be moved along this string, a factor −1 will propagate
across the plaquettes along which the string is constructed, to the plaquette in the
end point which already has eigenvalue -1 since it already is excited. Consequently,
the eigenvalue of the operation must be 1 which means that two e excitations will
annihilate one another and form a vacuum 1, when brought together9 (see Figure
5.7-5.8 ). Similarly, after constructing a suitable string operator, the same result
when fusing two m particles is obtained. In addition, we already know from the
quantum double construction that one e and one m form a dyon ε. Hence, in
conclusion, we have the following fusion category in the Z2 Toric-code model:

e× e = m×m = ε× ε = 1, e×m = ε, e× ε = m, m× ε = e. (5.12)

Also, all charges that are fused with the vacuum is of course left untouched.

Figure 5.7: Fusing two charges together. Figure 5.8: The resulting vacuum.

If we consider the above result from the point of view of vector spaces, Equation
(4.35) tells us that this is an abelian model with trivial quantum dimension. Now,
let us discuss the braiding properties. In order to braid one excitation around
another, we just have to construct a string operator that realizes this process. Let
us for instance move a magnetic flux m around an electric charge e by choosing to
construct a simple loop as the one depicted in Figure 5.9. Note that due to the
second rule that was stated in the last Subsection10, the loop can be arbitrarily
chosen as long as it corresponds to the right homotopy class.

9This is of course expected since the particle pair is created from the vacuum.
10See page 46
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Figure 5.9: Braiding an m charge around an e charge.

If we assume that the system was in its ground state |Ψ0〉 before the excitations
were created, the whole process which corresponds to the creation of two quasi-
particle pairs and braiding the m charge around the e charge can be written as
Sloop,m(SmSe |Ψ0〉). Now, if we consider the loop in Figure 5.9 it is easy to see that
this operation actually is the same as acting with the plaquette operators A1, A2

and A3 which correspond to the white plaquettes encircled by the loop, since Pauli
operators at different sites commute. Thus we have that Sloop,m = A1A2A3 which
yields

Sloop,m(SmSe |Ψ0〉) = A1A2A3(SmSe |Ψ0〉) = −(SmSe |Ψ0〉), (5.13)

since one of white plaquettes is excited, so in conclusion we have shown that the
state picks up a phase −1 = eiπ when braiding a magnetic flux around an electric
charge. The same holds, of course, the other way around, when braiding an electric
charge around a magnetic flux. Also, since the dyon is a composite object, braiding
an e or an m around a ε will yield a phase equal to -1. Moreover it can be shown
by using the same technique that a trivial phase is acquired upon braiding two
identical excitations around one another. In conclusion, one can interpret e and
m as bosons which obey non-trivial mutual statistics, and the dyon behaves as a
fermion. Also note that any loop around e could have been chosen. This is possible
since when applying the plaquettes enclosed by the loop, the interior region will
split up into smaller loops which all cancel out since each loop segment will have
a corresponding counterpart from the adjacent plaquette that goes in the opposite
direction, in a similar way as when applying Stokes’ theorem to a contour integral.
Due to this we are ensured topological protection which is an important feature of
the model. A pictorial representation of these rules is given in Figure 5.10-5.12.
Hence, excitations of the Z2 Toric-code model obey mutual abelian statistics with
trivial quantum dimension which does not allow for powerful computations [5], so it
might thus be regarded as a toy model. Nevertheless, in the next section a strategy
will be introduced which allows us to create defects in the lattice which, as we shall
see, mimic the behaviour of non-abelian anyons with non-trivial quantum dimension
which are more relevant from a computational point of view.
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Figure 5.10: Mutual braiding of e and m.

Figure 5.11: Braiding e and m with themselves.

Figure 5.12: Braiding two dyons as a result of the relations in Figure 5.10 and 5.11.

5.3 Non-abelian anyons as twist defects

In this Section we will show that exotic excitations can be created in the Toric-code
model, which can be regarded as non-abelian objects. In particular, we will, by the
guidance of Bombin in Ref. [5], see that such defects referred to as twists, can be
achieved by introducing dislocations in the lattice.

5.3.1 Introducing twists

We have, at this stage, established the rules for fusion and braiding in the Z2 model
(see Equation (5.12) and Figures 5.10-5.12) and found out that all excitations are
abelian objects. The crucial feature of these rules that make the introduction of
twist defects possible, is that they possess a certain symmetry. By closer inspection
one may notice that they are invariant under the interchange of e and m. This
self-duality can be explained by the existence of a self-equivalence of the underlying
algebraic operation, or modular tensor category, that interchanges the particles [5].
Due to this symmetry, we are allowed to perform a dislocation in the lattice by
an odd number of plaquettes (see Figure 5.13), so that e and m are interchanged
across the line along which the dislocation was performed11, under the action of the
symmetry operation.

11Note that the location of this line is unphysical.
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Figure 5.13: A dislocated lattice.

It is at the ends of the line, on the pentagonal plaquettes, the twists are located
and since the coloring is shifted, any particle that crosses that line cannot form a
closed loop, independent of the choice of path. Thus, it becomes clear that twist
defects possess a topological nature and due to the shifting, the labeling of e and
m becomes ambiguous. Another interesting consequence of twist defects is that if a
dyon split into two distinct particles, one e and one m, and then one of the particles
are transported in a loop across the line, it will end up on the same plaquette as
the other particle and fuse into a vaccum which further means that the dyon and
the vaccum cannot be distinguished globally. In conclusion we only have two dis-
tinguishable topological charges, instead of four, since e ↔ m and ε ↔ 1, in the
presence of twist defects. In particular, instead of two loops that distinguishes the
four charges, we now have one loop that winds twice around a twist [5]. This loop
is depicted in Figure 5.14 and as one can see, it self-crosses which gives rise to two
new topological charges which we shall label by σ± [5, 32], corresponding to the
eigenvalues ±i. This result can be derived by squaring the double loop operator Θ
which gives us Θ2 = (X0Z0)2 = X0Z0X0Z0 = −X2

0Z
2
0 = −1 (where X0 and Z0 act

on the site where the loop self-crosses), since all other operator will commute and
thus square to the identity. Hence Θ2 must have eigenvalue −1 which means that the
eigenvalue of Θ must be ±i. Also note that the plaquette operator that corresponds
to the pentagonal plaquette is now modified to be Apentagon = σxkσ

y
k+iσ

z
k+2iσ

x
k+i+jσ

z
k+j

where the additional Pauli matrix corresponds to the trivalent vertex [33]. This pla-
quette still commutes with all other plaquettes in the Hamiltonian so the solubility
is not destroyed. In conclusion, we thus have the following action of the double loop
operator on the ground state

Θ± |Ψ0〉 = ±i |Ψ0〉 , (5.14)

Figure 5.14: Two double loops around a twist with different orientation.

In the following Sections we will always choose the same orientation as the left
on of these, which has eigenvalue ±i.
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5.3. Non-abelian anyons as twist defects

5.3.2 Fusion with twists

We will now, from a graphical point of view, discuss and derive the fusion rules
that correspond to fusion processes involving twists. Let us start by fusing an e
excitation with a σ± (see Figure 5.15).

Figure 5.15: Fusing an e with a σ±. The dashed line illustrates the line through
which e and m are exchanged.

From this figure it is easy to see that the incoming charge (the blue line) will
always cross the red part of the loop once, since e and m are exchanged along the
dashed line. Therefore, due to rule number two presented in12 Section 5.2.2, this
process will contribute by a factor equal to −1, since it says that two strings that
correspond to black and white plaquettes respectively, anti-commute if they cross
each other an odd number of times. In addition, we can directly argue that the same
process, but with an m charge instead of an e charge, will yield the same result, due
to the crossing. Hence, we have that e × σ± = m × σ± = −σ± = σ∓. Now, let us
fuse a dyon with a twist (see Figure 5.16).

Figure 5.16: Fusing an ε (green line) with a σ±. The dashed line illutrates the line
across which e and m are exchanged.

In this figure the green line represents the dyon, and since a dyon is a composition
of an e and an m charge, we know that it has to pick up two minus signs, one for each
crossing. For that reason it must be the case that the twist is left unchanged, i.e.
ε×σ± = σ±. Finally, in order to derive the last two fusion rules between the twists,
an additional rule need to be introduced, which states how different strings can be
attached/detached to each other. This rule is represented pictorially in Figure 5.17.

12See page 46.
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Figure 5.17: A third rule which shows how strings can be attached/detached to each
other. The equality can be proven by deforming one of the strings by the action of
an appropriate plaquette, similar to Figure 5.6.

Now, let us introduce two twists of the same kind as the one to the left in Figure
5.14. By using the deformation rule, in addition to the third rule described in Figure
5.17, we can, in a suitable manner, deform the loops and attach the inner loops and
outer loops to each other, respectively, so that we end up with13:

where the green line represents the dyonic string. As one can see, the strings
are entangled, but if we change the order by swapping the operators at one of the
crossings, the strings will ”unlock” which makes it possible to deform the loops
completely into one another, so that the resulting loop is completely dyonic:

where the minus sign appears due to the anti-commutation relation. Now, since
the dyonic loop corresponds to one loop which goes across the white plaquettes and
one which goes across the black plaquettes, the resulting operator can be written
as SwhiteSblack, and since we know that any closed loop can be written as a product
of the plaquettes encircled by the loop14, Swhite/Sblack has eigenvalue −1 if there
is an m/e particle in the region, and 1 otherwise. Thus, since the loops around
the twists have eigenvalue Sσ± = ±i, we have the following equality: SblackSwhite =
−Sσ±Sσ± = −(i)2 = 1. This means that the fusion between two equal twists should
lead to a vacuum or a dyon which results in the fusion rule σ± × σ± = 1 + ε,
since if both Swhite and Sblack are 1 the result will be a vacuum whereas if both
are −1, we both have an e and an m which yields a dyon. This result is also
consistent with the rule ε× σ± = σ± we derived earlier. One can also interpret this
in terms of representations, as in Equation (4.19), where the tensor product between
the irreducible representations of the twists decomposes into a direct sum over the
irreducible representations corresponding to the vacuum and the dyon. Furthermore,

13Note that the specific string colors for e and m are not marked out, only the dyon which is
marked out with green.

14See Figure 5.9. In this figure the loop operator that carries the m particle around the e particle
is denoted by Sloop,m
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5.3. Non-abelian anyons as twist defects

if we fuse two twists of different species together the only difference is that the sign
will change so that SblackSwhite = −Sσ±Sσ∓ = −(i) · (−i) = −1, which implies that
the possible outcome can either be an e or an m, or formally σ± × σ∓ = e + m,
since if Swhite is −1 we must have that Sblack is 1, and vice versa. Hence, the full
collection of fusion rules in the model is given by:

e×σ± = m×σ± = σ∓, ε×σ± = σ±, σ±×σ± = 1+ ε, σ±×σ∓ = e+m. (5.15)

Now, if we consider these relations from the point of view of vector spaces we
know according to Equation (4.35), that this is a non-abelian model with non-trivial
quantum dimension. The quantum dimension dx of an anyon follows naturally from
Equation (4.34) and is defined as [33, 6]

dadb =
∑
c

N c
abdc, (5.16)

which tells us that the quantum dimension of twists is
√

2 which is an irrational
number, whereas e,m and ε have unit quantum dimension. This result signals an
existence of non-abelian braiding statistics for twists which will be discussed in
Section 5.3.4. Moreover the total quantum dimension of an anyon model is given by
[33, 6]

D =

√∑
x

d2
x (5.17)

which for the general Z2 model with charges {e,m, ε,1} yields DZ2 = 2, whereas
for the twist model with charges {e,m, ε,1, σ±} we have Dtwist =

√
8. We can

also conclude that since the outcome when fusing two twists is non-unique, the
corresponding fusion states can be used to represent qubits which allow for protected
quantum information to be encoded. Worth to point out though is that twists are in
fact not intrinsic non-abelian anyons since they are merely extrinsic defects and not
elementary excitations of the model [43]. However, as we shall see, they do indeed
carry non-trivial statistics but as a projective representation of the braid group.

5.3.3 Realizing fusion with Majorana operators

An interesting observation of the above rules is that the set {1, σ±, ε} exactly mimics
the behaviour of Ising anyons under fusion [5]. The Ising anyon model has three
charges 1, σ and ψ [5], and the behaviour of these is exactly similar to that of twists if
we let σ± ↔ σ and ε↔ ψ. Furthermore, it turns out that the σ particle in the Ising
anyon model can be characterized by Majorana operators [5]. These similarities
reflect the fact that Ising anyons as well as twists have a quantum dimension that
coincide with that of Majorana fermions [43]. Also, it may not be that surprising
that the system can be interpreted in terms of fermions, since we are dealing with
a spin-1

2
model in which we simply can identify the up and down-spin with the

presence and absence of a fermion [20]. Hence we can perform a so called Jordan-
Wigner transformation15 of the system where we go from a spin representation to a

15See Appendix C for a detailed discussion.
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fermion representation [20, 43]. These two representations are related as

c2j−1 = aj + a†j, c2j =
aj − a†j

i
(5.18)

where a†i and ai are creation and annihilation operators in the spin represenattion.
The Majorana operators ci are Hermitian and satisfy {cj, ck} = 2δjk. In particular,
by defining the operator −icjcj+1, one obtains the total charge when two σ’s are
being fused together, where the value 1 corresponds to the vacuum and -1 to an ε
particle [5]. Moreover, if the Jordan-Wigner transformation is applied to a lattice
with twists defects, it can be shown that pairs of twists will produce unpaired
Majorana zero modes (for example, see Ref. [43]) due to the trivalent lattice points.
Because of this, it might be natural to assume that fusion among twists also can
be realized with Majorana operators. This is indeed the case, which can be proven
by choosing suitable strings to represent Majorana operators [5]. Assuming that we
have two σ+ twists, and following Bombin’s suggestion in Ref. [5], we may define
the two strings Sj and Sj+1 as in Figure 5.18.

Figure 5.18: Defining the two string operators Sj and Sj+1 which realize cj and cj+1.

Now, by adding an extra loop, say an Sblack (a red loop), around this configu-
ration, which has eigenvalue 1 if it encircles a vacuum and −1 if it encircles an e
particle, and deform the initial strings, we end up with:

so if we further use the rule depicted in Figure 5.17 we can glue the strings
together which finally gives us:
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However, if we were to add a loop Swhite (a blue loop) instead we would end
up with a similar configuration only that the double loop would be of the other
orientation, which simply differs from this one by a factor −1 due to the anti-
commutation relation. Hence, since the double red line will fuse into a vacuum,
only the loop around the twist will contribute by ±i, which yields that −icjcj+1 =
−iSjSj+1 = −i · (±i) = ±1, i.e. a vacuum or a dyon. In conclusion, we have shown
by choosing the strings as in Figure 5.18, that twists realize Majorana operators
where the eigenvalue -1 corresponds to a dyon and the eigenvalue 1 corresponds to a
vacuum. In the next Subsection we will see that twists also obey the same braiding
statistics as Majorana operators, which confirms the analogy with Ising anyons.

5.3.4 Braiding twists with Majorana operators

In order to braid the twist defects we may transform the ”geometry” of the Hamil-
tonian adiabatically [5], so that the twists are moving around one another. The
strings Sj introduced in Figure 5.18 anti-commute so that {Sj, Sk} = 0 if j 6= k just
as Majorana operators, which obey the following set of braiding rules [5]

cj → cj+1, cj+1 → −cj, ck → ck. (5.19)

We will now prove that twists follow these rules as well. Assume now that we have
two σ+ twists in Figure 5.18 and lets drag the right one anti-clockwise over the left
one. This will give us the configuration depicted in Figure 5.19.

Figure 5.19: The starting point when deriving the braiding rules.
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Our goal is to manipulate this configuration so that the end result looks like the
configuration in Figure 5.18. Let us start by adding two loops, one Sblack and one
Swhite, which have eigenvalue 1 in absence of any excitations, around the configura-
tion:

and now we can use the rule defined in Figure 5.17 and deform the blue loop so
that:

and doing the same thing with the red loop gives us:
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We are now very close to reach the desired end result, and the only things that
we have to do are to deform the loop once again, and more crucially, we have to
change the order where the loops intersect. The reason for this is simply that if we
regard Figure 5.18, and let the right string be Si+1 and the left one be Si, we see
that the operator in Figure 5.18 is SiSi+1 whereas we now have he operator Si+1Si,
which means that we must change the order which yields a factor −1 due to the
anti-commutation relation. By doing this we thus get:

Therefore, due to the appearance of this minus sign we have shown that braiding
of twists follow the same rules as the Majorana operators defined in Equation 5.19,
so in conclusion, according to the results obtained, twists mimic the behaviour of
Ising anyons exactly in terms of fusion and braiding.

5.4 Generalizing to a ZN model

At this point we have discussed and solved the original Toric-code and we saw that
the excitations of the model do not possess non-abelian braiding statistics which is
required for powerful quantum computations to be realized. However, by introducing
pentagonal plaquettes in the model, or twists, we saw that these do in fact carry
a projective non-abelian representation of the braid group and that they could be
interpreted as unpaired Majorana zero modes. A natural attempt may thus be to
introduce twists in a generalized lattice with ZN symmetry. In such a lattice each
lattice point comprises N degrees of freedom instead of 2 as in the Z2 case. Note that
the Hilbert space in this model will expand from being a (C2)⊗m space to a (CN)⊗m

space where m denotes the number of sites in the lattice. Therefore, the first thing
we need to do is to redesign the Hamiltonian which describes the interactions of the
model. To do this we simply have to generalize the Hamiltonian in Equation (5.7),
where we instead of the standard Pauli matrices use the generalized Pauli matrices
of arbitrary order defined as [42]

Z =


1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωN−1

 , X =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 · · · 1 0

 . (5.20)
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These matrices follow the following algebra

XN = ZN = I, Z† = ZN−1, X† = XN−1, XZ = ωZX, (5.21)

where ω = ei
2π
N and I is the identity matrix. Moreover, for any state |q〉, we have

that

Z |q〉 = ωq |q〉 , X |q〉 = |q − 1 (mod N)〉 , (5.22)

where q ∈ ZN . However, the crucial difference when N > 2 is that they are no longer
Hermitian. This means that in order for the Hamiltonian to be an observable, we
cannot simply exchange σx with X and σz with Z in Wen’s Hamiltonian defined
in Equation (5.7). What we can do though is to add the Hermitian conjugate of
each term to the Hamiltonian, since it holds for any operator O that (O + O†)† =
(O† + (O†)†) = (O† +O), so that the Hamiltonian can be modelled as

HZN = −J
∑
k

(Ak + A†k), (5.23)

where Ak = XkZk+iXk+i+jZk+j and has eigenvalue ωq which further means that the

eigenvalue of Ak+A†k is ωq +ω−q = 2 cos(2πq
N

), since ωq = ei
2πq
N and the sine function

in the complex exponential is an odd function. Also because all plaquettes share
two sites with each one of the adjacent plaquettes, the relation XZ = ωZX implies
that [Ak, Ak′ ] = [Ak, A

†
k′ ] = 0 for all k and k′, so it’s still possible to solve the model

term wise and the ground state is thus given when all eigenvalues are equal to 2, i.e.
(Ak + A†k) |Ψ0〉 = 2 |Ψ0〉 ∀ k.

5.4.1 The excitations

The next thing we are interested in to know is how to create excitations in the
model. The elementary excitations of the model are still of the same type only that
the energy spectrum is now more diverse. Just as in the Z2 case, particle-antiparticle
pairs can be created by acting with X and Z (or X† and Z†) operators on sites in a
suitable way, due to the ”commutation relation” in Equation (5.21). Thus if we, for
instance, act on a site k with Zk, and then measure the energy of the two plaquettes
which share that site with X operators, the energy eigenvalue is given by16

(Ak+A
†
k)(Zk |Ψ0〉) = Zk(ωAk+ω

−1A†k) |Ψ0〉 = Zk(ω+ω−1) |Ψ0〉 = 2 cos(
2π

N
)(Zk |Ψ0〉).

(5.24)
However, this energy corresponds to the first excited state so in order to create a
general state, say the nth state, we can just act with the operator Zn

k which yields

(Ak + A†k)(Z
n
k |Ψ0〉) = 2 cos(

2πn

N
)(Zn

k |Ψ0〉), (5.25)

so the energy eigenvalue corresponding to the nth state is thus given by En =
−J(ωn +ω−n) = −J(ei

2nπ
N + e−i

2nπ
N ) = −2J cos 2nπ

N
, and the ground state energy E0

of each plaquette is thus obtained when n = 0 so that E0 = −2J . However, since
the energy is given by a cosine, which is a periodic and even function, some energy

16Note that we just as well could have acted with an X operator on a Z site.
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states should be degenerate. Through some simple geometrical considerations of the
unit circle, it is easy to derive that there are N

2
distinct excited states, among which

only one of them is non-degenerate, if N is even, and N−1
2

distinct excited states
among which all are degenerate, if N is odd. This is because all reflection points in
the x-axis yield the same cosine value since it’s an even function. In conclusion, we
thus have with ε(i,j) = eimj, the following set of topological charges17

{1, ε(1,0), .., ε(N−1,0), .., ε(0,1), ε(1,1), .., ε(N−1,1), .., ε(0,N−1), ε(1,N−1), .., ε(N−1,N−1)}
(5.26)

where only N
2

of the eigenvalues of the pure e’s and m’s are distinct, and thus (N
2

)2

of eigenvalues corresponding to the ε’s, if N is even, whereas if N is odd, we have
that N−1

2
of the eigenvalues of the pure e’s and m’s are distinct, and thus (N−1

2
)2 of

ones corresponding to the ε’s.

5.4.2 Construction of strings

We have already discussed and concluded how to create excitations in the model so it
should be fairly straight forward to construct arbitrarily long strings along which the
excitations can be moved, by applying the same idea. However, since each plaquette
can be in more than two states one has to be a little more cautious than in the Z2

model. What we want to achieve is to find a sequence of operators that move the
excitation step wise by annihilate it on the ”old” plaquette and create a new on
the ”new” plaquette. In the Z2 case this process could easily be implemented just
by acting on a site that belongs to an excited plaquette with the ”opposite” Pauli
matrix (i.e. a σz if the corresponding operator in the plaquette was a σx, and vice
versa), so that the new plaquette got excited and the previous one returned to its
ground state due to the Z2 symmetry. In the ZN generalization, however, we do
not get away that easy because the excitation on the previous plaquette will not
annihilate automatically due to the wider eigenvalue spectrum. Nevertheless, if we
consider an excited state (Z0 |Ψ0〉) and create a new state by acting with Z†1, we
have that

(A1 + A†1)(Z†1Z0 |Ψ0〉) = Z†1Z0(ω−1ωAk + ωω−1A†k) |Ψ0〉 = 2(Z†1Z0 |Ψ0〉), (5.27)

so the excitation will be annihilated on the old plaquette (plaquette 1 in Figure
5.20) and since the energy eigenvalue for the new plaquette (plaquette 2 in Figure
5.20) is determined by

(A2 + A†2)Z†1 |Ψ0〉 = Z†1(ω−1A2 + ωA†2) |Ψ0〉 = (ω−1 + ω)(Z†1 |Ψ0〉), (5.28)

the energy of the new excitation will be −2J cos 2π
N

so the energy is preserved.

What happens is that when acting with Z†1 the anti-particle of the initial one will be
created on plaquette 1 which leads to annihilation, and a particle, similar to the one
that inhabited plaquette 1, will be created on plaquette 2, so that the excitation is
transported from plaquette 1 to 2. Further, if we continue the to build on the string

17Note that the pure charges corresponds to ei = ε(i,0) and mj = ε(0,j).
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Chapter 5. Quantum double models

by adding an operator Z2, the process will be repeated so that the excitation ends
up on the next plaquette (plaquette 3 in Figure 5.20). The same holds of course for
the X operators so we have thus shown that excitations can be moved along straight
strings which are constructed such that Z is alternated with Z† and X with X†.
Let us exemplify this by creating an excitation on plaquette 1 in the state |q〉 by
acting with Zq

0 , and then move the excitation to plaquette 3. This process can be
formulated as Zq

2(Z†1)q(Zq
0 |Ψ0〉), and the energy of plaquette 3 can thus be computed

as

(A3 + A†3)(Zq
2(Z†1)qZq

0 |Ψ0〉) = (ω−q + ωq)(Zq
2(Z†1)qZq

0 |Ψ0〉), (5.29)

whereas if we measure the energy of plaquette i where i ∈ {1, 2} we simply get

(Ai + A†i )(Z
q
2(Z†1)qZq

0 |Ψ0〉) = (ω−qωq + ωqω−q)(Zq
2(Z†1)qZq

0 |Ψ0〉) (5.30)

= 2(Zq
2(Z†1)qZq

0 |Ψ0〉),
which corresponds to the ground state energy.

Figure 5.20: An excitation with energy −2J cos 2πq
N

is created on plaquette 1 by the
incomming dashed string and moved to plaquette 3 by the solid string.

However, if we wish to change the direction, say from the x-direction to the z-
direction (on the diagonal), we have to act with an Z† operator if the last plaquette
was excited by the action of the a X† operator, and hence an Z operator if the last
plaquette was excited by an ordinary X operator. Thus, if we want to move the
excitation on plaquette 3 in Figure 5.20 to plaquette 4 (see Figure 5.21) we can act
on the lower right site in plaquette 3 with the operator Xq

3 , since the plauette was
excited by the action of Zq

2 . The full string operator that realizes the creation of an
excitation Zq

0 |Ψ0〉 with energy −2J cos 2πq
N

on plaquette 1 and transportation of it

to plaquette 4 can thus be formulated as Xq
3Z

q
2(Z†1)q(Zq

0 |Ψ0〉) since

(A3 + A†3)((Xq
3Z

q
2(Z†1)qZq

0 |Ψ0〉) (5.31)

= (ω−qωq + ωqω−q)((Xq
3Z

q
2(Z†1)qZq

0 |Ψ0〉) = 2(Xq
3Z

q
2(Z†1)qZq

0 |Ψ0〉)
and

(A4 + A†4)(Xq
3Z

q
2(Z†1)qZq

0 |Ψ0〉) (5.32)

= (ωq + ω−q)(Xq
3Z

q
2(Z†1)qZq

0 |Ψ0〉) = 2 cos
2πq

N
(Xq

3Z
q
2(Z†1)qZq

0 |Ψ0〉),
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Figure 5.21: An excitation with energy −2J cos 2πq
N

is created on plaquette 1 by the
incoming dashed string and moved to plaquette 4 by the solid string.

so the excitation is moved from plaquette 3 to plaquette 4.
To finish this Subsection, let us write down the following two rules for construct-

ing strings in the ZN model:

1. For straight strings, Xk (Zk) has to be alternated with (X†)k ((Z†)k).

2. In order to change the direction if the last plaquette was excited by anXk/(X†)k

(Zk/(Z†)k) operator, one has to act with a Zk/(Z†)k (Xk/(X†)k) operator.

Also note that if one considers Figure 5.5 and 5.6, it is easy to verify, by commut-
ing the string and the plaquette, that strings in the ZN model are insensitive to
perturbations as well, which of course is a very important feature of the model.

5.4.3 Fusion and braiding in the ZN model

Now that we know how excitations can be moved around, the next step is to discuss
fusion and braiding in the model. As you may already have guessed, the diversity
of fusion channels in a ZN model gets increasingly larger as N increases since there
are N−1 electric and magnetic excited states respectively, and thus (N−1)2 dyonic
states. Let us start by considering an electric charge eq in its q:th state which is
fused with another electric charge ep in its p:th state. Thus, due to the cyclic nature
of the model the fusion outcome should be

eq × ep = eq+p (mod N), (5.33)

since the phases should add up when one of the excitations is moved to the plaquette
inhabited by the other excitation, and the same holds of course for the magnetic
charge. For a general dyon, however, we may denote it by ε(k,l) = ekml such that
ek ×ml = ε(k,l). Hence, if we fuse an electric charge ei with ε(k,l) we get

ei × ε(k,l) = ei × (ek ×ml) = (ei × ek)×ml = ei+k ×ml = ε(i+k,l) (mod N), (5.34)

and similarly a magnetic flux mj gives us

mj×ε(k,l) = mj×(ek×ml) = ek×(mj×ml) = ek×mj+l = ε(k,j+l) (mod N). (5.35)
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Chapter 5. Quantum double models

Finally if we consider two dyons ε(i,j) and ε(k,l) we have, in the same way, that

ε(i,j) × ε(k,l) = (ei × ek)× (mj ×ml) = ei+k ×mj+l = ε(i+k,j+l) (mod N), (5.36)

so in conclusion the following rules determine the fusion outcomes in ZN :

eq × ep = eq+p, mj ×ml = mj+l, ek ×ml = ε(k,l) (5.37)

ei × ε(k,l) = ε(i+k,l), mj × ε(k,l) = ε(k,j+l), ε(i,j) × ε(k,l) = ε(i+k,j+l)

where all exponents are taken modulus N . As one can see, all these rules imply that
the fusion outcome always is definite, which means that the corresponding fusion
states are not suitable as implementations of qubits.

Now, let us continue our discussion and consider braiding in the model. From
Figure 5.9 it became clear that a loop operator that takes an m around an e (or
similarly an e around an m), could be written as a product of the plaquettes enclosed
by the loop. Nevertheless, since the excitations do not terminate automatically one
has to be a little bit cautious since the regular plaquette operators must be alternated
with Hermitian conjugate ones. If we regard the same configuration as in Figure 5.9
but now with two general charges eq and mp (see Figure 5.22), and assume that mp

was created by the action of Zp, we see that if we use the rules as those defined in
the last Subsection, the action of this loop operator gives the same result as if we
act with Ap1(A†2)pAp3. Formally we can thus write

Sloop,m(SmSe |Ψ0〉) = (Ap1)†Ap2(Ap3)†(SmSe |Ψ0〉) = Ap2(SmSe |Ψ0〉) = ωqp(SmSe |Ψ0〉),
(5.38)

where Sm and Se are strings that created the mp and eq charges respectively, and
Sloop,m is the loop operator which carries mp around eq.

Figure 5.22: A magnetic flux mp is carried around an electric charge eq.

In the same way one can show that a general phase is acquired upon braiding
an e or an m around an ε, and that two identical excitations give a trivial phase.
In conclusion we thus know that the mutual braiding statistics between e and m is
still non-trivial whereas braiding two identical charges do not change the state.
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5.5. Introducing twists

5.5 Introducing twists

Following the same reasoning as in the Z2 model we can, due to the exchange
symmetry of the fusion and braiding rules under e ↔ m, create a dislocation by
introducing pentagonal plaquettes in the lattice such that e and m are exchanged
under the symmetry operation across the line which connects these plaquettes. So
if we let the operator corresponding to the trivalent lattice point be Y = XZ, it is
easy to check that this plaquette still commutes with all other plaquettes so that the
solubility is preserved as desired. However, since we are now dealing with a more
diverse particle spectrum, the eigenvalues of the twists will depend upon the state
in which the excitation is that is carried around it, and will as a result also have
a wider spectrum with N eigenvalues. Also in this lattice we have a Wilson loop
Θ that winds twice around the defects and in order to determine the eigenvalues,
let us consider the N th power of the double loop operator Θ where we assume that
it was created by dragging an e or m in the first excited state twice around it.
We know that operators that act on different sites commute so due to this we can
write ΘN = (X0Z

†
0)NXN

1 Z
N
2 ... where (X0Z

†
0) corresponds to the crossing for a given

orientation. But XN = (X†)N = ZN = (Z†)N = I, so the N th power of the double
loop operator should simply be ΘN = (X0Z

†
0)N . What we have to do next is to

swap the operators in a way which gives us a phase and operators of the N th power,
which yields a phase and identity operators. Lets write it out explicitly:

(X0Z
†
0)N = X0Z

†
0X0Z

†
0X0 · · ·X0Z

†
0︸ ︷︷ ︸

2N factors

= ωX0X0Z
†
0Z
†
0X0 · · ·X0Z

†
0

= ωω2X0X0X0Z
†
0Z
†
0 · · ·X0Z

†
0 (5.39)

= ... = ωω2 · · ·ω(N−1)X0X0 · · ·X0︸ ︷︷ ︸
N factors

Z†0Z
†
0 · · ·Z

†
0︸ ︷︷ ︸

N factors

= ω1+2+...+(N−1)I2 = ω1+2+...+(N−1) = ω
∑N−1
s=1 s

but
∑N−1

s=0 s = 1
2
N(N−1) so the eigenvalue one obtains when acting with ΘN should

be ω
1
2
N(N−1) = eiπ(N−1) = ±1 (+1 for odd N and −1 for even N), which means that

we have ei
π
N

(N−1) for Θ. If we now stop for a moment and and regard this expression
one may notice that the eigenvalue quantization depends on whether N is even or
odd. For instance, if we choose N to be even, we see that N−1

2
must be an odd

multiple 2m − 1 of 1
2

so that the eigenvalues are of the form ei
π
N

(2m−1), whereas if

N is odd the eigenvalues ei
2π
N

2m
2 = ei

2π
N
m. In other words we can conclude that the

eigenvalue spectrum of Θ consists of phases which are all multiples of π
N

if N is even
and multiples of 2π

N
if N is odd. It is also easy to verify that the eigenvalues in the

Z2 case is obtained if we let N = 2.
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Chapter 5. Quantum double models

5.5.1 Fusing twists in the ZN model

Now, let us discuss fusion among twists. If we consider an incoming electric charge
eq in the qth state that is brought together with a twist of type σ+ as the one with

eigenvalue of Θ that is ei
2π
N

(N−1)
2 (see Figure 5.23), and use the same argument as

in the Z2 case, we should pick up a phase ei
2π
N
q so that the resulting eigenvalue is

ei
2π
N

(q+
(N−1)

2
) since the incoming blue string crosses the red part of the loop once,

which yields the rule eq × σk = σq+k (mod N). Similarly, by fusing the twist with
an mp in the p:th state, we obtain mp × σk = σp+k, and since a dyon ε(i,j) will
contribute twice, once for each intersection, the fusion rule involving a dyon reads
ε(l,j) × σq = σq+l+j, since the phase we pick up is ei

2π
N
lei

2π
N
j = ei

2π
N

(l+j). So by fusing
twists with these charges, the twists transform into different states by absorbing (or
emitting) a quasi-particle.

Figure 5.23: Fusing an eq with a twist. Figure 5.24: Fusing an ε(l,j) with a twist.

If we now consider the fusion between two twists σs and σt, and use the same
strategy as in the Z2 model, we can deform and attach the two double loops so that
we end up with the following configuration18:

Further by changing the order where they intersect with the given orientation,
which should yield a factor ω = ei

2π
N , and then deform the two loops completely, we

get:

so if we let Swhite/Sblack be the loops corresponding to the white/black plaque-
ttes19, and let Sσs/Sσt be the two double loops, we have that

ωSwhiteSblack = SσsSσt ,

18We also choose double loops with the same orientation (the right one in Figure 5.14).
19These have eigenvalue ωk since if we drag an e/m around an mk/ek (similarly as in the Z2

case), we obtain ωk.
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5.5. Introducing twists

or equivalently

SwhiteSblack = ω−1SσsSσt = e−i
2π
N ei

2π
N

(s+
(N−1)

2
)ei

2π
N

(t+
(N−1)

2
) = ei

2π
N

(s+t+N−2) = ei
2π
N

(s+t−2).

Now we are interested in figuring out how many unique possible combinations of
Swhite and Sblack that yield SwhiteSblack = ei

2π
N

(s+t+N−2). Note that, for a given N (odd

or even), the factor ei
2π
N

(s+t−2) is the same for all allowed combinations of s and t such
that their sum s+t is constant. This should imply that the fusion rules for all such s
and t are the same! However, we already know, due to cyclicity, that both Swhite and
Sblack have N eigenvalues each, and that all correspond to phases that are multiples
of 2π

N
. This means that if we choose any of the N eigenvalues of Swhite, we can only

choose the eigenvalue of Sblack in one single way in order to obtain the required phase,
which further entails that we have N different combinations which all correspond to
a unique dyon. Or more explicitly, if we for example choose Swhite to be ei

2π
N

(s+t−2),
Sblack must be equal to e0 = 1, and if we choose ei

2π
N

((s+t−2)−1) = ei
2π
N

((s+t−3), we have
to choose Sblack equal to ei

2π
N , and so on. Formally we thus have the fusion rule

σs × σt = ε(s+t−2,0) + ε(s+t−3,1) + ε(s+t−4,2) + ...+ ε(s+t−2−(N−1),N−1) =
N−1∑
k=0

ε(s+t−2−k,k)

for any N (even and odd), where each specific dyon labeled by ε(s+t−2−k,k) depends
upon the value of the sum s+ t. Note that if we were to choose the other orientation
(the rightmost in Figure 5.14), which would give another value for SwhiteSblack, a

phase ω−1 = e−i
2π
N would be acquired upon changing the order were the loops

intersect, which would give us

SwhiteSblack = ωSσsSσt = ei
2π
N ei

2π
N

(s+
(N−1)

2
)ei

2π
N

(t+
(N−1)

2
) = ei

2π
N

(s+t+N) = ei
2π
N

(s+t),

and hence the rule

σs × σt = ε(s+t,0) + ε(s+t−1,1) + ε(s+t−2,2) + ...+ ε(s+t−(N−1),N−1) =
N−1∑
k=0

ε(s+t−k,k),

which looks a little bit nicer. So in conclusion, we have shown that we always have
N -fold degeneracy (independent of the values of s and t), but that the rules can
be categorized into classes, depending on the value of s + t, for which the rules
are identical. We can also conclude that the dimension of the fusion space which
corresponds to the fusion between two twists depends on the number of degrees of
freedom per lattice site, due to the N -fold degeneracy. Moreover, if we consider
Equation (5.16), the quantum dimension of twists in a ZN model is

√
N since the

quantum dimension of each dyon is 1, so in conclusion the ZN twist model is non-
abelian for any N > 1 according to Equation (4.35). Finally, let us write down the
collection of fusion rules for the twists:

eq × σs = mq × σs = σq+s, ε(q,p) × σs = σs+q+p, σs × σt =
N−1∑
k=0

ε(s+t−k,k). (5.40)
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Also note that since the dimensionality of the fusion space depends onN , the amount
of information that can be encoded in a fusion state increases drastically with N .
In other words, the capacity of the quantum memory will be greatly amplified as N
increases.

5.5.2 Braiding twists in the ZN model

Now, let us see what happens if we assume that the string operators for general
twists can be defined in the same way as in the Z2 model (see Section 5.3.4). If we
then apply the same technique to find the braiding statistics we obtain the following
configuration:

by putting a red and a blue loop around it which are then attached and deformed
in a suitable way. Further by deforming this, and swapping the order where the
strings intersect, we obtain:

So if we assume that the quasi-particles that formed the strings initially were
in their kth and mth state, respectively, a phase ei

2π
N
km should be acquired since

the operators must be swapped km times, given that the strings are defined in a
particular way. However, if we choose to construct the strings differently, we may
end up with a phase e−i

2π
N
km instead since the strings may overlap with different

operators where they intersect. In the Z2 model we were always guaranteed a factor
−1 since the Pauli operators anti-commute which means that it does notn’t matter
how the strings overlap, a minus sign will always be acquired when changing the
order. Now we obtain the following rules instead:

Si → Si+1, Si+1 → ω±kmSi (5.41)
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where the sign depends on how the string operators are defined. In conclusion,
assuming that the loops can be defined in a similar way as in the Z2 model, and if
we apply the same strategy when braiding the twists, we see that a general phase is
acquired which depends upon the number of degrees of freedom N , and the states
of the quasi-particles that formed the strings.
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Chapter 6

Conclusions and outlook

The field of topological quantum computing is a very wide and diverse discipline
which comprises many different subjects in fundamental physics as well as math-
ematics. We started out with an introduction to quantum computing in general
where we discussed how to represent information by means of binary numbers, and
then we argued that quantum states could be used to represent information which,
due to the superposition principle, would lead to an enormous capacity. The infor-
mation, however, need to be processed in order for the computer to perform actual
computations. The main idea that the models we analyzed are based upon is to use
braiding as an implementation of logical gates. As was discussed in Chapter 3, the
special topological features of the configuration space in two dimensions gives rise
exotic phenomena such as anyonic exchange statistics that can be used to process
the information. First we discussed the already well studied Toric-code model (see
Kitaev in Ref. [20]) and found that its ground state was four fold degenerate and
separated with a finite energy gap from the excited states. This degeneracy could be
deduced from the topology of the manifold on which the lattice was defined, which
in this case was a torus, and due to the energy gap to the excited states we argued
that the ground state could be used as a suitable representation of a qubit since its
degeneracy is protected by topology. We also derived the fusion category and braid-
ing rules of the model and found that it indeed had well defined rules. However, in
order to perform powerful quantum computations the braiding statistics need to be
non-abelian and this requirement was not met. As was shown in Section 5.2.3, the
electric charge and the magnetic flux behaved like bosons whereas their fusion prod-
uct, the dyon, behaved like a fermion in terms of exchange statistics. Their mutual
braiding statistics, however, is non-trivial but still abelian which is not sufficient.
Then we followed Bombin in Ref. [5] and argued, due to the symmetry of the fusion
and braiding rules under exchange e ↔ m, that we were allowed to create a dislo-
cation in the lattice so that electric charges became magnetic fluxes, and vice verse,
as they moved across the line along which the dislocation was performed. These
dislocation defects, or twists as we call them, could also be interpreted as particle
like objects and we also showed that they had well defined fusion and braiding rules.
When we derived the fusion rules we found out that the twist defects must be non-
abelian objects since their fusion outcome was indefinite. This was indeed the case
which we saw when we derived the braiding rules explicitly.

Another interesting feature that we found about twist defects in the Z2 model is
that they realize Majorana fermions. In Section 5.3.3 and 5.3.4 we followed Bombins
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suggestion in Ref. [5] and defined operators which formed closed strings around the
twists and showed that the braiding and fusion rules of Majorana fermions were
exactly reproduced by twist defects. Moreover, since the twists do obey non-abelian
braiding statistics their fusion space might be a suitable place for quantum computa-
tions in which the fusion states constitute the qubits. Next we generalized the twist
model to a lattice which comprises an arbitrary number N of degrees of freedom
per lattice site. The first thing that was done was to derive the excitation spectrum
of the model and we found, not very surprisingly, that the width of the spectrum
depends on N . More exactly we saw that the number of possible excitations grew
rapidly with N since there are N − 1 distinct pure charges of each type and hence
many different combinations of composite charges (dyons). In particular, the eigen-
value quantization of the plaquette operators depends on if whether N is even or
odd. Furthermore, in order to perform braiding and fusion, strings along which the
excitation can be moved had to be constructed and since the model no longer had
Z2 symmetry, we found that the strings had to be constructed in a specific way to
transport the excitations properly. For example, we found that in order to move ex-
citations along straight lines, the X and Z operators had to be alternated with their
Hermitian conjugates. Then we computed the braiding rules and just like in the
Z2 model, we saw that the excitations obeyed mutual abelian statistics, but now an
arbitrary complex phase could be acquired. The fusion rules were also pretty similar
to those of the Z2 model only that there were more combinations of particles that
could be fused.

Moreover, twist defects were introduced in the lattice and according to the fusion
rules we derived, the twist model is non-abelian for any N ≥ 2. In fact, if the lattice
sites comprise N degrees of freedom, the fusion state corresponding to two twists will
be N fold degenerate. In the Z2 case the fusion state corresponds to 2 simultaneous
bits, which implies that m pairs of twists correspond to 2m bits, whereas for a general
N the fusion state that corresponds to two twists represents a general qudit in which
even more information can be stored. For instance, if we have N = 4 or N = 5,
one single qudit corresponds to two qubits, and if we have N = 6 or N = 7, the
qudit corresponds to 3 qubits, and so on. In conclusion we can thus say that the
more degrees of freedom, the more information can be encoded. However, as already
discussed, braiding need to be performed in order to process the information. In the
Z2 model we defined string operators in a suitable way which resulted in a specific
set of brading rules. The same technique was then used to braid the twists in the
ZN model and we saw that a general phase was picked up, which depended on the
states in which the excitations were that created the strings. Hence, according to
the results obtained, any ZN model can, at least theoretically, be used to make up
a topological quantum computer.

All lattice models that were studied in this work were defined as square lattices
so another interesting idea would be to see if it’s possible to introduce twist defects
in lattices of other geometries. The Toric-code but with a hexagonal lattice has
already been solved by Kitaev in Ref. [20] so it might be the case that it supports
twist defects with projective non-abelian braiding statistics as well. If that is the
case, and if it also turns out that the fusion rules are well defined, it could also be
a candidate for topological quantum computing.
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Appendix A

The fundamental group

The below definitions are taken from Ref. [16]. Let X be a space of some topology,
and x0 an arbitrary point in X. Now, consider two loop functions

f, g : [0, 1]→ X

of different homotopy such that f(1) = g(0) = x0. Then, the composition of
these loops is defined by the following parametrization

f ◦ g(s) =

{
f(2s), 0 ≤ s ≤ 1

2

g(2s− 1), 1
2
≤ s ≤ 1

This parametrization can be interpreted as the composition of f and g, which
first goes along f from s = 0 to s = 1

2
with twice the pace, and then along g from

s = 1
2

to s = 1 with twice the pace. Thus, with the above defined composition rule,
the set of homotopy classes {[f ], [g], ..., [h]} forms a group of loops in X

π1(x0, X) = {[f ], [g], ..., [h]}

which all start and end in x0.
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Appendix B

Hopf algebras

Here we will follow Ref. [30]. A Hopf algebra over a field k is an algebraic structure
consisting of the tuple (A,m, η,∆, ε,S), where (A,m, η) forms an algebra over k
such that

A⊗ A m−→ A, m(a⊗ b) = ab ∀a, b ∈ A

k
η−→ A, η(1k) = 1A k ∈ k

which is associative, i.e.

a(bc) = (ab)c ∀a, b, c ∈ A,
and (A,∆, ε) is a coalgebra over k so that

A
∆−→ A⊗ A, ∆(a) = a(1) ⊗ a(2), ∀a(i), a(j) ∈ A (coproduct)

A
ε−→ k, k ∈ k (counit)

which is coassociative

a(1)(1) ⊗ a(1)(2) ⊗ a(2) = a(1) ⊗ a(2)(1) ⊗ a(2)(2)

ε(a(1))a(2) = a = a(1)ε(a(2))

and ∆ and ε are both morphic maps

∆(ab) = a(1)b(1) ⊗ a(2)b(2), ∆(1) = 1⊗ 1

ε(ab) = ε(a)ε(b), ε(1) = 1.

The antipode S is defined by the morphic map

A
S−→ A

,
S(ab) = S(a)S(b) ∀a, b ∈ A

and satisfies

a(1)S(a(2)) = ε(a)1 = S(a(1))a(2).
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Appendix C

The Jordan-Wigner
transformation

The Jordan-Wigner transformation provides a way to go from a spin representation
to a particle representation of a lattice model. This is achieved by the identification
of a certain number of particles by the projection of a certain spin onto the z-
axis, i.e. |s〉 ↔ n = s, where s is the spin state in the z-direction and n is the
number of particles present. Following Ref. [17] the transformation which maps
tensor products of generalized Pauli matrices onto tensor products of parafermion
operators, is for odd and even lattice sites defined as

α2i−1 = (
∏
k<i

Xk)Zi, α2i = ei
2π
N

(N+1)
2 (
∏
k≤i

Xk)Zi,

where X and Z are the generalized Pauli matrices for a ZN lattice with arbitrary
degrees of freedom per lattice site. The crucial feature of this transformation is that
the desired algebra is still satisfied so that

αlαm = ei
2π
N αmαl, αNi = I.

Moreover the parity operator is defined as

Λi = ei
2π
N

(N+1)
2 αiα

†
i+1,

where the factor ei
2π
N is needed so that ΛN

i = I for all N . These operators obey
the following relations{

ΛiΛj = ΛjΛi, if |i− j| > 1

ΛiΛj = ei
2π
N
sgn(j−i)ΛjΛi, if |i− j| = 1.
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