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Abstract

States of matter which are described by concepts in topology are of great
interest in the community of condensed matter physics. Both from a pure
theoretical perspective, where many non-intuitive and mathematically rich
results can be found from seemingly simple models, and also since recent
experimental developments allows for explicit construction of devices where
the underlying topology has observable consequences.

This thesis provides a conceptual introduction to the framework describ-
ing such topological states of matter (TSM). It starts by explaining ordinary
band theory which is followed by a discussion of quantum mechanical symme-
tries. These two concepts provides a method of classifying all non-interacting
fermionic TSM. Following are explicit applications to a few models in one
spatial dimension.

In the accompanying paper, we study one-dimensional superconductors
with Josephson-junctions allowing phase shifts of ⇡. We make a detailed
analysis of the junction bound states and their properties in some di↵erent
settings and compare the behaviour of trivial and topological superconducting
junctions. In addition, we provide a phenomenological topological field theory
in the low energy limit.





Sammanfattning

De senaste åren har forskning rörande s̊a kallad topologisk materia utgjort en
huvudf̊ara inom teoretisk kondenserad materiefysik. Detta beror inte bara p̊a
en mycket rik och intressant matematisk struktur, utan ocks̊a p̊a en enorm
utveckling inom den experimentella nanofysiken, vilken möjliggjort en intres-
sant plattform för utveckling av nya konstruerade kvantmekaniska system och
material.

I denna avhandling ges en introduktion till det vedertagna ramverket för
att teoretiskt beskriva system med en s̊adan topologisk struktur. Därp̊a följer
tillämpningar av detta ramverk p̊a ett f̊atal system i en rumsdimension.

I den medföljande artikeln behandlas en-dimensionella supraledare i fas-
vridna Josephson-överg̊angar. De topologiska egenskaperna hos supraledarna
visas inverka p̊a beteendet hos bundna tillst̊and i s̊adana överg̊angar och vi
visar även hur skillnader i detta beteende kan användas för att detektera
topologisk supraledning.
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1

Introduction

1.1 Condensed Matter Physics

The creation of quantum mechanics in the early twentieth century was a
paradigmatic shift in how to describe nature. By applying quantum mechanics
to systems of constant density, such as solids and liquids, in the energy range
corresponding roughly to room temperature and below, one enters the realm
of condensed matter physics.

This is one of the most successful branches in physics and has given us both
mathematically interesting theoretical models and a huge number of hands-
on applications such as the transistor [BB48], Magnetic Resonance Imag-
ing (MRI) [Lau73], Nuclear Magnetic Resonance (NMR) for chemical anal-
ysis [RZMK38], superconducting magnets [Ynt55] and Light Emitting Diodes
(LEDs) [Zhe07].

The unification of seemingless unrelated phenomena has paved the way for
an accurate description of condensed matter in nature. This success can be
attributed to the formulation of a couple of strong principles underlying most
of condensed matter theory [AS10].

Emergence is the concept that knowledge of the constituents of a system by
no means implies that the system behaviour itself is understood. A system can
be, and usually is, more than stacked fundamental building blocks, meaning
that on each level of complexity, new features in terms of new physical laws
and behaviour arise. Therefore, there is hope that though given an underlying
microscopic model that might be impossible to solve exactly (which is usually
the case), it is still possible to formulate e↵ective theories relevant for the
level of study, and to reduce the system in question by ignoring e↵ects that
are beyond said level.

Symmetry is deeply rooted in the language of all physics and that a system
is invariant under some manipulation or transformation. As such it is further
typically related to some conserved quantity. As will be later explained in this
thesis, symmetries can also be responsible for the stability of certain phases
of matter and the exotic particles associated to them.

Adiabatic continuity states that given some fundamental symmetries, the
theoretical description of interacting systems often can be viewed as emerging
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2 Chapter 1. Introduction

by adiabatically (in this context meaning slowly) turning on interactions in the
corresponding non-interacting system provided the symmetries remain intact.
Related to this adiabatic continuity is the emergence of quasiparticles, weakly
interacting particles“dressed”by e↵ects from interactions. This principle is the
reason why seemingly “wrong” theories of non-interacting systems accurately
can describe systems where interactions are known to be strong.

Universality means that many microscopically di↵erent systems actually
demonstrate common collective behaviour and are therefore describable with
the same e↵ective models. These are usually much simpler than any micro-
scopic theory since many layers of complexity can be ignored at the scale of
study.

One of the most successful results of condensed matter physics has been
to identify all ways matter can organize itself, the so called phases of matter.
Classically, we learn of phases such as solids, liquids and vapours, but quantum
mechanics predicts a plethora of additional phases. The characterization of
these phases has been extremely successful by the use of Landau’s theory of
symmetry breaking [Lan37,LL80].

Within this framework, a phase transition is described by the behaviour
of a quantity called the local order parameter. This quantity takes a non-
zero value only below some transition temperature and is associated with
the breaking of some underlying symmetry of the system. For example, a
ferromagnet exhibits a spontaneous magnetization at the Curie temperature,
where rotational invariance is broken as the microscopic dipoles all align in
a single random but fixed direction. One of the great strengths of Landau’s
theory is that it can be formulated on quite general premises, requiring only
an expansion of the free energy in terms of the local order parameter.

This thesis discusses the combination of failure of Landau’s theory and the
mathematical branch of topology. Already in 1931, with Dirac’s quantum me-
chanical treatment of the magnetic monopole [Dir31], the concept of topology
seriously entered the realm of theoretical physics. But it was not until some
50 years later that it made its grand and physical appearance in condensed
matter physics, progressively branching of into various di↵erent subfields.

Most interestingly, in the last couple of decades, condensed matter physics
has seen a rapid development due to groundbreaking experimental develop-
ments including cold atom traps, fabrication of nano-scale devices with atom
precision and superconducting circuits. These, in combination with new and
exciting topological models pose a promising and exciting path for a fundamen-
tally new generation of quantum devices and exotically engineered materials.

1.2 Topology in Condensed Matter

Topology made a distinct entry in condensed matter physics in the 1980’s
with the discovery of the Integer [vDP80] and Fractional Quantum Hall ef-
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fects [TSG82,Lau83] (IQH and FQH respectively) which generated a paradig-
matic change in how matter is described. These e↵ects occur when a two-
dimensional electron gas, trapped in a semiconducting heterostructure at low
temperature, is exposed to a strong magnetic field, while a current is driven
through it. The resulting Hall conductance as a function of magnetic field
takes on integer (IQH) or fractional (FQH) multiples of e2/h, regardless of
any microscopical details, to nearly one part in a billion. This conductance is
one of the most well measured numbers in nature.

The quantum Hall setup was the first experimental example of a state that
was not describable with Landau’s framework of symmetry breaking. Phases
of matter that exhibit a quantized Hall conductance can not be assigned any
local order parameter [TKND82,Koh85,NTY85]. Systems that have this prop-
erty are usually said to be topologically ordered [Wen90], though a more ac-
curate definition would be a phase whose low energy e↵ective field theory is a
topological field theory. These field theories, as the name suggests, depend on
concepts from the mathematical field of topology. This topology is the origin
of the exact quantization of the Hall conductance. But there is another but
closely related amazing feature of the quantum Hall state. Namely that it is
insulating in the interior but conducting on the edges. It is these edge states
that transfer the current across the sample trough ideal conducting channels
yielding the perfectly quantized Hall conductance. The state is said to be
topologically insulating.

Though topologically ordered systems have been around for quite some
time, theories describing them are usually extremely complicated involving
strong interactions and correlations. But surprisingly, it was shown that states
formed in free fermion systems, despite seeming trivial and being exactly solv-
able, also can show interesting properties rooted in topology. These states are
called Topological States of Matter (TSM). The IQH state is actually the first
example of such a TSM, while the FQH state can not be described by any free
fermion model. It was also discovered that the theory of electronic band struc-
ture in solids, which had been around since the advent of quantum mechanics,
turned out to have an underlying topological structure. This enhanced band
theory is called topological band theory and lies at the heart of TSM.

In 1988, Haldane showed that in a graphene-like model with non-interacting
spinless fermions, there could be a quantized Hall conductance although the
net magnetic field was zero [Hal88]. This is remarkable, since the magnetic
field was thought to be the crucial ingredient for topological properties in the
IQH state. Haldane’s model is called the Quantum Anomalous Hall E↵ect
(QAHE) or the Chern Insulator and has recently been realized in cold atom
traps [JMD+14].

Quite some years later, in 2005, Kane and Mele predicted that Graphene
should exhibit the so called Quantum Spin Hall (QSH) e↵ect [C.L05,KM05].
In their model, two copies of Haldane’s model, one for each spin direction, were
coupled via spin-orbit interactions. This leads to a zero Hall conductance, but
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opposite spin currents along the edges, so called helical edge states, which are
stable just because there is no magnetic field. The edge states are said to be
protected by time reversal symmetry in the sense that the system looks the
same if time would be reversed.

Unfortunately, the QSH e↵ect turned out to be too small for detection in
graphene. But one year leater, Bernevig, Hughes and Zhang (BHZ) developed
another model of the QSH e↵ect, which was appropriate for two-dimensional
HgTe/CdTe quantum wells [BHZ06]. This time, the e↵ect was measurable,
and the QSH state was measured and verified as a symmetry protected topo-
logical state of matter [KWB+07]. The QSH e↵ect was later generalized to
three dimensions where exotic surface states appear on slabs of certain heavy
element materials [FKM07,HQW+08].

Meanwhile, Kitaev presented in 2001 a paper where a model for a topo-
logical superconductor was constructed [Kit01]. This model featured so called
Majorana Bound States (MBS) having the peculiar property of non-Abelian
statistics which are of immense interest in the field of topological quantum
computation. The Kitaev paper launched a huge e↵ort in realizing MBS ex-
perimentally, culminating in ingenious devices where already existing building
blocks of nanotechnology are combined into engineered versions of topologi-
cal superconductivity. These quantum devices are theoretically predicted to
host the exotic MBS. Though theoretically promising, it is fair to say that
experimental results still are under debate.

A couple of years later, it was found that the models of the IQH e↵ect,
the QSH e↵ect, topological superconductors and many other models could
be collectively described by a general framework, the so called The Ten-fold
Way, The Periodic Table of Topological Insulators and Superconductors or The
Cartan-Altland-Zirnbauer Classification Table [SRFL08,RS+10,A.Y09]. It de-
scribes a general setting where insulating and superconducting band structure,
symmetry and topology lead to a classification of all possible non-interacting
fermionic TSM.

In this thesis we shall be concerned with quantum mechanical systems
exhibiting TSM which in addition are confined to one spatial dimension. This
will be motivated as follows.

1.3 Systems Confined to One Dimension

The concept of a one-dimensional system may seem as only a theoretical ap-
proximation when two of the three dimensions of a system are much smaller
than the third. But quantum mechanically, given a su�ciently low energy
regime (for example in a low temperature environment), the energy for ac-
cessing excited states corresponding to the smaller dimensions is much higher
than any relevant energy scale. Compare for instance with the level spacing,
�E ⇠ 1/L, where L is the box length, in the “particle in a box problem” of
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elementary quantum mechanics (see for instance Ref. [Rob06]). This implies
that the system for all practical purposes is constrained to one dimension since
the smaller dimensional degrees of freedom are energetically “frozen out”.

One-dimensional quantum physics is itself a vast area of research and is
fundamentally di↵erent from higher dimensions (see [Gia03] for an introduc-
tion). There are many exotic phenomena that occur in one dimension such
as spin-charge separation, Luttinger liquids or the absence of spontaneous
symmetry breaking. In addition, as will be discussed below, the so called
bulk-boundary principle implies that the edges of two-dimensional TSM can
be described by a particular kind of one-dimensional models. These models
can have many peculiar features, such as non-charge conservation, since they
can not exist independently without the bulk system. Other prominent ex-
amples of existing one-dimensional systems are carbon nanotubes, quantum
spin Hall edges, polymers such as polyacetylene and fabricated heavy element
nano wires.

1.4 Goals and Outline

The main goal of this thesis is to provide a conceptual introduction to fermionic
TSM and describe a specific application to one-dimensional systems. It is
meant to be accessible for students entering this field of research and to provide
a firm basis for reading more in depth research papers. Some emphasis has
been given to explain the frequently used jargon which can, at least according
to the author’s experience, be frustrating and time consuming to understand
for a newcomer. The thesis is organized as follows:

In the second chapter, the stage is set for analyzing TSM. A general dis-
cussion of important concepts is given together with a description of the tight-
binding formulation which is a convenient language for describing topological
band theory. Following is a discussion of quantum mechanical symmetries
which are the basic ingredients for a classification of all non-interacting topo-
logical states of matter. This classification will be explained together with a
discussion of it’s limitations and applications.

In chapter three, a few one-dimensional models that exemplify the contents
of chapter two will be presented. The two first models concern topological
superconductivity and MBS. The first one is the Kitaev Wire which is a simple
toy model realizing the concept of isolated MBS. The next one is a physical
realization of Kitaev’s model, which is the one mostly used for analyzing real
experiments. It goes under various name, but in this thesis the Majorana
Wire Model will be used. The last model is a toy model for the polymer
polyacetylene which exhibits fractional charge states localized at deformations
of the polymer chain. Together, these three models will hopefully clarify many
concepts and concretize abstract notions of topology.
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Chapter four gives an accessible introduction to the accompanying paper.
Along the way, pointers to previous chapters will motivate the research.

The fifth, and final, chapter summarizes the thesis and points out some
directions for future research.



2

Topological States of Matter

This chapter starts with an introduction to the field of topological insulators
and superconductors, collectively called Topological States of Matter (TSM).
Here the motivation of using the adjective topological will be explained. The
chapter continues with an accessible introduction to the tight binding formal-
ism, which will be used in the remainder of the thesis to describe various
models exhibiting topological properties. Following is a brief description of
the concept of quantum mechanical symmetries which are of paramount im-
portance in the field of TSM. These symmetries will then be used as a basis for
the classification of all non interacting TSM in di↵erent spatial dimensions.
The chapter concludes with a discussion of the limitations of the presented
framework and highlights some extensions which are focus of contemporary
research. The chapter will be at an introductory level and references to more
in-depth treatments will be given along the way.

2.1 Topological Insulators and Superconductors

The mathematical field of topology deals with how mathematical objects can
be deformed into each other. These deformations include bending, stretching
and twisting but not tearing, cutting or gluing. In addition, it investigates
which global properties of the objects that are preserved in these deformation
processes.

As an example, a ball can be continuously deformed into a cube but not
into a torus because that would require cutting a hole which the rules do
not allow. The ball and cube are then said to be topologically equivalent, or
homeomorphic, while the ball and the torus are topologically distinct.

Applied to the setting of condensed matter physics, we may ask the ques-
tion whether quantum systems, represented by their Hamiltonians, continu-
ously can be transformed into each other given some constraint on the defor-
mation [ASv+15,HK10]. If this is possible, the systems are said to be topolog-
ically equivalent. The constraint is important, for without it the above notion
would be meaningless as any Hamiltonian could in some way be deformed to
any other. Compare with the rule of “no cutting” above. In this thesis we
shall be concerned with the constraint of treating gapped Hamiltonians which

7



8 Chapter 2. Topological States of Matter

describe insulators and superconductors. Having a gapped fermionic Hamilto-
nian means that between occupied and unoccupied energy eigenstates, there
is a finite energy region where no states exist. This gap must exist regardless
of the system size.

Related to the deformation of Hamiltonians, is a quantity called the topo-
logical invariant. This invariant, as the name suggests, does not change under
continuous transformations between two topologically equivalent Hamiltoni-
ans, but will generally do so whenever a deformation forces the energy gap
to close. When this happens, the system is said to undergo a topological
phase transition. To connect to the example of the ball-torus deformation,
the number of holes, called the genus or the Euler characteristic, would be
the relevant quantity for a topological invariant in this specific problem. In
this thesis, however, we shall be concerned with slightly more complicated
invariants expressed as winding numbers and Pfa�an invariants.

We shall also see that certain symmetries further constrain the allowed set
of deformations between Hamiltonians. This leads naturally to the definition
of a symmetry protected topological state of matter which can formulated as:

“As long as a certain symmetry is present, the state can not be
deformed into a trivial state unless the gap closes.”

A trivial state is equivalent to an ordinary insulator or superconductor
which will turn out to never have non-trivial topological invariants. A trivial
insulator is such that it can be adiabatically (which is su�ciently slow so that
the associated energy scale is far below that of the energy gap) deformed into
a state of isolated atoms. A trivial superconductor is defined as one that has
a trivial topological invariant. Symmetry protected TSM will be the main
theme of this thesis and in particular how the topology of a system’s band
theory is manifested in its edge properties. This connection, that non-trivial
bulk topology implies exotic edge modes, has a name, The Bulk-Boundary
Correspondence and lies at the heart of topological states of matter and how
to detect them in experiments.

2.2 Tight Binding and Bloch Hamiltonians

The tight binding description of quantum systems is a powerful method of
modeling band structure of non-interacting electrons (see for instance [YC10,
AM76]). It captures the lattice structure of the system while at the same time
allowing for symmetry constraints, internal degrees of freedom, impurities
and external fields. Additionally, the tight binding description contains a
natural high energy cuto↵ which is crucial for a well behaved bulk topology
of the system. For a model lacking this cuto↵, various regularization and
compactification schemes have to be implemented. The absence of need for
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such schemes is again a powerful property of the tight binding description.
Many models of TSM are in fact written in this language.
A general tight binding model has the form

H =
X

ij↵�

c†
i↵

H↵�

ij

c
j�

, (2.1)

where i,j denotes lattice sites in any dimension and ↵,� are any internal site
degree of freedom, for example spin, orbitals or electron-hole properties. The
second quantization operator c†

i↵

creates particles on site i and with internal

degree of freedom ↵. The coe�cients H↵�

ij

capture any symmetries of the
system.

By requiring translational invariance, the Hamiltonian can be Fourier
transformed into the form

H =
X

k↵�

c†
k↵

h↵�(k)c
k�

, (2.2)

where h↵�(k) is an element of the Bloch (or in the superconducting case,
the Bogoliubov - deGennes or simply BdG) Hamiltonian. The quantity k is
the Bloch, or crystal, momentum and takes values in the first Brillouin zone
(BZ). In one dimension, the BZ is the interval [�⇡,⇡] assuming a unit lattice
constant.

The notion of the bulk Hamiltonian, in the sense that it describes a system
without a border, is also frequently used. As will be shown, the topology of
the bulk Hamiltonian is manifested by introducing edges in the system. This
is called the bulk-boundary correspondence and is one of the key concepts of
TSM.

Note that the Bloch Hamiltonian is a matrix in the internal degrees of
freedom. The matrix elements h↵�(k) are related to H↵�

ij

by

h↵�(k) =
X

�

H↵�

�

e�i�·k, (2.3)

where � is a vector connecting the lattice sites. Frequently � is restricted to
the set of nearest neighbour vectors.

Another advantage of the tight binding model is that it can be straight-
forwardly implemented numerically. To see this, we recall the notion of matrix
representation of quantum mechanics.

Assume there exists an orthonormal and complete basis set of the Hilbert
space, {|ii}

i

fulfilling
P

i

|ii hi| = with inner product hi|ji = �
ij

. Any

operator, Â, on the Hilbert space, can be written as

Â = · Â · =
hX

i

|ii hi|
i
· Â ·

hX

j

|ji hj|
i
=

X

ij

A
ij

|ii hj| , (2.4)
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with A
ij

= hi| Â |ji 2 C, being an element of the matrix A which is a repre-
sentation of the abstract operator Â in the given basis. This procedure can
also be performed on a state vector yielding the representation

| i = | i =
X

i

|ii hi| i =
X

i

 
i

|ii , (2.5)

with  
i

= hi| i 2 C, being the basis element of the vector ~ which represents
| i in the given basis.

The abstract entities Â and | i on the Hilbert space have thus been con-
verted to the matrix A and the vector ~ which are sets of complex numbers
that can be calculated on a computer.

Consider now the time independent Schrödinger equation Ĥ | i = E | i.
Using the representations (2.4) and (2.5) above gives

hX

ij

H
ij

|ii hj|
ihX

k

 
k

|ki
i
= E

⇥X

i

 
i

|ii
i

(2.6)

)
X

ij

H
ij

 
j

|ii = E
X

i

 
i

|ii .

Multiplying with hk| from the left and using the orthonormality of the basis
leads then to the equation

X

kj

H
kj

 
j

= E 
k

or H~ = E ~ , (2.7)

which is just the eigenvalue equation of the matrix H. Solving it will give the
eigenvalues or eigenenergies {E

i

}, and the eigenvectors {~ 
i

}. The elements
of the eigenvectors will be the coe�cients of the basis expansion (2.5). The
procedure above can be extended to time-dependent systems, but this is out
of the scope of this thesis.

To clarify the concepts above, consider a one-dimensional chain of N sites
with on-site chemical potential µ and nearest neighbouring hopping amplitude
t. This model can be implemented by

H =
NX

i=1

h
�t(c†

i

c
i+1

+ c†
i+1

c
i

)� µc†
i

c
i

i
. (2.8)

This Hamiltonian can be implemented numerically by defining a sparse N⇥N
matrix H with non-zero elements

H
ii

= �µ, H
i,i+1

= H
i+1,i

= �t. (2.9)

Here we have used the basis states |ii ⌘ c†
i

|0i = (0, . . . ,1, . . . , 0)T , where |0i is
the vacuum state containing no particles, the 1 is in the i:th position, and T
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denotes transposition. Solving the eigenvalue equation for the matrix H gives
the spectrum of the model and the eigenstates, where the latter will be linear
combinations of the basis states, the so called Bloch states which will arise in
any periodic crystal structure.

Imposing periodic boundary conditions, c
N+1

= c
1

, allows for a Fourier
transform which in this problem directly yields the one-dimensional Bloch
Hamiltonian and eigenenergies h(k) = ✏(k) = �2t cos(k) � µ where we have
assumed a unit lattice constant. The crystal momentum k takes the values
k = 2⇡n

L

where n = 0,1,2,..., N � 1 and are of course exactly (or as far as
machine precision allows) the same as the eigenvalues of the matrix H with
periodic boundary conditions H

1N

= H
N1

= �t.
We shall now move on to discuss how symmetries of the bulk Hamiltonian

is constructed and analyzed.

2.3 Symmetries

A physical system can posses various symmetries. These are quantum me-
chanically represented by unitary operators that commute or anti-commute
with the Hamiltonian. An ordinary symmetry, U , is said to exist if the system
Hamiltonian is such that it commutes with a unitary operator

[H,U ] = 0, U †HU = H. (2.10)

Examples of such symmetries are the spin projection or linear momentum
operators.

Any such unitary symmetry allows for a reduction of the Hamiltonian
into symmetry-free blocks. As an example, a spin Hamiltonian commuting
with �

z

can be written in separate spin-up and spin down-blocks. Due to
the commutativity with the Hamiltonian and by the Heisenberg equation of
motion, these spins are conserved and the blocks will therefore be completely
disconnected. Each block on it’s own will not posses the spin-symmetry since
that degree of freedom has been eliminated.

Each sub-block may in turn be analyzed further until no symmetry is left
and one has reached an irreducible representation of the full symmetry group
of the Hamiltonian. But each sub-block can be classified further with a second
kind of symmetry operators. These are the so called anti-unitary operators
which work in a somewhat di↵erent way. They impose spectral constraints on
the Hamiltonian which is of utter importance when topological band structure
is concerned. Examples of such constraints will explicitly be given below.

For TSM there are two important anti-unitary symmetries [Ber13]. A
Hamiltonian is defined to be time reversal symmetry (TRS) or particle-hole
symmetry (PHS) invariant respectively if there can be found anti-unitary op-
erators that commute respectively anti-commute with the Hamiltonian:

T HT �1 = H, PHP�1 = �H. (2.11)
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TRS is present in any system that would look the same if time would be
reversed. PHS is a little bit more subtle, since it in some situations, notably in
mean field superconductivity, arises automatically from an artificial doubling
of the degrees of freedom. For this reason we shall keep in mind that PHS is
not always an actual symmetry, but we will treat it on the same footing as
any other symmetry.

According to Wigner’s theorem (see for instance [SN11]), every anti unitary
operator can be written as the product of some unitary operator and the
complex conjugation operator. For example, the TRS operator for a spin�1/2
system in the basis of �z-eigenstates, can be written as T = i�

y

K with i�
y

unitary and K the complex conjugation operator (it is important to note
that the representation of any operator can depend on the choice of basis).
Applying T on the spin operator flips all spin components,

T �
i

T �1 = ��
i

, i = x,y,z (2.12)

as time reversal intuitively should. By the virtue of Wigner’s theorem we
shall use the notational convention T = TK and P = PK with T and P being
unitary operators.

TRS and PHS can each each come in two distinct classes. Squaring any
of the operators we can have the possibilities T 2 = ±1 and P2 = ±1. These
di↵erent sides of the same symmetry coin may have drastical consequences
on the energy spectrum. A well known example is the T 2 = �1 operator for
spin-1/2 particles which yields Kramer’s degeneracy : all energy states are at
least two-fold degenerate.

For Bloch or BdG Hamiltonians h(k) (which usually are matrices) the
TRS and PHS symmetries in Equation (2.11) translate into the the following
spectral constraints

Th(k)TT † = h(�k), Ph(k)TP † = �h(�k), (2.13)

where the hermicity of h(k) has been used and T denotes matrix transposition.
Furthermore, the combination of TRS and PHS yields the Chiral Symme-

try (CS) which can be represented by the operator C = TKPK = TP ⇤ ⌘ C
imposing the following Hamiltonian constraints:

CHC�1 = �C (2.14)

and

Ch(k)C† = �h(k). (2.15)

Thus, a CS is represented by a unitary operator that anti-commutes with
the Hamiltonian and is sometimes called sub-lattice symmetry since the same
type of symmetry operator arises in systems where one can make a division
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between two sublattices, a and b. The Hamiltonian can then be written in a
basis such that the Bloch Hamiltonian has the form

h(k) =

✓
0 h

ab

h†
ab

0

◆
. (2.16)

For such a Hamiltonian, it is straightforward to show that all eigenstates come
in±E pairs. As we shall see next, the analysis of TSM boils down to classifying
Hamiltonians according to the symmetries mentioned in this section.

To summarize, in the field of TSM there are three important symmetries:

• TRS which is an anti-unitary symmetry that commutes with the Hamil-
tonian.

• PHS which is an anti-unitary symmetry that anti-commutes with the
Hamiltonian.

• CS which is a unitary symmetry that anti-commutes with the Hamilto-
nian.

We shall now use these symmetries as a basis for classifying all non-interacting
TSM.

2.4 Classification of Topological States of Matter

The topological classification of all non-interacting and gapped Hamiltonians
boils down to two basic sets of problems.

1. Given a set of anti-unitary symmetries and some specified physical di-
mension, what is the group of topologically distinct Hamiltonians, how
many di↵erent topological phases are there and what kind of object is
the topological invariant?

2. Given a Hamiltonian with certain fixed parameters belonging to a certain
class, which topological phase is the system in, and what is the value of
the topological invariant?

The first of these problems is discussed at a conceptual level in this section,
while the second, which is a bit more subtle, will be adressed in some specific
examples in the next chapter.

2.4.1 Outline of Classification

The main idea behind the classification is that physical systems in any spatial
dimension having an insulating bulk gap can be divided into di↵erent classes
distinguished by their underlying symmetries, TRS, PHS and CS. Both TRS
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and PHS can either be present, and can either square to ±1, or be absent.
This directly yields nine di↵erent possibilities. The CS is always fixed by
the other two symmetries except for one specific case. When both TRS and
PHS are absent, there is still the possibility of having the CS present anyway.
This yields a grand total of ten distinct classes having various topological
properties. We shall now roughly sketch the procedure of determining what
kind of topological phases a certain class has.

The relevant quantity for the topological classification of an insulating
band structure is the projection operator onto the subspace of occupied bands
[SRFL08,QHZ08]. This operator can be written as

P (k) =
nX

j=1

|u
j

(k)i hu
j

(k)| , (2.17)

where we have assumed that n out of n+m bands are occupied.
Since it is only the global properties of the band structure that are relevant,

we can deform the band structure as long as the gap separating occupied
and empty bands is maintained. The insulator can therefore conveniently be
deformed into a so called flat band insulator, where all occupied bands have
energy ✏

�

= �1 and all empty bands have energy ✏
+

= +1. The Hamiltonian
h(k) is then transformed into the corresponding flat Hamiltonian:

q(k) = (+1)(1� P (k)) + (�1)P (k) = 1� 2P (k). (2.18)

We note that q(k)2 = 1 due to the idempotence of projection operators and
also that Tr [q(k)] = m � n. Generally, q(k) will be some U(n + m) matrix
defined up to a U(n) ⇥ U(m) “rotational” or gauge degree of freedom corre-
sponding to basis rotations in the occupied and empty band subspaces. Then
the flat band Hamiltonian, and the original Hamiltonian too as far as topology
is concerned, belongs to the symmetric space

G
n+m,m

(C) = G
n+m,n

(C) = U(n+m)/(U(n)⇥ U(m)), (2.19)

which is called the complex Grassmannian and is a generalization of the pro-
jective spaces.

The set of topologically distinct Hamiltonians is then determined by the
homotopy classes of the mappings

q : T d ! G
n+m,m

(C)

k 7! q(k). (2.20)

Here, T d is the d-dimensional torus corresponding to the BZ in the case of
lattice models. For a continuum model, T d is replaced by Sd, the d-sphere,
yielding by definition the first fundamental group

g = ⇡
d

(G
n+m,m

(C)). (2.21)
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Class TRS PHS CS d = 0 1 2 3 4 5 6 7

A 0 0 0 0 0 0 0
AIII 0 0 1 0 0 0 0

AI +1 0 0 0 0 0 2 0
2 2

BDI +1 +1 1
2

0 0 0 2 0
2

D 0 +1 0
2 2

0 0 0 2 0
DIII �1 +1 1 0

2 2

0 0 0 2
AII �1 0 0 2 0

2 2

0 0 0
CII �1 �1 1 0 2 0

2 2

0 0
C 0 �1 0 0 0 2 0

2 2

0
CI +1 �1 1 0 0 0 2 0

2 2

Table 2.1: The CAZ table. The classes are defined by their time reversal
(TRS) particle-hole (PHS) and chiral (CS) symmetry properties. For TRS
and PHS, ± describes whether the repeated action squares to +1 or �1. For
CS, 1 means presence and 0 means absence. The two topmost classes are
called complex while the remaining eight are called real. d denotes spatial
dimension. For a certain class in a certain dimension, there is a topological
invariant in the right section. For the meaning of the entries, see the main
text.

Assigning additional symmetries to the Hamiltonian (2.18) changes the map-
ping target space in Equation (2.20) so that the homotopy group may change
too. The mathematical depth of determining all homotopy classes for the
mappings (2.20) is extremely complicated and describing the various meth-
ods used is out of the scope of this thesis. For more information, we refer to
Refs. [SRFL08,A.Y09,RS+10,QHZ08].

The classification of all TSM according to this scheme can be summed up
in a table that goes under various names. The most commonly used are: The
Ten-fold Way, The Periodic Table of Topological Insulators and Superconduc-
tors or The Cartan-Altland-Zirnbauer Classification Table. In this thesis we
shall use the latter name using the abbreviation CAZ.

We shall now move on to in detail describe some of the features of the
CAZ table and show some of the extraordinary explanatory power it has for
studying TSM.

2.4.2 The CAZ table

Having outlined the method of topologically classifying all non-interacting
gapped Hamiltonians, we are now ready to take a look at the resulting CAZ
table.
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The entries in the CAZ table tells what is the topological classification of
a system with a given combination of TRS, PHS, CS in spatial dimension d.
That is what possible values the topological invariant ⌫ of such a system can
take.

Entries in the first column are the somewhat cryptical names of the di↵er-
ent classes. They originate from the fact that the corresponding Hamiltonian
spaces turned out to be exactly those of Cartan’s classification of symmetric
spaces, performed in the early twentieth century [Car26]. They were later
studied by Altland and Zirnbauer in the context of disordered mesoscopic
hybrid structures [AZ97]. These three authors are honored in naming the
classifying table. It is interesting to note that a seemingly abstract group
theoretical concept finds is used as a description of nature almost 100 years
later.

The next three columns describe the symmetries corresponding to the class.
If TRS or PHS are present, it is marked by ±1 referring to if the symmetry
squares to +1 or �1. CS is denoted by 1 for presence and 0 for absence.

A invariant means that it takes values in the set of integers ⌫ = 0, ±
1,± 2, . . .. A system with this kind of invariant is for example the IQH e↵ect
belonging to the symmetry free class A in two dimensions.

A 2 entry in the table means that ⌫ = 0,±2,±4, . . . A spin-1/2 quantum
dot with TRS and thereby Kramer’s degeneracy would have an invariant equal
to the number of filled levels which thereby is a 2 -invariant.

A
2

invariant means that there are only two distinct topological phases:
trivial or topological or ⌫ = ±1. One example of a system with such an
invariant is the Kitaev Wire which is a topological superconductor belonging
to class D with d = 1. This invariant will be derived explicitly in the next
chapter.

A zero entry means that no topological invariant can be defined meaning
that all gapped Hamiltonians with the given symmetries and dimensionality
can be deformed into each other without closing the gap or breaking any
symmetries. This means for example that there can be no IQH state in three
dimensions.

The first two classes, A and AIII are called complex since they don’t have
any anti-unitary symmetry involving complex conjugation. The eight latter
classes are called the real classes for the opposite reason.

Apart from the examples above, other notable examples of systems be-
longing to the CAZ table are the QSH e↵ect in class AII with d = 2, The
AQH e↵ect in class A with d = 2 and the B-phase of Helium 3 in class DIII
with d = 3.

2.4.3 Dimensional Extension and the Bott Clock

There is a periodicity in the occurrence of topological invariants in the CAZ
table. This structure is quite subtle and requires advanced mathematics to
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explain. We shall in this section briefly sketch the reason for this periodicity
basing our discussion to large extent on Ref. [ASv+15].

Starting with the complex classes, we note that we can either have chiral
symmetry or not. Assume first that a Hamiltonian in dimension d, denoted by
H

d

, has a chiral symmetry which is represented by the operator C. We then
have that H

d

belongs to class AIII. The eigenenergies ±✏n
d

are symmetrically
distributed around zero energy and depends on d Bloch momenta. We then
form the extended Hamiltonian

H
d+1

= H
d

cos(k
d+1

) + C sin(k
d+1

), (2.22)

which has eigenenergies

✏n
d+1

= ± ⇥
(✏n

d

)2 cos2(k
d+1

) + sin2(k
d+1

)
⇤
1/2

. (2.23)

Here we have used the fact that C2 = 1 and we note that H
d

and H
d+1

has
the same number of bands, though the latter depends on one more Bloch
momentum. The expression (2.22) ensures, by construction, that the gap of
H

d+1

closes if and only if that of H
d

closes. This means that their topological
invariant must be the same. The construction further ensures that H

d+1

breaks the CS since we have added a term with C. Hence, we have proved
that the topological classification of a class AIII Hamiltonian in dimension d is
the same as that for a class A Hamiltonian in dimension d+1. We abbreviate
this observation by AIII!A.

Let us now assume that H
d

does not have any CS, thus being in class A.
We then construct

H
d+1

= H
d

cos(k
d+1

)⌧
x

+ sin(k
d+1

)⌧
y

, (2.24)

having twice the number of bands compared to H
d

and with eigenenergies
given by Equation (2.23). By the same argument as above, H

d+1

must have
the same topological invariant as H

d+1

but now has a CS given by C = ⌧
z

.
We can therefore state that A!AIII.

These two procedures, adding one extra dimension and breaking or as-
signing symmetry goes under the name of dimensional extension. We can see
that this explains the staggered pattern in the upper section of the CAZ table:
A!AIII!A. One physical consequence of this result is that there can be no
IQH e↵ect in odd dimensions.

It is possible to apply dimensional extension to the other classes too. The
strategy is the same but it is a little bit more tricky and we shall here only
state the result:

AI! BDI! D! DIII! AII! CII! C! CII! C! AI. (2.25)

We note here something interesting. The pattern for real classes repeats itself
after 8 dimensional extensions. This is called Bott periodicity [Bot59] and is
a property of the underlying mathematical structure of K-theory [RS+10].
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Figure 2.1: The Bott Clock which describes the periodicity upon dimensional
extension of CAZ classes. Grey classes are chiral and arrows depicts the
direction in which dimensional extension conserves the topological invariant.
The periodicity is eight for the real, outer classes, but two for the inner complex
classes.

We can visualize the Bott periodicity in the form of table named the Bott
clock depicted in Fig.2.1. Here the di↵erent classes are arranged in a 3⇥3 grid
according to their symmetries. Chiral classes are displayed in gray. The arrows
tells which classes that have the same topological invariant when performing
the dimensional extension d! d+1. The two complex classes are situated in
the middle and are isolated from the real classes positioned around the“clock”.
Going one revolution around the clock takes us back to the same class after 8
dimensional extensions.

There are many more interesting symmetry properties of the CAZ table,
for instance the

2

!
2

! occurrence in all rows. The interested reader
is referred to Refs. [SRFL08,A.Y09,RS+10], for a more detailed discussion.

2.5 The Bulk-Boundary Correspondence

A question that naturally arises is how to identify which side of the topo-
logical phase transition that is the topological phase. In particular it would
be preferable to observe this concretely in a lab and not through the mathe-
matically abstract topological invariant. One answer to this question is The
Bulk-Boundary Correspondence (or the bulk-edge correspondence) which is
the topic of this section.
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The essence of the bulk-boundary correspondence is that the topology of a
closed bulk Hamiltonian will result in edge states for the corresponding open
system. This principle can be understood in the following intuitive way.

Since a topological invariant only can change if the bulk gap closes, any
region where some parameter changes such that it forces a topological phase
transition will be accompanied with a local closing of the gap. This holds
especially at an edge, which borders the (by definition) trivial vacuum. Edges
of a topological insulator or superconductor will therefore generally host some
exotic edge states which properties will depend on the symmetries of the bulk.
As a rule of thumb, a system having TRS will generally host helical edge
modes, meaning that opposite spins travel in opposite directions, PHS implies
Majorana modes which are equally weighted superpositions of particles and
holes and CS implies helical Majorana modes. Additionally, the edge states
can be conducting since they will cross the Fermi level which in TSM always
lies in the gap.

It shall be noted that edge and bulk dimensions do not always have to di↵er
by only one (as the two-dimensional surface of a three-dimensional slab). An
example of this is the Majorana bound states trapped in zero dimensional
vortices penetrating a two dimensional topological superconductor.

The bulk-boundary principle was first used by Halperin [Hal82] to explain
the chiral edge states of the IQH e↵ect and was later formalized by many
authors (see for example the book by Volovik [Vol03]). The mathematical
foundation can be traced back to the Atiyah-Singer index theorem [AS68,
Nak03]. Roughly speaking, this theorem relates the topology of a manifold
M to the number of zero energy solutions (that is edge states) of di↵erential
operators acting on M.

Being of paramount importance in the field of TSM, we shall use the bulk-
boundary correspondence explicitly in Chapters 3 and 4.

As a final remark, we want to stress that the bulk-boundary correspon-
dence is not the only way to determine if a phase is non-trivial or not. See for
instance Refs. [Kit01,BA13].

2.6 Limitations and Applications

To round o↵ this chapter, we discuss the limitations of the previously described
framework. The perhaps most obvious objection is that it only treats single
particle Hamiltonians describing non-interacting fermionic systems or, in the
case of superconductivity, systems with non-self consistent mean field approx-
imations. Electrons in real materials are subjected to interactions of various
types and to realize the theoretical models there must be reasons for the topol-
ogy to survive even in the presence of interactions. One way to overcome this
limitation is to rely on the principle of adiabatic continuity, presented in the
introduction. One then assumes that the gapped ground state of the non-
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interacting system is adiabatically connected to the interacting ground state
in a process which at all points maintain the gap. Interestingly, and mentioned
in the introduction, interactions may in fact themselves generate new possible
topological states which are not adiabatically connected to any non-interacting
state. The FQHE is the prominent example of this phenomena.

Another objection would be that in real systems, the influence of deco-
herence or thermal fluctuations leads to mixed states and a density matrix
formulation of TSM would be appropriate. Research in this direction is in-
deed ongoing and will hopefully shed some light on how the TSM classification
can be extended to more complicated and realistic systems where the environ-
ment can not be ignored.

Moreover, the potential applications of TSM are many, but may in real-
ity be hard to realize. One major incentive for the theoretical community
is the possibility of using the exotic edge states associated with non-trivial
bulk topology as building blocks of topological quantum computers [FKLW03].
These rely on the topological stability of such states and it has been shown
that their interesting non-Abelian statistics can be used for quantum compu-
tational manipulations. From a more practical point of view, TSM might be
exploited for energetically more e↵ective devices where the absence of scatter-
ing processes, originating from topological protection, substantially reduces
dissipation.
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One-Dimensional Topological Models

Having reviewed the general framework of topological states of matter, we
turn in this chapter our attention to a few models where it can explicitly be
applied.

We will first look at the Kitaev Wire, which is a seminal toy-model of a
topological superconductor hosting exotic Majorana excitations. Secondly, we
shall study a more realistic incarnation of a Kitaev Wire, a model referred to
as the Majorana Wire. The third, and final model we study is the so called
SSH-model, describing the polymer polyacetylene which exhibits fractional
charged states located at distortions of the underlying lattice.

3.1 The Kitaev Wire and Majorana Bound States

In this section we shall study a simple, but theoretically rich, toy-model
of p-wave superconductivity. This model is often referred to as the Kitaev
Wire [Kit01]. Though more than a thousand materials are known to be
superconducting, there is only a single one, Sr

2

RuO
4

, that shows evidence
of p-wave pairing [HKL+10]. All superconducting states are believed to be
described by condensation of Cooper-pairs but how these pairs connect in
momentum-energy space can, at least theoretically, occur in various ways. In
this thesis we shall refer to pairing of the type �(k) ⇠ �k as p-wave pairing,
the important property being here that the pairing potential is k-dependent.

The two main interesting features of the Kitaev wire is first of all that it
hosts two phases distinguished by a

2

-invariant. Secondly, the edge states
in the non-trivial phase are Majorana bound states. These states obey non-
Abelian statistics, a property of great interest for topological quantum com-
putation [FKLW03].

Following is a description of the Kitaev Wire Hamiltonian and a proof of
the existence of Majorana bound states and their statistics. We then provide
a derivation of the topological invariant together with the determination of
the relevant CAZ-classes of the model. We shall also explicitly construct the
real space tight-binding Hamiltonian and give the spectrum and position basis
eigenstates.

21
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3.1.1 Hamiltonian

The Kitaev Wire Hamiltonian can be written as [Kit01]

H =
X

j2[1,N ]


�tc†

j

c
j+1

� t⇤c†
j+1

c
j

+�c
j

c
j+1

+�⇤c†
j+1

c†
j

� µ(c†
j

c
j

� 1

2
)

�
.

(3.1)
As such, it describes a one-dimensional electronic chain with N � 1 sites (for
simplicity, we have set the lattice constant to unity) that can be empty or

occupied by spinless fermions, created/annihilated by c†
i

/c
i

operators. These

operators fulfill the canonical fermionic commutation relations {c†
i

, c
j

} = �
i,j

,
all other anti-commutators being zero.

The hopping between neighboring sites is denoted by t = |t|ei�, µ is the
chemical potential and � = |�|ei✓ is the superconducting order parameter.
The latter parameter is accompanied by two creation or annihilation operators,
describing the creation or annihilation of electron pairs living on neighbouring
sites. These terms will, as shown below, be responsible for the p-wave pairing
of electrons. We note that ordinary on-site s-wave pairing is not possible for
spinless fermions due to the Pauli principle.

We shall now use the framework of TSM to study this model and explore
the underlying topology and the edge states manifesting the bulk-boundary
correspondence.

3.1.2 Topological Invariants

We start our investigation by imposing periodic boundary conditions and
write the Hamiltonian (3.1) in momentum space using Equation (2.2). We

introduce the Nambu (or particle/hole) spinor  †

k

= (c†
k

, c
�k

), so that the

Hamiltonian can be written as H = 1

2

P
k

 †

k

h(k) 
k

with the two-dimensional
BdG-Hamiltonian h(k) given by

h(k) =
��µ� 2|t| cos(k + �)

�
⌧
z

� 2<(�) sin(k)⌧
y

+ 2=(�) sin(k)⌧
x

. (3.2)

The Pauli-matrices ⌧
i

act in particle-hole spinor space, and < and = denote
the real and imaginary parts respectively. The energy bands are given by§

✏
±

(k) = ±
h�
µ+ 2|t| cos(k + �)

�
2

+ 4|�|2 sin2(k)
i
1/2

. (3.3)

These bands are plotted in Figure 3.1 for the choice � = 0, corresponding
to taking t to be real which we shall do for the remainder of this section. A
most notable feature of this band structure is that the e↵ective gap, �̃(k) ⌘
✏
+

(k)�✏
�

(k), depends on the Bloch momentum k and that the wire is gapless

§This is most easily derived by using the identity h(k)2 = ✏(k)2, holding for any Hamil-
tonian expressed as a linear combination of Pauli matrices.
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Figure 3.1: The spectrum of the bands in Equation (3.3) with � = 0. The
chemical potential, µ, is varied while other parameters are fixed to t = � = 1.
The gap closes at k = 0 and k = ⇡ for µ = �2 and µ = 2 respectively.

when µ = ±2t. The gap closing points in the BZ are then at k = 0 or k = ⇡
(we recall that ±⇡ refers to the same point in the BZ). As we soon shall
see, these two gap closing points constitute the topological phase transitions
between two topologically distinct phases of matter.

Regarding symmetries, the Bloch Hamiltonian (3.2) admits generally only
a single one, namely PHS which in the chosen basis is given by

⌧
x

h(k)T ⌧
x

= �h(�k), (3.4)

where one needs to eliminate � in favor for transforming ✓ with a gauge trans-
formation. With this single symmetry, we note from Section 2.4 that the
Kitaev Wire belongs to CAZ symmetry class D having a

2

-invariant dis-
tinguishing two topological regimes. We shall now explicitly construct this
invariant.

Motivation of an Invariant

The physical motivation for finding an invariant can be thought of in the fol-
lowing way [ASv+15]. The PHS of the BdG Hamiltonian enforces the spectral
constraint that eigenstates come in pairs: Given an energy eigenstate | i with
energy E, there will be another eigenstate | ̃i = P | i with energy �E. This
follows directly from Equation (2.11). Therefore, the spectrum of a general
BdG-Hamiltonian is always mirror symmetric around E = 0.

We can now think of deforming two arbitrary BdG-Hamiltonians into each
other and calculating the energy spectrum at all steps in the deformation. In
this process, we may find that some energy levels cross at E = 0. In general,
such an energy crossing is related to some conserved quantity. A general BdG
Hamiltonian actually has a conserved quantity which is the parity. Remem-
ber that a superconductor does not conserve the particle number due to the
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pairing terms, but provided that the superconductor is isolated, it conserves
the particle number modulo two, which is the fermionic parity.

The parity is not a single particle property but one of the many body
state. To relate the energy crossings to the parity we have to recall that the
BdG-doubling we perform to extract the single particle spectrum is artificial
and that the two ±E states actually refers to a single state. This state is
a superposition of particles and holes, a so called Bogoliubov quasiparticle
(sometimes the word Bogoliubon is used) state. An interpretation of the
doubling is therefore that occupying a quasiparticle in the state �E is the
same as emptying the one with energy +E.

When a zero energy crossing occurs during the deformation, one energy
state changes sign and it becomes energetically favorable to add or remove
one quasiparticle. Thus, the ground state parity will change by one at a zero
energy crossing. Therefore the crossings are sometimes called fermion parity
switches.

It is thus natural to use the ground state parity as a topological invariant
since it can not change unless some state crosses zero energy, that is the gap
closes. The mathematical quantity appropriate to describe the parity switch
is the Pfa�an which is introduced by the following argument.

Since the energy eigenvalues of the Hamiltonian H come in ±E
n

pairs, the
product of them, the determinant, can be written det(H) =

Q
n

(�E
n

)2 being
zero when the gap closes and some energy crosses zero. The Pfa�an is defined
as the square root of the determinant Pf(H) = ±i

Q
n

E
n

and is valid for any
skew-symmetric matrix: AT = �A. Any BdG-Hamiltonian can due to the
PHS be written in such a way, see below.

At a zero energy crossing, a single state changes it’s sign which in turn
forces a sign change of the Pfa�an. The sign of the Pfa�an is therefore a
topological invariant for a superconductor. As will be argued below, for a
translationally invariant system, the Pfa�an of the Hamiltonian is actually
only interesting at certain points in the BZ due to the PHS. We shall now
use this idea to express the Kitaev Wire topological invariant in terms of it’s
parameters.

The Pfa�an Invariant

Our starting point is to formally re-write the Hamiltonian (3.1) in terms of

Majorana operators: c†
j

= exp(i✓/2)(�
Aj

� i�
Bj

)/2. See also Ref. [Kit01] and
Equations (3.9) and (3.11) below. The Hamiltonian is then on the general Ma-
jorana form which can be written for any translationally invariant quadratic
Hamiltonian:

H =
i

4

X

ij

B
↵�

(i� j)�
↵i

�
�j

. (3.5)

Here B
↵�

are components of B, a real and anti-symmetric matrix. For the
Kitaev Wire, we have i� j = +1,� 1,0 due to the restriction to next nearest
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hopping and on-site chemical potential. We can Fourier transform this matrix
according to

B̃
↵�

(q) =
X

�

eiq�B
↵�

(�), (3.6)

where � is a nearest neighbor vector, � = +1,� 1,0, and ↵,� labels the species
of Majorana operators; in the present case ↵,� = {A,B}.

As has been argued by Kitaev [Kit01], the relevant quantity for a BdG
topological invariant is ⌫ = sgn(Pf(B̃(0))Pf(B̃(⇡))) defined in terms of the
Pfa�an of B̃(q). This is because the energies fulfill ✏(k) = �✏(�k) and Kitaev
shows that only the points where k = �k need to be considered since all other
points together yields a unit contribution the Pfa�an. The remaining points
are thus k = 0 and k = ⇡ which happen to be the gap closing points.

Further, the Pfa�an is only defined for anti-symmetric matrices and takes
a particularly simple form for 2 ⇥ 2 matrices: Pf[A] = A

12

, the upper right
element.

Thus, the only quantities we have to calculate is B̃
A,B

(q) for q = 0 and
q = ⇡. This gives Pf(B(0)) = 2µ � 4t and Pf(B(⇡)) = 2µ + 4t. Finally, this
gives ⌫ = sgn(|µ| � 2t) as the topological invariant for the Kitaev Wire, in
agreement with the intuition that the parameters allowing the gap to close,
µ = ±2t, should yield an ill-defined invariant.

The Geometric Invariant

There is an easier and more visual way of determining the
2

-invariant [Ali12].
Consider Equation (3.2) but on the form h(k) = ~d(k) ·~⌧ , where ~⌧ is the vector
of Pauli matrices in particle-hole space. Since the basis spinors satisfy  

k

=

⌧
x

 T

�k

, the vector ~d(k) must satisfy d
x,y

(k) = �d
x,y

(�k) and d
z

(k) = d
z

(�k)
which can be straightforwardly checked. Thus, is su�ces to investigate ~d on
half the BZ (0  k  ⇡) since the other half follows from these constraints.

Suppose now that the Hamiltonian is gapped in the whole BZ. This sets
the constraint |~d(k)| 6= 0, 8k and a unit vector d̂(k) can be defined. This
unit vector now provides a map from half of the BZ to the unit sphere. See
Figure 3.2. When sweeping k from 0 to ⇡, d̂(k) starts from either the north
or south pole, and ends up back at the same pole or at the opposite one
depending on the sign of �µ � 2t. Explicitly, d̂(0) = sgn(�2t � µ)ẑ and
d̂(⇡) = sgn(2t � µ)ẑ so that the product ⌫ = sgn(|µ| � 2t) = ±1 defines a

2

-invariant which only can change when the bulk gap closes resulting in d̂(k)
being ill-defined for some k. The signs corresponding to a specific pole on the
sphere depends on the chosen spinor basis, but the product is invariant under
any such choice.

We note that this geometric invariant is the same as the Pfa�an invariant,
as it should be.
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Figure 3.2: Two types of allowed trajectories of the vector d̂(k) when sweep-
ing the BZ. The green curve goes from pole to pole resulting in a non-trivial
phase. The red curve, on the other hand, goes from one pole back to the same,
resulting in a trivial phase. These types of trajectories can not be deformed
into each other without closing the gap.

The Winding Invariant

We shall also look at the topological invariant in a somewhat di↵erent setting.
Consider a situation where � is real, or has a constant phase which can be
globally gauged away.

It is then possible to choose ~d(k), defined in the previous section, to be
two-dimensional. Without loss of generality, we make the choice ~d(k) = (0,�
2� sin(k),�µ�2t cos(k))T . We have that the gap is given by |~d(k)|. Consider
now d̂(k) in the two dimensional ⌧

z

� ⌧
y

plane. Fixing the values of µ and t
and sweeping k from 0 to 2⇡, we can define a winding number equal to the
number of revolutions d̂(k) makes around the origin. This winding can only
take the values 1,�1,0 giving a invariant which will depend on the sign of �.
The invariant can now be written as ⌫ = ⇥(2t� |µ|)sgn(�). See Figure 3.3.

The origin of this invariant can be understood from the classification
table. Due to the constraint on � to be real, the Hamiltonian gains the
additional PTRS, for spinless fermions equal to T = K in our basis. This
moves the Kitaev chain from class D to class BDI hosting the invariant.
Out of these numbers only the set {+1,� 1,0} is realized in the Kitaev Wire.

Due to this winding invariant, there is now a distinction between Kitaev
Wires with opposite sign of the order parameter. We can then think of a
situation where one half of a wire has a fixed zero superconducting phase,
while the other has a phase of ⇡, e↵ectively yielding a negative value of �.
The topological invariant is then di↵erent in these halves forcing the gap to
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τ�

τ�

Figure 3.3: Winding around the origin of the vector ~d(k) as k goes from 0 to
2⇡. For the red curve t = � = µ = 1, the black has t = �� = µ = 1 and the
blue and green curves correspond to gap closing points t = � = ±µ/2 = 1.
note that the gap closing curves correspond to ill-defined winding numbers as
they cross the origin.

close. Due to the bulk-boundary correspondence, the gap has to close in this
region, generating edge states. Exploring these edge states will be the topic
of Chapter 4.

As a final remark we note that it is possible to write the winding invariant
as

⌫ =
1

2⇡i

Z
2⇡

0

@
k

log [d
z

(k) + id
y

(k)] , (3.7)

so that it properly counts the number of counter-clockwise revolutions ~d(k)
performs as k sweeps through the BZ.

3.1.3 Appearance of Majorana Bound States

To see how Majorana Bound States (MBS) appear in this model we again
follow Ref. [Kit01] and formally rewrite the fermionic operators on each site
in terms of two real Majorana operators (Majoranas for short), A and B,
defined by

�
Aj

= exp(+i
✓

2
)c

j

+ exp(�i✓
2
)c†

j

(3.8)

�
Bj

= �i exp(+i
✓

2
)c

j

+ i exp(�i✓
2
)c†

j

.

Here, ✓ is the superconducting phase � = |�|ei✓. We shall frequently also
have use for the inverse relation

c
j

=
exp(�i ✓

2

)

2
(�

Aj

+ i�
Bj

) (3.9)

c†
j

=
exp(+i ✓

2

)

2
(�

Aj

� i�
Bj

).
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Figure 3.4: Two types of Majorana pairing in a wire with five electronic
sites. In (a), the MBS are paired on the same site, while in (b), they couple
from site to site, leaving two unpaired MBS, �

1

and �
10

, at the edges.

The commutation relations for the Majoranas follows immediately from the
fermionic ones, yielding

{�
Ai

,�
Bj

} = 2�
A,B

�
i,j

. (3.10)

In terms of Majorana operators, the Hamiltonian (3.1) becomes

H =
i

2

X

j

⇥�µ�
Aj

�
Bj

+ (|�|+ t)�
Bj

�
Aj+1

+ (|�|� t)�
Aj

�
Bj+1

⇤
. (3.11)

In this Majorana formulation, the interesting behaviour is revealed for two
specific choices of parameters. We first make the choice � = t = 0 and µ < 0,
yielding

H =
i|µ|
2

NX

j=1

�
Aj

�
Bj

= |µ|
NX

j=1


c†
j

c
j

� 1

2

�
. (3.12)

We observe that the two Majoranas from the same site are coupled together
forming an insulating system with a single gapped ground state with zero
occupancy. See Figure 3.4a. As argued by Kitaev, this insulating behaviour
extends to the whole parameter range |µ| > 2t. This can be intuitively be
understood by the following argument. With � = 0, the band structure is
simply ✏(k) = �2t cos(k)� µ as shown in section 2.2. Realizing that µ < �2t
is the region where no particles at all are present in the band, the chosen
regime is definitely an insulator since pairing occur between empty levels.
The region µ > 2t however corresponds to a completely full band, yielding a
Pauli blockade which implies insulating behaviour as well.

The second choice we make is to put � = t and µ = 0. In terms of
Majorana operators we obtain the Hamiltonian

H = it
N�1X

j=1

�
Bj

�
Aj+1

= 2t
N�1X

j=1


c̃†
j

c̃
j

� 1

2

�
. (3.13)
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We have in the second equality defined a new set of fermion operators by
c̃
j

= 1

2

(�
Bj

+ i�
Aj+1

). Here, we note that for this parameter choice, the
Majoranas are coupled between neighbouring sites. See Figure 3.4b.

Remarkably, the expression (3.13) does not include the two Majoranas
�
A1

and �
BN

. These can be combined into a single fermionic operator f =
1

2

(�
A1

+ i�
BN

), which has zero energy (being absent from the Hamiltonian)
and is completely delocalized between the two edges of the system. Due to
the zero energy of this fermionic state, there are two degenerate ground states
di↵ering in fermionic parity.

The situation of having a delocalized fermionic state, or equivalently two
separately located MBS, extends to the parameter range |µ| < 2t. Now the
zero energy MBS are not given by �

A1

and �
BN

but rather by some complicated
linear combination of Majorana operators. The corresponding wave functions
now decay exponentially e�L/⇠, where L is the wire length, into the wire bulk
on a length scale given by the superconducting coherence length ⇠ / t/�.
The overlap of the wavefunctions then results in a splitting between the two
degenerate ground states on the same length scale, e↵ectively giving the edge
states finite energy. This is usually referred to as gapping out the states. But
if the wire is su�ciently long, the overlap is negligible and the states remain
at zero energy.

As we shall see shortly, this is a manifestation of the bulk-boundary cor-
respondence. But first, we shall look at the MBS explicitly.

3.1.4 Real Space Calculation

Using the formalism presented in Section 2.2 we write down an open Kitaev
Wire with N unit cells as a 2N ⇥ 2N matrix H. We use the basis states
{|ii}

i

, unit-vectors of length 2N where non-zero entries on even respectively
odd positions corresponds to occupied holes and electrons respectively.

To clarify, an open system with 6 sites would in this basis explicitly be

H
6⇥6

=

2

66666664

H
on

H
o↵

0 0 0 0

H†

o↵

H
on

H
o↵

0 0 0

0 H†

o↵

H
on

H
o↵

0 0

0 0 H†

o↵

H
on

H
o↵

0

0 0 0 H†

o↵

H
on

H
o↵

0 0 0 0 H†

o↵

H
on

3

77777775

. (3.14)

Here H
on

= �µ⌧
z

and H
o↵

= �t⌧
z

� i<(�)⌧
y

+ i=(�)⌧
x

, themselves being
2 ⇥ 2 matrices. They represent the internal particle-hole degree of freedom
on each site. Such a Hamiltonian can be straightforwardly diagonalized on a
computer, where the eigenstates are particle/hole occupations along the wire,
and the eigenvalues are the single particle energies. The great advantage of
this approach is that site dependent parameters can easily be implemented
just by modifying H

on/o↵

for any site.
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Figure 3.5: The energy spectrum of the Kitaev Wire as the chemical po-
tential µ is varied. The superconducting gap � = 1 and the number of sites
N = 80. The lowest energy states are marked in red. The blue and orange
lines marks parameter choices corresponding to the trivial and non-trivial
phase respectively. Note that the gap closes at µ = 2t.

In Figures 3.5 and 3.6 we show that the lowest energy states in the two
distinct phases correspond to exponentially localized and delocalized states
respectively.
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Figure 3.6: Lowest energy states of the Kitaev Wire for the two parameters
choices in Figure 3.5. The inset shows the same states but on a logarithmic
scale, showing that the non-trivial edge states are exponentially localized.
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3.1.5 Non-Abelian Statistics

We have previously mentioned that the MBS fulfill non-Abelian statistics. We
shall now give a brief explanation of what that means.

It is well known in quantum mechanics that the wave function of a system
of bosons or fermions has to be symmetric or anti-symmetric respectively upon
exchange of any two particles. The generated ±-sign can be viewed as if the
wave function acquires a phase of 0 or ⇡.

This fact breaks down in spatial dimensions d  2 [LM77]. In one dimen-
sion, the concept of bosons and fermions is not even meaningful, since particles
can not be exchanged living on a line. This observation leads to the concepts
of bosonization and the Luttinger Liquid [Hal81].

In two dimensions, it is possible for the wave function to pick up any phase
resulting in so called anyonic statistics [Wil82]. Particles having this peculiar
property are referred to as anyons.

For simplicity we shall now consider a system of four Majoranas made out
of two fermionic states. We can for example think of a system of four vortices
on a two-dimensional p-wave superconductor. We construct the fermionic
creation operators

c†
1

=
1

2
(�

1

+ i�
2

), c†
2

=
1

2
(�

3

+ i�
4

) (3.15)

and their respective annihilation operators. We know that the Majoranas are
midgap states at zero energy and we shall employ the adiabatic assumption
– all involved energy scales are much smaller that the gap. The MBS then
form a four-fold degenerate ground state manifold, since all fermionic states
can be occupied or empty with the same energy cost. The four basis states of
the manifold are

|00i |11i |10i |01i , (3.16)

where the three latter states are constructed by acting with the fermionic
creation operators on the vacuum state |00i, defined by c

i

|00i for i = 1,2. For

example, |11i = c†
1

c†
2

|00i.
It is crucial to understand that there never can be any single occupation of

a Majorana state. There is not even a way of constructing a sensible number
operator since �†

j

�
j

= �
j

�
j

⌘ 1.
The operator exchanging two Majoranas, m and n can be derived on quite

general premises (see Refs. [Ali12, ASv+15] for instance). Requiring parity
conservation, locality (in the sense that only the exchanged Majorana opera-
tors should be involved) and unitarity yields the operator

B
mn

=
1p
2
(1± �

m

�
n

), (3.17)

where the two signs correspond to clock- or anti-clockwise exchange. In the
remainder of this section, we shall only use the clock-wise exchange operator.
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The exchange operator acts on the Majoranas according to

B
mn

�
m

B†

mn

= ��
n

B
mn

�
n

B†

mn

= +�
m

, (3.18)

which is verified using Equation (3.10). Let us now see what happens if we
start from the state |00i and exchange Majorana number 1 and 3:

B
13

|00i = 1p
2
(1 + �

1

�
3

) |00i = 1p
2
(1 + c†

1

c†
2

) |00i = 1p
2
(|00i+ |11i). (3.19)

We note that by exchanging two of the Majoranas, we have obtained a su-
perposition of states. This is fundamentally di↵erent from just picking up an
overall phase. It is also clear that this exchange is interesting for constructing
qubits, the cornerstone of a potential quantum computer.

If we perform two exchanges in a row, something interesting occurs. The
order of exchange matters. For instance we can check that

B
12

B
23

6= B
23

B
12

, [B
12

,B
23

] 6= 0, (3.20)

independently of the starting state. With some further analysis, one can show
that the exchange operators B

mn

form a representation of a group called
the Braid group. If the group elements in a group fail to commute like in
Equation (3.20), the corresponding group is said to be non-Abelian. This is
the reason for calling MBS non-Abelian particles.

This calculation was done in two dimensions while the MBS we have con-
sidered previously exist in a one-dimensional setting. It is then natural to
ask if the concept of braiding or exchange is meaningful in the Kitaev Wire.
The answer to this question is yes. In Ref. [AOR+11] it is reported that non-
Abelian exchange can be performed in a setup where the MBS are moved
around using electronic gates in T-junction networks of Kitaev Wires.
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3.2 The Majorana Wire Model

Although the Kitaev wire is just a toy model, it can actually be realized
as the low energy regime of more realistic setups. Two prominent direc-
tions of research are magnetic impurity chains on top of superconducting
slabs [CEAB11,NPDBY13,NPDL+14,PGv14] and superconducting nanowires
with strong spin orbit coupling in external magnetic fields [LSDS10,ORv10].
In this section we shall focus on the latter setup which can be motivated as
follows.

Since no p-wave superconductor candidates have been found in nature,
the idea is to engineer one by combining simple and existing building blocks
[ASv+15]. To start with, we want to have a one-dimensional system with a
“tweakable” band structure. For this purpose, semiconducting nano wires are
useful, since the chemical potential can be manipulated by doping or external
gate electrodes. Our starting Hamiltonian is then

H
0

= (� @2
x

2m
� µ)�0, (3.21)

where m is the e↵ective mass, µ the chemical potential and �0 the unit matrix
in spin space, reflecting the spin degeneracy of the bare Hamiltonian. The
band structure then has four Fermi points, due to right-left movers and spin
degeneracy, and any superconducting pairing would be s-wave. To get spinless
fermions with p-wave pairing, as in the Kitaev Wire, we need to isolate one of
the spin components.

For this purpose Rashba spin-orbit coupling (SOC) is useful. This term
can be written as

H
↵

= �i↵�y@
x

, (3.22)

and can be viewed as a “magnetic field” with momentum dependence. We
have chosen the SOC to favor spin alignment in the y-direction. So far, we
still have four Fermi points.

By also adding a magnetic field we can reduce the number of Fermi points
to two, since a magnetic field shifts the spin components oppositely in energy.
A term modeling this is

H
Z

= h�z, (3.23)

and leads to a spinless regime, if the chemical potential, µ, is chosen to lie
in the induced Zeeman gap at k = 0. It is important that the magnetic field
is not parallel to the SOC in Equation (3.22) since they would just reinforce
each other in a momentum dependent way and the number of Fermi points
would remain four.

Finally, we can add superconductivity. Placing a one-dimensional wire
close to an ordinary s-wave superconductor will induce superconducting cor-
relations into the wire by Andreev reflection. We crudely model this by

H
�

= <(�)⌧y�y �=(�)⌧x�y, (3.24)
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Figure 3.7: The spectrum of the Hamiltonian (3.28) for the topological
phase (left) and trivial phase (right). Parameters used are m = 0.5, µ = 0.0,
↵ = 1.0 and � = 0.5 and h = 0.75(left) and h = 0.05 (right). Green, filled
lines are occupied states and red, dashed lines are empty states. There is no
concrete way of distinguishing topological from trivial phase from analyzing
the spectrum.

where we have extended the spinor basis states to the Nambu-spin space by
introducing additional Pauli-matrices ⌧ i by BdG-doubling.

All together, the terms we have introduced generate the spectrum shown
in Figure 3.7, where we have plotted the spectra for the topological and trivial
phases which will be derived below. Note that the spectrum itself does not
allow for any distinction between topological and trivial phases. In summary,
the Kitaev Wire can be realized in an ordinary mesoscopic setting consisting of
a spin-orbit coupled wire in proximity to an ordinary s-wave superconductor
both exposed to an external magnetic field. For certain values of the external
parameters, the superconducting wire will enter a topological superconducting
phase hosting MBS.

In the remainder of this section, we shall study the model describing this
setup. To start with, we shall write down the total real-space Hamiltonian,
both in the continuum limit and and on a lattice. Next, we derive the cor-
responding BdG-Hamiltonians and explore their bulk topology proving that
they indeed have a non-trivial phase. Then we derive the topological invariants
and explore the phase diagrams. The section concludes with a brief discussion
of recent experimental progress to detect topological superconductivity.

3.2.1 Hamiltonians

Our starting point is a one-dimensional nanowire lying in the x direction.
There is a strong spin orbit coupling favoring spin alignment in the y di-
rection and also an external magnetic field in the z direction. The precise
spin-orbit and magnetic field directions are not important as long as they are
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perpendicular. In addition, the wire lies close to an ordinary s-wave super-
conductor inducing superconducting correlations in the wire by the proximity
e↵ect. As motivated above, this setup can be modeled by

H = H
wire

+H
�

, (3.25)

H
wire

=

Z
dx  †

�

✓
� @2

x

2m
� µ� i↵�y

��

0

@
x

+ h�z
��

0

◆
 
�

0 , (3.26)

H
�

=

Z
dx

⇣
� 

"

 
#

+�⇤ †

#

 †

"

⌘
. (3.27)

Here  †

�

is the creation operator of an electron with e↵ective mass m and
spin �, the chemical potential is denoted µ (measured from the bottom of the
band) and the spin orbit coupling, magnetic field strength and superconduct-
ing paring are given by ↵, h and � respectively. Repeated spin indices are
implicitly summed over and any position dependence has been suppressed.

To explore the band structure of this system, we close the wire into a
ring and write the Hamiltonian for a translationally invariant system as H =
1

2

R
dk  †h(k) with

h(k) =


(
k2

2m
� µ)⌧ z�0 + h⌧ z�z + ↵⌧ z�yk + <(�)⌧y�y �=(�)⌧x�y

�
,

(3.28)

where ⌧ i and �i are Pauli matrices for particle-hole and spin space respectively.
We have in this expression used the basis  = ( 

"

, 
#

, †

"

, †

#

)T . The symbols
< and = denotes real and imaginary parts respectively.

For numerical calculations it is useful to discretize the Hamiltonian (3.25)
on a lattice§ which yields the following tight binding Hamiltonian:

H
TB

=
1

2

N�1X

i=1

h
 †

i

(�t⌧ z�0) 
i+1

+ h.c.
i

+
1

2

NX
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h
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i
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1

2

NX

i=1
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i
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i
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+
1

2

NX

i=1

h
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+
1

2

N�1X

i=1

h
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i
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2
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i+1

+ h.c.
i
. (3.29)

§This is most conveniently done by approximating derivatives with finite di↵erences:
@

x

f(x) ⇡ 1
2a (fi+1 � f

i�1), where f is any function and a is the lattice constant.
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The terms represent in order: nearest neighbor hopping, chemical potential,
magnetic Zeeman splitting, proximity superconductivity and spin orbit cou-
pling (spin flip hopping). We set the lattice constant to unity and the hopping
amplitude t ⌘ 1/(2m). Note that the chemical potential µ still is measured
from the bottom of the (normal state) band.

The Bloch Hamiltonian corresponding to Equation (3.29) with imposed
periodic boundary conditions is given by

h
TB

(k) =
h
(�2t cos(k) + 2t� µ)⌧ z�0 + h⌧ z�z

� i↵⌧ z�y sin(k) + <(�)⌧y�y �=(�)⌧x�y
i
, (3.30)

where now k = 2⇡n

N

, n = 0,..., N � 1. The models (3.28) and (3.30) can be
seen to agree for k ⌧ 1.

As we shall now show, the Hamiltonians in this section are characterized
by a bulk topological invariant. The non-trivial phase is characterized by MBS
on interfaces between topologically distinct sections of finite systems. So in
essence, this setup is a physical realization of the Kitaev Wire in section 3.1.
In the remainder of this section, we shall use the discretized version of the
setup.

3.2.2 Symmetry Classes and Topological Invariants

The Hamiltonian (3.30) has PHS given by the operator P = ⌧x�0 in our
chosen basis. We see that P 2 = +1 so the Hamiltonian belongs to symmetry
class D which is characterized by a

2

topological invariant.
The spectrum is most easily derivied by squaring the Hamiltonian and the

class D invariant can be obtained with the same method as in section 3.1. It
is given by

⌫ 2 = sgn(h2 � |�|2 � µ2) · sgn(h2 � |�|2 � (4t� µ)2), (3.31)

where ⌫ 2 = �1 and ⌫ 2 = +1 is the topological and trivial phase respectively.
The formula is valid whenever the spectrum is gapped, requiring a non-zero
SOC strength ↵. We note further that there are two critical magnetic fields

h
c1

=
p
|�|2 + µ2, and h

c2

=
p

|�|2 + (4t� µ)2, (3.32)

where the gap closes. Between these critical fields, the wire will reside in
the topological phase. In Figure 3.8, we have plotted the energy spectrum of
the Hamiltonian (3.29) as a function of the magnetic field to observe the gap
closing points and the zero modes related to the topological phase.

Enforcing the additional constraint on the superconducting order param-
eter � = �⇤ (which is equivalent to a global choice of phase) introduces
an additional pseudo time reversal symmetry (PTRS) through the operator
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Figure 3.8: The energy spectrum of the nanowire in Equation 3.29 with
length N = 80 as a function of magnetic field. Parameters used are: t = � =
1, µ = 0, ↵ = 2. The two critical fields h

c1

= 1 and h
c2

=
p
17, depicted in

orange, are clearly seen to close the gap. In between the gap closing points
lies the topological phase hosting Majorana zero modes.

T = ⌧0�0K which fulfills T 2 = +1. With this additional symmetry the Hamil-
tonian moves to class BDI which according to the CAZ table has a invariant.

To derive this invariant, we shall use a method described in Ref. [TS12].
We start with the Hamiltonian (3.30) and put it on the form

h
TB

(k) = ĥ
0

(k)⌧
z

+ i�̂⌧
y

, (3.33)

where, the hat denotes a 2⇥2 matrix in spin-space. We next perform a unitary
transformation with the matrix U = exp(�i⇡

4

⌧
y

) yielding

h
TB

(k)! Uh
TB

(k)U † =

✓
0 Â(k)

ÂT (�k) 0

◆
, (3.34)

with A(k) = ĥ
0

(k) + �̂. We now have that

Det(h
TB

(k)) = Det(Uh
TB

(k)U †) = Det(A(k))Det(AT (�k)), (3.35)

so that Det(A(k)) can only vanish if Det(h
TB

(k)) does, which in turn requires
a zero eigenvalue, or equivalently a closing of the gap. Explicitly, we have that

Det(A(k)) = (�2t cos(k)�µ�2t)2�h2+�2�↵2 sin2(k)�2i↵� sin(k). (3.36)

We now consider the phase of Det(A(k)), written as z(k) = exp(i✓(k)) =
Det(A(k))/|Det(A(k))| and count how many times it rotates around the origin
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in the complex plane by writing

⌫ =
1

⇡i

Z
k=⇡

k=0

dz(k)

z(k)
, (3.37)

where we have used the property A(k) = A⇤(�k) to reduce the integral to
half the BZ. We note further that a non-zero winding only occurs if the phase
crosses the real axis at points on opposite sides of the origin. Additionally,
the sign of the product ↵� will determine the direction of the winding. With
these observations we can finally write the BDI invariant for the nanowire as

⌫ = sgn(↵�) ·⇥(8t(2t� µ)� (h2 ��2 � µ2))

·⇥(h2 ��2 � µ2), (3.38)

which yields three di↵erent phases ⌫ = ±1, 0. Here, ⇥ denotes the Heaviside
step function and we have assumed t, ↵, h and µ to be real. The ⌫ = 0 case,
corresponding to no winding and therefore a trivial phase, can be identified
with the trivial phase ⌫ 2 = +1 in class D. For the invariant to be valid, the
system is required to be gapped at all points in the BZ.

3.2.3 Phase Diagrams and Zero modes

Having derived the topological invariants, we are ready to investigate the con-
sequences of the non-trivial phase. In Figures 3.9 and 3.10 , we have plotted the
invariants as functions of the superconducting gap and the magnetic field. And
as a comparison, from Figure 3.11, it is clear that the trivial phase is a gapped
phase just as the non-trivial one, while the latter hosts zero energy modes, in
correspondence with the bulk-boundary-correspondence. These states can be
shown to be Majorana fermions by investigating the corresponding eigenvec-
tors. We note further that the gap closes (resulting in an ill-defined invariant)
at every transition between topologically distinct phases.

3.2.4 Discussion

In practice, it is not obvious how the parameters should be tuned to optimize
the topological phase of the Majorana Wire. There are many subtle issues
regarding the interplay between competing mechanisms that complicate the
picture considerably.

First of all, the proximity coupling in the wire must not be too large, since
a large inflow of particles from the underlying superconductor can push the
Fermi level above the induced Zeeman gap.

Secondly, a large external field yields a larger freedom to place the chemical
potential, while at the same time suppresses the induced superconductivity.

Another crucial issue is to assure that the nano-wire used is at least close
to being one-dimensional, that is only one or a few transverse channels may be
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Figure 3.9: The topological invariant in Equation (3.31) for µ = 0 and ↵ = 1.
Blue means a value of �1 while light yellow means +1. Orange, seen at the
transitions means an undefined invariant and corresponds to a closing of the
gap.

occupied. For disordered wires, the detection of how many transverse channels
that are occupied is a complicated task and the influence of more than one
channel may a↵ect the topological properties.

So while being ingenious and simple in theory, the realistic Majorana Wire
described in this section is far from trivial, resulting in experiments that are
hard to evaluate properly. The results of some of these experiments are dis-
cussed next.

3.2.5 Experimental Signatures of Majorana Bound States

In this section we comment briefly on some of the experimental developments
in detecting MBS in nanoscale devices.

One conceptually simple method of detecting Majorana modes was re-
ported in Refs. [LLN09, Fle10, J.L12]. The authors suggested that electron
tunneling into the edge of a topological superconductor such as in section 3.2
would reveal the existence of a localized Majorana mode trough the quantized
tunneling conductance at zero bias voltage.

Due to being perfectly particle-hole symmetric and being located at zero
energy, the Majorana mode restricts the scattering matrix at the interface
to yield perfect Andreev or normal reflection for any incoming electron state
with subgap energy. Hence, the tunneling conductance can only be non-zero
for perfect Andreev reflection and is therefore quantized to 2e2/h. This con-
ductance can be shown to survive in the whole topological phase of the wire.
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Figure 3.10: The topological invariant of Equation (3.38) for µ = 0 and
↵ = 1. Blue means a value of �1 while light yellow means +1. Orange means
a value of 0. At the transitions, the invariant is ill-defined, corresponding to
a closing of the gap.

Figure 3.11: The lowest single particle energy of the Hamiltonian (3.29)
with N = 100, t = 1, ↵ = 1, µ = 0. Blue means zero energy.

Subsequent experiments [MZF+12,DYH+12,DRM+12], have generated re-
sults consistent with predictions, though alternative non-topological explana-
tions of zero bias peaks have been provided. For example, Ref. [BA12] reports
zero bias peaks due to disorder, and finite temperature has been shown to also
influence the zero bias conductance [LPLL12].

Another proposed signature of MBS is the so called Fractional- or 4⇡-
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Figure 3.12: A setup for the Fractional or 4⇡ Josephson e↵ect. The two
Majoranas in the center region couple via a tunneling junction. The outer
Majoranas are localized far away and does not overlap with the central ones .
The resulting single particle current is driven by the phase di↵erence �✓ and
is 4⇡-periodic.

Josephson E↵ect. Already in Ref. [Kit01] it was pointed out that the Majorana
operators are 4⇡-periodic in the superconducting order parameter, see Equa-
tion (3.8). By placing two non-trivial wires in a Josephson junction setup, a
measurement of the Josephson current would contain a topological contribu-
tion which is 4⇡-periodic in the phase di↵erence of the order parameter.

We shall here present an explanation of this phenomenon closely following
Ref. [Ali12]. The Kitaev Hamiltonian 3.1 is indeed 2⇡-periodic in the phase,
true for any superconductor, but the physical states are not, which we now
show.

The system can be modeled by coupling two MBS, �
1

and �
2

, across a
Josephson junction with a subgap e↵ective Hamiltonian written as

H
0

= ��
2
cos(

��

2
)i�

1

�
2

= �� cos(��
2

)(n
0

� 1/2). (3.39)

Here � > 0 is the coupling strength assumed to be small, �� is the phase
di↵erence across the junction and n

0

is the number operator corresponding to
the formed fermion state in the junction region. See Figure 3.12.

Most importantly, since the Hamiltonian commutes with n
0

, the occupa-
tion number is conserved. Starting in a state with n

0

= ñ
0

the corresponding
Josephson current is

I
�

=
2e

~
dhH

0

i
d��

=
e�

2~ sin(
��

2
)(2ñ

0

� 1). (3.40)

As seen from this expression the current is mediated by single electron tun-
neling and is 4⇡-periodic in ��. In trivial superconductors, only Cooper pair
tunneling can mediate any Josephson current for subgap voltages, but in this
setup single electron tunneling is allowed since the weak coupling between
MBS allows the fermionic state to be located in the gap.

Starting for example with �� = 0 and ñ
0

= 1, the Hamiltonian (3.39) is
in the ground state with energy ��/2. Tuning �� to 2⇡ adiabatically yields
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now an excited state with energy +�/2. But since the fermion occupancy
is conserved, this means that one finite energy quasiparticle must have been
added to the junction region. Now, due to the outer Majorana states, �

L

and
�
R

, there is always a degeneracy between odd and even parity ground states,
but since fermion occupancy at the junction region is conserved due to the gap,
the ground state parity can not switch. The system can decay back into the
ground state only if the fermionic state corresponding to the unpaired outer
MBS can tunnel into the junction region but this mechanism is suppressed if
the wires are long compared to the coherence length. Tuning �� further from
2⇡ to 4⇡ gets us back to the same state again yielding the 4⇡-periodicity. So
far, no experimental evidence of the 4⇡ Josephson e↵ect has been reported.

More recently, a conceptually di↵erent approach using magnetic atom ar-
rays on bulk superconductors has been show to generate the Kitaev Wire
model in the low energy limit. The interested reader is referred to Ref.
[NPDL+14] for more information.

To conclude, MBS are fundamentally interesting particles due to their non-
abelian statistics. But it would also be of great interest if the experimental
progress in the hunt for MBS could point the way towards other devices with
engineered species of quasiparticles, both Abelian and non-Abelian, perhaps
culminating in a topological quantum computer. Though it might not be
possible at all to construct one, the emergent field of topological quantum
devices is indeed a small step towards finding that out.

3.3 Polyacetylene and Fractional Charge

The final model we shall take a look at is the Su–Schrie↵er–Heeger-model
(SSH-model) [SSH79,WSH80]. It describes the polymer polyacetylene which
is a simple carbon chain consisting of coupled C � H units in a quasi one-
dimensional lattice. Evey carbon atom has four valence electrons of which
three form the bonds to neighbouring carbon atoms and the hydrogen atom.
The remaining electron is weakly occupying a single ⇡-orbital perpendicular
to the chain and can be treated in a simple tight binding model description.
One might then suspect that the weakly overlapping ⇡-orbitals form a band
leading to polyacetylene being in a metallic state, but this is not the case.
Due to phonon interactions, the system can lower its energy by distorting the
lattice resulting in the opening of a gap in the spectrum. This mechanism
is known as Peierls distortion and has as a result that polacetylene forms an
insulating state.

In the remainder of this section, we shall give the Hamiltonian for this
model, deduce the spectrum and its topological properties. In addition, we
discuss some of the peculiar predictions of this model, including zero energy
states having fractional charge and derive their wave function.
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3.3.1 The SSH-Hamiltonian

The SSH Hamiltonian can most easily can be formulated as

H =

N/2X

n=1

h
�t

1

(a†
n

b
n

+H.c.)� t
2

(b†
n

a
n+1

+H.c.)
i
, (3.41)

which describes spinless electrons hopping on a one-dimensional lattice with
staggered amplitudes, t

1

and t
2

, taken to be real. We allow t
1

6= t
2

due to the
Peierls distortion described above. Next, we define the unit cell to consist of
two sites denoted A and B and to have a length equal to unity. Operators
creating electrons on these sites are given by a† and b† respectively. The on-site
energy on each site is crucially taken to be zero, resulting in one particle per
unit cell and, as we shall see, imposes a symmetry in the model. In addition,
we assume local charge neutrality, meaning that an empty unit cell must have
charge +e. See Figure 3.13(a).

Figure 3.13: The SSH model. (a) depicts a staggered lattice with t
1

(single
line) and t

2

(double line) hopping. (b) shows the chain in the limit t
1

� t
2

dimerizing the chain. (c) shows the limit t
2

� t
1

also dimerizing the chain
but leaving two isolated lattice sites. (d) depicts a frustrated lattice with a
domain wall hosting a fractionally charged state at the kink.

The Bloch Hamiltonian for the translationally invariant system is derived
by the methods in Section 2.2 and is given by

h(k) = � [t
1

+ t
2

cos(2k)] ⌧
x

� [t
2

sin(2k)] ⌧
y

, (3.42)

with energy bands

✏
±

(k) = ± ⇥
t2
1

+ t2
2

+ 2t
1

t
2

cos(2k)
⇤
1/2

. (3.43)

Here, ⌧
i

are Pauli matrices acting in sublattice space. Let us now analyze
Equation (3.43) in more detail. We first note that there is a gap in the spec-
trum with size �

0

= |t
1

� t
2

| which occurs for k = ⇡/2 and k = 0 for t
1

> t
2
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and t
1

< t
2

respectively. There are also two interesting parameter limits. In
the limit t

1

� t
2

we obtain a staggered system isolating every unit cell from
another since only couplings of the type A � B remain. See Figure 3.13(b).
In each cell the two sites hybridize yielding a two level system with energies
E = ±t

1

. Let us denote this configuration the AB phase. In the other limit,
see Figure 3.13(c), t

1

⌧ t
2

, only B�A couplings remain, pairing the unit cells
into separated two level systems with energies E = ±t

2

. For an open chain,
this BA-phase isolates the first A-atom and the last B-atom which remain at
zero energy due to the zero chemical potential. We note also that which of
the phases AB or BA that has zero energy edge states depend on if the lattice
starts with an A or B site. So one can say that both phases are topologically
distinct from one another.

It is now natural to imagine connecting one open chain of each phase,
leaving an isolated A or B site between. See Figure 3.13(d). This frustration
of the lattice is referred to as a domain wall, soliton or a kink. We can deduce
that the state localized in the kink region actually has fractional charge from
the following argument. Since the chemical potential is zero, resulting in one
electron per unit cell, charge neutrality requires that a single electronic state
on a single site (that is half a unit cell) will contribute with charge �e/2
if it is full and +e/2 if it is empty. Note however that a kink-state never
can exist on its own, but must have a kink-partner somewhere else in the
lattice. Nevertheless, situated far apart, the kink state can be viewed as an
independent and movable excitation. These peculiar states are of topological
origin and we shall now explore how they appear from the underlying topology
of the system.

3.3.2 Topological invariant

To derive the topological invariant, we first observe that the Hamiltonian in
Equation (3.42) has all three symmetries which are given by T = , P = ⌧

z

and C = ⌧
z

so that the model belongs to class BDI and has a -invariant.
We can save ourselves some work by noting that the discussion of the winding
invariant of the Kitaev Wire in Section 3.1.2 is applicable here as well. We
can then immediately state that the winding invariant is given by

⌫ =
1

2⇡i

Z
⇡/2

�⇡/2

@
k

log [d
x

(k) + id
y

(k)] = ✓(|t
2

|� |t
1

|) (3.44)

when the Hamiltonian (3.42) is written as h(k) = ~d(k) · ~�. The invariant
takes the values ⌫ = +1, or 0 depending on whether the vector ~d(k) winds
counter-clockwise or not at all around the origin. when t

1

= ±t
2

, the winding
is ill-defined since then the gap gloses for some k. The winding number ⌫ = �1
can be acquired in a setting where a B�A instead of an A�B group is chosen
as the unit cell, e↵ectively changing the how the lattice is terminated.
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We can now understand the kink state as a consequence of the bulk-
boundary correspondence. A kink is a domain wall between two topologically
distinct regions and is associated with a closing of the gap resulting in zero
energy states which outlive the specific parameter choice presented above. We
shall now derive the wave function for such a state.

3.3.3 The Dirac Equation and Localized Kink States

The Dirac equation plays a very important role in various TSM (see for in-
stance Ref. [WBSB14] for a review). The original equation can be written

(�µk
µ

+m) = 0, (3.45)

with �µ being matrices representing the Lorentz group, k the four-momentum,
m the mass and  a four-component spinor. The equation was formulated
as a relativistic description of the free electron and is one of the greatest
achievements in theoretical physics. Solely based on Lorentz-invariance and
symmetries, Dirac managed to deduce that the electron has an anti-particle,
later named the positron, which was subsequently found. In condensed matter,
with Graphene being the most famous example, the Dirac equation arises as
a low energy e↵ective theory of some linearized Bloch or BdG spectrum.

As we have seen previously, many Hamiltonians are written on the form

h(k) = ~d(k) · ~�, (3.46)

where ~d(k) usually depends on cos(k) and sin(k). We can now expand these to
lowest order in k around any gap closing point. This will capture the behaviour
close to these points which is where the low energy behaviour occurs. The
resulting linear equation

h(k) ⇠ ↵k�
z

+ ��
x

, (3.47)

with ↵ and � some constants, is up to a basis rotation on the form of a Dirac
Equation, hence the name.

Consider now Equation (3.42) and linearize around k = 0. We can write
this low energy Dirac Hamiltonian as

h(k) = �(x)⌧
x

+ v
F

k⌧
y

, (3.48)

with v
F

= 2t
2

and � = t
1

+ t
2

, the latter term given a spatial dependence due
to two spatially separated regimes with di↵erent staggered hopping.

Let us find a zero energy solution by solving h(k ! �i@
x

) (x) = 0 when
�(x) = ��

0

for x < 0 and �(x) = +�
0

when x > 0 e↵ectively modeling a
kink. The precise form of the spatial dependence is not important as long as
it asymptotically approaches a di↵erent topological phase in each direction.
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The solution is most easily found by multiplying the equation from the left
by ⌧

y

and trying the ansatz  (x) = �(x) |±i, where |±i are the eigenvectors
of ⌧

x

. This approach results in

�(x) = Ne
±

1
v

F

R
x

0 �(x

0

)dx

0

, (3.49)

with N some normalization constant. If we assume the boundary condition

that �
x!±1����! 0, we see that only one of the solutions satisfy these, depending

on the sign of �0
v

F

. Assuming a positive sign we obtain the solution

 (x) =

r
�

0

v
F

e
��0|x|

v

F |�i . (3.50)

A system with this kind of Dirac equation having a sign-changing term like
above (often called a mass-term as it resembles the mass in the original Dirac
equation) was first studied in Ref. [JR76], where it was pointed out that it
results in a fractionally charged state. In the context of polyacetylene, the low
energy physics of the SSH-model was first described in Ref. [TLLM80].

The procedure we have used for solving for zero energy solutions is not
applicable only to the SSH-model. In fact, it can be generally used to de-
rive the form of edge states between topological sectors, hence being in close
connection to the bulk-boundary principle. We shall have further use for this
method in Chapter 4.

Before closing this section, we point out that no indication of fractional
charge can be observed in polyacetylene. This is because we have neglected
spin degeneracy which e↵ectively muliplies the fractional charge by two. Nev-
ertheless, the inclusion of spin allows for another interesting behaviour called
spin-charge separation. With spin included, there are three types of kink states
in the model. One with charge q = 0 and spin � = 1/2 and two with q = ±e
and � = 0. These states can in some situations dominate the transport prop-
erties of the polymer. The interested reader is encouraged to see the review
by Heeger [HKSS88].
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Introduction to Accompanying Paper

4.1 The ⇡-shifted Josephson Junction

In the paper [SABH15], we study various one-dimensional superconductors
with two kinds of Josephson Junctions. It is based on the observation that one
can form so called ⇡-junctions by varying the superconducting order parameter
continuously across some region. This type of junction can be formed either by
constraining the order parameter to be real and changing sign, or by keeping
the amplitude fixed and “winding” the phase from 0 to ⇡. It turns out that
the properties of any such junction is dependent on the topological properties
of the superconductor. By studying these properties one can probe the nature
of topological superconductivity.

In addition, we propose a topological field theory that gives a minimal
description of a superconducting wire with ⇡-junction defects. This e↵ective
theory is a one-dimensional version of higher dimensional theories describing
trapped Majorana bound states in superconducting vortices.

In the remainder, we shall briefly review the di↵erent steps in the paper
in some more detail and refer back to the previous sections of this thesis.

4.1.1 Superconducting Models

In order to explore topological superconductivity, we want to construct various
one-dimensional models describing superconductivity. Our starting point is a
field theoretical model of a p-wave superconductor with Hamiltonian

H
p

=

Z
dx


( †(� @2

x

2m
� µ̄) +�

p

(x) (�i@
x

) +�⇤

p

(x) †(�i@
x

) †

�
(4.1)

where  is a fermionic field, µ̄ is the chemical potential measured from the band
bottom and �

p

(x) = �(x)/k
F

is the dimensionless p-wave superconducting
order parameter. We have here defined the order parameter, �(x) such that,
for constant �, the induced energy gap is 2�. It can be shown that this model
is the same as the Kitaev Wire model in Equation (3.1) up to a global gauge
transformation.

47
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In addition, we define an ordinary s-wave superconductor with the Hamil-
tonian

H
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dx( †

�

(� @2
x

2m
� µ̄) 

�

+

Z
dx

h
�

s

(x) †

"

 †

#

+�⇤

s

(x) 
#

 
"

i
, (4.2)

where � is the spin index,  
"

,  
#

are fermionic fields, µ̄ is the chemical potential
and �

s

(x) is the, position dependent, s-wave order parameter. When put on
a lattice, the resulting tight binding model is given by Equation (3.29) when
taking ↵ = h = 0 up to a shift in the chemical potential.

The models (3.1) and (3.29) are used for all numerical calculations in the
paper using methods discussed in Section 2.2.

4.1.2 Linearization Schemes

To analyze the low energy behaviour, we linarize the model (4.1) in two dif-
ferent ways which are equal with respect to energy behaviour, but di↵er in
their topological properties. The first method is similar to the standard lin-
earization scheme of the Luttinger liquid, where the parabolic dispersion is
replaced by a Dirac-like dispersion at the two Fermi points by adding unphys-
ical “positron states”. We show that this procedure reproduces the low energy
model considered in the TLM-model [TLLM80], given by

h
Lin

(k) =
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2

⇥
v
F

⌧
z

k � 2(<��(x)
�
⌧
y

�=��(x)
�
⌧
x

)
⇤
. (4.3)

This model properly describes the low energy behaviour of the Kitaev Wire
model, but has some drawbacks. First, it is hard to define any k-space topol-
ogy since the limits for k ! ±1 are di↵erent, which in turn complicates the
concept of winding numbers. Secondly, the PHS is not a redundancy resulting
from a BdG-doubling, but follows instead from the extension of the spectrum
to negative energies. To remedy this, we define another linearization scheme
where the artificial doubling is explicit and the k-space topology can be prop-
erly defined by regularization. In essence, we replace k2 by |k| such that the
slopes at the Fermi points are preserved. This results in the Hamiltonian

h
v

(k) =
1

2
[(�µ̄+ v

F

|k|)⌧
z

+�sign(k)⌧
y

] . (4.4)

We show with this Hamiltonian that it is possible to make a linearization that
is consistent with the topology in the corresponding full model.

4.1.3 Numerical Analysis of Junction States

We look at the subgap states in both the real ⇡-junction and the phase winding
junctions. In the real case, we show that our low energy theory is described
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by Equation (4.3). By using a soliton profile �(x) = �
0

tanh(x/⇠), we then
derive using methods described in Section 3.3.3 that the junction zero energy
bound state is given by [TLLM80]

 (x) = N
0

sech(x/⇠)⇠/⇠0 , (4.5)

where ⇠
0

⌘ v
F

/(2�
0

), the e↵ective coherence length of the problem and N
0

is a normalization constant. With convincing numerical evidence, we confirm
that these states indeed describes the low energy section of the Kitaev Wire
in a real ⇡-junction setup. This is done in the following way.

We take �
j

= �
0

tanh(j/⇠), a discretized version of the profile used by
TLM. By choosing the width ⇠ not too large, this determines the order pa-
rameter to ��

0

at one end of the wire and +�
0

at the other end, generating
a domain wall (between sectors with di↵erent winding numbers) at the center
of the wire. The topological properties of the full Kitaev Wire then ensures
the existence of localized zero modes between these sectors in addition to
the MBS localized at the boundaries between the topological phases and the
topologically trivial vacuum.

The Kitaev chain can be diagonalized as

H
K

=
X

i

✏
i

(A†

i

A
i

� 1/2), (4.6)

where A
i

= ↵
ij

a
j

+ �
ij

a†
j

⌘ ~↵
i

· ~a + ~�
i

· ~a†, and {A
i

, A†

j

} = �
ij

. When the
wire is in the topological phase, there are pairs of self-conjugate zero energy
modes, with coe�cients that can chosen to be real and satisfying ~↵

m

= ±~�
m

,
We define the Majorana operators �

m

/
p
2 ⌘ A

m

= A†

m

in the case ~↵
m

= ~�
m

,

and �
m

/
p
2 = �iA

m

= iA†

m

if ~↵
m

= �~�
m

, and refer to these as symmetric
and anti-symmetric MBS respectively. In both cases the operators satisfy the
Majorana conditions �

m

= �†
m

and {�
n

, �
m

} = 2�
m,n

.
In our case we have four MBS of which two symmetric ones form a Dirac

zero mode (DZM) at the ⇡-junction, while the remaining two, which are anti-
symmetric, are localized at the edges of the wire. The probability distribution
for the DZM mode is given by ↵2

ni

, which can be compared to the corre-
sponding distribution for the zero mode solution localized on a soliton in the
TLM-model. For example, choosing ⇠ = ⇠

0

should generate a zero mode
probability distribution given by | (x)|2 ⇠ sech(x/⇠

0

)2, and we compare the
solution obtained from our tight binding model with this function as follows.
We define

g
i

(�) =

Z
i+0.5

i�0.5

1

�
sech(

x�N/2

�
)2 dx , (4.7)

where N is the number of sites in the wire. This function integrates the
TLM-given probability distribution over small intervals centered around the
lattices sites, numbered by i. The parameter � is chosen to minimize G(�) =P

i

(↵2

ni

� g
i

(�))2, where the ↵
ni

are obtained from the tight binding model. If
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the models are similar, the value of � should be close to the value ⇠
0

determined
from the input parameters of the model.

The results is that the TLM model captures the the properties of the DZM
in the junction region of the Kitaev Wire very well [SABH15]. In general, our
matching is more accurate for parameter choices given broader probability
distributions where the lattice e↵ects are expected to be small. The condition
for this is that v

F

� 2�
0

or equivalently that t� �
0

. The agreement between
the full and the linearized model persists also when ⇠ 6= ⇠

0

.
The analysis is repeated for complex ⇡-junction where there are no sym-

metry protected zero energy bound states. First we perform analytical calcu-
lations for a simple type of phase winding junction and show that these agree
well with the numerics. Then we contrast the behaviour between topological
and trivial junctions in the short junction limit. This results in the conclusion
that topological junctions has bound states with asymtotically zero energy as
the junction shrinks, while this is not happening for trivial junctions. This
can be explained by noting that the topological junction moves from class D
to BDI in the short junction limit.

4.1.4 Topological Field Theory

In the last section, we define an e↵ective field theory in a phenomenological
manner describing Dirac zero modes bound to order parameter phase junc-
tions. With certain approximations and in specific but motivated limits, the
topological field theory is consistent with the theory in the previous sections
of the paper. It should be noted however that the derivation of the topological
field theory is not rigorous but some speculations on how to properly arrive at
the model are given. We also relate our theory to already existing topologi-
cal field theories describing Majoranas trapped in vortices in two-dimensional
topological superconductors.

4.1.5 Results and Conclusions

The main results of the paper is to give a detailed description of the states
in a ⇡ phase winding junction, a junction which breaks the underlying PTRS
protecting the zero energy states that exist in a ⇡-junction with a real order
parameter. We show that although no zero energy states can be expected
on general grounds, it is possible to tune states to arbitrarily low energies.
Furthermore, we speculate loosely on how this might be used as a bulk (in
contrast to edge) probe of topological superconductivity in an experimental
setup. As our final result, we construct an e↵ective topological field theory,
capturing the behaviour of movable phase winding junctions.



5

Summary and Outlook

In this thesis we have discussed the general framework of topological states
of matter. It is fair to say that our focus has been from a practical point of
view rather than presenting mathematical rigour, mostly due to the interests
of the author but also for the sake of the newcomer in this field.

We have only explored a minor region of the vast landscape of topological
states of matter. Specifically we have considered one-dimensional topological
states of matter in Cartan-Altland-Zirnbauer classes D and BDI. The reason
for choosing one-dimensional models is at least three-fold. Most importantly,
when only one k-momentum is required, many concepts and invariants become
quite simple to calculate without loosing the conceptual importance. Further,
many computer simulations can be done for quite large systems within rea-
sonable time on an ordinary desktop computer. Finally, one-dimensional and
two dimensional models are the ones that are mostly used when designing de-
vices out of topological states of matter so studying one-dimensional systems
is indeed of experimental relevance.

Some obvious directions for further research would be to explore models
in higher dimensions, to add interactions or to include thermal environments
by introducing mixed states in a density matrix formulation.

Another interesting option is to apply the framework of quantum trans-
port to topological states of matter. For this purpose, the Non-Equilibrium
Green’s Function (NEGF) or Keldysh approach to quantum transport is well
suited for these type of tight binding systems. It is also suitable for includ-
ing interactions, disorder or phase decoherence. This direction would also be
more experimentally oriented and opens up the possibility of collaboration
with experimental groups. As a bonus, learning this framework is useful in
most experimentally connected theoretical research fields.

There is also the possibility to dive into a quantum field theoretical descrip-
tion of topological states of matter which would be a slightly more analytical
path than the previously mentioned ones, but would probably be both chal-
lenging and rewarding.

Having topological phases is an experimental reality, due to observation
of the IQH e↵ect, the FQH e↵ect, the QSH e↵ect, 3D-topological insulators,
the Chern insulator and many more exotic states of matter. Theory and
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experiment are to large extent consistent, but it still remains unsettled whether
particles with non-Abelian statistics, for example Majorana bound states, exist
and if topological quantum computation ever can be realized in laboratories.
The next years will hopefully generate some answers to these questions and
pave the way for new exciting models and devices.
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A

Dictionary

In this appendix we have collected some frequently used concepts, which are
usually assumed to be common knowledge in the field of TSM. The author
hopes that a newcomer in this field will benefit from the dictionary below.
Note however, that some words might be used di↵erently in other fields.

Abelian statistics: Exchange oper-
ations commute
Adiabatic: Slow w.r.t to some cor-
responding energy
Bulk: Interior, but also trans.inv.
system lacking edge
Bosonization: The fine art of turn-
ing fermions into bosons in 1D
Chiral state: One directional state
Domain wall: Interface between
topologically distinct systems
Edge: Termination of lattice. Dim.
smaller than corresponding bulk
Gapless: Not having a gap. Or situ-
ated at zero energy
Gap out: A state can gap out if it
loses zero energy symmetry protection
Gapped: Having a forbidden energy
region between occupied and empty
states. Or having non-zero energy
Helical state: Directional state with
a time reversed partner
Homeomorphic: Continous with
continous inverse
Mode: Wave-like excitation. Often
used interchangeably with state
Non-trivial: Can not be deformed
into a trivial state w.o. closing the
gap. Usually related to non-zero in-

variant
Non-Abelian statistics: Exchange
operations don’t commute
Parity: Property related to even-ness
or odd-ness in terms of occupation
number
Soliton: Equation solution with
global properties that persists any lo-
cal perturbations
State: Single particle quantum state
Topological invariant: Quantity
that won’t change unless a symmetry
is broken or the gap closes
Topological field theory: Metric
independent field theory with global
properties
Topological order: Property of zero
temperature state resulting in ground
state degeneracy and long range en-
tanglement. Phase transitions can not
be descibed by symmetry breaking
Topological phase transition: The
change of top. phase. Accompanied
by gap closing and change in top. inv.
Trivial: Can be smoothly deformed
into some vacuum state w.o. closing
the gap
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Topological aspects of ⇡ phase winding junctions in superconducting wires

Christian Sp̊anslätt1, Eddy Ardonne1, Jan Carl Budich2,3, and T.H. Hansson1

1Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
2 Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria and

3 Institute for Quantum Optics and Quantum Information,
Austrian Academy of Sciences, 6020 Innsbruck, Austria

(Dated: May 15, 2015)

We theoretically investigate Josephson junctions with a phase shift of ⇡ in various proximity
induced one-dimensional superconductor models. One of the salient experimental signatures of
topological superconductors, namely the fractionalized 4⇡ periodic Josephson e↵ect, is closely re-
lated to the occurrence of a characteristic zero energy bound state in such junctions. We make a
detailed analysis of a more general type of ⇡-junctions coined “phase winding junctions” where the
phase of the order parameter rotates by an angle ⇡ while its absolute value is kept finite. Such
junctions have di↵erent properties, also from a topological viewpoint, and there are no protected
zero energy modes. We compare the phenomenology of such junctions in topological (p-wave) and
trivial (s-wave) superconducting wires, and briefly discuss possible experimental probes. Further-
more, we propose a topological field theory that gives a minimal description of a wire with defects
corresponding to ⇡-junctions. This e↵ective theory is a one-dimensional version of similar theories
describing Majorana bound states in half-vortices of two-dimensional topological superconductors.

PACS numbers: 03.65.Vf, 72.15.Nj

I. INTRODUCTION

In a 2001 paper, Kitaev predicted the existence of un-
paired Majorana zero modes (MZM) localized at the ends
of a proximity e↵ect induced one dimensional (1D) p-
wave superconductor1. The Bogoliubov deGennes (BdG)
mean field Hamiltonian of this “Kitaev chain” is dis-
tinguished from a trivial gapped 1D system by a Z2-
invariant. This topological invariant can be expressed in
terms of the Pfa�an of the Bloch-Hamiltonian in the Ma-
jorana representation. In the more recently established
periodic table of topological states2–4, this invariant is
located in the column for dimension d = 1 in the row
for symmetry class D , i.e. the class of superconductors
without any additional symmetries5.

A single channel nanowire with Rashba spin orbit cou-
pling, in proximity to a bulk s-wave superconductor, and
subject to an external magnetic field, has been one pro-
posal for an experimentally viable realization of the Ki-
taev chain6,7. A di↵erent approach taken is a magnetic
impurity chain on top of a superconductor8–11.

Due to their charge-neutrality and non-magnetic na-
ture, the unpaired MZMs are not easy to detect. The two
main proposed signatures are a zero bias anomaly when
the wire is coupled to a normal metal lead, and an anoma-
lous 4⇡-periodic Josephson e↵ect. Experimental evidence
for the zero bias anomaly has been reported by several
experimental groups12–14. However, it is fair to say that
alternative explanations for robust zero bias resonances,
not related to MZMs, have also been proposed15,16. So,
in spite of a huge experimental e↵ort, there is still no
uncontested experimental realization of a 1D topological
superconductor. The search for alternative observable
signatures of this state thus remains a key challenge.

In this paper we investigate the spectroscopy of sub-

gap modes in di↵erent types of Josephson junctions in
some detail, and ask to what extent this might pro-
vide such an alternative signature. Apart from the fre-
quently considered junctions, in which the order param-
eter changes sign by going through zero, we also con-
sider junctions for which the phase of the order parameter
winds, while the amplitude stays constant. The sub-gap
modes in these junctions can, at least in principle, be
detected by standard probes sensitive to the density of
states, and in particular scanning tunneling spectroscopy.
Since ordinary s-wave superconductors can also have sub-
gap modes in Josephson junctions, we want to identify
spectral features that are specific to the Kitaev chain.

We note that several other studies, complementary to
ours, have investigated various aspects of Josephson junc-
tions in topological wires17–19.

The 4⇡-periodicity of the Josephson e↵ect occurring
in a junction between two Kitaev chains was pointed out
already in Ref. 1 (see, e.g. Ref. 20 for a detailed dis-
cussion). Closely related to this 4⇡-Josephson e↵ect is a
characteristic level crossing between two sub-gap states
associated with a change in the fermion parity of the
many body ground state. This level crossing is accompa-
nied with a fermionic zero energy state localized in the
junction region. Here, we study the physics of such junc-
tions in both s- and p-wave paired wires from a topolog-
ical perspective, focusing in particular on the nature of
the previously mentioned (Dirac) zero mode located at a
⇡-junction. We recall how the level crossing at phase ⇡ is
protected by an additional pseudo time reversal symme-
try (PTRS) which is present in Kitaev’s minimal model1

for the Majorana wire if the pairing field is real (up to
a constant phase). This additional symmetry, which is
well known to refine the Z2 parity to an integer winding
number21,22, also protects the localized zero mode in the
junction region. A major part of our present work is de-
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voted to the study of the more general case where the
phase of the superconducting order parameter is allowed
to wind in the complex plane in the junction region, thus
locally breaking the PTRS. We compare the properties of
the ⇡-junction in the topologically non-trivial p-wave case
with those in the trivial s-wave case. Even in s-wave su-
perconductors, there can still be localized sub-gap modes
at a Josephson junction, but there is no protected zero
mode.

Although Kitaev’s original lattice model can be solved
numerically for rather large systems and arbitrary junc-
tion profiles, it is nevertheless interesting to verify the
presence of the sub-gap modes, and in particular the
zero mode, in the junction by analytical means. To
achieve this, we linearize the spectrum around the Fermi
points to obtain a Luttinger model, augmented with
anomalous, charge non-conserving terms, which is es-
sentially equivalent to the Su-Schrie↵er-Heeger model for
polyacetylene23, with the Josephson junction playing the
role of the famous domain wall soliton24. This allows
us to find an analytical solution for the zero mode, and
also, for a special order parameter profile, for the full
sub-gap spectrum. Although the topological properties
of this linearized model di↵er from those of the original
Kitaev chain, we present both theoretical and numerical
arguments for them describing the same physics. First
we compare with an alternative linearized model (called
below the ”V-shape model”) which does have the same
topology as the Kitaev chain. Since this model di↵ers
from the first linearized model only at high (⇠ �) en-
ergies it gives theoretical support for our claim that the
extended Luttinger model indeed describes the low en-
ergy features of the Kitaev chain. Secondly, the analyt-
ical results from this model agrees extremely well with
the numerical results obtained by directly diagonalizing
the Kitaev chain.

Experimentally, the most obvious way to induce a junc-
tion in the wire such that the order parameter changes
sign, is by proximity e↵ect from a bulk superconduc-
tor with a real, sign changing order parameter already
present - this is the original scenario considered by Ki-
taev. In such a junction, it is natural to assume that the
induced order parameter in the wire remains real also
in the junction region, and thus has to vanish at some
point. An alternative way to introduce a junction is to
place the wire on top of a bulk superconductor through
which a current is flowing between two external leads
placed below the wire. The resulting phase gradient is,
by proximity, also present in the wire. The resulting
”phase winding junction” violates the PTRS, and the
zero energy state is transformed into a finite energy sub-
gap state.

When discussing topological phases, it is interesting
to ask what is the minimal model that will encapsulate
the topological properties of the phase, and in particu-
lar those of the elementary excitations. Important ex-
amples are the Chern-Simons theories describing various
Quantum Hall liquids25, and the BF theories describing

superconductors and topological insulators26–28. In the
present case, the elementary excitations carrying topo-
logical charge are widely separated ⇡-junctions at fixed
positions, and we show that the linearized model, in the
background of these ⇡-junctions can be mapped onto
a Dirac equation with a Goldstone-Wilczek type mass
term29. We take this as a starting point for constructing
an e↵ective topological field theory describing the soli-
tons and their associated zero modes, and comment on
similar attempts in the case of the 2D topological super-
conductor.

This article is organized as follows: In the next section
we first define the models that we shall study. In section
III we study junctions with a real order parameter for the
di↵erent models and with both analytical and numerical
approaches. Section IV contains a similar analysis for the
phase winding junctions with constant absolute value of
the order parameter, but in this case we have to rely
more heavily on numerics. Section V briefly discusses
possible experimental configurations to study the physics
of topological ⇡-junctions, and finally, in section VI we
construct the topological field theory referred to above.
We end with a few concluding remarks. Some technical
points, and in particular a discussion of the rather sub-
tle k-space topology of the linearized models, are put in
appendices.

II. MODELS

To set the stage for our analysis, we here first define
the various models for the superconducting wires studied
below.

A. The p-wave wire

The Hamiltonian for a spinless (or spin polarized) 1D
p-wave superconductor can be written as

Hp =

Z
dx Hp =

Z
dx [( †(� @2

x

2m
� µ̄) 

+ �p(x) (�i@x) + �⇤
p(x) †(�i@x) †] , (1)

where  is a fermionic field (for simplicity we sometimes
suppress the x-dependence), µ̄ is the chemical potential
and �p(x) = �(x)/kF is the dimensionless p-wave super-
conducting order parameter. The order parameter, �(x)
is defined such that, for constant �, the energy gap is
2�.

By discretizing the Hamiltonian (1) we get the Kitaev
chain model1

HK =
N�1X

j=0

(�t(a†
jaj+1 + a†

j+1aj)

+ �jajaj+1 + �⇤
ja

†
j+1a

†
j � µ(a†

jaj � 1

2
)) . (2)
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Here, the ai are (spin polarized) fermion operators, and
we have set the lattice parameter to unity for simplicity.
The hopping parameter is denoted by t, µ is the chemical
potential and �j is the superconducting order parameter
which can be position dependent. These parameters are
related to those in the continuum model by t = 1/(2m),
and µ = µ̄ � 2t.

To write the HK in momentum space (assuming con-
stant�), we introduce the Nambu spinor  †

k = (a†
k, a�k),

in terms of which,

HK =
X

k

 †
kHK(k) k,

with HK(k) given by

HK(k) =
��µ/2 � t cos(k)

�
⌧z � Re(�) sin(k)⌧y (3)

+ Im(�) sin(k)⌧x,

where the Pauli-matrices ⌧i act in the particle-hole spinor
space. It is known1, that for a constant order parameter,
i.e. �j = �, the Kitaev chain resides in a topological
phase when � 6= 0 and |µ| < 2|t|.

B. The s-wave wire

As discussed in the introduction, we will compare the
results for the topological wires with their topologically
trivial, s-wave paired, counterparts. These trivial wires
are described by the continuum Hamiltonian,

Hs =
X

�=",#

Z
dx( †

�(� @2
x

2m
� µ̄) � (4)

+

Z
dx(�s(x) †

" 
†
# +�⇤

s(x) # ")),

where � is the spin index,  ",  # are fermionic fields, µ̄
is the chemical potential and �s(x) is the position de-
pendent s-wave order parameter.

C. Two linearized models

To capture the behavior of the above models close to
the Fermi energy, we expand  into fields containing only
low energy degrees of freedom. We consider two di↵er-
ent ways of doing this, which give the same low-energy
physics, but di↵er in their topological properties.

1. Luttinger like model

There is a standard way to linearize that is illustrated
in Fig. 1(c), where the parabolic band is replaced by a
Dirac like dispersion relation. Just as in the Luttinger
model, we have extended the spectrum by adding un-
physical ”positron” states. In the Luttinger model, a

gap can be opened by 2kF processes that scatter elec-
trons between the two Fermi points. In our case a gap
is opened by charge non-conserving processes that cre-
ates or destroys a Cooper pair formed by two electrons
at di↵erent Fermi points.

Formalizing this argument we first define,

 =
1p
2
(eik

F

x'+ + e�ik
F

x'�) ,

where, kF ⌘ p
2mµ̄ is the Fermi momentum, and '+

and '� are right and left moving fermion fields respec-
tively. Inserting this expression into (1), neglecting terms
⇠ e±2ik

F , we obtain

HLin =
1

2

Z
dx(�ivF'

†
+@x'+ + ivF'

†
�@x'�+

+ 2(�(x)'�'+ +�⇤(x)'†
+'

†
�)) , (5)

where the Fermi velocity is vF = kF /m. The quadratic

dispersion, ✏(k) = k2

2m � µ̄, is thus e↵ectively replaced
by two bands, corresponding to the right and left mov-
ing linearized fermionic fields, with dispersion relations
✏±(k) = ±vF k � µ̄. In terms of the momentum q
relative to the respective Fermi momenta, this reads
✏±(q) = ±vF q. The superconducting order parameter
couples these right and left moving fermions. By intro-
ducing the spinor  † = ('†

+, i'�) (the factor i is for no-
tational convenience) we get, after integration by parts,
the linear Hamiltonian

HLin =

Z
dx †HLin(x) 

with

HLin =
1

2
(�ivF ⌧z@x � 2(Re

�
�(x)

�
⌧y � Im

�
�(x)

�
⌧x)) ,

(6)

where the Pauli matrices now act in right-left spinor-
space. The pairing term is taken so that the gap for
constant � coincides with that in the previous models.

In the following it will be important that, after rescal-
ing vF by 1/2, the Hamiltonian (6) is identical to the
one used by Takayama, Lin-Liu and Maki (TLM)24, to
describe the zero energy soliton solutions of the poly-
acetylene chain model introduced by Su, Schrie↵er and
Heeger (SSH)23. We shall therefore refer to it as the TLM
model.

A linearized version of the trivial wire described by (4)
can be constructed in a similar fashion, but with a four
spinor containing the left and right components of the
two spin polarizations. For details, see Appendix B.

At this point we should point out that the Hamilto-
nian HLin presents conceptual problems, and does not fit
easily into the usual topological classification. The rea-
sons are as follows: In Appendix A we show that as a
consequence of the spectrum in Fig. 1(c) extending from
plus to minus infinity, the k-space topology is not well
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a b c

FIG. 1: Schematic dispersion relations for the free fermion
models corresponding putting � = 0 in (a) Hp solid line, (b)
Hv dashed line, and (c) HLin dotted lines.

defined. Also, the particle-hole symmetry is not a conse-
quence of a redundancy due to an artificial doubling of
a band. Rather it follows from extending the linear dis-
persion to arbitrary large negative energies. If we were
to add band bending corrections to this model we would
break the particle-symmetry which again would change
the topological classification of the model. This situa-
tion is unsatisfactory since it raises questions about the
validity of linear approximations, and in particular the
use of the TLM model, for analyzing the Kitaev chain.
To resolve this we shall now present an alternative model
that resolves the problems related to topology and dou-
bling, while retaining a linear spectrum. Having shown
the existence of such a model, we can safely continue to
use HLin in the subsequent discussion.

2. V-shape model

First we replace the parabolic band in Fig. 1(a) with
a V-shaped band, with dispersion ✏v(k) = |k|vF � µ̄, as
shown in Fig. 1(b).

Next we express the full field  (k) in terms of the low
momentum fermion fields '±(k)

 (k) =
1p
2
(eik

F

x'+(k)#(k) + e�ik
F

x'�(k)#(�k)) , (7)

where #(k) is the step function. In order to write a BdG
Hamiltonian, we first define

�(k) =
1p
2
(eik

F

x'+(k)#(�k) + e�ik
F

x'�(k)#(k)) , (8)

and the Nambu spinor �† = ( †, �i�). Next we substi-
tute (7) and (8) in the expression for Hp, and disregard
the rapidly oscillating terms ⇠ e±2ik

F to get

Hv(k) =
1

2
�†⇥(�µ̄ + vF |k|)⌧z + � sgn(k)⌧y

⇤
� , (9)

where again the Pauli matrices ⌧i act in the Nambu space.
As usual, this amounts to a doubling of the spectrum,
and this redundancy is manifested in the particle-hole
symmetry of Hv which cannot be broken. The pairing

term ⇠ � (which is assumed to be real) is such that it
gives rise to the same gap as the original Hamiltonian Hp

for constant �.
By inspection, we see that the dispersion relation for

Hv(k) has an unphysical 2� jump at k = 0. This dis-
continuity can be regularized by smoothening the tip of
the V-shaped band, and this will in fact be necessary
when we analyze the topological properties in Appendix
A. Such a regularization will however necessarily yield a
more complicated model, that is only amenable to nu-
merical solutions, in spite of having a very simple low
energy limit. We will not pursue this since, this model is
of interest only to demonstrate the existence of a consis-
tent model with a linear spectrum, and good topological
properties.

III. JUNCTIONS AND SOLITONS

A. Topological properties

We start our discussion of ⇡-junctions in 1D super-
conductors, by reminding the reader about which di↵er-
ent topological superconductors are possible in 1D sys-
tems. To do this, we recall the topological classification
of non-interacting fermion systems2–4, where the possible
topological phases are classified according to their non-
unitary symmetries, viz. time-reversal symmetry (TRS)
T and particle-hole symmetry (PHS) C (we note that
the PHS is technically a spectral constraint rather than
a physical symmetry. However, we here chose to follow
the widely adopted terminology of Ref. 2).

In this paper, we consider superconductors in one di-
mension without spin rotation symmetry. The BdG
structure of the Hamiltonian entails a built in algebraic
constraint rooted in the fermionic algebra of the field
operators that can formally be viewed as a PHS with
C2 = +1. In the absence of time-reversal symmetry,
i.e. for class D, the superconductor is either topolog-
ically trivial, or non-trivial, depending on the value of
the Z2 invariant. In the latter case the wire supports
MZMs at both ends1. In the case of time-reversal sym-
metric superconductors, with T 2 = �1, i.e. in class DIII,
the situation is similar, but in this case, the topological
phase exhibits a Kramers-degenerate pair of MZMs at
both edges, see, e.g., Refs. 30,31.) Finally, if the sys-
tem respects the PTRS T 2 = +1, i.e. for class BDI, the
di↵erent topological phases are distinguished by an in-
teger winding number, giving an infinite set of di↵erent
topological non-trivial phases.

The p-wave wire, (1) or (2), will in general, i.e. when
we allow both the hopping and the order parameter to
be complex, belong to symmetry class D, which means
that it can either be in a trivial phase, or in a topological
phase. In the lattice model, the former happens for |µ| >
2|t|, while the latter occurs for |µ| < 2|t|, with |�| 6= 0.

If both t and � are real, the Hamiltonian (2) is also
pseudo time-reversal symmetric (here T is simply com-
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plex conjugation, so trivially T 2 = 1), and in this case,
the possible topological phases are labeled by an integer,
corresponding to a winding number (see Appendix A).
Kitaev’s model with a constant order parameter ex-
hibits three of these phases, namely the trivial one (when
|µ| > 2|t|), as well as two non-trivial ones, both occurring
for |µ| < 2|t|, one with � > 0, the other with � < 0.

This means that for real t and �, the Kitaev chain
can harbor an interesting junction, by allowing the order
parameter to change from �� to +� in a finite region,
corresponding to a ⇡-junction. Just as the edge of a
Majorana wire hosts a MZM, because it constitutes the
boundary between a topological phase and the trivial vac-
uum, the ⇡-junction we consider here will also support
zero modes. Since the di↵erence in winding number be-
tween the two neighboring topological phases is two, we
expect twice as many zero modes in comparison to the
edge of the Kitaev chain. Below we show that this is
indeed the case, irrespective of the precise x-dependence
of the order parameter.

We already mentioned the problems related to properly
define the k-space topology for the TLM model, and how
they are resolved by an alternative linearization scheme.
The details are given in Appendix A, but we should here
again stress that the outcome of this analysis is that we
can safely use the TLM model to discuss the topological
properties of the Kitaev chain.

B. The ⇡-junction as a soliton

Although the k space argument for topology of the lin-
earized model HLin given in Appendix A is compelling, it
is important to find out how well the TLM model (6) re-
ally captures the topological properties of the full model
(2). To do this, we first briefly recall how a Dirac Zero
Mode (DZM) arises in the TLM model24, and then com-
pare it with the zero mode arising in the full model (2),
in the presence of a junction, at which the real order
parameter � changes sign.

The presence of the DZM in the case of a real order pa-
rameter is most easily demonstrated in the TLM model,
and from HLin we get the BdG equations

1

2
(�ivF @xu(x) + 2i�⇤(x)v⇤(x)) = ✏u(x)

1

2
(ivF @xv⇤(x) � 2i�(x)u(x)) = ✏v⇤(x) . (10)

For real �(x), and taking ✏ = 0 since we are interested in
the zero modes, these equations are easily decoupled by
introducing f±(x) = u(x) ± v⇤(x). For a ⇡-junction that
interpolates between a negative constant �� for x ⌧ 0 to
a positive constant �+ for x � 0, one finds the solution

f+(x) = Ne
� 2k

F

v

F

R
x �(x0)dx0

, f�(x) = 0. Here, we will
consider the special profile �(x) = �0 tanh(x/⇠), that
gives rise to the analytical solution24

f+(x) = N0 sech(x/⇠)⇠/⇠0 f�(x) = 0 , (11)

t �0 µ �/⇠0 MLS Error

10.0 1.0 0.0 0.999418 2.2002 · 10�8

8.0 1.0 0.0 0.999098 6.7994 · 10�8

5.0 1.0 0.0 0.997777 7.5333 · 10�7

2.0 1.0 0.0 0.991853 1.2267 · 10�4

1.0 1.0 0.0 1.071428 6.8020 · 10�3

TABLE I: The fitting parameter �, compared to its analytic
value in the TLMmodel ⇠0, as well as the error of the fit (using
the Method of Least Squares), for a system with N = 1001
sites and various values of t.

where ⇠0 ⌘ vF /(2�0) and N0 a normalization constant.

We compare the DZM of the TLM model to the
full model, by considering the discretized version �j =
�0 tanh(j/⇠) of the TLM profile �(x) = �0 tanh(x/⇠)
in (2). By choosing the width ⇠ not too large, this de-
termines the order parameter to ��0 at one end of the
chain and +�0 at the other end, generating a domain
wall (between sectors with di↵erent winding numbers) at
the center of the chain. We set the junction parameter
⇠ = ⇠0, and fit the resulting zero mode to the TLM so-
lution g(x) = sech(x/�), with � used as a fitting param-
eter. In Tab. I we show some representative results and
in Fig. 2, we display a typical result for the probability
density of the DZM located in the junction, as obtained
from the Kitaev chain. Evidently, the TLM model cap-
tures the the properties of the DZM in the junction region
of the Kitaev chain very well.

-�� -�� � �� ������
����
����
����
����
����

���� ������

����������� ���������

Fit
Data points

FIG. 2: The probability distribution (black dots) of the zero
energy mode located in the junction region of the Kitaev chain
with order parameter profile ⇠ tanh(x/⇠0). The parameters
used are: t = 10.0, �0 = 1.0 and µ = 0.0 yielding ⇠0 = 10.
The fit (red, dashed line) is made by the method of least
squares, and resulted in � = 9.994, in good agreement with
the value of ⇠0. The number of sites is N = 1001; the figure
only shows the central region.
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IV. PHASE WINDING JUNCTIONS

In this section, we extend the previous discussion to
the case of junctions with a complex order parameter
where the phase winds in a finite segment of the wire.
For simplicity we shall assume that the absolute value
|�| remains constant. In this case we can find an analyt-
ical solution in the linearized model by taking a simple
winding profile, while our numerical analysis easily gen-
eralizes to more general profiles.

Although a complex order parameter breaks the PTRS
and with that the chiral symmetry that protects the
DZMs in the junctions with real profiles, one would still
expect that the low energy theory should not di↵erenti-
ate a rapid winding of the phase from 0 to ⇡ from a sharp
step in the magnitude of �. We now demonstrate that
this intuition is correct, and that low energy modes per-
sist even in the case of phase winding junctions. Again
it is easiest to start from the linearized model.

A. sub-gap states in the linearized model

We consider an order parameter with an x-dependent
phase

� = �0e
i✓(x) ✓(�1) = 0 ✓(1) = f⇡, (12)

where �0 is a positive constant, ✓(x) is continuous and
f is some real number. The BdG equations (10) then
become,

� i@xu(x) + i/⇠0e
�i✓(x)v⇤(x) = ✏̃u(x) (13)

i@xv⇤(x) � i/⇠0e
i✓(x)u(x) = ✏̃v⇤(x) ,

where ⇠0 = vF /(2�0) and ✏̃ = 2✏/vF . From the first
equation we have

v⇤(x) = �i⇠0e
i✓(x)(✏̃ + i@x)u(x) (14)

and substituting this into the second, we get

⇥
@2

x + i(@x✓)@x + ✏̃(@x✓) + (✏̃2 � ⇠�2
0 )

⇤
u(x) = 0 . (15)

This equation cannot be solved analytically for a general
profile, but for the case of

✓k(x) =

8
><

>:

0 x < �a�
x+a
2a

�
f⇡ |x|  a

f⇡ x > a

(16)

we can solve (15) in the three regions and then match
the solutions. Just as in an 1D Schrödinger problem in
a piece-wise constant potential, this is done by matching
the function and its (logarithmic) derivative. We focus
on the case f = 1, which corresponds to a ⇡-junction
where � changes sign, but the analysis below can easily
be extended to junctions with arbitrary phase winding.

The piecewise solutions are given by

u(x) =

8
><

>:

↵1e
x x < �a

e�i ⇡

4ax
�
↵+

2 e̃x + ↵�
2 e�̃x

� |x|  a

↵3e
�x x > a

(17)

where  =
q

⇠�2
0 � ✏̃2 and ̃ =

q
⇠�2
0 � (✏̃ + ⇡/(4a))2.

To obtain a normalizable solution, we must take  <
0, or |✏̃| < 1/⇠0, implying that the (sub-gap) solution
is localized in the junction region. From the matching
conditions for the wave function and its derivative, one
can infer that there is no solution when ̃ is real. An
imaginary ̃ requires that ✏̃ > 1/⇠0 �⇡/(4a), so localized
sub-gap modes are possible in the energy range 1/⇠0 �
⇡/(4a) < ✏̃ < 1/⇠0 if a > ⇠0⇡/8, or in the whole gap
region �1/⇠0 < ✏̃ < 1/⇠0 if a < ⇠0⇡/8.

For imaginary ̃, the matching conditions have a solu-
tion if the following constraint is satisfied

tan
⇣
2a

r
(✏̃ +

⇡

4a
)2 � ⇠�2

0

⌘
=

q
⇠�2
0 � ✏̃2

q
(✏̃ + ⇡

4a )2 � ⇠�2
0

✏̃2 + ✏̃⇡
4a � ⇠�2

0

.

(18)

Upon analyzing this equation, one finds that even for ar-
bitrary small a, there is always at least one solution. The
energy of the associated bound state is always positive,
but approaches zero in the limit of small a. Upon in-
creasing a, more and more bound state solutions appear.
In order to have at least p + 1 bound states, a should

satisfy a � (4p2�1)⇡⇠0
8 .

Before turning to the numerical results, we briefly dis-
cuss the case of general phase winding, i.e., we allow f
in (16) to be arbitrary. For f arbitrary small, one finds a
bound state, with an energy slightly below the band gap,
✏̃ . 1/⇠0. Upon increasing f , the energy of this bound
state decreases towards ✏̃ = �1/⇠0. In the mean time,
more bound states appear at the gap edge ✏̃ = 1/⇠0. In
the limit of large f , the energies of the bound states be-
come periodic in f , with a period of 2, i.e., a period of
2⇡ in the winding angle. Finally, in the limit of a very
short junction, we find that for f an odd integer, there
is a bound state at ✏̃ ⇡ 0, while for f an even integer,
there are two bound states with energy ✏̃ ⇡ ±1/⇠0. In
the former case, the junction behaves as a ⇡ junction
with a real order parameter, while the second case is
equivalent to not having a junction at all. This is con-
sistent with the topological discussion above, although
we should point out that there are no topological reasons
why the phase junction should behave as a real junction
in the short junction limit. We next compare some of the
results of this section with numerical simulations in the
Kitaev chain and in the full s-wave model.
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Analytic sol. Linear model Full model

0.940199 0.940201 0.940156

0.956549 0.956556 0.956385

0.981316 0.981324 0.981002

TABLE II: The energies of the first three bound states in a
p-wave ⇡ phase winding junction. The parameters used for
these calculations are: t = 10.0, � = 1.0, µ = 0.0, a = 120,
N = 800. Analytical, linear model and full model refer to
the equations (18), (10) and (2) respectively. Note that the
linear model values are just a measure of how well analytic
solution describes the discretized linear model, while the full
model values describe how well the linearization captures the
low energy degrees of freedom.

B. Comparison with the Kitaev chain

Starting with the Kitaev chain model given in (2), we

take the profile �j = |�0|ei⇡
(j+a)

2a , so that over a seg-
ment of length 2a, the phase increases linearly from 0 to
⇡. E↵ectively, this amounts to changing the sign of � just
as in the previous section. Using this profile, we numeri-
cally calculated the energy of the low lying fermion states
both for the Kitaev chain and the linearized model, using
a range of parameters. Typical results are shown in Tab.
II, where the agreement between the first two columns
is a measure of the precision of our numerics, and the
good agreement with the third column again confirms
that the linearized model faithfully describes the full Ki-
taev chain. We have also compared the numerical wave
functions for the low lying states in the Kitaev chain,
with the analytical expressions (17) and again found ex-
cellent agreement.

Next we studied what happens when the length of
the phase winding ⇡-junction shrinks. In Fig. 3, which
shows our result for the p-wave case, we see clearly how
a state that is close to the gap for large junctions comes
down, and becomes a zero mode for the shortest junc-
tions (which essentially amounts to a sign change between
two lattice points). This supports the heuristic argu-
ment, given earlier, that a short phase winding ⇡-junction
should have properties very similar to the one where �
remains real but changes sign. The corresponding s-wave
setup is depicted in Fig.4, where no zero modes need to
be formed in the short junction limit.

These results give additional confirmation that the low
energy properties of junctions made by Kitaev chains can
be captured by the linearized model in (5), and in the
Section VI we construct a topological field theory, which
captures the same physics.
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FIG. 3: The energy spectrum of the Kitaev chain as a function
of its ⇡ phase junction length (in units of the lattice param-
eter).. A junction length of 1 means that the phase jumps
from 0 to ⇡ from one site to another. Note that the zero
energy states that represent MZMs located at the end points
of the chain have been omitted. In addition, two new zero
modes are formed as the junction length shrinks, e↵ectively
imitating a real ⇡-junction. The parameters used are t = 2.0,
�0 = 1.0, µ = 0.0 and N = 200. The spectrum is displayed
in a low energy regime.
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FIG. 4: The energy spectrum of the s-wave wire as a function
of the length of its ⇡ phase junction (in units of the lattice
parameter). A junction length of 1 means that the phase
jumps from 0 to ⇡ from one site to another. Because the s-
wave wire is topologically trivial, no zero modes form, even in
the limit of a short junction. The parameters used are t = 2.0,
�0 = 1.0, µ = 0.0 and N = 200. The spectrum is displayed
in a low energy regime.

V. HOW TO EXPERIMENTALLY PROBE
TOPOLOGY BY A ⇡-JUNCTION

Most of the experimental e↵ort in studying the topo-
logical wires has been aimed at detecting the MZM at the
edges. But as mentioned in the introduction, the pro-
posed signatures for these modes can also be emulated
by other e↵ects. It is thus interesting to consider other
signatures for the wire being in the topological phase,
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and here we suggest the possibility of using the DZMs at
⇡-junctions as such a probe. For this idea to be useful,
we not only need a way to experimentally realize such a
junction and detect the associated fermionic zero modes,
but also a clear signature for the topological phase. We
shall consider both junctions with topologically protected
zero modes, and phase winding junctions. We begin with
the latter.

A. Phase winding ⇡-junction

One way to make a phase winding junction is to put
a wire of the type used in previous experiments on top
of a s-wave superconductor through which a current is
driven between external leads placed close to the wire.
By the the relation O� ⇠ J , where � is the supercon-
ducting phase and J is the current, one can arrange for
a ⇡ phase di↵erence between the leads, which will, by
proximity, be imprinted on the wire. An experimentally
more challenging task is to probe the fermion spectrum
at the junction. An obvious possibility is to use a tun-
neling contact weakly coupled to the wire, or a scanning
tunneling microscope.

From the previous section it would appear that a good
signature for the p-wave pairing phase would be the pres-
ence of an almost zero mode in the junction region. Un-
fortunately, the situation is not very clear since an s-wave
pairing would have a similar signature. Fig. 4 is similar
to Fig. 3, but for s-wave pairing. Also here we find a
low-lying sub-gap state for short junctions, and although
it does not come all the way to zero, it is not clear that it
could be distinguished from the p-wave case. Clearly one
would need much more detailed studies of more realistic
microscopic models in order to resolve this question.

B. Real ⇡-junction

As already pointed out, in a ⇡-junction with a real
order parameter (that must go through zero) the zero
energy Dirac mode is always present when the supercon-
ductor is in the topological phase. For the trivial s-wave
case, there is no such protected zero mode, but the spec-
trum of the subgap modes does depend on the profile of
the order parameter at the junction (and on the other pa-
rameters, such as the chemical potential). Importantly,
there can be junction modes with zero energy, that can
be described by the TLM model we studied above, for
certain choices of parameters. For example, putting the
chemical potential in the band middle (µ = 0 or equiva-
lently µ̄ = 2t as measured from the bottom of the band),
there are localized modes with zero energy, regardless of
the junction length. But these states can be gapped out
in the short junction limit by lowering the chemical po-
tential to the vicinity of the band bottom. This feature
is demonstrated in Fig. 5 and contrasted with the cor-
responding p-wave system in Fig. 6. In the latter case,

the topology protects the zero mode, regardless of the
junction length, as long as the chemical potential lies in
the band, so that the system is in the topological phase.

We note that for wide p-wave junctions, ⇠ & 30, there
are additional subgap modes with finite energy which are
not in the range of ⇠-values in Fig. 6.
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FIG. 5: The energy spectrum (bulk states in black and subgap
states in red) of the s-wave wire (a discrete version of Eq. (4))
as a function of the width of its real ⇡-junction (in units of
the lattice parameter). Modes with zero energy exist only
in the limit of a wide junction, and are gapped out in the
short junction region due to the low chemical potential. The
parameters used are t = 1.0, �0 = 1.0, µ = 1.9 (µ̄ = 0.1) and
N = 200. The spectrum is displayed in a low energy regime.

� � �� ��-���

-���

-���

���

���

���

���

�������� �����

��
��
��
��
��
���
�

FIG. 6: The energy spectrum (bulk states in black and subgap
states in red) of the p-wave wire (Eq. (2)) as a function of the
width of its real ⇡-junction (in units of the lattice parameter).
The Dirac zero mode is topologically protected and exists for
short and long junctions since the wire is in its topological
phase. Subgap modes with finite energy are not present in
the junction length regime displayed here. The parameters
used are t = 1.0, �0 = 1.0, µ = 1.9 (µ̄ = 0.1) and N = 200.
The spectrum is displayed in a low energy regime.
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There are at least two possible ways to experimentally
realize a junction of this type. The most direct would be
to implement a ⇡-junction in the underlying s-wave su-
perconductor, but the problem here is that it is not easy
to determine the � profile in the junction. An alterna-
tive way is to put the wire as a bridge connecting two
di↵erent s-wave superconductors that are held at di↵er-
ent values of ✓, for instance by a SQUID geometry. In
this case one might calculate the � profile by a realistic
modeling of the wire.

Clearly both options need to be studied in more de-
tail before any definite conclusion can be made about
the feasibility of using sub-gap junction spectroscopy for
probing the topological nature of the wire.

VI. A TOPOLOGICAL FIELD THEORY FOR ⇡
PHASE WINDING JUNCTIONS

As in the previous sections we consider � as given by
the background s-wave superconductor by proximity. We
generalize the previous discussion somewhat by consider-
ing a wire with many widely separated ⇡-junctions of the
phase winding type. Since the bound states are exponen-
tially localized, such configurations will support subgap
modes at each junction. We stress that we consider a
fixed junction configuration, given by the background s-
wave order parameter, and derive an e↵ective theory for
the fermions. We can, using the same formalism, also de-
scribe adiabatic motion of the junctions, but they cannot
be considered as bona fide itinerant particles.

Our starting point is the Lagrangian formulation of
the linearized version of the p-wave superconductor (6),
which is given by

L =  ̄
⇣
i/@ � g(x)ei#(x)�5

⌘
 , (19)

where the functions # and g are related to the supercon-
ducting order parameter by � = gei(#+⇡/2), and where
the Dirac matrices are related to the Pauli matrices by
(�0, �x) = (�x, �i�y) so �5 = �z. We have in our deriva-
tion relabeled the spinor  to  , in accordance with stan-
dard notation. Furthermore, we have put vF = 2, consis-
tent with the linearization of (1). Note that for real �,
the energy gap � is nothing but the mass in the Dirac
equation.

The aim here is first to derive a bosonic form of the
Lagrangian (19), and then to extract an e↵ective action
that describes the physics of the bound states on the soli-
tons. This theory is topological in the sense that it does
not have any bulk degrees of freedom, but only describes
the quantum mechanics of the bound states residing on
the solitons. Before embarking on this exercise, we will
put it in context, and view it as part of the more chal-
lenging problem to formulate topological theories in the
presence of fermionic zero modes.

As mentioned in the introduction, the Kitaev chain is
a one-dimensional cousin of the two-dimensional (2D) p-
wave superconductor, and the Majorana states located

on the interfaces between the normal and topological
phase of the model can, by employing geometries with
junctions, be used for quantum computing. In this con-
text the quantum mechanics of the zero modes is clearly
very interesting. In the 2D case, there are two candidates
for a topological field theory that describes the braid-
ing of vortices with Majorana zero modes. One is based
on a SU(2) Chern-Simons theory32, while the other em-
ploys an abelian BF theory coupled to a single Majorana
field33. In this 2D case, the vortices are in principle itin-
erant, but are in practice often pinned to impurities. In
this latter case there is a close analogy with our system
of fixed, or adiabatically moving, ⇡-junctions.

None of these e↵ective theories just mentioned has
been derived from a microscopic description, but are ob-
tained from general principles based on symmetry and
scaling. The e↵ective topological theory for the fermionic
bound states on solitons that we shall describe shortly, is
closely related to the second of the 2D topological theo-
ries that we just mentioned. An obvious, and important,
di↵erence is that the fermionic modes on the solitons
are of Dirac type, so, even if fine tuned to zero energy,
they can not be used for topological quantum comput-
ing. The advantage with the present case is that it is
more amenable to analytical treatment. Still we have
not managed to obtain the topological theory directly
from the microscopic model in a controlled fashion. The
derivation presented below is therefore phenomenological
and again based on symmetry considerations and scaling
arguments. In Appendix C we do o↵er a microscopic
derivation which however involves several unproven, and
admittedly questionable, assumptions.

A. Symmetries

We now discuss the symmetries of (19). From this
Lagrangian we can immediately get the vector and axial
charge densities,

⇢V =  † = '†
+'+ � '†

�'� (20)

⇢A =  †�5 = '†
+'+ + '†

�'� (21)

which shows that the electric charge Qem ⌘ QA =R
dx ⇢A(x) in the superconductor is given by the axial

charge (21) in the Dirac theory (19), and is thus not
conserved, as appropriate for a superconductor. Note,
however that (19) is invariant under the combined global
transformation

 ! ei��5 (22)

✓ ! ✓ � 2� .

In a BdG description this corresponds to a simultaneous
global phase change of the electron field and the super-
conducting condensate h  i. Also note that the trans-
formation,

 ! ei⇡�5 = � (23)
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is indeed a symmetry. As expected, this is a manifesta-
tion of the the conservation of electric charge modulo two,
which is most easily seen by noting that the transforma-
tion (23) leaves the pairing terms '†

+'
†
� and '+'� in-

variant. It will be important later that the vector charge
QV =

R
dx ⇢V (x) in the Dirac theory is indeed conserved.

Physically this is a consequence of the Cooper pairs hav-
ing zero momentum, so adding or subtracting a pair will
give identical changes at the two Fermi points34. In the
following we shall give a bosonized version of the theory
where it will be important to keep the correct symmetry
pattern.

B. Bosonization

It will be advantageous to rewrite (19) in bosonic vari-
ables using the bosonization “translation table”, (see for
instance Ref. 35),

 ̄ !  cos'

 ̄ i�5 !  sin' (24)

 ̄�µ ! 1

2⇡
✏µ⌫@⌫'

where the dimension-full parameter  depends on the
short distance cuto↵, and the scalar field ' is normal-
ized so that the bosonic version of (19) is

L =
1

8⇡
(@µ')2 � g cos('� #) (25)

where we have rescaled g with . The minima of the
potential are at

'n = #+ ⇡ + n2⇡ = ✓ � ⇡

2
+ n2⇡ , (26)

so for large g, # = ✓ � ⇡/2 will make small fluctuations
around one of these (equivalent) minima. In particular,
if ✓ winds, then ' follows. From the work of Jackiw and
Rebbi36, and Goldstone and Wilczek29, we know that
windings in the scalar field ' will describe solitons carry-
ing (in general fractional) fermion number. For simplic-
ity we neglect 2⇡ windings, and taking n = 0 in (26) we
define the kink current as

jk
µ =

1

2⇡
✏µ⌫@⌫✓ , (27)

so the charge of the soliton that interpolates ✓(x) from
'L to 'R is given by,

Qs =
1

2⇡
('R � 'L) . (28)

It follows that the ⇡-junctions we discussed earlier carry
a half unit of fermion number.

Next we shift the field ' by ' = '0 + � to get

L =
1

2⇡
✏µ⌫@⌫✓ bµ � bµjµ

k (29)

+
1

8⇡
(@µ�)2 � g cos(�) +

1

2
jµ
k ✏µ⌫@

⌫�+
1

8⇡
(@µ✓)

2

where bµ is a multiplier field that imposes the condition
(27). Since the �-field is massive, it can be integrated, to
yield the truly trivial topological theory,

L✓b =
1

2⇡
✏µ⌫@⌫✓ bµ � bµjµ

k . (30)

C. Retaining the fermion bound states

The topological theory we just derived is however not
always a good description of the low energy physics. This
is most easily seen by considering the special case where
the topological current describes widely separated nar-
row ⇡-solitons. We learned in section IV A that these
can support low energy fermionic bound states with en-
ergy ✏0 < ✏ < � inside the gap. Since we furthermore can
fine tune so one of these modes occurs arbitrarily close to
zero energy, the topological theory (30) can clearly not be
universally correct. Moving away from the ✏0 point, but
still having the bound state far below the bulk gap, i.e.
✏0 ⌧ g, it would still be desirable to have a theory that
describe these low-lying excitations. What went wrong
in the derivation of (30) is that while the bosonic fluc-
tuations with energy � g were integrated, the more im-
portant fluctuations changing the fermion number were
not taken into account. We will now remedy this and
present a model that properly includes the dynamics of
the low-lying fermionic bound states.

We shall first construct a model in the limit of widely
separated point-like kinks. Any real function � that in-
terpolates between ±|�0| at x = ±1 supports a zero
mode. The kink, |�|⌘(x), where ⌘ is the step function,
can be thought of as a limit of such functions, and thus
supports a zero mode. Also, as discussed above, we get
an approximate zero mode for constant |�| = m, and a
rapid winding of the phase ✓ an odd number of ⇡. In
both these cases the topological current related to the
kink can be be described by

jk(x, t) =
NX

a=1

�(x � xa) (1, ẋa) (31)

where we allowed for the kink at position xa to move
with velocity ẋa.

It is now straightforward to write a Lagrangian for the
bound states residing on the kinks,

L =
NX

a=1

⇠†
ai

d

dt
⇠a (32)

=
NX

a=1

⇠†
a(t, xa(t))i(@t � ẋa(t)@x)⇠a(t, xa(t))

=

Z
dx jµ

k ⇠
†(x, t)i@µ⇠(x, t) .

Combining this with the term (30), yields

L⇠✓b =
1

2⇡
✏µ⌫@⌫✓

⇥
bµ + ⇠†i@µ⇠

⇤ � ✏0⇠
†⇠ � bµjµ

k (33)
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where we also introduced a chemical potential ✏0 that
fixes the energy of the bound state. We shall take ⇠
to be a complex fermionic field (otherwise it would not
describe a single bound state), but note that it di↵ers
from a conventional Dirac fermion in being dimensionless.

The first term in Lagrangian (33) is closely related to
the topological Lagrangian for a spin-less 2D chiral su-
perconductor given in Ref. 33. The main di↵erence is
that in the 2D case the Dirac fermion ⇠(x, t) is replaced
by a Majorana field �(x, t). In the present setting, that
would be appropriate for a domain wall between a triv-
ial and non-trivial phase of the wire. The second term
⇠ ✏0 is not topological and is present only for a com-
plex field. Note that the kinetic term ⇠ ⇠†@0⇠ in (33)
has support only where the topological charge does not
vanish, and thus there are no bulk degrees of freedom.
The above analysis is, however, valid only for point like
sources. The generalization to extended sources, that is
the finite size kinks considered in the previous sections,
is our next task.

D. Fermion bound states in extended kinks

Since for a static kink, the Hamiltonian in (33) is only a
chemical potential, it can not describe the fermion modes
on an extended kink, but instead gives a continuum of
states at energy ✏0. To get a realistic low energy the-
ory we must thus introduce more terms in the e↵ective
Hamiltonian. Following the usual logic of e↵ective theo-
ries we shall retain the lowest derivative terms that en-
sure the correct symmetries. The crucial symmetry here
is the broken global U(1) symmetry related to the electric
charge. In the linearized theory (19) this is the (global)
chiral symmetry (22). Clearly terms like ⇠†⇠, ⇠†@2

x⇠ etc.,

are allowed, but also pairing terms like ei✓⇠†@x⇠†
etc..

In fact it is necessary to include a pairing term in order
to get the appropriate symmetry breaking. Putting the
chemical potential ✏0 to zero, the simplest possible action
for an extended kink is,

L⇠✓b =
1

2⇡
✏µ⌫@⌫✓

⇥
bµ + ⇠†i@µ⇠

⇤� H⇠ � bµjµ
k (34)

with

H⇠ =
1

2⇡
⇠†�M2 � @2

x

�
⇠ +

�M

4⇡

⇥
ei✓⇠i@x⇠ + e�i✓⇠†i@x⇠†⇤ ,

(35)

where the mass parameter M and the pairing strength �,
are phenomenological parameters.

We can simplify this Hamiltonian by performing a ro-
tation of the fields:

⇠ ! e�i✓/2⇠ ⇠† ! ei✓/2⇠† . (36)

This will transform the Hamiltonian (35) to H⇠ =

(⇠†, ⇠)H̄(⇠, ⇠†)T with

H̄⇠ =

 
M2 � (@x � i

2@x✓)2 �Mi@x

�Mi@x �M2 + (@x + i
2@x✓)2

!
.

(37)

Next, we expand the quantum field as ⇠(x, t) =P
n(e�iEtu⇤

n(x)c†
n + eiEtv⇤

n(x)cn), which yields the fol-
lowing BdG equations for the eigenfunctions u(x) and
v(x),

⇣
(@x +

i

2
@x✓)2 + E@x✓ � M2

⌘
u(x) + �Mi@xv⇤(x) = 0

(38)
⇣
(@x � i

2
@x✓)2 � E@x✓ � M2

⌘
v⇤(x) � �Mi@xu(x) = 0

In the limit � ! 0 and under the assumption that ✓
varies slowly (i.e, we assume @2

x✓ and (@x✓)2 to be small)
we obtain the following equation for u(x)

⇥
@2

x + (@x✓)i@x + E(@x✓) � M2
⇤
u(x) = 0, (39)

which is (15) in the limit where the energy E is small
compared to M . As expected there is no continuous com-
ponent in the spectrum, and the low energy part of the
spectrum compares well with the full model with suitable
adjustment of the model parameters. In particular, we
should set M2 = ⇠�2

0 = 4�2/v2
F , E = ✏̃ = 2✏/vF . The

requirement that E ⌧ M then translates to ✏ ⌧ �, that
is, for energies well below the gap, which is consistent
with a zero energy bound state.

To actually derive the e↵ective Lagrangian (33) one
should integrate out the high energy modes. This would
not only give expressions for the e↵ective parameters, but
also provide an ultraviolet cuto↵ that would define the re-
gion of validity of the e↵ective model. We have not been
able to do this in a controlled way, but in Appendix C it
is shown, by manipulating path integral expressions, how
the crucial kinetic term 1

2✏µ⌫@⌫✓⇠†i@µ⇠ can arise from the
microscopic description.

Finally we note that the extension of the topological
theory (33) to the model Lagrangian (34) for the sub-
gap regime, is reminiscent of the extension, proposed in
Ref. 37. of the 2D topological theory in Ref. 33. In both
cases the models are constructed using phenomenologi-
cal and heuristic arguments, and it remains a theoretical
challenge to find general methods to describe localized
fermionic zero modes in the general context of topologi-
cal field theory.

VII. CONCLUDING REMARKS

In this paper we studied several models for trivial
and topological superconducting wires in one dimension.
More specifically, we investigated the properties of ⇡-
junctions, and in particular those where the phase of the
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order parameter winds an angle ⇡ over the junction, cor-
responding to a system in symmetry class D. For this
more general case, we find that there is no topologically
protected zero energy mode associated with a ⇡-junction.
Rather, local breaking of the PTRS by means of the com-
plex winding of the order parameter can shift the energy
of the bound state in the junction region away from zero
energy. This symmetry breaking is not allowed in class
BDI, where, as a consequence, the bound state is topo-
logically pinned to zero energy. We demonstrated that
the low energy bound states in some specific cases can be
obtained analytically and showed that these results agree
well with numerical calculations. Most importantly, we
discussed how our results might be used to obtain a bulk
probe - in contrast to the common method of probing
the edges - to distinguish a topological wire from a triv-
ial one, and suggested some experimental approaches to
this end. Finally we constructed a low energy field theory
with a topological term describing itinerant ⇡-junctions,
and discussed its relation to theories in two dimensions.
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Appendix A: Topology of the p-wave superconductor
modes.

Here, we discuss the topological properties of the vari-
ous models we consider in this paper. To set the scene, we
start by recalling the topological properties of the Kitaev
chain, see Ref. [1].

Consider the model (2) and assume that t and � are
both real, so that the Hamiltonian belongs to symmetry
class BDI. The topological invariant takes the form of a
winding number2, and to show this in the present case,
we write the k-space Hamiltonian (3) as

HK(k) = ~d(k) · ~⌧ , (A1)

with ~⌧ = (⌧x, ⌧y, ⌧z). For models in class BDI, one can
choose a basis such that one of the components of the
vector ~d is zero, say dx = 0. The energy is given by
✏(k) = ±|~d(k)|, which means that for a gapped sys-

tem, we have ~d2(k) > 0. Hence, the winding number ⌫
around the origin of the curve in (⌧y, ⌧z)-space (i.e., the

space of Hamiltonians) swept out by ~d(k) as k sweeps
through the full Brillouin zone is well defined. This
winding number is the topological invariant character-
izing the di↵erent phases. For the Kitaev chain we have
~d(k) = (0, �� sin(k), �µ/2 � t cos(k)), and in Fig. 7, we

(schematically) show the curve ~d(k) in the trivial phase,
with winding ⌫ = 0, and the two di↵erent topological
phases, with winding ⌫ = ±1.

0
2⇡

⌧z

⌧ya

0
2⇡

⌧z

⌧yb

0
2⇡ ⌧z

⌧yc

FIG. 7: Winding numbers ⌫ of ~d(k) for the full Kitaev chain,
in (a) trivial phase with ⌫ = 0, for 0 < t < µ/2, � > 0, (b)
topological phase with ⌫ = 1 for µ = 0, 0 < t = � and (c)
topological phase with ⌫ = �1 for µ = 0, 0 < t = ��. The
arrows denote the direction in which k increases.

Next we turn to the linear model HLin in Eq. (5). As-
suming that � is real and constant, the momentum space
version of the Hamiltonian (6) is again of the form (A1),

with ~d(k) = (0, �2�, vF k).
Since the k-space is not compact, it is possible that the

curve swept out by d̂(k) = ~d(k)/|~d(k)| (the normalization
is needed to obtain finite limits and is valid as long as the
Hamiltonian is gapped) as k goes from �1 to 1 is not
closed. This is indeed what we find in Fig. 8, where we
depict the two cases � = ±1. Despite that we can not de-

0

⌧z

⌧y

1�1

b

0

⌧z

⌧y

1�1

a

FIG. 8: ‘Winding’ of the vector d̂(k) for the linearized model
(6), for (a) � > 0 and (b) � < 0.

fine a winding number for neither of the values ±�, we
can still consider the di↵erence in winding number �⌫
between the two cases, which gives |�⌫| = 1. Therefore,
we expect a zero energy bound state at a boundary be-
tween two regions with � = ±1 respectively, even in the
linearized model. We stress, that although that this ar-
gument in not rigorous, it is nevertheless true, and in the
main text we showed that the analytic form of the zero
mode of the linearized model of Ref. 24 accurately de-
scribes the DZM in the junction of the full Kitaev chain.

We now turn to the alternative linearized model given
by Hv in Eq. (9). Here the k-space is again not com-
pact, and there is also a discontinuity at k = 0. The
first issue is remedied by identifying the points at ±1
(which amounts to considering the a ! 0 limit of the
lattice model). To deal with the second, we note that

for this model, ~d(k) = 1
2 (0, �sgn(k), �µ̄ + vF |k|), and in

Fig. 9 we show the corresponding ‘winding’ of the vector
d̂(k) = ~d/|~d|, in the case � > 0. Even when identify-
ing the points at k = ±1, the curve is not continuous,
but with a regularization that smoothens out the singu-
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larity in the V-shaped band, by replacing the factor sgn
by a continuous odd function that rapidly changes sign
around k = 0, the d-vector will will be continuous, and
the winding number will be well defined. This concludes
the demonstration of the existence of a linearized contin-
uum model with topological properties identical to that
of the Kitaev chain.

⌧z

⌧y

1
�10�

0+

FIG. 9: The ‘winding’ of the d̂(k)-vector corresponding to the
linearized model Hv before the regularization which removes
the discontinuity at k = 0. The arrows indicate the direction
in which k increases. We have used � > 0. As discussed in
the text, the gap between the points 0+ and 0� is closed if
the dispersion relation is smoothened at k = 0.

Appendix B: Topological aspects of the s-wave
paired models

In this appendix, we discuss the topological proper-
ties of the full and linearized s-wave models. Due to the
extra spin degree of freedom in these models, the wind-
ing arguments used for the p-wave superconductors are
not directly applicable and another method of topologi-
cal classification must be used. We will use the method
outlined in Ref. 22.

We begin with the full s-wave model, given by (4).
Assuming a real and constant order parameter, the cor-
responding k-space Hamiltonian can (in suitable units)
be written as

HS(k) = (k2 � µ̄)⌧zs0 ��⌧ysy (B1)

where the Pauli matrices ⌧i and si act in particle-hole
space and spin-space respectively. This Hamiltonian be-
longs to symmetry class BDI, meaning PTRS T 2 = +1
and PHS C2 = +1. These operators are in our chosen ba-
sis given by T = ⌧0s0K and C = ⌧xs0K, with K denoting
the complex conjugation operator.

To investigate the topological properties of this Hamil-
tonian, we write it in the form

HS(k) =

 
H0(k) �̂

�̂T �H0(k)

!
, (B2)

where the matrix structure is in particle-hole space,
H0(k) = (k2 � µ̄)s0 and �̂ = �isy. We note that the

latter term is real and has the property �̂T = ��̂. By a
unitary transformation with U = exp(�i(⇡/4)⌧ys0), the
matrix in equation (B2) can be rotated into

UHS(k)U† =

 
0 A(k)

A(�k)T 0

!
, (B3)

with A(k) = H0(k) + �̂.
Next, we note that Det(HS(k)) = Det(UHS(k)U †) =

Det(A(k))Det(A(�k)T) so that if HS(k) is gapped for
all k, i.e. Det(HS(k)) 6= 0, the determinant of A(k)
can not vanish either. This allows us to define z(k) =
exp(i✓(k)) = Det(A(k))/|Det(A(k))| for gapped Hamil-
tonians HS(k). One may then show that

z(k) = sgn(�2 + (k2 � µ̄)2). (B4)

For the s-wave Hamiltonian (B1), which is real and
gapped for all k, µ̄ and finite �, the determinant is real
and non-vanishing. Then z(k) is well defined and is equal
to +1, independently of any compactification of k-space
(which is needed for any well defined topological invari-
ant), rendering the model topologically trivial.

We next turn our attention to the linear s-wave model.
To derive it, we apply the linearization scheme described
in section IIC to (4) and again assume a real order pa-
rameter which gives us the following Hamiltonian:

HS
Lin =

Z
dx
X

�

((�ivF '†
�,+@x'�,+ + ivF '†

�,�@x'�,�)+

�(x)('",+'#,� + '",�'#,+ + '†
#,+'†

",� + '†
#,�'†

",+).

(B5)

We write this as

HS
Lin =

Z
dx †HS

Lin(x) (B6)

with

HS
Lin =

0

BBB@

�ivF @x 0 0 ��
0 �ivF @x � 0

0 � ivF @x 0

�� 0 0 ivF @x

1

CCCA
, (B7)

and the basis

 = ('",+, '#,+, '†
",�, '†

#,�)T. (B8)

The matrix in equation (B7) looks very much like
two separate blocks of the linear p-wave superconductor
which seems a bit troublesome since we know that the
linear p-wave model host zero modes. That would imply
that the linear s-wave model also would host zero modes,
which would contradict our findings in this paper.

One may suspect that the appearance of two p-wave
models is incidental, and that by adding corrections to
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the linearization this illusion is shattered. This suspicion
is indeed justified since, as we now show, the linear s-
wave superconductor in fact is topologically trivial.

The corresponding k-space Hamiltonian is given by

HS
Lin(k) = vF k⌧zs0 + �⌧ysy (B9)

where the Pauli matrices ⌧i and si now act in right-left
space and spin-space respectively. This Hamiltonian also
belongs to class BDI. In our basis the particle-hole (now
right-left) symmetry operator is given by C = ⌧zs0K
and the pseudo time reversal symmetry operator is T =
⌧xsxK. We rotate the Hamiltonian with the unitary ma-
trix U = exp(�i(⇡/4)⌧xsx), giving us a structure like
(B3) but now with A(k) = ivF ksx + i�sy. One may
then, as above, define z(k) which in this case turns out
to be z(k) = sgn(v2

F k2 + �2) = +1 for all vF , k and
finite �. As was the case in Appendix A, k-space is not
compact. Regardless of this issue, z(k) can never wind.

Thus we can conclude that both the full and linear
s-wave superconductors are trivial, and hence that the
zero modes these models exhibit are not topologically
protected.

Appendix C: Origin of the term ✏

µ⌫
@⌫✓⇠

†
i@µ⇠

Starting from the original Lagrangian (19), we present
an argument for how the kinetic term 1

2⇡ ✏
µ⌫@⌫✓⇠

†i@µ⇠
can appear in an e↵ective Lagrangian. Although, as al-
ready emphasized in the main text, several of the steps
in the below derivations are based on unproven assump-
tions, the emergence of the kinetic term is far from obvi-
ous, and this indicates that a more rigorous proof along
these lines might be possible.

The starting point is the partition function,

Z[✓, g] =

Z
D[ ̄, ]ei

R
d2x L( ̄, ,✓). (C1)

The strategy is to change fermionic variables in such a
way that the high energy part of the spectrum can still be
bosonized and integrated out, as in the previous section,
while the the low lying fermion spectrum will be captured
by a Lagrangian like (33). To this end, we shall use the
following identity,

Z
D[aµ]D[⇠†, ⇠]ei

R
d2x [aµ(⇠†p

µ

⇠� ̄�
µ

 )�H
⇠

]

=

Z
D[aµ]ei

R
d2x aµj

µ

+ 1
2Tr ln(H+aµp

µ

)

= eiF [j
µ

], (C2)

where px = �i@x, jµ =  ̄�µ and H⇠ is an Hamiltonian
that we shall assume to be quadratic in the fields and
H is the corresponding operator acting on the Nambu
spinors.

To derive the last line in (C2) we first calculate the
lowest order by expanding the logarithm and evaluating

the trace (which is over both space and Nambu indices).
The resulting integrals are not convergent in the ultravio-
let since there is no time derivative, so we must introduce
a cuto↵ energy scale ⇤. The resulting e↵ective theory is
only to be applied below this scale. Note that there is
no gauge invariance related to the auxiliary field a since
it does not couple to a conserved current. Taking for H⇠

the expression (35) a straight forward calculation gives
Tr ln(H +aµpµ) = c0a

2
0 +c1a

2
1 + . . . where we omitted all

higher derivative terms. The explicit expressions for the
coe�cients in terms of �, M2 and ⇤ are not particularly
illuminating. Substituting this in the second line of (C2)
and integrating over a, we retain the third line with

F [jµ] = c̃0 j2
0 + c̃1 j2

1 + . . . . (C3)

Before inserting the identity (C2) in the path integral
(C1), we perform the chiral rotation,

 ! e
i

2#(x)�5 (C4)

under which the Lagrangian (19) becomes,

L =  ̄
�
i/@ � ⇡/jk � g(x)

�
 . (C5)

Putting this together, we get the following representation
for the partition function,

Z[✓, g] =

Z
D[aµ]D[⇠†, ⇠]D[ ̄, ]eiS[a,⇠†,⇠, ̄, ;✓] , (C6)

S =

Z
d2x [ ̄

�
i/@ � ⇡/jk � /a � m

�
 (C7)

+ c̃0( �0 )2 + c̃1( �1 )2 � aµ⇠†i@µ⇠ � H⇠] ,

where we put g(x) = m to connect to the previous dis-
cussion about the kink solutions. Next we make a shift
aµ ! aµ � ⇡jµ

k , to rewrite the action as

S =

Z
d2x [Lf � aµ⇠†i@µ⇠ + ⇡jµ

k ⇠
†i@µ⇠ � H⇠] , (C8)

where

Lf =  ̄
�
i/@ � /a � m

�
 + c̃0( �0 )2 + c̃1( �1 )2 (C9)

is very similar to the massive Thirring model. The  -field
can now be integrated to give an e↵ective Lagrangian, for
the aµ field. Using the gauge invariance of (C9) we get

Leff (a) = � 1

m̃2
F 2 . . . (C10)

where Fµ⌫ is the field strength for the potential aµ and
m̃ a dimensional constant that depends both on m and,
via the coe�cients c̃0 and c̃1, on �, M2 and ⇤. Finally,
we can integrate the vector field aµ to get the desired
e↵ective action for the ⇠-field,

L⇠✓b =
1

2
✏µ⌫@⌫✓ (bµ + ⇠†i@µ⇠) � H⇠ � bµjµ

k + . . . (C11)
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where we also used the constraint (27) to express jµ
k in

terms of ✓, and where the dots indicate both neglected
higher derivative terms in the quadratic action, and in-
teraction terms resulting from integrating the aµ field.
All the steps glossed over above can be performed, at
least to low order in perturbation theory. The main ques-

tion is however not technical, but rather what principle
should be used to determine H⇠. A possible approach is
to choose the parameters in H⇠ so to minimize the size
of the leading corrections due to higher derivative terms
and induced interactions.
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