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Abstract

In this Licentiate Thesis we will study the topological phases of Z2 and Z3

symmetric chains. We will present the Kitaev chain, a Z2 symmetric model
of spinless fermions, and obtain all the eigenstates of the model with an open
boundary condition which hosts Majorana zero modes in the topological phase.
We will also present zero modes of the Kitaev chain with phase gradient in
the pairing term and longer range couplings. This model could host Majorana
zero modes as well as ’one-sided’ zero energy fermionic state. We will study
the role of interactions on the topological phase by considering a special model
for which one can obtain the ground states exactly. Similarly, for the Z3 case,
we will present a 3-state clock model as well as a solvable model for which
the ground states are obtained exactly. We will briefly address the presence
of edge modes in these models as well.
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Introduction

Everybody in the physics community has probably heard of the 2016 Nobel
prize in Physics which was about Topological Phases of Matter [1,2], the gen-
eral concept in this licentiate. The Nobel committee in Physics has prepared
two very nice intoductory articles, namely popular information [3] as well as
advanced information [4], which we would recommend. Nevertheless, we will
give a very brief introduction to the subject as well as the outline of this
licentiate.

One of the goals of condensed matter theory is classifying phases of matter.
Let us look at the usual way of classification, namely Symmetry Breaking.
A typical example are the solid and liquid-gas phases and the phase transition
between them. The Hamiltonian for this system, say water, has a kinetic
as well as a potential term, all of which are translational invariant, so the
full Hamiltonian is as well. One could ask: Does the ground state inherit
the translational symmetry? In the liquid-gas phase the ground state is still
translational invariant, however, in the solid phase the symmetry is broken
to a subgroup of translation which is a discrete group. Put in another way,
the wavefunction of a solid is only invariant if you translate everything with a
vector of the underlying Bravais’ lattice. Therefore the symmetries of the solid
and liquid-gas phases are di↵erent and this helps us to distinguish between
them.

There are other phases or phase transitions, however, which can not be
classified by symmetry or symmetry breaking. One example is the Kosterlitz-
Thouless transition which occurs in the classical XY model in 2 dimensions [4].
From numerics people had found that the magnetic susceptibility diverges at
finite temperature [5], which is a strong signature of a phase transition. How-
ever, the Mermin-Wagner theorem excludes an ordered phase in 2 dimensions
for a model with continuous symmetry [6–8], in this case O(2). This paradox
can be solved by taking into account vortices which could appear in the model.
Each vortex is characterized by a winding number, ”the topological number”.
At high temperatures the vortices are free to move in the system. On the
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2 Chapter 1. Introduction

other hand for low temperatures vortices with opposite winding number bind
together and form a pair. Hence there is indeed a phase transition for the
vortices at finite temperature, although there is no symmetry breaking in the
system.

An other example is the Integer Quantum Hall E↵ect(IQHE) [9]. If one
measures the transverse resistance of a two dimensional electron gas subjected
to a strong perpendicular magnetic field, one will see plateaus as a function
of magnetic field. Each plateau is characterized by an integer number, n, and
the resistance is ⇢ = 1

n

h

e

2 on the plateau, where h is the Planck constant and
e is the electron charge. One can not describe these plateaus (phases) nor
the transitions between them in terms of symmetry breaking. The plateaus
are described by a topological invariant which is the Chern number of the
occupied bands(the so-called TKNN invariant) [10].

These are examples of Topological Phase Transitions. In this licentiate
we will also study models which have topological phases. We will present these
models and characterize their phases.

In chapter 2 we will present the Transverse Field Ising model(TFIM) and
study it in two limiting cases in both spin and fermionic languages. We will
show that in the spin representation, the model has ordered and disordered
phases which correspond to the topological and trivial phases respectively in
the fermionic language. The fermionic representation of the model, the Kitaev
chain, hosts Majorana zero modes(MZMs) in the topological phase [11], some
signatures of existence of which have been seen in recent experiments [12–15].
As an application of MZMs we can mention their potential usage in quantum
computation by taking advantage of their non-abelian statistics [16–18].

The Kitaev model is a non-interacting model of spinless fermions and hence
solvable for a closed chain using Fourier and Bogoliubov transformations. One
should notice that, however, MZMs appear in an open chain for which one
does not have a good quantum number like momentum in the closed chain.
This makes solving the problem harder. Nevertheless the model has been
solved in two special cases previously. We have solved the general problem
and obtained all the eigenvalues and eigenvectors and paid special attention to
characterize the MZMs wavefunctions. We have also studied the model with
next nearest hopping and superconductivity pairing which for some specific
cases shows two MZMs, namely one localized Dirac fermion, on only one side
of an open chain.

Having solved the non-interacting model, a natural question would be to
consider the role of interaction and see how much of the physics will survive
by adding it to the model. In chapter 3, we address this question by looking
at a specific interacting model which is solvable, in the sense that one can
write the ground states’ wavefunction analytically. We will briefly discuss the
notations of strong and weak zero modes in this context as well.

In chapter 3, we will also present a 3-state clock model, a generalization of
the TFIM which has Z3 symmetry. This model has not been solved except for
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the integrable lines, but it has been conjectured that it hosts Parafermionic

zero modes which are generalization of MZMs. We will also present a new
Z3 symmetric model for which we found exact ground states analytically.
This generalization is not only a theoretical and conceptual interest, but is
also required for the purpose of topological quantum computation. One can
not make all the quantum gates using MZMs and their non-abelian statistics
and ought to use a richer set of building blocks [17]. One proposal is using
parafermion zero modes [19].

In chapter 4, we will conclude and discuss the outlook of our projects.
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From The Transverse Field Ising Model To
The Kitaev Chain

2.1 Introduction

Exactly solvable models in statistical mechanics are quite fruitful. The XY
model [20] and Transverse Field Ising Model(TFIM) [21] are two insightful
examples of them. The following general Hamiltonian contains both models
in specific limits as will be shown later,

H = �
L�1X

j=1

⇣
J
x

�x
j

�x
j+1 + J

y

�y
j

�y
j+1

⌘
� h

LX

j=1

�z
j

, (2.1)

in which �↵
j

(↵ = x, y, z) are Pauli matrices, J
x

,J
y

and h are real coupling
constants and L is total number of sites. Note that the Hamiltonian has open
boundary conditions(OBC).

One can look at the model di↵erently using the Jordan-Wigner(JW) trans-
formation,

�x
j

=

"
j�1Y

k=1

(1� 2n
k

)

#
(c

j

+ c†
j

) , (2.2)

�y
j

=

"
j�1Y

k=1

(1� 2n
k

)

#
(c

j

� c†
j

)

i
, (2.3)

�z
j

= 1� 2n
j

, (2.4)

in which c
j

is a spinless fermion annihilation operator, n
j

= c†
j

c
j

and they
satisfy the usual fermionic algebra,

{c
i

, c†
j

} = �
ij

. (2.5)
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6 Chapter 2. From The Transverse Field Ising Model To The Kitaev Chain

We map the model to a non-interacting model of spinless fermions by JW
transformation,

H =
1

2

L�1X

j=1

(c†
j

c
j+1 +�c†

j

c†
j+1 + h.c.)� µ

LX

j=1

(c†
j

c
j

� 1

2
) , (2.6)

in which we defined � = 2(J
y

� J
x

), µ = �2h and we set J
x

+ J
y

= �1
2 . In

the fermionic language the model is quadratic, thus solvable.

There are two rather di↵erent viewpoints towards the model. In one view-
point one can consider spins as the basic constituents of the system, say looking
at magnetic system, and appreciate the spinless fermion representation just
as a neat trick to solve the model. In this context, the model has two phases,
ordered and disordered. In the ordered phase we have symmetry breaking and
the system shows a magnetic behavior. On the other hand in the disordered
phase spins are oriented in random directions.

In another way of thinking, one can totally forget about the spin model
and ask what would be the phases of the model if spinless fermions were the
real degrees of freedom? If the model in the spin language has two phases,
what are those in the fermionic one? Is there any order parameter?

It turns out that in the fermionic language the model has trivial and topo-
logical phases which correspond to disordered and ordered phases in the spin
language respectively. As you will see there is a topological number in-
stead of order parameter which di↵ers in these two phases. A crucial feature
of the topological phase is the presence of Majorana zero modes, which can
be thought of as ”half” of a fermion.

To show these features, first we will discuss symmetries of the model. After
that we will look at two limiting cases of the model in both spin and fermionic
languages to study the di↵erent phases. We will close this chapter by briefly
presenting our results about the model with general coupling constants and
its variations.

2.2 Symmetries

We start by explaining a nice symmetry of the model, namely particle-hole
symmetry. The claim is that H in Eq.2.1 and �H have the same spectrum.
Consider �H,

�H =
L�1X

j=1

⇣
J
x

�x
j

�x
j+1 + J

y

�y
j

�y
j+1

⌘
+ h

LX

j=1

�z
j

. (2.7)
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The spectrum of any Hamiltonian only depends on the algebra of operators in
it. Hence one can consider another representation of the SU(2) algebra [11],

�x2n�1 ! ��x2n�1, �x2n ! �x2n,

�y2n�1 ! �y2n�1, �y2n ! ��
y

2n,

�z2n�1 ! ��z2n�1, �z2n ! ��z2n . (2.8)

With this new representation we would get H back. Therefore the spectrum of
H and �H are the same. In the fermionic picture this is known as particle-hole
symmetry.

Another symmetry of the model is the Z2 symmetry. One can define a
parity operator, P =

Q
L

k=1 �
z

k

=
Q

L

k=1(�1)nk , which has two eigenvalues,
±1, since P 2 = 1 (the identity operator) and commutes with Hamiltonian,
[H,P ] = 0. In the ordered/topological phase of the model, one gets two
ground states with di↵erent parity, however, in the disordered/trivial phase
the ground state is unique and belongs to one parity sector.

Now we consider two special cases of the model, the XY model and the
TFIM.

2.3 The XY Model

The XY model corresponds to h = 0. Using JW transformation Lieb et
al [20] mapped the model to a free fermion model which is called a p-wave
superconductor in the modern terminology. Except for the fine-tuning point
J
x

= J
y

for which one gets a gapless cosine band, the spectrum is gapped and
shows magnetic behavior. We can understand this intuitively. First, note that
in this case one can always assume that J

x

, J
y

> 0. If these couplings are not
positive, we perform a canonical transformation. To see this we look at the
following example,

H
XY

=
L�1X

j=1

�|J
x

|�x
j

�x
j+1 + |J

y

|�y
j

�y
j+1 . (2.9)

Now one can transform Pauli matrices as follows,

�x2n�1 ! �x2n�1, �x2n ! �x2n,

�y2n�1 ! ��
y

2n�1, �y2n ! �y2n,

�z2n�1 ! ��z2n�1, �z2n ! �z2n . (2.10)

Performing this transformation would give the following Hamiltonian,

H
XY

= �
L�1X

j=1

⇣
|J

x

|�x
j

�x
j+1 + |J

y

|�y
j

�y
j+1

⌘
. (2.11)
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To understand the magnetic behaviour we can think about the spins in a clas-
sical sense. The first term wants to align spins along the x axis, however, the
second one wants to do so along the y axis. So depending on the magnitude
of the couplings, alignment along some direction in between should minimize
the energy. Hence it makes sense that there is an ordered phase. Note that if
we rotate all the spins by ⇡ around the z axis, we would get a configuration
with the same energy. These two solutions correspond to Spontaneous Sym-
metry Breaking phases. By this we mean that the ground state breaks the Z2

symmetry of the Hamiltonian by choosing to be in one of these two states.

2.4 The Ising/Kitaev Chain

Another insightful example is the TFIM [21], by which we can, hopefully,
explain many of the essential physics of the problem. In this case the Hamil-
tonian corresponds to J

y

= 0 in Eq.2.1,

H
TFIM

= �
L�1X

j=1

J
x

�x
j

�x
j+1 � h

LX

j=1

�z
j

. (2.12)

We note that using an appropriate canonical transformation one can always
set J

x

, h > 0. For simplicity we also set J
x

= 1 as a unit of our energy.
We start by looking at h = 0. This special point is quite simple to study

and has many features which we are searching for like doubly degenerate
ground state and MZMs. The Hamiltonian reads,

H0 = �
L�1X

j=1

�x
j

�x
j+1 . (2.13)

This Hamiltonian is already diagonal and any product state in the x-basis is
an eigenstate. The ground state is two-fold degenerate,

|G
R

i = |!i⌦L, |G
L

i = | i⌦L . (2.14)

The energy per bond is ✏
b

= �1 and all the terms in the Hamiltonian are
satisfied and have their lowest possible energy which gives total energy E0 =
�(L� 1)✏

b

= �(L� 1).
One can see that |G

R

i and |G
L

i are not parity eigenstates, though it is
possible to make common eigenstates of Hamiltonian and parity as follows,

|G, p = +1i = |!i⌦L + | i⌦L ,

|G, p = �1i = |!i⌦L � | i⌦L . (2.15)

The model, Eq.2.13, is gapped. The easiest way to have an excitation is
to create a domain wall,

|1dw
j

i =!!! · · ·!! o   · · ·   , (2.16)



2.4. The Ising/Kitaev Chain 9

in which the domain wall occurs between sites j and j + 1. We have L � 1
of these domain walls with the same energy, �E = 2 with respect to ground
state’s energy. One can also consider its Z2 partner,

|1d̃w
j

i =   · · ·  o !! · · ·!!! , (2.17)

and construct a parity eigenstates from them,

|dw
j

, p = +1i = |1dw
j

i+ |1d̃w
j

i,
|dw

j

, p = �1i = |1dw
j

i � |1d̃w
j

i . (2.18)

At this point, h = 0, one can see that the full spectrum is exactly doubly
degenerate and each state has a partner with an opposite parity.

Now it is time to introduce the Edge Operators§. Consider the following
operators,

�
A,1 = �x1 , �

B,N

=

 
L�1Y

k=1

�z
k

!
�y
L

. (2.19)

It is straightforward to check that they satisfy following properties [22]:

1) They are conserved quantities, namely [H, �
A,1] = [H, �

B,L

] = 0.

2) They are normalizable, i.e. �2
A,1 = �2

B,L

= 1.

3) They are real, i.e. �
A,1 = �†

A,1 and �
B,L

= �†
B,L

.

4) They map states with opposite parity to each other, since they anticom-
mute with the parity, {P, �

A,1} = {P, �
B,L

} = 0 ¶.

Basically in the fermionic language these two MZMs can be combined and
form a usual Dirac fermion, f0 = 1

2 (�A,1 + i�
B,L

). This fermionic state has
zero energy, since [H, f0] = 0. So all the states can be put in two classes in
one of which the zero energy state is left to be empty and in the other set it
is filled. Given a state in the former set, one can fill the zero energy state and
find another state with the same energy in the latter set. This means that not
only the ground state, but the full spectrum is doubly degenerate.

Now we look at the fermionic representation of H0 and go through some
details. The Hamiltonian reads,

H0 = �
L�1X

j=1

(c†
j

� c
j

)(c†
j+1 + c

j+1) . (2.20)

§Actually edge operators up to a string which will disappear when we consider the model
in the fermionic language. You can also find more about edge operators in the next chapter.

¶For example, �
A,1|GS, p = +1i = |GS, p = �1i.
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In general, the femionic representation of TFIM with OBC is called the Kitaev
Chain [11](Eq.2.20 is a special case of it). Now we define Majorana fermions,

�
A,j

= c
j

+ c†
j

, �
B,j

=
c
j

� c†
j

i
, (2.21)

{�
r,i

, �
r

0

,j

} = 2�
rr

0�
ij

. (2.22)

The Hamiltonian can be written in terms of Majoranas,

H0 =
L�1X

j=1

i�
B,j

�
A,j+1 . (2.23)

First of all note that �
A,1 and �B,L

do not appear in the Hamiltonian and they
commute with it. We define new fermions,

f1 =
1

2
(�

A,1 + i�
B,L

) ,

f
j

=
1

2
(�

A,j

+ i�
B,j�1) , j 2 {2, 3, . . . , L} . (2.24)

With this definition we can rewrite the Hamiltonian as,

H0 =
LX

n=2

(1� 2f †

n

f
n

) ,

= (L� 1)� 2
LX

n=2

f †

n

f
n

, (2.25)

which does not depend on f1. The ground state of H0 is doubly degenerate.
In one case one fills all the states correspond to new fermions, f

j

-fermions
in Eq.2.24. Filling the first state, n = 1, does not contribute to the energy,
although for filling any other state we lower the energy by ✏

n

= �2. Hence in
total we have E0 = 0 + (L� 1)� 2⇥ (L� 1) = �(L� 1). The neat property
is that we can also leave the n = 1 state to be empty and still get the same
energy. So there are two ground states with energy �(L � 1) which di↵er in
number of fermions, in other words they have di↵erent parity, P

F

= (�1)Nf .
We were successful in deriving the same result as in the spin language.

The fascinating feature is that the f1 state includes Majoranas from both
edges, half of it lives on the left edge and the other half on the right one. As
we will see in next sections, such a non-local state is always present in the
topological phase and can be viewed as a topological qubit. The di↵erence
between the two states of the qubit lies in whether the n = 1 state is filled
or not. Furthermore such a qubit is immune to perturbations in the bulk,
however, one can change it by operations on the edges.
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Now we move on and study the other limiting case. For h � J
x

in Eq.
2.12 we can drop the first term and study the second term,

H
1

= �h
LX

j=1

�z
j

. (2.26)

The ground state of this model is unique and it depends on the direction
of magnetic field. For h > 0, the ground state is | "i⌦L. In this case the parity
of the ground state is, p = (+1)L = +1. For h < 0 the ground state is | #i⌦L.
In this case, contrary to the previous case, the parity does depend on the
number of sites, p = (�1)L, which is +1 for an even number of sites and �1
for an odd number of them. Apart from these details, the important feature
is the uniqueness of the ground state. No matter whether one has even or
odd number of sites, no matter h is positive or negative, the ground state

is unique. This is the paramagnetic or disordered phase§. This phase is also
gapped, as one can see for h > 0 the easiest excitation is flipping one spin
which gives rise to +2h energy with respect to the ground state energy and
this shows that the paramagnetic phase is also gapped.

The full Hamiltonian of the TFIM with OBC, 2.12, is also solvable by
means of the JW transformation which maps the magnetic field term to a
chemical potential term in the fermionic language. This is not an easy task
due to lack of a good quantum number like momentum for a closed chain.
Nevertheless, Lieb et al [20] came up with a method which is essentially a
Bogoliubov transformation in real space. This transformation introduces a
label for each state which plays the role of momentum for an open chain. One
can write all the wavefunctions in terms of this label. The allowed values of
this label should be found by boundary conditions which naturally appear in
the equations. Pfeuty used this method and solved the TFIM [21]¶ .

The TFIM has two phases and we have studied a simple representative
Hamiltonian in each phase. The behaviour which has been explained for
h = 0, is true for all values of magnetic field satisfying |h| < |J

x

|. In this
regime of parameters the system has two degenerate ground states in the
thermodynamic limit, however, for any finite system size there are two almost
degenerate ground states, the energy splitting of which, ", is exponentially
small in the system size, " ⇠ e�L/⇠ with ⇠ > 0. These two ground states
are separated by finite energy gap, �, from the rest of the spectrum, "⌧ �.
Moreover, the spectrum can be divided to two sectors with di↵erent parities
and each state has a partner with opposite parity in an |"| window around it.

The model with OBC has two MZMs localized on the edges with a tail in
the bulk. For h = 0 we just had �

A,1 on the left edge. Turning on h will result

§Note that the order parameter is h�x

j

i which is zero.
¶We solved the full model 2.1 using the same method as well.
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in having new terms in the bulk,

�
L

=
1

N

"
�
A,1 +

h

J
x

�
A,2 +

✓
h

J
x

◆2

�
A,3 + . . .

#
, (2.27)

in which N is for normalization, �2
L

= 1. One can see that this operator is
normalizable for | h

J

x

| < 1, which is the topological phase. At the critical point,
|h| = |J

x

| the model becomes gaplees . For |h| > |J
x

| we are in the disordered
phase of the model and expect no MZM at all. The fact that the operator,
�
L

, is not normalizable in this regime confirms our prediction.
Due to the di�culties of solving the probelm with OBC it is natural to

ask how one can determine the presence of the zero mode in an open chain
by looking at the closed one which is easy to solve. Note that solving the
problem on a ring will give us a clue about the presence or absence of the
MZM if one opens the chain, but it does not give us neither wavefunctions
nor the localization length of MZM [11]. Should you need details of MZMs,
there is no other option rather than solving the problem with OBC.

Therefore we close this section by presenting an easy and useful method
to determine whether the system is in the topological or trivial phase Using
a Fourier transformation, c

k

= 1
L

P
k

eikjc
j

, we can write the Hamiltonian of
the Kitaev chain on a ring,

H
C

=
1

2

X

k

(c†
k

, c
�k

)

✓
2h� 2J

x

cos k �2iJ
x

sin k
2iJ

x

sin k 2J
x

cos k � 2h

◆✓
c
k

c†
�k

◆

=
1

2

X

k

 †

k

H
k

 
k

, (2.28)

in which  
k

= (c
k

, c†
�k

)T and values of k depends on the periodic or anti-
periodic boundary condition. We can rewrite H

k

in terms of Pauli matrices,
⌧ which act on the  

k

space,

H
k

= h(k) · ⌧ ,
h(k) = (0, 2J

x

sin k, 2h� 2J
x

cos k) . (2.29)

If one considers the thermodynamic limit the wavevector k spans the full [0, 2⇡]
interval as opposed to a finite set of points. Therefore one can ask how many
times does h(k) wind around the origin in the z � y plane if one changes k
from 0 to 2⇡? Let us first look at limiting cases. For h = 0 the vector winds
once around the origin§, however, for |h| � |J

x

| the vector is far from the
origin and does not wind at all. Thus in the topological phase the winding
number is ±1 and it is 0 in the trivial phase. The winding number is an integer

§Whether it is clockwise or anticlockwise depends on the sign of J
x

and how one defines
the axes.
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and it can only change when the gap closes, namely |h| = |J
x

|. Although the
winding number is defined for the closed chain, it has also a meaning for the
open chain. In the topological phase, the non-zero winding number tells how
many MZMs one gets on the edges of an open chain. In our example, the
winding number is 1 in the topological phase and as we have seen there is one
MZM on each edge§. In the trivial phase the winding number is 0 and there
is no MZM at all!

2.5 The paper in almost plain English

In this section we give a short summary of our results, details of which can be
found in the paper.

The XY model and TFIM both were solved for an open chain [20, 21]
based on which one can deduce the wavefunctions of the MZMs. Using the
same method as previous studies, we solved the full model for an open chain
analytically. We present all the eigenvalues and wavefunctions, specially for
the MZMs in the topological region. Here is the brief version of it.

We want to solve the full Hamiltonian in Eq.2.6,

H =
1

2

L�1X

j=1

(c†
j

c
j+1 +�c†

j

c†
j+1 + h.c.)� µ

LX

j=1

(c†
j

c
j

� 1

2
) .

Solving the model on a ring is straight forward since it can be mapped to a
quadratic Hamiltonian, H

C

, in Eq.2.28 but finding the excitations with OBC
is not an easy task as it was for the case J

y

= h = 0, since the momentum is not
a good quantum number for an open chain. As we mentioned earlier, another
method has been used by Lieb et al [20] (LSM method) to solve the XY model
and can be used here as well. Though applying it for the current problem is
not straightforward, understanding the general idea is rather simple.

In the periodic case one uses a Bogoliubov transformation to diagonalize
the Hamiltonian, Eq.2.28, and allowed values of momentum can be fixed by
the boundary condition, either periodic or anti-periodic. The same strategy,
though with a little bit more calculation, works for an open chain as well.

The dispersion relation for the full model on a ring is,

!2
k

= (µ� cos k)2 +�2 sin2 k . (2.30)

To solve the problem with OBC, one considers a Bogoliubov-like trans-
formation in real space which diagonalizes the Hamiltonian. Crucially, one
assumes that the functional form of the dispersion relation is still the same,

§In principle one could have as many Majorana as desired. We will look at one such
example in next section details of which is presented in the paper.
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though one needs to use a new label, say ↵, which takes the roll of momentum,

⌘
↵

=
LX

i=1

(g
↵,i

c
i

+ h
↵,i

c†
i

), (2.31)

H =
LX

↵=1

⇤
↵

⌘†
↵

⌘
↵

, ⇤
↵

> 0 , (2.32)

⇤2
↵

= (µ� cos↵)2 +�2 sin2 ↵ , (2.33)

in which g
↵,i

and h
↵,i

are two functions which should be determined. Note
that there could be some constant energy term in the Hamiltonian which can
be neglected and the transformation is canonical, so ⌘

↵

operators satisfy the
usual spinless fermionic algebra. We used the LSM method and derived the
wavefunctions, g

↵,i

and h
↵,i

, and an equation that fixes the possible values
of ↵. Therefore we have determined all the states ananlytically, namely all
wavefunctions and their corresponding energy, for arbitrary � and µ. In what
follows we focus on the ground state and MZMs.

Δ

μ

�������

�����������

�

�

�

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 2.1: Phase diagram for Kitaev chain. For |µ| < 1 system is in the
topological phase which itself divided to three regions, A, B and C, due to
di↵erences in Majorana zero mode’s wavefunction.

We summerize the phase diagram and MZM’s wavefunctions in Fig. 2.1
§. At the origin � = µ = 0 and the µ-axis we have a simple cosine band

§Based on either a gauge transformation or mapping solutions to each other, as is ex-
plained in the paper, one can show that studying �, µ > 0 is su�cient.
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and the �-axis is the XY model. The TFIM has � = 1 and is depicted by
the red dashed line. The line µ = 1 is a gapless line which is described by
theIsing CFT [24]. For µ > 1 the system is in the trivial phase, hence there is
no MZM at all. We divide the µ < 1 region, the topological phase, to three
parts, A, B and C, each of which has its own MZM’s wavafunction. In the
paper we explain details of the calculation and present all the wavefunctions.
Here as an example, one can find the left MZM’s wavefunction in region B
where � < 1 and

p
1��2 < µ < 1,

�
L,↵

⇤ =
1

N

LX

n=1

e
�

n

⇠1 sinh(
n

⇠2
)�

A,n

, (2.34)

cosh
1

⇠1
=

1p
1��2

, cosh
1

⇠2
=

µp
1��2

, (2.35)

↵⇤ = i(
1

⇠1
+

1

⇠2
) , (2.36)

in which N is a normalization constant. It is clear that this MZM is localized
on the left edge and it is a zero mode indeed, i.e. ⇤

↵

⇤ = 0.
We have also studied the model with longer range couplings [25,26]. This

gives us the possibility of having more MZMs on each edge since topological
phases of superconductors with time-reversal and particl-hole symmetry, i.e.
class BDI, in one dimension are classified by Z [27]. Following Niu et al [25]
we consider a Hamiltonian with equal hopping and pairing couplings,

H =
t

2

L�1X

j=1

(c†
j

c
j+1 + c†

j

c†
j+1 + h.c.)

+
�

2

L�2X

j=1

(c†
j

c
j+2 + c†

j

c†
j+2 + h.c.)

� µ
LX

j=1

(c†
j

c
j

� 1

2
) . (2.37)

where � is the next nearest neighbor(NNN) hopping and pairing amplitude.
We perform the Fourier transformation which allows us to compute the phase
diagram using winding number method,

H
C

=
1

2

X
 †

k

H
k

 
k

,

H
k

= [�t sin(k)� � sin(2k)]⌧y

+ [t cos(k) + � cos(2k)� µ]⌧ z . (2.38)

The phase diagram is given in Fig.2.2. The gap closes when � = µ± t and
� = µ for |t| < 2|µ|. At the origin we only have chemical potential so it is
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natural to be in the trivial phase where there is no MZM. For large NN terms,
|t| � |�|, |µ|, we retrieve the special point of the Kitaev chain as discussed
in the previous section for which the model hosts one MZM on each end. In
the other limit, |�| � |t|, |µ|, we would get two decoupled Kitaev chains, one
for odd sites and one for even sites. Therefore in this limit two MZMs live
on each edge. The Interested reader can find the MZM wavefunctions in both
topological phases in the paper.

λ

�

�

�

�

�

�

-4 -2 2 4

-4

-2

2

4

Figure 2.2: Phase diagram for Kitaev chain with NNN terms for µ = 1. The
numbers in the plot show the number of Majorana zero modes at each end of
the chain. The red lines separate regions in which the wavefunctions of the
MZMs behave di↵erently as explained in the paper.

Now one could ask what would happen if we break the time-reversal sym-
metry? Well, form the classification scheme [27] we know that in this case
the phases are classified by Z2 which means that at most one could get one
MZM on each edge. Sticlet et al [26] considered a special example, a chain
with constant phase gradient in the pairing term,

H =
t

2

L�1X

j=1

(c†
j

c
j+1 + eijr✓c†

j

c†
j+1 + h.c.)

+
�

2

L�2X

j=1

(c†
j

c
j+2 + eijr✓c†

j

c†
j+2 + h.c.)

� µ
LX

j=1

(c†
j

c
j

� 1

2
) , (2.39)

in which r✓ is phase gradient. To proceed it is convenient to use our freedom
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and transform operators as c
j

! eij
r✓

2 c
j

which results in,

H =
t

2

L�1X

j=1

(ei
r✓

2 c†
j

c
j+1 + e�i

r✓

2 c†
j

c†
j+1 + h.c.)

+
�

2

L�2X

j=1

(eir✓c†
j

c
j+2 + e�ir✓c†

j

c†
j+2 + h.c.)

� µ
LX

j=1

(c†
j

c
j

� 1

2
) . (2.40)

In this Hamiltonian, although the hopping is also complex, all couplings are
constant.

An interesting observation by Sticlet and colleagues was that in a finite
region of the couplings one gets two MZM on one edge, say one localized Dirac
fermion with zero energy on the left edge whereas there is no MZM on the
right side. There is an easy way to see this for a special case, r✓ = ⇡ and
µ = 0§,

H =
t

2

N�1X

j=1

i�
B,j

�
B,j+1 +

�

2

N�2X

j=1

i�
B,j

�
A,j+2 , (2.41)

in which �
A,1 and �

A,2 do not enter the Hamiltonian, however, �
B,L�1 and

�
B,L

do appear.

This can not be related to topology. The system is in the trivial phase,
because if it was in the topological phase, it would host a MZM on both edges
not only on one of them. In other words, if the system was in the topological
phase, the topological number, say the winding number, would change when
one enters the vacuum from each end of the chain, hence something should
happen on both ends in topological phase not only one of them!

As we show in the paper, for the Hamiltonian in Eq.2.40, one gets the same
phase diagram as Fig.2.2, if one replaces t ! t cos

�
r✓

2

�
and � ! � cosr✓.

This shows that if one calculates the winding number, the resulting numbers
would be the same. We should, however, read everything modulo 2 since in
this case by breaking time-reversal symmetry we are in class D for which
phases are classified by Z2 [27]. This means that any 2 in Fig.2.2, now with
e↵ective couplings, should be translated to 0 which is the trivial phase, though
1 still indicates the topological phase.

The root of one-sided zero energy fermionic mode is the fine-tuning of the
couplings. To understand this phenomena we start by looking at the case
with � = 0. In this case one can calculate the wavefunction of MZMs (setting

§By looking at Eq.2.39 one can see that for this point the Hamiltonian has time-reversal
symmetry though couplings are staggered.



18 Chapter 2. From The Transverse Field Ising Model To The Kitaev Chain

t = 1),

�
L

= L
n=NX

n=1

h µ

cos(r✓

2 )

i
n

�
A,n

, (2.42)

�
R

=R
n=NX

n=1

h µ

cos(r✓

2 )

i
N�n+1

[sin(
r✓
2

)�
A,n

+ cos(
r✓
2

)�
B,n

], (2.43)

in which L and R are normalization constant necessary to satisfy �2
L

= �2
R

= 1.
We should mention that �

L

lives on the left edge, �
R

lives on the right edge and
the topological phase is shrunk to the region |µ| < | cos(r✓

2 )| in comparison
to |µ| < 1 which is the case for r✓ = 0. The crucial di↵erence here is that �

L

does only depend on �
A,n

, but �
R

has contributions from both �
A,n

and �
B,n

.
Now we write the full Hamiltonian, Eq.2.40, in terms of Majorana fermions:

H = � t

2
cos(
r✓
2

)
N�1X

j=1

i�
B,j

�
A,j+1

+
t

2
sin(
r✓
2

)
N�1X

j=1

i�
B,j

�
B,j+1

� �

2
cos(r✓)

N�2X

j=1

i�
B,j

�
A,j+1

+
�

2
sin(r✓)

N�2X

j=1

i�
B,j

�
B,j+1

� µ

2

NX

j=1

i�
A,j

�
B,j

. (2.44)

We can understand the phenomena with the following picture. If we start
from t = 0, we would have two decoupled chains with a phase gradient. By
looking at Eq.2.44 we see that by turning on t which couples two chains, �

B

at di↵erent sites starts to talk with each other. Since �
R

from these two
chains have �

B

contributions, they start to talk as well and hence they will be
gapped out. The �

A

operators, however, are not coupled. Therefore two �
L

operators can survive, though with a modified wavefunction. The fine-tuning
of parameters ensures that the Hamiltonian is free of terms like �

A,n

�
A,n+1

and this assures that two MZMs survive on the left side. In the paper by
solving equations which govern MZMs, resulting in analytical wavefunctions,
we show how one can derive the e↵ective phase diagram as well as MZMs’
wavefunctions.



3

Zero Modes Of Interacting Models

3.1 Introduction

In the previous chapter we were studying a free model. The natural question
is what does happen if one adds interactions to the model? Will there be any
topological phase? Will MZMs survive?

Here we will look at one example§, for which one can find the ground states
exactly. The model is gapped and it has a doubly degenerate ground state with
di↵erent parities [30–32], for which people generally call them topological.

Obtaining MZM wavefunctions is not as easy as in the non-interacting
case. One way to construct MZMs is by using perturbation theory, as Fendley
did previously for the TFIM, clock models [22] and the XYZ spin chain [33].
To construct MZM with perturbation for the TFIM, Fendley started from the
h = 0 case for which we know the MZM, namely �

A,1. Most importantly
we have [�

A,1, HTFIM

|
h=0] = 0. Now we can turn on the magnetic field and

calculate [�
A,1, HTFIM

] = 2ih�
B,1, which is first order in h. In the next step

one can consider � = �
A,1 + h�

A,2, for which we have [�, H
TFIM

] = O(h2).
It is possible to continue this procedure step by step and at the n � th step
find an operator such that its commutator with the Hamiltonian is O(hn).
Moreover one can see that this operator is normalizable. Fendley constructed
the edge zero modes of XYZ model, which is an interacting model though
integrable, using this perturbative method. The neat feature is that the edge
operator is only normalizable within the ordered/topological phase. The direct
implication of the presence of such an operator is the two-fold degeneracy of
the full spectrum of the model with open boundary condition.

Fendley did the same type of perturbative calculation for the clock models
as well [22] based on which he proposed that these models also have edge zero
modes, though in this case they are Parafermions due to which one gets a
three-fold degeneracy in the full many-body spectrum [19, 22]. For instance,

§In one dimension we know that for BDI class the Z classification reduces to Z8 [28,29].

19
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in the 3-state chiral Potts model, one would get a triple degeneracy in the full
spectrum, all the way to highest excited state. If such an operator exists, like
what we mentioned for the TFIM and XYZ models, we say that the model
has a Strong Zero Mode. On the other hand a new study claims that due to
appearance of resonances the strong zero mode can only exist in very specific
points of chiral model [34].

Another way to approach the problem is by focusing on the ground state
subspace and find an operator such that it changes the parity and maps dif-
ferent ground states to each other. Katsura et al [31] took this way and adi-
abatically connected an interacting model to a free one such that the ground
state remained the same. In the free model one can calculate the MZM eas-
ily. Therefore one has MZMs such that only connect the ground states of the
interacting model, which is called Weak zero mode.

In this chapter we will first look at an example of an interacting Z2 sym-
metric model and present the ground states as well as the weak zero modes.
After that we will propose a Z3 symmetric model for which the ground state
is three fold degenerate and known exactly. This work is in the progress and
we are exploring di↵erent aspects of it.

3.2 ”Have you looked a two-site problem?”

As a Z2 symmetric model we study the TFIM and add a nearest neighbour
interaction as follows,

H =
L̃X

j=1

h
j,j+1 ,

h
j,j+1 = ��x

j

�x
j+1 +

h

2
(�z

j

+ �z
j+1) + U�z

j

�z
j+1 , (3.1)

in which U is a new coupling constant and L is the number of sites. For
an open chain L̃ = L � 1, however, for a closed chain L̃ = L. From the
JW transformation one finds that this Hamiltonian describes fermions with
n
j

n
j+1 interaction. Note that for a closed chain all the spins have the same

magnetic field, h, but in the open chain, the first and the last spin have a
magnetic field half the value of the magnetic field for the bulk spins. We do
not expect that this modification on the edges changes the phase diagram of
the model, however, it does change details of ground states and edge modes.

For h = U = 0 we know that |!i⌦L and | i⌦L are eigenstates. One can
ask that if it is possible to tune couplings to have product states as the ground
states? To show that the answer is positive we follow Katsura et al [31] §.

§In the original paper by Peschel and Emery, an other method was used.
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We consider the two-body Hamiltonian and we note that parity is a good
quantum number. In the even sector we have,

| ""i | ##i

he
j,j+1 =

✓
U + h �1
�1 U � h

◆
. (3.2)

The lowest eigenestate of this Hamiltonian is,

✏
e

= U �
p
1 + h2, | 

e

i ⇠ | ""i+
⇣
h+

p
1 + h2

⌘
| ##i . (3.3)

In the odd sector we have,

| "#i | #"i

ho
j,j+1 =

✓
�U �1
�1 �U

◆
. (3.4)

The lowest eigenestate in this case is,

✏
o

= �U � 1 | 
o

i ⇠ | "#i+ | #"i . (3.5)

Now we demand two things. First of all the two eigenvalues should be
equal, and second we should be able to write down some combination of eigen-
vectors such that it becomes a product state. The first constraint is,

✏
e

= ✏
o

,

) 2U + 1 =
p
1 + h2 . (3.6)

This equation shows that the sign of h is not important, but U should be
positive. This can be easily understood by considering the following transfor-
mation,

�x
j

! �x
j

,

�y
j

! ��y
j

,

�z
j

! ��z
j

. (3.7)

This transformation only changes the sign of magnetic field in the model.
We need to check the second condition as well,

| 
e

i+ x| 
o

i = (| "i+ ↵| #i)⌦ (| "i+ ↵| #i) , (3.8)

in which x and ↵ are unknown.
One can check that both requirements, Eqs.3.6 and 3.8, can be satisfied

by the following choice,

U =
1

2
[cosh(l)� 1] , h = sinh(l) , (3.9)

x = ↵2 = el, l � 0 . (3.10)
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This means that there is a one parameter line in the h � U plane for which
the ground state is doubly degenerate,

| +(l)i = (| "i+ ↵| #i)⌦L, | �(l)i = (| "i � ↵| #i)⌦L , (3.11)

in which and from now on ↵ = el/2. This line is known as the Peschel-

Emery(PE) line [30]. Note that these are the ground states for an open as
well as a closed chain, by construction.

One can construct parity eigenstates as well,

|P = ±1(l)i = | +(l)i± | �(l)i . (3.12)

Using the JW transformation one can write these wavefunctions in the
fermionic language for an open chain [31],

| ±i = (| "i± ↵| #i)⌦L

=
⇥
1± ↵��1
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L

1

A��
L

3

5 | "i⌦L

= (1± ↵c†1)(1± ↵c†2) . . . (1± ↵c†
L�1)(1± ↵c†

L

)|0i⌦L

= e±↵c

†

1e±↵c

†

2 . . . e±↵c

†

L�1e±↵c

†

L |0i⌦L , (3.13)

in which �� = (�x� i�y)/2. Now it is evident that |P = +1i has even number
of fermions and |P = �1i has odd number of them, just like what we had in
the TFIM.

It can be shown that the weak zero mode for an open chain which lives on
the left side is the following operator,

W
L

=
1p

1 + q2 + · · ·+ q2(L�1)

LX

n=1

qn�1

0

@
n�1Y

j=1

�z
j

1

A�x
n

, (3.14)

q =
1� ↵2

1 + ↵2
. (3.15)

One can see that |q| < 1 which ensures that the operator is localized on the

left edge. This operator is a Majorana operator, W †

L

= W
L

and W 2
L

= 1, and
maps ground states with di↵erent parities to each other exactly.

3.3 The Paper in Plain English

We have asked how one can generalize the PE line to other models? Is it
possible to have it for spin-S chains? Is it possible to have it for clock models
which have not been solved yet, except for the integrable cases?
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Previously the spin-S generalization of PE line has been discussed [35–37].
We found the exact and compact form of ground states and edge modes. The
Hamiltonian for each link for spin-S model is,

hS�PE

j,j+1 = �Sx

j

Sx

j+1 +
h(l)

2
S
�
Sz

j

+ Sz

j+1

�
+ U(l)Sz

j

Sz

j+1 , (3.16)

where S↵ form the spin-S representation of SU(2) algebra and one uses the
same h(l) and U(l) as in Eq.3.9. In this case the Z2 symmetry is the parity

of the magnetization, P
M

=
Q

L

j=1 e
i⇡(S�S

z

j

). One can see that the first term
either does not change the magnetization or change it by two, hence the parity
of magnetization is a conserved quantity. The ground states are,

| ±

S

(l)i =
⇣
e±↵S

� |Si
z

⌘
⌦L

, (3.17)

where as before ↵ = exp(l/2), |Si
z

is the S
z

= S eigenstate and the energy
per bond is, ✏

S

(l) = �S2(U(l) + 1) §.
We mention that we found some exact excited states for this model for all

values of S. These states have energy �E = 2S. In the case of S = 1
2 we

obtained some additional states. One can find all of these states in the paper.
We have also considered the generalization to the 3-state clock model. For

clock-like models it would be fruitful to have a model for which at least the
ground state is known exactly as is the case for the AKLT model [38, 39].

We need to define the basic operators for the 3-state clock model. We can
think of �z as an operator which has square roots of 1 as its diagonal elements,
so we define Z to have cube roots of 1,

Z =

0

@
1 0 0
0 ! 0
0 0 !̄

1

A , (3.18)

in which ! = exp(2⇡i3 ). To generalize �x the best way is considering it as spin
flip which changes to a shift operator,

X =

0

@
0 1 0
0 0 1
1 0 0

1

A . (3.19)

It is staright forward to check that Z3 = X3 = 1 and XZ = !ZX.
Now we can define the corresponding transverse field model, known as

Potts or Clock model,

H = �
L�1X

j=1

(X†

j

X
j+1 + h.c.)� f

LX

j=1

(Z†

j

+ h.c.) . (3.20)

§For spin- 12 this Hamiltonian is 1
4 of the the Hamiltonian in Eq.3.1.
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It is known that for |f | < 1 this model has 3 degenerate ground states and for
|f | > 1 it has a paramagnetic phase. An easy way to see this is using duality
transformation.

Fendley suggested [22] that the chiral Potts model in which X†X !
ei✓X†X for real ✓ hosts parafermionic edge zero modes with localization
length of the order of f/ sin(3✓), which makes the whole many-body spec-
trum triply degenerate; just like MZMs! However, as we mentioned earlier, a
recent study [34] shows that the only candidate point to be able to have such
three fold degenerate spectrum is ✓ = ⇡/6 for which Fendely’s calculation also
shows the best localization on the edges.

Our goal is to modify the Potts model and come up with an analogue of
the PE line. The Potts model, even the chiral one, has Z3 symmetry, namely
the parity P =

Q
L

j=1 Z which commutes with the Hamiltonian. Since P 3 = 1

, we can assign a parity to each state, P = !Q where Q could be 0, 1 and 2.
We want to keep this symmetry, add some terms and find a manifold-which
turns out to be a line- such that the ground state is three fold degenerate and
has a product state form. We borrow our knowledge from the PE line and
add ZZ and ZZ† terms - in analogy with �z�z term- which respect the Z3

symmetry as follows,

H =
X

j

h
j,j+1 ,

hZ3
j,j+1(r) =�X†

j

X
j+1 � f(r)(Z

j

+ Z
j+1)

� g1(r)Zj

Z
j+1 � g2(r)Zj

Z†

j+1 + h.c. . (3.21)

Demanding for a product state gave us a line parametrized with r > 0,

f(r) = (1 + 2r)(1� r3)/(9r2) , (3.22)

g1(r) = �2(1� r)2(1 + r + r2)/(9r2) , (3.23)

g2(r) = (1� r)2(1� 2r � 2r2)/(9r2) . (3.24)

Along this line the model has three degenerate ground states,

|G0(r)i = (|0i+ r|1i+ r|2i)⌦L , (3.25)

|G1(r)i = (|0i+ r!|1i+ r!̄|2i)⌦L , (3.26)

|G2(r)i = (|0i+ r!̄|1i+ r!|2i)⌦L , (3.27)

with the energy per bond ✏
b

(r) = �2(1 + r + r2)2/(9r2). As was the case for
the PE line we can also combine these states to have eigenstates with definite
parity,

|Q = 0i = |G0(r)i+ |G1(r)i+ |G2(r)i (3.28)

|Q = 1i = |G0(r)i+ !̄|G1(r)i+ !|G2(r)i (3.29)

|Q = 2i = |G0(r)i+ !|G1(r)i+ !̄|G2(r)i . (3.30)
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Finally we note that for this model we have also found edge operators
which are normalizable though they are not parafermions, as well three exact
excited states with energy ✏(r) + 2 + r. For details we refer to the paper.
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Conclusion and Outlook

We have looked at free and interacting models of fermions with Z2 symmetry.
We have found the MZM’s wavefunction for the Kitaev chain as well as the
weak zero mode of an interacting Z2 symmetric chain. However, it is still
interesting to know if there is a strong zero mode for these interacting models.
Fendley found an example of it for the XYZ chain [33], which is an integrable
model. We have been working on a non-integrabel model, namely the TFIM
with an interaction, which could make the problem di↵erent. Nevertheless, we
have seen some features of strong zero mode along the PE line in numerics. For
instance, we have seen that the spectrum is almost doubly degenerate up to the
highest excited states as well as long-time correlation of edge magnetization
[40]. On the other hand we have an argument which shows that the very
highest excited states of the model can not be doubly degenerate for s larger
than some critical value. If these turn out to be true, the model shows an
eigenstate phase transition, which means that up to some crititcal value of s
along the PE line the full spectrum is doubly degenrate, and after that there
will be always some states which do not have a partner with the opposite parity
and the same energy. To address these questions, we are limited by finite
size e↵ect. A natural step would be using Density Matrix Renormalization
Group(DMRG), which works very well in one dimension.

Other directions which we are considering to work on are finding the weak
zero mode of the Z3 symmetric model and finding an analogue of PE line
in the anyonic chains. Furthermore, it would be interesting to study these
systems in higher dimensions, specially two dimensions.
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Zero modes of the Kitaev chain with phase-gradients and longer range couplings

Iman Mahyaeh and Eddy Ardonne
Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

(Dated: September 5, 2017)

We discuss the structure of the zero-modes of the Kitaev’s one-dimensional p-wave superconductor,
in the presence of both phase gradients and longer range pairing and hopping terms. As observed by
Sticlet et al., one feature of such models is that for certain parameters, zero-modes can be present
at one end of the system, while there are none on the other side. We explain the presence of this
feature analytically, and show that it requires some fine-tuning of the parameters in the model.
Thus as expected, these ‘one-sided’ zero-modes are neither protected by topology, nor by symmetry.

I. INTRODUCTION

A characteristic feature of many topological phases is
the presence of gapless boundary modes. The (fractional)
quantum Hall states are a prime example1–3, and their
boundary modes provide strong evidence of the topo-
logical nature of these states. Another prime example
is the Kitaev chain, whose topological p-wave supercon-
ducting phase features so-called ‘Majorana zero modes’
at its boundary4 Trying to establish the existence of the
topological phase is often done by trying to establish the
presence of the boundary modes. This has led to strong
evidence for the topological phase in for instance strongly
spin-orbit coupled nano-wires that are proximity coupled
to an s-wave superconductor in the presence of a mag-
netic field5–9, or in chains of magnetic ad-atoms10–13. It
has been proposed that the zero energy Majorana bound
states can be used as topologically protected q-bits, for
quantum information processing purposes14,15. By now,
there exist various proposals to manipulated these q-
bits, either in T-junction systems, in which the Majorana
bound states can be braided explicitly16, or in Josephson
coupled Kitaev chains, in which the coupling of the var-
ious chains allows operation on the q-bits17.

Despite the intense research on the Kitaev chain mod-
els, there are still interesting features that deserve atten-
tion. In this paper, we look into one of them. It was
observed by Sticlet et al.18, that the zero-modes of Ki-
taev chains carrying a current, i.e., in the presence of a
gradient in the phase of the order parameter, have inter-
esting properties. The most striking feature is that is it
possible that at one edge of the chain, there is pair of
Majorana bound states (or better, one ‘ordinary’ Dirac
zero mode), while there is no zero mode at the other end
of the chain. Clearly, from a topological point of view,
this means that the chain is in a trivial phase, but it is
nevertheless worthwhile to investigate these zero-modes
further. In this paper, we explain the presence of these
zero-modes, via an exact solution of the zero modes of an
extended Kitaev chain, i.e., in the presence of both com-
plex and next nearest-neighbor hopping an pairing terms.
We show that it is necessary to fine tune the couplings in
order that these ‘one-sided Dirac modes’ to exist, but un-
der these fine-tuned conditions, they can only disappear
if the system undergoes a phase transition. Dropping

the fine-tuning will gap out these zero modes immedi-
ately, leaving behind low-energy subgap modes. Apart
from the analytical solution of the zero modes, we also
present the solution of the full spectrum of the open Ki-
taev chain, for real, but otherwise arbitrary parameters,
which does not seem to have appeared in the literature
before.
The outline of the paper is as follows. We start

in Sec. II by a brief review of the Lieb-Schultz-Mattis
method to solve open quadratic fermionic systems, and
focus on the case of complex couplings, which is essential
for our purposes. In Sec. III, we provide the full solution
of the open Kitaev chain, with real, but otherwise arbi-
trary couplings. In Sec. IV, we study the e↵ect of next
nearest-neighbor and complex couplings. Here, we focus
entirely on the exact solutions for the zero-modes, and
start by considering the e↵ects of next nearest-neighbor
couplings and complex pairings separately, before coming
to the most interesting case, when both are present. In
Sec. V, we discuss the result of the paper. Some details
are delegated to the appendices.

II. THE LIEB-SCHULTZ-MATTIS METHOD

In this paper, we study the zero modes of Kitaev-like
chains in the presence of longer range hopping and pair-
ing terms. In particular, we are interested in the case
where these couplings are complex. To study these sys-
tems, we use the method has been introduced by Lieb,
Schultz and Mattis (LSM)19 who used it, amongst other
things, to solve the XY chain, for various types of bound-
ary conditions. For a quadratic fermionic Hamiltonian
with periodic boundary conditions (PBC), one diagonal-
izes the Hamiltonian by using a Fourier transformation,
followed by a Bogoliubov transformation in the case of su-
perconducting model. Without translational invariance
one can still perform a Bogoliubov like transformation
directly in real space. It was this method that LSM used
to find the spectrum of the open XY chain (after using
a Jordan-Wigner transformation to transform the spin
degrees of freedom to polarized fermions).
In this section we review the LSM method and follow

their notation for convenience. We consider two di↵er-
ent cases. First, we look at the Hamiltonian with real
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couplings and recall how one can derive the spectrum of
the model analytically. Second, for a general quadratic
Hamiltonian with complex couplings we present the equa-
tions governing the zero mode solutions, which we use
throughout the paper.

Following LSM19, we consider the general quadratic
Hamiltonian of polarized fermions as follows,

H =
N

X

i,j=1

c†
i

A
ij

c
j

+
1

2
(c†

i

B
ij

c†
j

+ h.c.), (1)

in which c
i

is a fermion annihilation operator on site i,
A is a hermitian matrix, B is an antisymmetric matrix
and N is the number of sites. Using a Bogoliubov like
transformation, one can define new fermion operators,
and diagonalize the Hamiltonian:

⌘
↵

=
N

X

i=1

(g
↵,i

c
i

+ h
↵,i

c†
i

), (2)

H =
N

X

↵=1

⇤
↵

⌘†
↵

⌘
↵

, (3)

in which ↵ labels the states and g
↵,i

and h
↵,i

are two
functions, which are to be determined. This transforma-
tion is canonical, in the sense that new operators obey
the fermionic anti-commutation relations, i.e. {⌘

↵

, ⌘†
�

} =
�
↵�

.
Using the equation of motion, [H, ⌘

↵

] = �⇤
↵

⌘
↵

, one
finds the equations for g

↵,i

and h
↵,i

:

h
↵,i

B⇤
ij

� g
↵,i

A
ij

= �⇤
↵

g
↵,j

, (4)

h
↵,i

A⇤
ij

� g
↵,i

B
ij

= �⇤
↵

h
↵,j

. (5)

In order to find the full spectrum of the Hamiltonian,
we now consider the case for which A and B have real
elements. In this case, one defines new variables as

�
↵,i

= g
↵,i

+ h
↵,i

, (6)

 
↵,i

= g
↵,i

� h
↵,i

, (7)

which we combine into row vectors, �
↵

=
(�

↵,1

, . . . ,�
↵,N

) and  
↵

= ( 
↵,1

, . . . , 
↵,N

). Sum-
ming and subtracting Eqs.(4) and (5) gives two coupled
equations for �

↵

and  
↵

,

�
↵

(A�B) = ⇤
↵

 
↵

, (8)

 
↵

(A+B) = ⇤
↵

�
↵

. (9)

We note that the matrices act from the right side on the
vectors. By acting with A + B on Eq.(8) and A � B on
Eq.(9) from the right, the equations decouple

�
↵

(A�B)(A+B) = ⇤2

↵

�
↵

, (10)

 
↵

(A+B)(A�B) = ⇤2

↵

 
↵

. (11)

To find all the eigenvalues ⇤
↵

and states ⌘
↵

, one solves
these two decoupled equations for �

↵

and  
↵

. We explain

how to do this in more detail in the next section for
the open Kitaev chain4 with real, but otherwise generic
parameters.
It is well-known that fermionic systems can host Ma-

jorana zero modes on the edges of the system, which is
a signature of the system being in a topological phase.
In this paper, we study the zero modes of Hamiltonians
with complex parameters, so we now allow the matrices
A and B to be complex again. To distinguish a Majo-
rana mode from the ordinary modes, we use stared labels,
such as ↵⇤. The Majorana modes satisfy ⌘

↵

⇤ = ⌘†
↵

⇤ . For
a finite system, the energy of a Majorana mode is expo-
nentially small in the system size; for instance in the case
where we have a system with N sites the energy scales
as ⇤

↵

⇤ ⇠ e�N with  > 04,19. Hence we are interested
in finding general equations which allows one to find the
corresponding states with zero energy, i.e. ⇤

↵

⇤ = 0, in
the thermodynamic limit.
We thus search for a Majorana solution of Eqs.(4) and

(5) with zero energy. Setting h
↵

⇤
,i

= g⇤
↵

⇤
,i

in Eqs. (4)
and (5) gives:

g⇤
↵

⇤
,i

B⇤
ij

= g
↵

⇤
,i

A
ij

, (12)

g⇤
↵

⇤
,i

A⇤
ij

= g
↵

⇤
,i

B
ij

, (13)

By summing and subtracting these equations we get,

Re[g(A�B)] = 0, (14)

Im[g(A+B)] = 0. (15)

We use these equations to explore the wave functions
(g

↵

⇤
,i

) of the zero modes in di↵erent cases in the following
sections.
Before closing this section, we write the ⌘ operators in

terms of Majorana operators for future reference. Using �
and  as defined above and defining Majorana operators
as �

A,j

= c†
j

+ c
j

and �
B,j

= i(c†
j

� c
j

), we write the
fermion annihilation operator as follows

⌘
↵

=
N

X

j=1

[
�
↵,j

2
�
A,j

+ i
 
↵,j

2
�
B,j

]. (16)

The algebra of Majorana operators can be calculated
from the canonical anti-commutation relations of the c
operators,

{�
r,i

, �
r

0
,j

} = 2�
rr

0�
ij

. (17)

Specifically, for the zero mode solution we can write the
corresponding fermionic operator as follows:

⌘
↵

⇤ =
N

X

j=1

(Re[g
↵

⇤
,i

]�
A,j

� Im[g
↵

⇤
,i

]�
B,j

). (18)

III. THE SPECTRUM OF THE OPEN KITAEV
CHAIN

In this section, we use the method of LMS to find the
full spectrum of the Kitaev chain4, for an open chain,
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with real parameters, in particular we consider

H =
1

2

N�1

X

j=1

(c†
j

c
j+1

+�c†
j

c†
j+1

+ h.c.)� µ
N

X

j=1

(c†
j

c
j

� 1

2
) .

(19)
Here, µ denotes the chemical potential, � the strength
of the pairing term, and we chose the hopping parameter
t = �11

Despite the fact that this model has been studied thor-
oughly, these results do not seem to have appeared in the
literature, and we will use it to set the notation. Because
we are interested in the zero-modes of more generic sit-
uations in the remainder of the paper, we also quickly
review the nature of the zero-modes. These results are
not new, but appeared in19–21 and for generic parameters
recently in22.

It is well known4 that the Kitaev chain is in a topo-
logical phase for |µ| < |t| and � 6= 0. A profound feature
of topological phase is the presence of a Majorana zero
mode, that are exponentially localized near the edges of
the system. In addition, the energy associated with this
zero mode is exponentially small in the system size.

To set the scene, we follow Kitaev to show the presence
of Majorana zero modes, by considering the special case
of � = 1 and µ = 0. In this case, the Hamiltonian in
terms of Majorana operators becomes,

H = � i

2

N�1

X

j=1

�
B,j

�
A,j+1

. (20)

In this Hamiltonian, �
A,1

and �
B,N

are absent and
therefore commute with it. So one can form a non-local
fermionic state, f

0

= 1

2

(�
A,1

+ i�
B,N

). The presence of
this non-local fermionic mode is the characteristic feature
of topological phase of the Kitaev chain. For � = �1,
unpaired Majorana operators would be �

B,1

and �
A,N

,
owing to the p-wave nature of pairing.

We leave this fine tuned point and consider arbitrary
�, but keep µ = 0 for the moment. This corresponds
to the XY model, which was solved exactly by LSM for
|�| < 1, that is, the full spectrum including the wave
functions were found19. For an open chain, there is a
state with an exponentially small energy as a function of
the system size. The wavefunction of this state is expo-
nentially localized on the edges, namely �

n

⇠ �

1�|�|
1+|�|

�

n

where n denotes the position of the site measured from
the left side of the chain. The associated  

n

is local-
ized on the right edge. Another fine tuned point that
was studied previously corresponds to the TFIM, that is
t = �1, � = ±1 but arbitrary µ. Pfeuty showed that
this model has a Majorana zero mode if |µ| < 1. The

1
The sign of t is irrelevant for the spectrum, but we set t = �1,

because of the simpler relation with the associated XY model as

studied in

19
.

associated wave function takes the form �
n

⇠ |µ|n and is
localized on the left edge of the system20,21.
To find the Majorana zero modes for the general case,

it is advantageous to first consider the model with peri-
odic boundary conditions. That is, we need to consider
the hopping and paring terms for the last site as well. We
denoted the periodic Hamiltonian by H

PBC

= H +H
N

where:

H
N

=
1

2
(c†

N

c
1

+�c†
N

c†
1

+ h.c.), (21)

The solution of the periodic model is well known, and
obtained by using a plane-wave ansatz for the wave func-
tions (i.e., by Fourier-transforming the model). Using
the method outlined in the previous section, we start by
solving Eqs. (10) and (11) to find the spectrum. Since
� and  are related via Eqs. (8) and (9), we focus on �.
Writing Eq. (10) gives us one recursion relation:

(1��2)�
↵,n�2

� 4µ�
↵,n�1

+ [4µ2 + 2(1 +�2)]�
↵,n

+(1��2)�
↵,n+2

� 4µ�
↵,n+1

= 4⇤2

↵

�
↵,n

, (22)

where n denotes the sites and runs from 1 to N . Upon
setting �

k,n

⇠ eikn, were we use the momentum k as a
label, one finds the eigenvalues:

⇤2

k

= (µ� cos k)2 +�2 sin2 k, k =
2⇡m

N
, (23)

where m runs over 0 to N � 1.
We now consider the full spectrum of the open chain.

Here, we merely give the results, and refer to the Ap-
pendix A, where the details of calculation are presented.
For the open chain we find the same recursion relation

in the bulk which is valid for 3  n  N � 2. However,
we also have four boundary equations which should be
treated separately (see Appendix A). We start by dealing
with the bulk equations, using the method of LSM. That
is, we use the same ‘function’ for the eigenvalues, though
with a generic parameter ↵ instead of the momentum
k. To find the allowed values for the parameter ↵, one
uses the ‘boundary equations’. Hence we parametrize the
eigenvalues as:

⇤2

↵

= (µ� cos↵)2 +�2 sin2 ↵, (24)

and ↵ is the label for the state. For the states, we use a
power law ansatz, �

↵,n

⇠ xn

↵

, and we find four solutions,
x
↵

= e±i↵ and x
↵

= e±i� where

cos↵+ cos� =
2µ

1��2

. (25)

Note that ↵ and � are not necessarily real, but the way we
parametrize x

↵

turns out to be convenient. As described
in the Appendix A, the relevant linear combination that
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one uses to find a solution for the boundary equations is:

�
↵,n

= A
1

n

sin[(N + 1)�] sin(n↵)

� sin[(N + 1)↵] sin(n�)
o

+A
2

n

sin[(N + 1)�] sin[(N + 1� n)↵]

� sin[(N + 1)↵] sin[(N + 1� n)�]
o

. (26)

in which A
1

and A
2

are constants that are related via
Eq. (A24). The boundary equations give rise to another
constraint on ↵ and �. This constraint can be shown to
take the following form

sin2 ↵+ sin2 � +
1

�2

(cos� � cos↵)2

� 2
sin↵ sin�

sin[(N + 1)↵] sin[(N + 1)�]

⇥ {1� cos[(N + 1)↵] cos[(N + 1)�]} = 0. (27)

To obtain the full solution of the model, one needs to
solve Eqs. (25) and (27) simultaneously. Though this can
not be done analytically, it is straightforward to obtain
the solutions numerically. Thus, we have characterized
all the eigenvalues and eigenvectors �

↵,n

and by using
Eq. (10), one finds  

↵,n

.
Now we want to study these solutions and see when

this model has a Majorana solution and what the cor-
responding wavefunction is. To find such solutions, we
consider thermodynamic limit, i.e. N ! 1, which makes
the calculations easier.

We first mention that � can always set to be positive.
One way to see this is by considering the transformation
by which c

j

goes to ei
⇡
2 c

j

. This transformation changes
neither the hopping nor chemical potential term, but �
changes to ��. In addition solutions for µ < 0 can be
constructed from the solutions for µ > 0. One can take
the solution for µ > 0, say (↵,�) = (r, s). Now consider
(↵,�) = (r + ⇡, s + ⇡). This change gives a minus sign
for the LHS of Eq. (25) as required, however it leaves
Eq. (27) unchanged. Therefore, we restrict ourselves to
�, µ > 0.

First we look at the solutions for large values of µ. In
this case one can see that Eqs. (25) and (27) have N
distinct real solutions for ↵, where we restrict ↵ to lie
in the range 0 < ↵  ⇡ (↵ = 0 gives �

n

= 0; form
more details, see Appendix A). However by decreasing
chemical potential solution with the smallest value of ↵
will ‘disappear’. It is well known that for µ < 1 one real
solution is lost in the thermodynamic limit. For a finite
chain this happens for µ < 1 + O( 1

N

) where O( 1

N

) is a
finite size correction. Thus, for µ < 1 one must find an
additional, complex solution. To find this solution, we
consider three di↵erent cases.

1) � < 1 and

p
1��2 < µ < 1: In the thermo-

dynamic limit one can check that the following solution

satisfies Eqs.(25) and (27),

↵⇤ = i(
1

⇠
1

+
1

⇠
2

), �⇤ = i(
1

⇠
1

� 1

⇠
2

), (28)

cosh
1

⇠
1

=
1p

1��2

, cosh
1

⇠
2

=
µp

1��2

. (29)

Furthermore it is straightforward to check that Eq.(24)
gives ⇤

↵

⇤ = 0, hence the solution is indeed a zero mode.
The wave function �

↵

⇤
,n

for this zero mode is

�
↵

⇤
,n

= Ce
�
n

⇠
1 sinh(

n

⇠
2

), (30)

where C is a normalization constant. Moreover, it can
be shown that based on structure of A � B and A + B
matrices, one has  

↵

⇤
,n

= �
↵

⇤
,N+1�n

. From the fact that
⇠
1

< ⇠
2

, it follows that �
↵

⇤ is localized on the left edge
while  

↵

⇤ is localized on right edge of the system. Hence
we found two Majorana operators, that are located on
the edges of the system, and the associated wavefunctions
decay exponentially.
2) � < 1 and µ <

p
1��2: In this range, one needs to

use a di↵erent parametrization if one wants to use real pa-
rameters, as is evident from Eq.(29). This parametriza-
tion reads

↵⇤ = q + i
1

⇠
, �⇤ = q � i

1

⇠
, (31)

cos q =
µp

1��2

, cosh
1

⇠
=

1p
1��2

. (32)

Basically we changed one of the characteristic length
scales to become a wave vector. As in the previous case,
this solution is indeed a zero mode, i.e. ⇤

↵

⇤ = 0, whose
wavefunction is given by:

�
↵

⇤
,n

= Ce
�
n

⇠ sin(nq). (33)

This result indicates that � ( ) is localized on the left
(right) edge with an oscillatory decaying wave function.
We should point out that this result was obtained earlier
by22. In addition, it was observed that the correlation
functions in the model with PBC are oscillatory in the
same regime, i.e., for µ <

p
1��2 with � < 1, see for

instance Refs. 23–25.
3) � > 1: For this regime

p
1��2 is imaginary, hence

the previous solutions are not applicable. The new root
can be written as

↵⇤ = i(
1

⇠
1

� 1

⇠
2

), �⇤ = ⇡ + i(
1

⇠
1

+
1

⇠
2

), (34)

sinh
1

⇠
1

=
1p

�2 � 1
, sinh

1

⇠
2

=
µp

�2 � 1
. (35)

One can check that this solution represents a zero mode
with the wave function:

�
↵

⇤
,n

= Ce
�
n

⇠
1 ⇥

8

<

:

cosh(
n

⇠
2

), if n is odd,

sinh(
n

⇠
2

) if n is even.
(36)
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For this solution ⇠
1

< ⇠
2

since µ < 1 and this guarantees
that � ( ) is localized on the left (right) edge.

IV. ZERO-MODES FOR NEXT
NEAREST-NEIGHBOUR AND COMPLEX

COUPLINGS

In this section we study the zero modes in the presence
complex hopping and pairing terms, both in the case with
nearest neighbor hopping and pairing terms, as well as
next-nearest neighbor (NNN) hopping and paring terms.
The complex amplitudes model the presence of a phase
gradient in the system.

In their fermionic incarnation, these generalized Ki-
taev models were studied in Refs. 18,26. In the lan-
guage of spin models, adding NNN terms gives rise to
so-called (one-dimensional) cluster models26–30, but we
concentrate ourselves on the fermionic version of these
models.

An important feature of these models is the possibility
of having more than one zero modes at each end, which
is possible due to the presence of longer range terms.
This can also be understood in terms of the classifica-
tion of topological insulators and superconductors31,32.
The Kitaev chain with real coupling constants belongs
to class BDI for which the di↵erent topological phases
can be labeled by the elements of Z, in the absence of in-
teractions. Adding interaction changes this picture such
that new classification given by Z

8

instead33. In the case
with only nearest neighbor hopping and pairing terms,
the model describes phases with at most one Majorana
mode at each end of the system. However by adding
NNN terms one finds phases with two Majorana modes
at each end. This means that there would be two distinct
topological phases with one and two zero modes solutions
(in addition to the trivial phase, which does not have a
zero mode).

Proposals for using the non-local fermionic state as a
qubit, requires the ability to move Majorana edge states
and even to do braiding. One proposal to achieve this is
by inducing a phase gradient in the superconductor order
parameter, i.e �

j

= �ei✓j , with non-uniform ✓
j

34. Hav-
ing a complex superconductor order parameter breaks
the time reversal symmetry in which case the model be-
longs to class D. For class D, we have the Z

2

classification
which means that the system could be either in the topo-
logical phase with at most one Majorana zero mode at
each end, or in the trivial phase. Surprisingly, Sticlet et
al. showed that NNN terms with a phase gradient can
exhibit an exponentially localized fermionic zero mode on
one edge18. Such a phase, though it is not topologically
protected, has local zero modes. In Ref. 18 these models
were investigated numerically. Here we present an ana-
lytical solution and study the zero-modes in detail. We
first we review the Kitaev chain with NNN terms. After
that, we study the e↵ect of a constant phase gradient in
the Kitaev chain. Finally, we combine the two compli-

cations and consider NNN terms and a phase gradient
simultaneously.

A. Next nearest-neighbor couplings

In this section we consider the Kitaev chain and add
NNN hopping and pairing terms. We start with the case
for which all the parameters are real, hence the Hamil-
tonian belongs to class BDI. Setting µ = 1, the problem
has four energy scales, corresponding to the two hopping
and two pairing amplitudes. To simplify the calculation
we set the NN hopping and pairing terms equal to each
other and we do the same for the NNN terms. Sticlet
et al. studied this model under the same assumptions18.
We will consider the model with arbitrary complex pa-
rameters in section IVD.
Thus, the Hamiltonian reads,

H =
t

2

N�1

X

j=1

(c†
j

c
j+1

+ c†
j

c†
j+1

+ h.c.)� µ
N

X

j=1

(c†
j

c
j

� 1

2
)

+
�

2

N�2

X

j=1

(c†
j

c
j+2

+ c†
j

c†
j+2

+ h.c.) (37)

where � is the NNN hopping and pairing amplitude.
To obtain the phase diagram and the functional form
of ⇤

↵

we first consider the model with periodic bound-
ary conditions18,26. We do a Fourier transformation,

c
j

=
1p
N

P

k

eikjc
k

, and define  
k

= (c
k

, c†�k

)T to write

the hamiltonian as

H =
1

2

X

k

 †
k

H
k

 
k

,

H
k

= [�t sin(k)� � sin(2k)]⌧y

+ [t cos(k) + � cos(2k)� µ]⌧z, (38)

where the ⌧↵ are Pauli matrices that act in the Nambu
space  

k

. The Hamiltonian can be written as H
k

=
h(k) · ⌧ . One can find the phase diagram by calculating
the winding number for h(k)18,32 or by looking at gap
closing lines26. The phase diagram is presented in Fig. 1.
The gap closes along the lines � = µ + t, � = µ � t and
� = �µ for |t| < 2|µ|. Note that in the figure we used
µ = 1.
Before looking at the zero mode solution(s) of an open

chain, we first consider some limiting cases to understand
the phase diagram. For very small |t|, |�| ⌧ |µ| we get
the trivial phase. The ”0” in Fig. 1 indicates that there
are no Majorana zero modes in this part of the phase
diagram. Outside of the trivial region on the vertical
axis where t = 0 we have two decoupled Kitaev chains,
hence there are two zero modes at each end. For a fixed
�, adding NN terms couples these two chains. The two
zero modes survive until the gap closes, thereafter there
will only be one zero-mode at each end. The horizontal
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FIG. 1: Phase diagram for Kitaev chain with NNN terms,
Eq. (37) for µ = 1. The numbers in the plot show the num-
ber of Majorana zero modes at each end of the chain. The
meaning of the red, dashed lines is explained in the main text.

axis with � = 0 (i.e., the original Kitaev chain) belongs
to this later region which is indicated by ”1” in the Fig. 1.

To find the wave functions of the zero modes, we use
Eqs. (8) and (9) with ⇤

↵

= 0. From Eq. (16) we see that
if ⌘

↵

is a Majorana mode (i.e., ⌘†
↵

= ⌘
↵

),  has to be
purely imaginary. So for convenience we define  = i ̃
and we get g = 1

2

(� + i ̃). We use this convention from
now on. We obtain the following ‘bulk’ equations

�µ�
n

+ t�
n+1

+ ��
n+2

= 0 (39)

� ̃
n�2

+ t ̃
n�1

� µ ̃
n

= 0 . (40)

The ‘boundary’ equations are �µ�
N�1

+ t�
N

= 0,
�µ�

N

= 0, �µ ̃
1

= 0 and t ̃
1

� µ ̃
2

= 0. So we can use
the ansatz �

n

⇠ xn

0

and  ̃
n

⇠ xn

0

, which gives the result

�
n

= L
+

xn

0,+

+ L�x
n

0,�,

 ̃
n

= R
+

xN�n+1

0,+

+R�x
N�n+1

0,� ,

x
0,± =

�t±
p

t2 + 4�µ

2�
, (41)

where L± and R± are real normalization constants (the
subscript ”0” in the length scales indicates that we deal
with a zero phase gradient).

We can extract the phase diagram from this result26

and we set µ = 1 to be able to compare with Fig. 1.
For regions where � > 1 + |t| or both � < 1 � |t| and
� < �1 (corresponding to the upper and lower regions
of Fig. 1), one can see that |x

0,±| < 1. This means that
in these regions that are indicated by ”2” the system has
two independent zero mode solutions. In the right part
of the phase diagram where 1� t < � < 1+ t, there only
exists one zero mode since |x

0,+

| < 1 and |x
0,�| > 1. If

1 + t < � < 1 � t we also have one zero mode, however,
in this case |x

0,�| < 1 and |x
0,+

| > 1. We note that in
these regions, the boundary equations are also satisfied
in the large N limit.

It is also interesting to note that for t2 + 4� > 0 the
roots are real. Still they could be negative in some regions
which gives rise to an oscillatory behavior of the wave

functions, which are then proportional to (�1)n. For
t2 + 4� < 0 the roots become complex. The red, dashed
lines in Fig. 1 specify the upper boundaries of this region
(in the case � < �1). In this case |x±| = 1p

|�|
which

gives us the the criterion � < �1 in order to have a zero
mode (in the region t2 + 4� < 0). In this part of phase
diagram the correlation length only depends on �, while
the NN coupling t only a↵ects the oscillatory part of the
wave function.

Before moving to the case with both NNN terms as
well as with a phase gradient, we first study the Kitaev
chain with just a constant phase gradient.

B. Phase gradient in the order parameter

In this subsection, we consider the Kitaev chain, but
with a phase gradient in the superconducting order pa-
rameter. With a super current in superconductor, the
pairing term has a site dependent phase �

j

= eijr✓

where r✓ is the constant phase gradient, while j indi-
cates the position of the site. In this case, the Hamilto-
nian reads

H =
1

2

N�1

X

j=1

(c†
j

c
j+1

+eijr✓c†
j

c†
j+1

+h.c.)�µ
N

X

j=1

(c†
j

c
j

� 1

2
).

(42)
This Hamiltonian belongs to class D. As we indicated
above, the topological phases are labeled by elements of
Z
2

, which means that the system could be in the topo-
logical phase with one Majorana zero mode at each end.
Changing the gauge, we transform the fermionic opera-
tors as c

j

! eij
r✓
2 c

j

. This transformation gives us site-
independent couplings, but now also the hopping param-
eter has become complex. The transformed Hamiltonian
is

H =
1

2

N�1

X

j=1

(ei
r✓
2 c†

j

c
j+1

+ e�i

r✓
2 c†

j

c†
j+1

+ h.c.)

� µ
N

X

j=1

(c†
j

c
j

� 1

2
). (43)

To find zero mode solution we use Eqs. (14) and 15. De-
tails of the solution for the Majorana operator are given
in Appendix B. The left Majorana solution is

�
L

= L
n=N

X

n=1

h µ

cos(r✓

2

)

i

n

�
A,n

, (44)

where L is the normalization constant to make �2
L

= 1.
This Majorana mode is located at the left side of the
system, and is a solution in the large N limit. The right
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Majorana mode is more complicated,

�
R

=R
n=N

X

n=1

h µ

cos(r✓

2

)

i

N�n+1

⇥

[sin(
r✓
2

)�
A,n

+ cos(
r✓
2

)�
B,n

], (45)

where R is the normalization constant to make �2
R

= 1.
Using the Majorana modes �

L

and �
R

, one can construct
one fermionic mode f

0

= 1/2(�
L

+i�
R

) as usual. We note
that to have a localized zero mode we have the criteria
|µ| < | cos(r✓

2

)|. This means that turing on the phase
gradient shrinks the topological region. Second, we see
that the left Majorana consists only of �

A

Majorana op-
erators (recall the definition above Eq. (16)), however,
the right one involves both �

B

’s as well as �
A

’s. In the
case that r✓ = 0 the left Majorana mode only involves
�
A

operators and the right Majorana modes only �
B

op-
erators. This feature of the solution comes from the fact
that for real A and B matrices (see Eqs. (14) and 15), the
equations governing � and  ̃ are decoupled - recall that
g = 1

2

(� + i ̃). Adding the phase gradient makes these
matrices complex, hence the equations become coupled
and the solutions become more complicated. The direc-
tion of the phase gradient shows itself in the elements of
the A and B matrices and gives rise to this asymmetry;
the ”left-right” symmetry is broken explicitly.

In the next section we add NNN terms to the current
problem18. The results presented in the current subsec-
tion are useful to understand zero mode solution(s) when
one adds the NNN terms.

C. Next nearest neighbor terms along with a phase
gradient in the order parameter

We now consider NNN terms in the presence of a con-
stant phase gradient. Again we set the hopping and pair-
ing amplitudes equal to each other for both the nearest
neighbors and NNN terms. Following Sticlet et al18, the
Hamiltonian reads,

H =
t

2

N�1

X

j=1

(c†
j

c
j+1

+ eijr✓c†
j

c†
j+1

+ h.c.)

+
�

2

N�2

X

j=1

(c†
j

c
j+2

+ eijr✓c†
j

c†
j+2

+ h.c.)

� µ
N

X

j=1

(c†
j

c
j

� 1

2
), (46)

where we assumed the same phase dependence for the
nearest neighbor and NNN pairing terms, with the same
phase for both terms involving the first site. As we men-
tioned above, for r✓ = 0 this model has a trivial phase
without any zero mode and two topological phases that
hosts one or two Majorana zero modes respectively (see

Fig. 1). For r✓ 6= 0, the model belongs to class D. This
means that, contrary to r✓ = 0 case, there is only one
type of topological phase. The phase that had two Majo-
rana zero modes becomes trivial upon adding the phase
gradient. The natural question it then what happens to
the phases with two Majorana edge states? Despite the
fact that the phase has become trivial, one finds that it is
still an interesting trivial phase, as was already observed
in 18. Here, we study the zero modes of the model, and
shed light on the zero mode present in one of the trivial
phases.
By transforming c

j

! eij
r✓
2 c

j

as in the previous sec-
tion, the Hamiltonian becomes

H =
t

2

N�1

X

j=1

(ei
r✓
2 c†

j

c
j+1

+ e�i

r✓
2 c†

j

c†
j+1

+ h.c.)

+
�

2

N�2

X

j=1

(eir✓c†
j

c
j+2

+ e�ir✓c†
j

c†
j+2

+ h.c.)

� µ
N

X

j=1

(c†
j

c
j

� 1

2
). (47)

As we show in the next section (where we consider the
model for general parameters), locations of the phase
transitions of this model is very similar to the locations
of the phase transitions of the model with zero phase
gradient, r✓ = 0. Namely, the phase boundaries are the
same, if written in terms of the variables t̃ = cos(r✓/2)t
and �̃ = cos(r✓)�, while µ remains unchanged. So, the
gap closes when �̃ = µ± t̃, as well as when both �̃ = �µ
and |t̃|  2|µ|.
Sticlet et al.18 showed that the topological phase of this

model has one zero mode at both edges as expected. The
trivial phase, however, is divided in two regions. One
trivial phase does not have any zero mode, while the
other trivial phase has two ‘Majorana’ zero modes that
are localized on one edge (i.e., a localized fermionic zero
mode), while there is no zero mode on the other edge.
The former trivial phase corresponds to the trivial phase
of the model without phase gradient while the later trivial
phase corresponds to the topological phase of the model
without phase gradient with two Majorana zero modes.
In what follows we present analytical wave functions for
all the zero modes and determine for which parameters
they are present. To find the Majorana zero modes we use

Eqs. (14) and 15 and as before, we set g
n

=
1

2
(�

n

+ i ̃
n

).

The ‘bulk equations’ read

� µ ̃
n

+ t cos(
r✓
2

) ̃
n�1

+ � cos(r✓) ̃
n�2

= 0, (48)

� µ�
n

+ t cos(
r✓
2

)�
n+1

+ � cos(r✓)�
n+2

=

t sin(
r✓
2

)
⇣

 ̃
n�1

�  ̃
n+1

⌘

+ � sin(r✓)
⇣

 ̃
n�2

�  ̃
n+2

⌘

.

(49)
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In this case, there are four boundary equations (two for
each end) that di↵er from the bulk ones, namely

�µ ̃
1

= 0 t cos(
r✓
2

) ̃
1

� µ ̃
2

= 0 (50)

and

� µ�
N�1

+ t cos(
r✓
2

)�
N

= (51)

t sin(
r✓
2

)( ̃
N�2

�  ̃
N

) + � sin(r✓) ̃
N�3

� µ�
N

= t sin(
r✓
2

) ̃
N�1

+ � sin(r✓) ̃
N�2

.

We start by solving the bulk equations, without paying
attention to the boundary equations. We then solve the
boundary equations, in the di↵erent regimes of the phase
diagram.

The equations for �
n

involves the solution for  
n

.
Thus, the solution for �

n

consists of two pieces, namely
the general solution to Eq. (49) with the right hand side
set to zero, which we will denote by �

gen,n

, as well as
a specific solution, for the full equation. We start the
ansatz �

gen,n

= xn. This gives us two correlation length
scales

x± =
�t cos(

r✓
2

)±
r

t2 cos2(
r✓
2

) + 4�µ cos(r✓)
2� cos(r✓) .

(52)
Thus, the generic solution is �

gen,n

= L
+

xn

+

+ L�xn

�,

where L± are constants. As before,  ̃
n

= �
gen,N�n+1

,
which shows that the generic solution for � is localized
on the left edge and the solution for  ̃ is localized on the
right edge,  ̃ = R

+

xN�n+1

+

+ R�x
N�n+1

� , with R± two
constants. To find the full solution �

n

, based on Eq.(49)
we need to add a particular solution to �

gen,n

of the form
S
+

xN�n+1

+

+S�x
N�n+1

� with constant S± = ±R±, since

it should behave as  ̃. After some algebra, one finds that

± = � tan(r✓) + t sin(r✓

2

)

cos(r✓)
h

µ+ � cos(r✓)
ix± . (53)

The general solution to the bulk equations (48) and (49)
is thus given by

 ̃
n

= R
+

xN�n+1

+

+R�x
N�n+1

� ,

�
n

= L
+

xn

+

+ L�x
n

� + S
+

xN�n+1

+

+ S�x
N�n+1

� ,

S± = ±R±, (54)

With the general solution for the bulk equations at
hand, we turn our attention to the boundary equations,
which we solve in the di↵erent regimes.

1) |x±| > 1: In this case, both characteristic length
scales are bigger than one, which occurs for the part
of the phase diagram where the model without phase

gradient is in the trivial phase. In this case, it is
not hard to convince oneself that the boundary equa-
tions (50) and (50) lead to L± = R± = 0, which means
that, as expected, there are no zero modes in this regime.

2) |x
+

| < 1 and |x�| > 1: In this case, the model
is topological, and corresponds to the phase with
parameters 0 < t̃ � �̃. In this regime, xn

� increase with
n, which means that xn is localized on the right edge
instead of the left one. It is therefore convenient to write

this solutions as L̃�(
1

x�
)N�n+1, with L̃� = xN+1

� L�, to

highlight that this solution is localized on the right edge.
The boundary equations (50) imply that R� = S� =

0. The boundary equations (51) give, after some algebra,

that L̃� = �R
+

t sin(r✓/2)

cos(r✓)(µ+� cos(r✓))

, while S
+

= 
+

R
+

as
before. Thus, the solution for the zero mode is given by

 ̃
n

= R
+

xN�n+1

+

, (55)

�
n

= L
+

xn

+

+ S
+

xN�n+1

+

+ L̃�(
1

x�
)N�n+1 . (56)

We find that in this case, there is one zero mode, that
is localized on both edges of the system. One special
property of this zero mode, which di↵ers from the case
without a phase gradient, is that �

n

has support on both
edges of the system, while  

n

only has support on the
right edge. Finally, we note that the case |x

+

| > 1 and
|x�| < 1 is completely analogous.
3) |x±| < 1: This case corresponds to the part of the

phase diagram in which the model without phase gradi-
ent has two zero modes on both side of the system. With
the phase gradient, this model is in a trivial phase. To
determine if there are any zero modes, we again solve
the boundary equations. The boundary equations for
n = 1, 2, i.e. (50), give rise to terms that are propor-
tional to  ̃ at the left edge. Eq.(54) assures that these
terms are of order xN

± and can be neglected in the ther-
modynamic limit. So the solution satisfies the boundary
equations (50). The boundary equations (51) do give a
non-trivial constraint. Namely, for a non-zero phase gra-
dient r✓ 6= 0 (for r✓ = 0 the boundary equations are
satisfied), one finds that

R
+

x
+

+R�x� = 0 R
+

x2

+

+R�x
2

� = 0. (57)

These two boundary equations imply that R± = 0. We
conclude that in this regime there are two zero modes on
the left side of the system, and none on the right side, i.e.
�
n

= L
+

xn

+

+ L�xn

� and  ̃
n

= 0. This precisely corre-
sponds to the surprising result obtained by Sticlet et al18.
We stress that this ordinary, or ‘Dirac’ zero mode on the
left side of the system is not topological, but is in fact
a consequence of fine tuning the parameters. We discuss
this fine tuning in more detail in Section IVD. Never-
theless, as long as one keeps these parameters fine tuned,
the only way this localized zero mode can disappear is via
a phase transition to one of the other phases present in
the model. Upon going away from the fine-tuned point,
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this Dirac zero mode gaps out, leaving behind a fermionic
mode at finite energy.

We close this section by mentioning that it is of course
possible to have the localized Dirac zero mode at the
other edge of the system. One way is by changing
the phase dependence of the original pairing terms in
the original Hamiltonian Eq. (46) to t

2

ei(j+1)r✓c†
j

c†
j+1

+
�

2

ei(j+2)r✓c†
j

c†
j+2

. Basically the same calculation shows
that this pairing leads to two zero modes on right and
none on the left side. The model with these pairing terms
has the same topological and trivial phases, however the
left and right sides of the chain change their role. We
note that merely changing r✓ ! �r✓ does not change
the role of the left and right hand side of the system.
As we show in the next subsection, in the translational
invariant formulation of the model, as in Eq. (47), the
location of the zero-modes is determined by the relative
sign of the phases of the hopping and paring terms.

D. The general case

To understand the fine tuning that is necessary to have
the Dirac zero mode that resides on one side of the system
as described in the previous section, we look at the more
general Hamiltonian,

H =
1

2

N�1

X

j=1

(t
1

c†
j

c
j+1

+�
1

c†
j

c†
j+1

+ h.c.)

+
1

2

N�2

X

j=1

(t
2

c†
j

c
j+2

+�
2

c†
j

c†
j+2

+ h.c.)

� µ
N

X

j=1

(c†
j

c
j

� 1

2
), (58)

where t
1

, �
1

, t
2

and �
2

are arbitrary complex parame-
ters. In the case of periodic boundary conditions, we can
define  

k

= (c
k

, c†�k

)T and write the Hamiltonian as:

H =
1

2

X

k

 †
k

H
k

 
k

, H
k

= h
0

(k)1+ h(k).⌧ ,

h
0

(k) = �=(t
1

) sin k �=(t
2

) sin(2k),

h
1

(k) = �=(�
1

) sin k �=(�
2

) sin(2k),

h
2

(k) = �<(�
1

) sin k �<(�
2

) sin(2k),

h
3

(k) = <(t
1

) cos k + <(t
2

) cos(2k)� µ, (59)

where 1 is the two by two identity matrix. Performing a
unitary transformation with U = 1p

2

(⌧x + ⌧z) we get,

Q
k

= U †H
k

U =

✓

h
0

(k) + h
1

(k) h
3

(k) + ih
2

(k)
h
3

(k)� ih
2

(k) h
0

(k)� h
1

(k)

◆

.

(60)
By comparing the model we discuss here, Eq. (47) with
(59) we find that in this case, all the imaginary parts
depends are proportional to sin(r✓/2) or sin(r✓), for

the nearest neighbor or NNN case respectively. So, these
terms vanish for r✓ = 0. In that case, we obtain

Q
k

�

�

r✓=0

=

✓

0 h
3

(k) + ih
2

(k)
h
3

(k)� ih
2

(k) 0

◆

. (61)

Since we performed an unitary transformation, Det Q
k

=
Det H

k

. So in the gapped phase, either topological
or trivial, DetQ

k

= |h
3

(k) + ih
2

(k)|2 6= 0 can be
used to define a topological invariant via the winding
of Arg(h

3

(k) + ih
2

(k)), see32. This calculation leads to
the same phase diagram we discussed before, see Fig. 1.

We now consider a phase gradient, i.e. r✓ 6= 0, which
is the case we are interested in. Based on Eq. (47) we
have

h
0

(k) = �t sin(
r✓

2
) sin k � � sin(r✓) sin(2k),

h
1

(k) = t sin(
r✓

2
) sin k + � sin(r✓) sin(2k),

h
2

(k) = �t cos(
r✓

2
) sin k � � cos(r✓) sin(2k),

h
3

(k) = t cos(
r✓

2
) cos k + � cos(r✓) cos(2k)� µ. (62)

The fact that =(t
1

) +=(�
1

) = =(t
2

) +=(�
2

) = 0, gives
rise to Q

k,11

= 0. This means that, similar to the r✓ = 0
case, we have that DetQ

k

= |h
3

(k)+ih
2

(k)|2, despite the
fact that Q

k,22

6= 0.

Thus we find an e↵ective same phase diagram for the
model with the phase gradient, namely the one given in
Fig. 1, if we replace t ! t cos(r✓

2

) and � ! � cos(r✓).

As we indicated in the previous section, by changing
the paring terms in the original Hamiltonian Eq. (46) to
t

2

ei(j+1)r✓c†
j

c†
j+1

+ �

2

ei(j+2)r✓c†
j

c†
j+2

, we can have the sit-
uation that the system has two ‘Majorana’ zero modes
on the right edge and none on the left side. The gauge
transformation c̃

j

= eij
r✓
2 c

j

changes these terms to
t

2

ei
r✓
2 c̃†

j

c̃†
j+1

+�

2

eir✓ c̃†
j

c̃†
j+2

. The hopping terms t

2

c†
j

c
j+1

+
�

2

c†
j

c
j+2

become t

2

ei
r✓
2 c̃†

j

c̃
j+1

+ �

2

eir✓ c̃†
j

c̃
j+2

as before. In
this case we find that =(t

1

)�=(�
1

) = =(t
2

)�=(�
2

) = 0,
which results in Q

k,22

= 0.

In class BDI, all the information about the zero modes
is encoded in DetQ

k

The discussion above shows that
this is not so in the present case. Whether Q

k,11

= 0
or Q

k,22

= 0 plays an important role in determining the
position of the (non-topological) localized zero modes. It
is also clear what fine tuning we need in order to have
a pair of ‘Majorana’ zero modes localized at one side
of the system and none on the other. We need either
Q

k,11

or Q
k,22

to be zero, but not both. This is the
case if we fine tune =(t

1

+ �
1

) = =(t
2

+ �
2

) = 0 or
=(t

1

��
1

) = =(t
2

��
2

) = 0, but not both which would
imply that all these parameters are real, and one has an
equal number of zero-modes on either side of the system.

To explore this situation further, we write the Hamil-
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tonian in terms of Majorana operators,

H =
=(t

1

+�
1

)

4

N�1

X

j=1

i�
A,j

�
A,j+1

+
<(t

1

��
1

)

4

N�1

X

j=1

i�
A,j

�
B,j+1

� <(t
1

+�
1

)

4

N�1

X

j=1

i�
B,j

�
A,j+1

+
=(t

1

��
1

)

4

N�1

X

j=1

i�
B,j

�
B,j+1

+
=(t

2

+�
2

)

4

N�2

X

j=1

i�
A,j

�
A,j+2

+
<(t

2

��
2

)

4

N�2

X

j=1

i�
A,j

�
B,j+2

� <(t
2

+�
2

)

4

N�2

X

j=1

i�
B,j

�
A,j+2

+
=(t

2

��
2

)

4

N�2

X

j=1

i�
B,j

�
B,j+2

� µ

2

N

X

j=1

i�
A,j

�
B,j

. (63)

As a simple example we can see that for Hamiltonian
presented in Eq. (47), setting µ = 0 and r✓ = ⇡, yields
following Majorana representation

H =
t

2

N�1

X

j=1

i�
B,j

�
B,j+1

+
�

2

N�2

X

j=1

i�
B,j

�
A,j+2

, (64)

where it is evident that �
A,1

and �
A,2

do not appear in
the Hamiltonian and therefor commute with it. Hence
there are two Majorana zero modes on the left edge.

It is interesting to note that for r✓ = ⇡, the Hamilto-
nian belongs to class BDI. From the form of the Hamilto-
nian in Eq. (47) this is not obvious, but it is for the form
Eq. (46), because all the coupling constants are real. On
the other hand, in this form, some of the couplings are
staggered, and in the periodic case, the model is trans-
lationally invariant with a two-site unit cell. The phase
diagram has a di↵erent structure in this case, with only
three phases. The phase boundaries do not depend on t,
and are given by � = ±µ. Because of the two-site unit
cell, we use the formulation of the phase-winding invari-
ant as given by35. One finds that all three phases are in
fact trivial. In the trivial phases with |�| > |µ|, there
is a localized Dirac zero mode only on the left side of
the system, and no zero modes on the right side. This
is consistent with the analysis of the model based on the
from Eq. (47). From the point r✓ = ⇡ it is clear that

also in symmetry class BDI, there are Hamiltonians that
have trivial phases, which have a localized Dirac zero
mode only on one side of the system, if parameters are
fine-tuned.
Our previous discussion led us to conclude that =(t

1

+
�

1

) = =(t
2

+ �
2

) = 0 could result in two zero modes
on the left edge. Based on Eq. (63) we can see that this
means that there should not be any terms like i�

A,j

�
A,j+1

and i�
A,j

�
A,j+2

in the Hamiltonian. We can shed more
light on this issue based on our analytical solution for the
non-uniform pairing with nearest neighbor hopping and
pairing.
As a first a step, we assume that t = 0. This means

that we have two decoupled chains with a phase gradi-
ent. Our previous analysis shows that in the topological
phase we have one Majorana zero mode on each edge.
The wavefunctions for these Majorana modes are given
in Eqs. (44) and (45). The crucial di↵erence between
these two wave functions originates in the direction of
the phase gradient, which causes the left mode to be in-
dependent of �

B

, while the right modes consists of both
�
A

and �
B

. Namely, for the left mode g
n

is purely real
while for the right mode g

n

is complex, and hence in-
volves both � and  ̃.
In the second step, we turn on nearest neighbor cou-

plings, i.e. t 6= 0. We see that the first four terms in
the Hamiltonian Eq. (63) result in a coupling between
the zero modes of the two decoupled chains. Under the
assumption that =(t

1

+ �
1

) = 0 and =(t
2

+ �
2

) = 0,
which holds in our analytic calculation of the zero modes,
we find that the right zero modes from the two di↵erent
chains become coupled because of the i�

B,j

�
B,j+1

terms
present then t 6= 0, which gaps them out. On the other
hand, the zero modes on the left edge do not become
coupled directly, and remain gapless. Their wavefunc-
tions are modified to the new ones presented in Eq. (54).
Finally, we mention that we checked numerically that

under the conditions =(t
1

+�
1

) = =(t
2

+�
2

) = 0, the
system has two zero modes located on the left edge, if the
parameters are such that the same system, but without
a phase gradient, would have two zero modes on both
edges. The same holds true in the case that =(t

1

��
1

) =
=(t

2

��
2

) = 0, if one exchanges the left and right edge
of the system.

V. DISCUSSION

In this paper, we investigated the ‘one-sided’ fermionic
zero modes observed by Sticlet et al.18, by solving the Ki-
taev model, in the presence of longer range and complex
hopping and pairing terms for open chains. From our
investigation, it became clear that fine-tuned parameters
are necessary for such zero modes to exists, but under the
fine-tuned conditions, a phase-transition is required in or-
der to destroy them. Leaving the fine-tuned conditions
gaps these zero-modes out, turning them into one-sided
low-energy subgap modes. Phases with such one-sided
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bound states can occur both in one-dimensional systems
in class D, as well as in class BDI. These modes are not
protected by topology, which means that they can occur
in the topologically trivial phase.

The general condition for the existence of ‘one-sided
zero modes’ is most easily explained in terms of the Ma-
jorana formulation of the chains. Starting from a situa-
tion in which two pairs of (delocalized) Majorana bound
states are present (i.e., in class BDI), one needs a per-
turbing term such that the two Majoranas describing the
mode on, say, the left side are coupled, while the modes
on the right side are not.

There has been a lot of progress on models in higher
dimensions, that exhibit exact zero modes, see for in-
stance Ref. 36. It would be interesting to investigate if it
is possible to construct models, that exhibit ‘one-sided’
zero modes along the lines of the ones described in this
paper, even in those higher-dimensional systems.

Acknowledgements – We would like to thank F. Poll-
mann, C. Sp̊anslätt and R. Verresen for interesting
discussions. This research was sponsored, in part, by
the Swedish research council.

Appendix A: Details of the Kitaev chain spectrum
calculation

In this appendix we present details of the solution for
the open Kitaev chain with generic real parameters and
free boundary conditions. The Hamiltonian reads:

H =
1

2

N�1

X

j=1

(c†
j

c
j+1

+ h.c) +
�

2

N�1

X

j=1

(c†
j

c†
j+1

+ h.c)

� µ
N

X

j=1

(c†
j

c
j

� 1

2
). (A1)

It is helpful to recall the (of course well known) solution
for the periodic case, which is obtained via a Fourier

transformation, c
j

=
1p
N

P

k

eikjc
k

, and defining  
k

=

(c
k

, c†�k

)T. This results in

H =
1

2

X

k

 †
k

✓ �µ+ cos k i� sin k
�i� sin k µ� cos k

◆

 
k

. (A2)

Diagonalization of this 2⇥ 2 matrix gives us:

H =
X

k

✏
k

(f†
k

f
k

� 1

2
), (A3)

✏
k

=
q

(µ� cos k)2 +�2 sin2 k, (A4)

where f
k

is a new fermionic quasiparticle annihilation
operator.

To tackle the open case, we use the method which is
reviewed in Sec. II. To this end, we need to arrange the
Hamiltonian to have the form of Eq. (1),

H =
N

X

i,j=1

c†
i

A
ij

c
j

+
1

2
(c†

i

B
ij

c†
j

+ h.c.). (A5)

To find �
↵

and  
↵

from Eqs. (10) and (11) i.e.,

�
↵

(A�B)(A+B) = ⇤2

↵

�
↵

 
↵

(A+B)(A�B) = ⇤2

↵

 
↵

,

we have to construct the matrices A�B and A+B.

We present these matrices for the more general case of
Hamiltonian in Eq. (58), i.e.,

H =
1

2

N�1

X

j=1

(t
1

c†
j

c
j+1

+�
1

c†
j

c†
j+1

+ h.c.)

+
1

2

N�2

X

j=1

(t
2

c†
j

c
j+2

+�
2

c†
j

c†
j+2

+ h.c.)

� µ
N

X

j=1

(c†
j

c
j

� 1

2
), (A6)

because we need them later on. In this case, A� B and
A+B read,



12

A�B =
1

2

0

B

B

B

B

B

B

B

B

@

�2µ t
1

��
1

t
2

��
2

t⇤
1

+�
1

�2µ t
1

��
1

t
2

��
2

0
t⇤
2

+�
2

t⇤
1

+�
1

�2µ t
1

��
1

t
2

��
2

. . .
t⇤
2

+�
2

t⇤
1

+�
1

�2µ t
1

��
1

t
2

��
2

0 t⇤
2

+�
2

t⇤
1

+�
1

�2µ t
1

��
1

t⇤
2

+�
2

t⇤
1

+�
1

�2µ

1

C

C

C

C

C

C

C

C

A

, (A7)

A+B =
1

2

0

B

B

B

B

B

B

B

B

@

�2µ t
1

+�
1

t
2

+�
2

t⇤
1

��
1

�2µ t
1

+�
1

t
2

+�
2

0
t⇤
2

��
2

t⇤
1

��
1

�2µ t
1

+�
1

t
2

+�
2

. . .
t⇤
2

��
2

t⇤
1

��
1

�2µ t
1

+�
1

t
2

+�
2

0 t⇤
2

��
2

t⇤
1

��
1

�2µ t
1

+�
1

t⇤
2

��
2

t⇤
1

��
1

�2µ

1

C

C

C

C

C

C

C

C

A

. (A8)

For the Hamiltonian Eq. (A1), i.e. with t
1

= 1, �
1

= �, and t
2

= �
2

= 0, these reduce to,

A�B =
1

2

0

B

B

B

B

B

B

B

B

@

�2µ 1��
1 +� �2µ 1�� 0

0 1 +� �2µ 1��
. . .

1 +� �2µ 1�� 0
0 1 +� �2µ 1��

1 +� �2µ

1

C

C

C

C

C

C

C

C

A

, (A9)

A+B =
1

2

0

B

B

B

B

B

B

B

B

@

�2µ 1 +�
1�� �2µ 1 +� 0

0 1�� �2µ 1 +�
. . .

1�� �2µ 1 +� 0
0 1�� �2µ 1 +�

1�� �2µ

1

C

C

C

C

C

C

C

C

A

. (A10)

Using these matrices in Eq. (10) one gets

(1��2)�
↵,n�2

� 4µ�
↵,n�1

+ [4µ2 + 2(1 +�2)]�
↵,n

� 4µ�
↵,n+1

+ (1��2)�
↵,n+2

= 4⇤2

↵

�
↵,n

, (A11)

for 3  n  N � 2. We call this the ‘bulk equation’. In the case of periodic boundary conditions, this is actually
the only equation one has to consider. However, for an open chain with free boundary conditions, we also have four
boundary equations which are di↵erent from the bulk one, namely for n = 1, 2, N � 1 and N one has:

[4µ2 + (1��)2]�
↵,1

� 4µ�
↵,2

+ (1��2)�
↵,3

= 4⇤2

↵

�
↵,1

(n = 1) (A12)

�4µ�
↵,1

+ [4µ2 + 2(1 +�2)]�
↵,2

� 4µ�
↵,3

+ (1��2)�
↵,4

= 4⇤2

↵

�
↵,2

(n = 2) (A13)

(1��2)�
↵,N�3

� 4µ�
↵,N�2

+ [4µ2 + 2(1 +�2)]�
↵,N�1

� 4µ�
↵,N

= 4⇤2

↵

�
↵,N�1

(n = N � 1) (A14)

(1��2)�
↵,N�2

� 4µ�
↵,N�1

+ [4µ2 + (1 +�)2]�
↵,N

= 4⇤2

↵

�
↵,N

(n = N). (A15)

We note the di↵erence between the �
↵,1

term in the equa-
tion for n = 1 and the �

↵,N

term in the equation for
n = N .

To solve these equations we can start with an ansatz
for the eigenvalues ⇤

↵

. Note that the bulk equation is
the same for both the periodic and the open chain. This

suggests to use our knowledge about the periodic case.
The bulk equation determines the form of the eigenvalues
as a function of a parameter ↵, which in turn is deter-
mined by the boundary equations. This is exactly what
happens in the periodic case, where we use k instead of
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↵ and fix k =
2⇡n

N
for n = 0, 1, . . . N � 1 in Eq. (A4) by

demanding c
N+1

= c
1

.
Therefore we use the same parametrization for the

eigenvalues as in the open case,

⇤2

↵

= (µ� cos↵)2 +�2 sin2 ↵. (A16)

Now we need to find an equation based on which one can
determine all the possible values of ↵. With the ansatz
for ⇤

↵

, we solve Eq. (A11) by the standard approach, i.e.
we consider �

↵,n

⇠ xn

↵

. Using this in Eq. (A11) gives us:

x4

↵

�Kx3

↵

+ 2(K cos↵� cos 2↵)x2

↵

�Kx
↵

+ 1 = 0,

(A17)

K =
4µ

1��2

. (A18)

One checks that e±i↵ are solutions independent of the
parameter K. Since we have found two roots, we can find
the other two, which are given by e±i� where � satisfies

cos↵+ cos� =
K

2
. (A19)

Therefore each ↵ has a � partner. We note that ↵
and � are equivalent. The associated eigenvalues can
be written in the same functional form, i.e. ⇤

↵

= ⇤
�

=
q

(µ� cos�)2 +�2 sin2 �, which follows from Eq. (A19).

We continue to use ↵ as the label indicating the eigen-
value.

These solutions tell that e±in↵ and e±in� are the most
general solution for the bulk equation. Now we need to
determine a linear combination of these functions that
satisfies the boundary equations. Treating the left and
right edges in an equivalent way, we consider the follow-
ing combination:

�
↵,n

= A
1

sin(n↵) +A
2

sin[(N + 1� n)↵]

+B
1

sin(n�) +B
2

sin[(N + 1� n)�] , (A20)

in which A
1

,A
2

,B
1

and B
2

are constants.

Using this ansatz, Eqs. (A13) and (A14) give us:

A
1

sin[(N + 1)↵] +B
1

sin[(N + 1)�] = 0 (A21)

A
2

sin[(N + 1)↵] +B
2

sin[(N + 1)�] = 0 . (A22)

Based on these relations, we rewrite the ansatz:

�
↵,n

= A
1

n

sin(n↵)� sin[(N + 1)↵]

sin[(N + 1)�]
sin(n�)

o

+A
2

n

sin[(N + 1� n)↵]

� sin[(N + 1)↵]

sin[(N + 1)�]
sin[(N + 1� n)�]

o

. (A23)

Finally, we make sure that the ansatz satisfies
Eqs. (A12) and (A15), which leads to the following equa-
tions:

0

B

@

� �

1��
f
3

(↵,�) � �

1��
f
1

(↵,�) + f
2

(↵,�)

�

1 +�
f
1

(↵,�) + f
2

(↵,�)
�

1 +�
f
3

(↵,�)

1

C

A

✓

A
1

A
2

◆

=

✓

0
0

◆

(A24)

in terms of the functions

f
1

(↵,�) = sin(N↵)� sin[(N + 1)↵]

sin[(N + 1)�]
sin(N�) (A25)

f
2

(↵,�) = sin[(N + 1)↵](cos� � cos↵) (A26)

f
3

(↵,�) = sin↵� sin[(N + 1)↵]

sin[(N + 1)�]
sin� . (A27)

To find a non-trivial solution for A
1

and A
2

, we require
that the the determinant of the matrix in Eq. (A24) is

zero. This gives us another equation for ↵ and �:

sin2 ↵+ sin2 � +
1

�2

(cos� � cos↵)2

� 2
sin↵ sin�

sin[(N + 1)↵] sin[(N + 1)�]

⇥
n

1� cos[(N + 1)↵] cos[(N + 1)�]
o

= 0. (A28)

This equation should be solved together with Eq. (A19)
to give us all admissible labels. Generically, this has to
be done numerically.
In the analysis below, we focus on the regime with

µ � 0 and � � 0. We assume that � 6= 1, the case
� = t = 1 was considered explicitly in20,21. From the
equations (A28) and (A19), we see that a solution (↵,�)
for � > 0 also gives a solution for � < 0 (though the
form of the wave function �

↵,n

changes). In addition,
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the solutions for µ < 0 can be related to the solutions
with µ > 0. If a pair (↵,�) satisfies the equations for
µ > 0, the pair (↵ + ⇡,� + ⇡) will satisfy the equations
for µ < 0. Note that this shift does not change Eq. (A28).
However, it gives rise to a minus sign in the left hand side
of Eq. (A19) which indeed changes the sign of µ. Finally,
the actual eigenvalues ⇤

↵

are also unchanged.
Thus from now on, we assume that µ,� � 0. The

structure of the solutions (↵,�) is as follows. For µ >
1, one finds N solutions, for which ↵ and or � is real.
Because ↵ and � are completely equivalent, we assume
that ↵ is real. When 0  µ < 1, there are N�1 solutions,
with ↵ real, and � either real or complex. We note that
if � is complex, its real part Re� = 0 for � < 1, and
Re� = ⇡ for � > 1. The ‘missing’ solution has both ↵
and � complex, and corresponds to the zero mode, which
we describe in detail below. In Fig. 2, we show this for a
chain of N = 6 sites, � = 0.8 and di↵erent values of µ.

Before we do so, we first discuss the solutions with ↵
real. We first note that for any (↵,�) pair that solves
Eqn. (A28) and (A19), all the combinations of (±↵,±�)
are also a solution. Since these pairs give rise to same
wavefunction, we only consider ↵ in the range 0  ↵  ⇡.

The solutions are then obtained by finding the solu-
tions of Eq. (A28), where � is given by Eq. (A19). Spe-
cial care has to be taken in the case that both ↵ and �
are real, say (↵,�) = (↵

1

,�
1

), because one will also find
the equivalent solution (↵,�) = (�

1

,↵
1

), so one has to
restrict the range of ↵ further, to avoid ‘double counting’
of solutions.

From Eq. (A19) it is clear that ↵ and � can only be
both real when �1  µ

1��

2  1. Because µ,� � 0, this

leads to two regimes, � <
p
1� µ and � >

p
1 + µ. In

these regimes, one always finds the solution ↵ = � =
arccos(µ/(1 � �2)) = ↵

c

, because Eq. (A28) is trivial
when ↵ = �. This solution is not valid, however, because
it leads to �

↵,n

= 0.
Nevertheless, the value ↵

c

is useful when specifying the
appropriate range for ↵. If there are solutions with both
↵ and � real, one has that either ↵ < ↵

c

< �, or � < ↵
c

<
↵. In addition, for the range �  p

1� µ, one finds that
all the solutions (↵,�) with � imaginary have ↵ > ↵

c

.
Thus, to find all solutions in this range, one should only
take the solutions for ↵ such that ↵

c

< ↵ < ⇡. For the
range � � p

1 + µ, the situation is opposite, and one
should take the solutions for ↵ in the range 0  ↵ < ↵

c

.
In the other regime, namely

p
1� µ < � <

p
1 + µ, one

has to consider all solutions for ↵ in the range 0  ↵ < ⇡.
We now turn our attention to the Majorana zero mode

solution. The goal is to find the analytical expression for
the wave function of this mode. For simplicity, we work
in the limit of large system size, i.e., N ! 1.

By analyzing Eq. (A28), one finds that the solution one
loses, is the one with smallest positive, real ↵. Taking the
limit ↵ ! 0 and N ! 1 of Eq. (A28), using Eq.(A19),
gives

4

�2(1��2)
(µ� 1)[µ� (1��2)] = 0 (A29)

This shows that there is a solution with ↵ = 0, for µ =
1. In addition, further analysis shows that for µ < 1,
one losses this solution, both for � < 1 and � > 1,
while for µ > 1, this solution shifts to finite, positive
↵. This behavior can be seen for a chain with N = 6
sites, � = 0.8 and µ = 1.2, 0.6, 0.25 in Fig. 2. In the
case of µ = 0.25, only the solutions with ↵ > ↵

c

⇡ 0.25⇡
are independent, so the there are still only five solutions.
The additional, sixth solution is still a zero-mode.
We note that for finite N , the value of µ for which

one loses the solution has 1/N corrections, and depends
on �. That the phase transition between the trivial and
topological phase occurs for µ = 1 in the large N limit is
of course well known, and is given by the value of µ for
which the gap closes. Based on Eq. (A4), we infer that
µ = ±1 are the only possible values of chemical potential
for which gap closes (provided that � 6= 0).
Now we turn to finding the missing root and its asso-

ciated features. To do so we need to consider di↵erent
cases.
1) � < 1 and

p
1��2 < µ < 1: In this regime, we

lost one solution with ↵ real, so we look for a solution
with both ↵ and � imaginary, and in fact, purely real.
Such a solution indeed exist namely,

↵⇤ = i(
1

⇠
1

� 1

⇠
2

), �⇤ = i(
1

⇠
1

+
1

⇠
2

), (A30)

cosh
1

⇠
1

=
1p

1��2

, cosh
1

⇠
2

=
µp

1��2

, (A31)

which solves Eq. (A19) and Eq. (A28) in the large N
limit. For

p
1��2 < µ < 1, both ⇠

1

and ⇠
2

are real. Let
us explore the properties of this solution. First, putting
this result back into the Eq. (A16) gives us ⇤

↵

⇤ = 0, so
we indeed have a zero-mode. This means that we can
use Eq. (8) to solve for the wave function. Alternatively,
we can set A

1

= 0 is Eq. (A23) to obtain the Majorana
mode that is localized on the left side of the system.
Either approach gives

�
↵

⇤
,n

= Ce
�
n

⇠
1 sinh(

n

⇠
2

), (A32)

where C is a normalization constant. Because ⇠
1

< ⇠
2

,
the mode �

↵

⇤ is indeed localized on the left edge.
The same reasoning can be done for  

↵,n

. The impor-
tant observation is that (A + B)(A � B) has the same
structure as (A � B)(A + B) if we look at it from the
other side of the chain. i.e. n ! N + 1 � n. So we get
 
↵

⇤
,n

= �
↵

⇤
,N+1�n

, which tells us that  
↵

⇤
,n

is localized
on the right edge.
2) � < 1 and µ <

p
1��2: For µ <

p
1��2, the

parameter ⇠
2

in Eq. (A30) becomes imaginary, so is more
natural to rewrite the previous solution. Thus, the root
can be written as:

↵⇤ = �q + i
1

⇠
, �⇤ = q + i

1

⇠
, (A33)

cos q =
µp

1��2

, cosh
1

⇠
=

1p
1��2

. (A34)
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FIG. 2: Plot of the left hand side of the constraint Eq. (A28)
as a function of ↵ for N = 6, � = 0.8 and µ = 1.2, 0.6, 0.25
for a), b) and c) respectively. For µ = 1.2, there are six solu-
tions, so there are no zero-modes. For µ = .6, there are five
solutions. For µ = .25, there are five independent solutions,
which one can pick to lie in the range ↵ > ↵c ⇡ 0.25⇡.

Again, one finds that ⇤
↵

⇤ = 0. Using the same logic
as above, one finds that

�
↵

⇤
,n

= Ce
�
n

⇠ sin(nq), (A35)

with C some constant. This result shows that �
↵

⇤ is
localized on the left edge. Although this in this case in-
stead of having decaying functions, we have an oscillatory
decaying function.
3) � > 1: In this case we can not use the previous

results, because
p
1��2 becomes imaginary. One finds

that the new root in this regime is given by

↵⇤ = i(
1

⇠
1

� 1

⇠
2

), �⇤ = ⇡ + i(
1

⇠
1

+
1

⇠
2

), (A36)

sinh
1

⇠
1

=
1p

�2 � 1
, sinh

1

⇠
2

=
µp

�2 � 1
. (A37)

We see that ⇠
1

< ⇠
2

since µ < 1. One can check that for
this root ⇤

↵

⇤ = 0, hence it is also a zero mode. To find
the Majorana mode that is localized on the left edge, we
again set A

1

= 0 in Eq. (A23), which results in

�
↵

⇤
,n

= Ce
�
n

⇠
1 ⇥

8

<

:

cosh(
n

⇠
2

), if n is odd,

sinh(
n

⇠
2

) if n is even.
(A38)

This result shows that �
↵

⇤ is localized on the left edge.

To close this section we note that for µ =
p
1��2, we

have ↵⇤ = �⇤. Therefore one can not use xn

↵

and xn

�

as
separate solutions, but one should use nxn

↵

as the other
independent solution.

Appendix B: The zero-modes of the Kitaev chain
with a phase gradient

In this appendix, we investigate the zero mode of the
Kitaev chain, in the presence of a phase gradient in the
order parameter. We assume that |t| = |�| = 1.

As we mentioned in Sec. IVB, after a gauge transfor-
mation the Hamiltonian takes the form

H =
1

2

N�1

X

j=1

(ei
r✓
2 c†

j

c
j+1

+ e�i

r✓
2 c†

j

c†
j+1

+ h.c)

� µ
N

X

j=1

(c†
j

c
j

� 1

2
), (B1)

in which r✓ is the phase gradient per site, which is con-
stant. To find the zero-mode, we use the method which
is presented in Sec. II. From Eq. (A7) matrices A � B
and A+B read
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A�B =

0

B

B

B

B

B

B

B

B

B

B

@

�µ i sin(r✓

2

)
e�i

r✓
2 �µ i sin(r✓

2

) 0
0 e�i

r✓
2 �µ i sin(r✓

2

)
. . .

e�i

r✓
2 �µ i sin(r✓

2

) 0
0 e�i

r✓
2 �µ i sin(r✓r✓

2

)
e�i

r✓
2 �µ

1

C

C

C

C

C

C

C

C

C

C

A

, (B2)

A+B =

0

B

B

B

B

B

B

B

@

�µ cos(r✓

2

)
0 �µ cos(r✓

2

) 0
. . .

�µ cos(r✓

2

) 0
0 �µ cos(r✓

2

)
�µ

1

C

C

C

C

C

C

C

A

. (B3)

In this case we are only looking for the zero mode and
the corresponding Majorana operator. Hence we drop
the ↵⇤ index. In order to have a Hermitian operator,  
needs to be imaginary in Eq. (16). So we set  = i ̃ and

g
n

=
1

2
(�

n

+ i ̃
n

). First we look at the ‘bulk equation’

that follows from Eq. (15):

� µ ̃
n

+ cos(
r✓
2

) ̃
n�1

= 0. (B4)

The only equation which is di↵erent from this bulk equa-
tion has index one (note that matrices are acting from
the right on the vectors),

� µ ̃
1

= 0. (B5)

These two equations give us the solution:

 ̃
n

= R
h µ

cos(r✓

2

)

i

N�n+1

, (B6)

where R is a normalization constant. We see that the
boundary equation holds (in the large N limit), provided
that µ < cos(r✓

2

), which precisely corresponds with the
criterion to be in the topological phase, as we discussed
in Sec. IVB.

We move on to find �. The ‘bulk equation’ coming
from Eq. (14) reads

� µ�
n

+ cos(
r✓
2

)�
n+1

= sin(
r✓
2

)( ̃
n�1

�  ̃
n+1

). (B7)

Here we encounter the first di↵erence in comparison with
the case with only real couplings. In this case the equa-
tion governing � depends on  ̃. This means that the gen-
eral solution for � consists of a part that satisfies Eq. (B7)
with the right hand side set to zero, and a particular so-
lution. The general solution takes the following form

�
n

= L
h µ

cos(r✓

2

)

i

n

�R tan(
r✓
2

)
h µ

cos(r✓

2

)

i

N�n+1

, (B8)

where the first term satisfies Eq. (B7) with the right hand
side set to zero and the second term satisfies the full
Eq. (B7). Thus, in this (unnormalized) solution, L is a
free parameter. We note that the first term is localized
on the left hand side of the system, while the second term
is localized on the right hand side. We should also check
the two boundary equations, which are given by:

n = 1 : �µ�
1

+ cos(
r✓
2

)�
2

= � sin(
r✓
2

) ̃
2

, (B9)

n = N : �µ�
N

= sin(
r✓
2

) ̃
N�1

. (B10)

By substituting the solution for � and  back into
Eqs.(B9) and (B10), we find that they are satisfied up to
terms that are exponentially small in the large N limit.

Using this general solution, we can construct two so-
lutions for g

n

, that are localized on either side of the
system. Setting R = 0, one finds a real solution (local-

ized on the left) g
n

= L
h µ

cos(r✓

2

)

i

n

. Using Eq .(16), we

see that the corresponding electron operator ⌘
↵

operator
only involves the operators �

A,i

, not the �
B,i

. The other
solution, localized on the right, is found for L = 0, and

is given by g
n

=
R

cos(r✓

2

)
iei

r✓
2

h µ

cos(r✓

2

)

i

N�n+1

. Thus,

this right mode involves both �
A,i

and �
B,i

. We note that
the above solutions are valid in the limit of semi-infinite
chains. In the case of a finite, but long chain, they can
be combined to form an approximate solution (up to cor-
rections that are exponentially small the length of the
system) of the fermionic zero-mode, that is delocalized,
with support on both ends of the chain.
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In this paper, we generalize the Peschel-Emery line of the interacting transverse field Ising model
to a model based on three-state clock variables. Along a founded line, the model has exactly
degenerate ground states, which can be written as product form. In addition, we present operators
that transform these ground states into each other. Such operators are also presented for the Peschel-
Emery case. Furthermore, we study the spin-S generalization of interacting Ising model and show
that along Peschel-Emery line they also have degenerate ground states which is a product state. We
also discuss some examples of excited states of all of these models, that can be obtained exactly in
an analytic form.

PACS numbers:

Kitaev’s work on Majorana bound states (MBS) [1]
spurred the current interest in zero modes in general.
This resulted in proposals to detect MBSs in nanowires
[2, 3], resulting in several promising experiments [4–6],
trying to observe these zero modes, which if observed,
could be used for quantum information purposes.

From a theoretical point of view, one can divide zero
modes in two types [7]. A zero mode is weak, if it is
associated with a degeneracy only of the ground state,
while a strong zero mode implies that the whole spectrum
is degenerate (up to corrections that are exponentially
small in the size of the system). Zero modes of non-
interacting systems are strong, as for instance the MBSs
of the non-interacting Kitaev chain. Other examples of
interacting systems with a strong zero mode are the XYZ
chain [8] and the chiral 3-state Potts model [9]. The zero-
modes of the later model are interesting, because they
are closely related to parafermionic zero-modes, which
are more powerful in comparison to the MBS, and there
are proposals to realize parafermions [7, 10, 11].

In this paper we are interested in interacting systems,
that can be fine tuned such that they have an exact zero
mode for arbitrary system size, i.e., models which have
an exact degeneracy of the ground state. The excited
states of these models are not degenerate.

Famous examples of models with an exact zero mode
are the AKLT [12, 13] and Majumdar-Ghosh spin chains
[14, 15], as well as the interacting transverse field Ising
model, along the so-called Peschel-Emery (PE) line [16].
The common denominator of these models is that their
ground states are frustration free. These ground states
minimize the energy for each term in the Hamiltonian,
even though these terms in the Hamiltonian do not com-
mute with one another. Obviously, to achieve this, one
has to fine tune the model. This is nevertheless a use-
ful exercise, because for these fine tuned models, one can
often prove much more results, such as the existence of
gap, in comparison to generic Hamiltonians.

The main result of this paper is the generalization of
the PE-line, to a model build from 3-state clock variables,
such as the three state Potts model. Along this line, the

three ground states are exactly degenerate, and can be
written as product states. In addition, we construct edge
operators, that permutes these ground states, all along
this line. We also construct such an operator for the PE
line, which was not known previously, and present some
exact excited states of these models. Finally we introduce
a spin-S generalization of the PE-line.
The Peschel-Emery line — The Hamiltonians we con-

sider in this paper are all written as a sum of two-body
terms of a L-site chain,

H =
X

j

h
j,j+1 , (1)

where the range of the sum changes depends on whether
we consider an open or closed chain. For the Ising model
in a magnetic field and pair interactions, Peschel and
Emery [16] found that if one parametrizes h

j,j+1(l) as
follows,

hPE
j,j+1(l) = ��x

j

�x

j+1+
h(l)

2
(�z

j

+�z

j+1)+U(l)�z

j

�z

j+1 (2)

the model has two exactly degenerate ground states,
which can be written as product states. Here, the

�↵ are the Pauli matrices and U(l) =
1

2
[cosh(l) � 1],

h(l) = sinh(l) (we note that the sign of h(l) is imma-
terial) and l � 0. The model is Z2 symmetric, with the

parity given by P =
Q

L

j=1 �
z

j

. In the open case, the mag-
netic field of the boundary spins is half that of the bulk
spins.
A direct way to obtain hPE

j,j+1 was given by Katsura
et al. [17]. For the two site problem, one first demands
that the energy of the ground states in the even and odd
sectors are equal, fixing the form of h(l) and U(l). Then
one combines the two ground states to write them as
product states. This ensures that the ground states of a
chain of arbitrary length L are frustration free and can
be written as product states. For both for the open and
periodic chain, they take the form

| +(l)i = (| "i+ ↵| #i)⌦L, | �(l)i = (| "i � ↵| #i)⌦L ,
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where ↵ = exp(l/2) and the energy per bond is ✏(l) =
� (U(l) + 1). These product states do not have definite
parity, but parity states are constructed as

|P = ±1i = | +(l)i± | �(l)i . (3)

The fermionic incarnation of the model Eq. (2), ob-
tained after performing a Jordan-Wigner transformation
[18], is the Kitaev chain with a nearest-neighbor Hubbard
term [17]. Along the PE-line, this model is in the topolog-
ical phase [17, 19], and has exact zero modes in the open
case. For U = 0 and arbitrary h the fermionic model
is quadratic and can be solved [20–22]. For |h| < 1 the
model is topological and hosts two Majorana zero edge
modes [1]. The presence of this zero mode implies that
the full spectrum is degenerate up to an exponentially
small correction in the system size. Generically, upon
adding the interaction term, one loses the degeneracy of
the full spectrum [23] but as long one is in the topological
phase, the ground state remains degenerate, so that the
system has a weak zero mode, that resides on the edges of
the system, and maps the ground states into each other.

We now construct edge operators along the full PE-
line, but it is insightful to first consider l = 0. Using
fermion language, such that we associated to Majorana
operators �

A,j

and �
B,j

to each site j, the Majorana edge
modes are completely localized on the first and last sites
for l = 0. In the spin language one of these has a non-
local string operator owing to the Jordan-Wigner trans-
formation,

�
A,1 = �x

1 �
B,L

= �iP�x

L

. (4)

These Majorana operators anti-commute with P and in
the ground state space {| +(0)i, | �(0)i}, they act as �z

and ��y respectively.
We want to generalize these operators to arbitrary l

such that they act on the ground state space in the same
way and are normalized (i.e., square to the identity). The
edge operators that satisfy these conditions are

A 1
2
(l) =

1

↵
�+
1 + ↵��

1 , B 1
2
(l) = �iP

✓
1

↵
�+
L

+ ↵��
L

◆
,

(5)

where �± = 1
2 (�

x± i�y). They indeed act on the ground
states as follows,

A 1
2
(l)| +(l)i = | +(l)i, A 1

2
(l)| �(l)i = �| �(l)i, (6)

B 1
2
(l)| +(l)i = �i| �(l)i, B 1

2
(l)| �(l)i = i| +(l)i.

(7)

We note that despite the fact that A 1
2
(l)2 = B 1

2
(l)2 = 1

and {A 1
2
(l), B 1

2
(l)} = 0, these are not Majorana opera-

tors, because A†
1
2
(l) 6= A 1

2
(l) and B†

1
2
(l) 6= B 1

2
(l) for l 6= 0.

Because A†
1
2
(l) and B†

1
2
(l) do not have a simple action on

the ground state space, it does not seem possible to use
them to construct Majorana operators with the desired

action on the ground state space. Despite this, they do
constitute an exact zero-mode, all along the PE-line.
The Majumdar-Ghosh [14, 15] and AKTL [12, 13]

chains, which have frustration free ground states, also
have excited states that can be obtained exactly for fi-
nite system size, see [24] and [25, 26] respectively. Along
the PE-line, one can also obtain exact excited states, in
the case with PBC and an even number of sites. We start
with the eigenstates of h

j,j+1(l)

|g+i = | ""i+ el| ##i |g�i = el/2(| "#i+ | #"i) (8)

|e+i = | ""i � e�l| ##i |e�i = (| "#i � | #"i) (9)

where the ground states g± of both parity sectors have
energy ✏(l), while e� and e+ have energy ✏(l) + 2 and
✏(l) + 2 + U(l) respectively. For simplicity, we dropped
the ket notation and the dependence on l. For a system
with an even number of sites, i.e. L = 2N , the ground
states can be written as

|P = ±1i =
X

i1···iN=±
g
i1gi2 . . . giN�1giN , (10)

where the sum is over all 2N�1 configurations i
j

= ±,
with fixed overall parity. Both these parity ground states
have momentum K = 0, despite the fact that the ex-
pression has a two-site block structure. Some exact ex-
cited states can be obtained by exchanging a ground
state block g by an excited state block e±, and sum-
ming over all positions for this block. Two parity states
with �E = 4 can be written as

|�E = 4,±i =
NX

j=1

X

i1···iN=±
g
i1 · · · gij�1e�gij+1 · · · giN ,

(11)
where i

j

= � is fixed in the second sum. These states
automatically have momentum K = ⇡. Exchanging the
block e� by e+ gives two excited states with energy
�E = 4 + 4U(l). One starts with

| ,±i =
NX

j=1

X

i1···iN=±
g
i1 · · · gij�1e+gij+1 · · · giN ,

and constructs K = ⇡ states as follows

|�E = 4 + 4U(l),±i = | ,±i � T | ,±i , (12)

where T translates the system by one site. Finally, by
introducing both one e� block and one e+ block at posi-
tions j1 and j2, and summing over these positions, results
in the states | 0,±i. From these, one obtains two K = 0
states with energy �E = 8 + 4U(l),

|�E = 8 + 4U(l),±i = | 0,±i+ T | 0,±i . (13)

It is straightforward to convince oneself for small sys-
tem sizes that the states presented here are indeed exact
excited states. Proving this is less straightforward, de-
spite the fact that one has the explicit form of both the
Hamiltonian and the states.
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The 3-state clock model — The construction of the PE-
line can be generalized to the 3-state clock or Potts type
models. The Hamiltonian of the 3-state clock model,
which is a generalization of the transverse field Ising
model is

H = �
L�1X

j=1

(X†
j

X
j+1 + h.c.)�

LX

j=1

(fZ†
j

+ h.c.) . (14)

To each site, one associates a three-dimensional
Hilbertspace, |ni with n = 0, 1, 2 taken modulo 3. The
clock operators Z and X act as Z|ni = !n|ni with
! = exp(i 2⇡3 ) andX|ni = |n�1i. These operators satisfy
X3 = Z3 = 1, X2 = X†, Z2 = Z† and XZ = !ZX. Al-
though this model is not solvable in general, it is known
that for |f | < 1 this model has three degenerate ground
states, while for |f | > 1 it shows a paramagnetic behavior
(ref? ).

The clock model Hamiltonian commutes with the par-
ity operator which is now defined as P =

Q
L

j=1 Z, hence
Hamiltonian is Z3 symmetric. Therefore states can be
labeled with their parity eigenvalue, P = !Q, in which Q
could be 0, 1 or 2 since P 3 = 1. Phase diagram of this
model and it’s chiral generalization [30] and the presence
of parafermionic zero modes and their stability have been
investigated [9, 27]. It was conjectured that in a finite
region of phase space of couplings in the chiral model
there is a Strong parafermionic edge zero mode which
is normalizable and gives rise to three-fold degeneracy
in the full many-body spectrum up to an exponentially
small correction in the system size. A recent study, how-
ever, showed that the three-fold degeneracy of the full
spectrum falls apart due to quantum resonances [31]

Apart from the integrable points of the model [32], the
clock model has not been solved. Recently, Iemini et
al [28] found a generalization in which the ground state
is three-fold degenerate along a specific line and has a
matrix-product form which becomes simple in terms of
Fock parafermions [33]. Nevertheless, one can look for
an extension of the model, and fine-tune the couplings,
such that the ground states can be written as a product
state, in analogy with the PE line.

We use the method [17] which has been outlined in the
previous section. One first needs to establish which terms
to add to the Hamiltonian Eq. (14). It turns out that one
needs both the terms Z

j

Z
j+1 and Z

j

Z†
j+1. With these

terms, one finds putting the following two-site Hamilto-
nian in Eq.1 does the job,

hZ3
j,j+1(r) = �X†

j

X
j+1 � f(r)(Z

j

+ Z
j+1)

� g1(r)Zj

Z
j+1 � g2(r)Zj

Z†
j+1 + h.c. . (15)

The parameters are given by

f(r) = (1 + 2r)(1� r3)/(9r2) (16)

g1(r) = �2(1� r)2(1 + r + r2)/(9r2) (17)

g2(r) = (1� r)2(1� 2r � 2r2)/(9r2) , (18)

where r > 0 and r = 1 corresponds to the non-interacting
model. Note that as for the PE-line, the ‘magnetic field’
term is half as strong on the boundary sites in com-
parison to the bulk sites. This model has three ex-
actly degenerate ground states, with the energy per bond
✏(r) = �2(1 + r + r2)2/(9r2). These ground states can,
by construction, be written as product states,

|G0(r)i = (|0i+ r|1i+ r|2i)⌦L (19)

|G1(r)i = (|0i+ r!|1i+ r!̄|2i)⌦L (20)

|G2(r)i = (|0i+ r!̄|1i+ r!|2i)⌦L

. (21)

These product states can be combined to form parity
eigenstates,

|Q = 0i = |G0(r)i+ |G1(r)i+ |G2(r)i (22)

|Q = 1i = |G0(r)i+ !̄|G1(r)i+ !|G2(r)i (23)

|Q = 2i = |G0(r)i+ !|G1(r)i+ !̄|G2(r)i . (24)

As was the case for the PE-line, one can explicitly con-
struct edge operators for the open chain. For r = 1,
the couplings f, g1, g2 are zero and we are left with
hZ3
j,j+1(1) = �X

j

X†
j+1 + h.c.. In this limit one finds,

using the Fradkin-Kadano↵ transformation [29] to trans-
form the clock degrees of freedom to parafermions ⌘

A,j

and ⌘
B,j

, that the Hamiltonian does not depend on two
of the parafermions [9], namely

⌘
A,1 = X1 ⌘

B,L

= !PX
L

. (25)

These operators obey the parafermion algebra, ⌘3
A,1 =

⌘3
B,L

= 1 and ⌘
A,1⌘B,L

= !⌘
B,L

⌘
A,1. To find edge modes

for arbitrary r, we first note that ⌘
A,1 and ⌘

B,L

act on
the ground state space {|G0i, |G1i, |G2i} (with r = 1) as
Z and ZX†. To generalize these operators to arbitrary
r, it is useful to consider the generalization of the ladder
operators for SU(2) spins, namely

⌃0 =
X

3

�
1+ Z + Z†� (26)

⌃1 =
X

3

�
1+ !̄Z + !Z†� (27)

⌃2 =
X

3

�
1+ !Z + !̄Z†� . (28)

One checks that ⌃0|0i = |2i, ⌃1|1i = |0i and ⌃2|2i = |1i
while all the other matrix elements are zero.
The edge operators that act in the same way as ⌘

A,1

and ⌘
B,L

for arbitary r can be written in terms of the
⌃↵’s as

A
Z3(r) =

1

r
⌃1

1 + ⌃2
1 + r⌃0

1, (29)

B
Z3(r) = !P

✓
1

r
⌃1

L

+ ⌃2
L

+ r⌃0
L

◆
. (30)

One can check that,

A
Z3(r)|Gj

i = !j |G
j

i B
Z3(r)|Gj

i = !j+1|G
j+1i ,

(31)
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where the index of G
j

(r) is taken modulo 3. So, indeed,
A

Z3 acts as Z and B
Z3 as ZX† in the space of ground

states. Although these operators obey the relations
(A

Z3)
3 = (B

Z3)
3 = 1 and A

Z3BZ3 = !B
Z3AZ3 , they

are not parafermions, because for instance A†
Z3

6= (A
Z3)

2,
and similar for B

Z3 . This is exactly the same behavior as
we found for the spin-1/2 PE-line. Again, the operators
A

Z3(r) and B
Z3(r) are exact zero modes.

We now present three exact excited states for the
model with PBC and L = 2N . Solving hZ3

j,j+1 gives us
three ground states and two special excited states which
are building blocks of our construction,

|g1i = |00i+ r2|12i+ r2|21i, (32)

|g
!

i = r2|22i+ r|01i+ r|10i, |e
!

i = |10i � |01i (33)

|g
!̄

i = r2|11i+ r|02i+ r|20i, |e
!̄

i = |20i � |02i, (34)

where g1,!,!̄

have energy ✏(r), however, e
!,!̄

have energy
✏(r)+2+ r. We can rewrite three ground states in terms
of these blocks,

|P = 1,!, !̄i =
X

i1···iN=1,!,!̄

g
i1gi2 . . . giN�1giN , (35)

where the sum is over all 3N�1 configurations i
j

= 1,!, !̄,
i.e. fixed parity. There three exact excited state with en-
ergy �E = 2(2+r) and momentum K = ⇡ along the line
which can be constructed by replacing one of ‘g

i

-blocks’
by an ‘e

i

-block’ with the same parity and performing the
sum over all the blocks,

|�E = 2(r + 2), P = 1,!, !̄i =
NX

j=1

(Z2j�1 � Z2j + h.c.)|P = 1,!, !̄i . (36)

Spin-S PE-line — We study the spin-S generalization
of the PE-line which has been investigated previously
[34–36]. Here we present the exact ground state wave
functions, which again are product states, as well as the
exact edge modes. The Hamiltonian for this model is

hS�PE
j,j+1 = �Sx

j

Sx

j+1 +
h(l)

2
S
�
Sz

j

+ Sz

j+1

�
+ U(l)Sz

j

Sz

j+1,

(37)
in which S↵ are spin operators of the the spin-S rep-
resentation of SU(2) algebra. The parameters U(l) =
1

2
[cosh(l) � 1] and h(l) = sinh(l), are the same as

the PE-line couplings in Eq.2 [37]. The Hamiltonian
Eq. (37) commutes with the ‘parity’ of the magnetization,

P
M

=
Q

L

j=1 e
i⇡(S�S

z
j ), because the operators Sx

j

Sx

j+1 ei-
ther change the magnetization by two units, or leave it
the same.

The model has two exactly degenerate ground states
for arbitrary l, which can be written as product states,
similar to the Z2 and Z3-clock model cases. These two
ground states are

| +
S

(l)i =
⇣
e↵S

�
|Si

z

⌘⌦L

| �
S

(l)i =
⇣
e�↵S

�
|Si

z

⌘⌦L

,

(38)

where ↵ = exp( l

2 ) and |Si
z

is the S
z

= S eigen-
state, i.e. Sz|Si

z

= S|Si
z

. The states | ±
S

(l)i are
not parity eigenstates, but these can be constructed as
|P

M

= ±i = | +
S

(l)i± | �
S

(l)i. As in the previous cases,
these states are exact ground states for both the open
and periodic chains, with the energy per bond given by
✏
S

(l) = �S2(U(l) + 1).
Following the Z2 case we define edge operators which

act on the ground states,

A
S

(l) =
1

2S
(
1

↵
S+
1 + ↵S�

1 ) (39)

B
S

(l) = � i

2S
P
M

(
1

↵
S+
L

+ ↵S�
L

) . (40)

For S = 1/2, these operators reduce to A 1
2
(l) and B 1

2
(l)

in Eq. (5). They act like �z and ��y on the ground
states, again in correspondence to the Z2 case.
The model Eq. (37) with PBC has exact excited states,

that are constructed from eigenstates of the two-site open
model. The ground states |g±i with parities P

M

= ±1
are obtained by acting on |S, Si as

|g±i =
h
e↵(S

�
1 +S

�
2 ) ± e�↵(S�

1 +S

�
2 )
i
|S, Si . (41)

There are two parity eigenstates |e±i with energy �E =
S, which can be obtained from the ground states[38],

|e±i = (Sz

1 � Sz

2 )|g±i . (42)

We first re-write the ground states of the L = 2N site
chain in terms of the g±, in the same way as in the case
of the PE-line, Eq. (10),

|P
M

= ±1i =
X

i1···iN=±
g
i1gi2 . . . giN�1giN , (43)

where the sum is again over all 2N�1 configurations i
j

=
±, with fixed parity. These states are ground states of
both the open and periodic chains, in the latter case they
have momentum K = 0. From these K = 0 states, one
obtains K = ⇡, parity eigenstates with energy �E = 2S,
by replacing the one of ‘g

i

-blocks’ by an ‘e
i

-block’ with
the same parity, and summing over the position,

|�E = 2S, P
M

= ±1i =
NX

j=1

(Sz

2j�1 � Sz

2j)|PM

= ±1i .

(44)
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Hamiltonian in Eq. (2), which is written in terms of Pauli
operators.

[38] For S = 1
2as one can see from Eq.8 there is only one

such a excited state, namely e�, since in this case (Sz
1 �

Sz
2 )|g+i = 0.
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