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Abstract

One effective tool to probe a system revealing topological order is to biparti-
tion the system in some way and look at the properties of the reduced density
operator corresponding to one part of the system. In this thesis we focus
on a bipartition scheme known as the particle cut in which the particles in
the system are divided into two groups and we look at the rank of the re-
duced density operator. In the context of fractional quantum Hall physics
it is conjectured that the rank of the reduced density operator for a model
Hamiltonian describing the system is equal to the number of quasi-hole states.
Here we consider the Laughlin wave function as the model state for the system
and try to put this conjecture on a firmer ground by trying to determine the
rank of the reduced density operator and calculating the number of quasi-hole
states. This is done by relating this conjecture to the mathematical properties
of symmetric polynomials and proving a theorem that enables us to find the
lowest total degree of symmetric polynomials that vanish under some specific
transformation referred to as clustering transformation.
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1

Introduction and Outline

1.1 Introduction

From personal experience, we know that matter is found in three different
states or phases, solid, liquid, and gas. For example, a bunch of water
molecules can be found in all these three states as ice, liquid water, and
steam. Cooling an amount of liquid water down to its freezing temperature
transforms it to solid ice. The liquid phase transforms to the solid phase and
it is said that a phase transition has occurred. Although a full description of
these states also needs quantum physics, traditionally these three states be-
long to a category called classical states of matter. Another important phase
of matter is the ferromagnetic phase, already known from the time of An-
cient Greek in the form of permanent magnets. At high temperatures, the
magnetic moments of a magnetic material, are disordered. By cooling down
the material, these magnetic moments align if the temperature falls below a
certain temperature, called the Curie temperature. Other examples of phase
of matter are the superfluid phase, the superconducting phase and the liquid
crystal phases.

What distinguishes these phases from each other is their internal structure,
or in other words, their internal order. Consider a single atomic gas as an
example. The interaction between atoms is almost zero and, therefore, each
atom is moving unrelated to the motion of the other atoms. Thus, one can say
that the gaseous state is a very disordered one and that the gas is symmetric
under a translation with respect to any vector of an arbitrary magnitude and
direction. At low temperature, the kinetic energy of atoms is much lower, and
the interaction of atoms is more important. So the the motion of individual
atoms influence each other and a regular pattern known as crystal or lattice
is formed. This lattice is symmetric with respect to only those translations
whose corresponding vector is an integer multiple of the lattice vector. That
is, the continuous translational symmetry is broken to a discrete translational
symmetry. In the case of ferromagnetism mentioned above, one notes that for
high temperature the spins of the electrons in a piece of material are randomly
aligned so that the average magnetic moment is zero. In this case, the system
has a continuous rotational symmetry known as SO(3) symmetry. But below
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2 Chapter 1. Introduction and Outline

the Curie temperature the magnetic moments of the system align, giving rise
to a non-zero magnetic moment and the ferromagnetic state emerges. In this
ferromagnetic state, the rotational symmetry is broken.

By considering the relation between the internal order and the symmetries
of phases of matter, Russian physicist Lev Landau developed a theory, now
known as Landau’s theory of phase transitions, to explain all these different
phases and the transitions between them. The main idea underlying his theory
is the idea of symmetry breaking. Roughly speaking, this idea expresses that
in a phase transition from some disordered phase to a more ordered one, some
symmetry is lost. In this theory, the notion of the local order parameter plays
a crucial role. In the ordered phase, the order parameter takes a finite value,
while its value is zero in the disordered phase. In the case of ferromagnetism,
the magnetization plays the role of the local order parameter.

Landau’s theory is very successful in explaining phases and the transitions
between them. However, Landau’s theory does not capture all phases of mat-
ter. As is explained in Chapter 2 in more detail, German physicist Klaus von
Klitzing found that at low temperatures, and in a strong magnetic field, the
Hall resistance of a two-dimensional electron gas, instead of varying smoothly
proportional to the strength of the magnetic field as one expects classically,
actually changed in steps and showed a pattern of plateaus [vKDP80]. It
turned out that the Hall conductance σH of these plateaus can, to very high
accuracy, be expressed as a product of an integer times e2/h, the fundamental
unit of conductance, where e is the charge of electron, and h is the Planck con-
stant. This phenomenon is known as the integer quantum Hall effect (IQHE).
von Klitzing received the 1985 Nobel Prize in physics for this discovery. Two
years later, Horst L. Störmer and Daniel Tsui at Bell labs—by doing the same
kind of experiment on a much cleaner sample, and at a temperature of about
1 K, and a magnetic field of about 30 T—discovered a new plateau [TSG82].
But this time, the Hall conductance could be described as a fractional num-
ber times e2/h, namely σH = e2/(3h). This phenomenon is known as the
fractional quantum Hall effect (FQHE).

As is described in Chapter 2, the IQHE was explained theoretically soon
after its discovery by considering the physics of a free electron moving in two
dimensions, in the presence of a strong magnetic field. This simplicity stems
from the fact that in this case the Coulomb interaction between electrons can
be ignored, at least in the first approximation. In contrast, in the case of
FQHE, Coulomb interactions are important and the system is a strongly cor-
related system. Interestingly, the internal order corresponding to a fractional
quantum Hall (FQH) system, does not allow for a description in terms of
Landau’s theory of phase transitions. Instead, it was realized that the FQH
system is a completely new state of matter.

In 1983, Robert Laughlin from Stanford University came up with a way to
explain the FQHE [Lau83]. His idea was based on introducing an approximate
trial wave function that captured the important aspects of the physics of a
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system with the fractional Hall conductance σH = e2/(3h) observed in Störmer
and Tsui’s experiment. Laughlin’s trial wave function, that explains the 1/m
fractional quantum Hall effect up to a normalization constant, is

Ψm(z1, . . . , zN ) =
∏

16i<j6N

(zi − zj)m exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (1.1)

where z1 till zN are the electron coordinates in the complex plane and lB is
a constant of length dimension. At this stage it is good to know that the
wave function above is an approximate eigenstate of the real Hamiltonian,
that is, the Hamiltonian with Coulomb interaction as its interaction term.
For small system sizes, namely systems with only a few electrons, numerical
calculations confirmed more than 99% overlap between Laughlin’s trial wave
function (1.1) and the ground state wave function for the real Hamiltonian.
Despite of being an approximate eigenstate for the real Hamiltonian, Laughlin
wave function is the exact solution of a model Hamiltonian, in the following
sense. There is actually a mathematical expression for the interaction term for
which the Laughlin state is the exact ground state§ [Hal83]. The Hamiltonian
with this mathematical expression as its interaction term is called the model
Hamiltonian.

Some illustrations are in order here. Consider some “total” Hamiltonian
Htotal defined by

Htotal = λHmodel + (1− λ)Hreal, (1.2)

where Hmodel is the model Hamiltonian mentioned above, Hreal is the real
Hamiltonian, and 0 6 λ 6 1 is a real parameter. Numerical investigations
confirm that if one continuously vary the parameter λ from zero to one, one
does not encounter any phase transition. This justifies why the model Hamil-
tonian and Laughlin’s wave function can be used to study interesting physical
properties of FQH systems. The Laughlin wave function is explained in more
detail in Chapter 2.

The FQHE cannot be described in terms of Landau’s theory of phase
transitions. This is because the FQH states do not break any symmetry, and
there is no local order parameter. Instead, one says that the FQH states
have topological order [Wen95]. One manifestation of topological order is that
on higher genus surfaces, the phase shows a ground state degeneracy. For
instance, on a sphere, the Laughlin state is unique, while on the torus, it
has an m fold degeneracy [Wen95]. Thus, a topologically ordered phase is
sensitive to the topology of the surface it lives on. Therefore, topologically
ordered phases have intricate non-local properties.

As the lines above try to motivate, the physics of a system with topological
order, like a FQH system, is very rich and it is important to study the non-local

§This interaction basically enforces that the wave function should vanish at least as an
mth power (instead of a first power, which is necessary because of the Pauli principle) when
two electrons are at the same location.



4 Chapter 1. Introduction and Outline

nature of these kind of systems. One way to probe systems with topological
order, is to partition the system into two subsystems in some way and look
at different properties of reduced density operator corresponding to each part
of the system. In general, one can consider all the eigenvalues of the reduced
density operator but in this thesis we consider only the rank of the reduced
density operator.

In the FQH context, different ways of bipartitioning the total Hilbert space
H, namely, the orbital cut, the real-space cut, and the particle cut have been
proposed [ZHSR07, HZS07, LH08, DRR12, SCR+12, RSS12]. In this thesis we
deal with the particle cut scheme in which one attaches numbers to N particles
(electrons) in the system and declares the particles numbered 1 till NA to
belong to subsystem A and the remaining particles numbered NA + 1 till N
to belong to subsystem B. Numerical investigations provides evidence that
the following conjecture holds. The content of this conjecture is explained in
more detail in Section 5.3.

Conjecture 1.1 (Rank Saturation Conjecture). The rank of the reduced
density operator corresponding to a particle cut of a model state, like a Laugh-
lin or a Moore–Read state [MR91], is equal to the number of quasi-hole states
in an appropriate number of flux quanta, that is, the number of ground states
of the model Hamiltonian in appropriate magnetic field.

The main goal of this thesis is to put this conjecture on a stronger footing
by considering a special case of this conjecture. We consider a FQH system in
a pure Laughlin state Ψm(z1, . . . , zN ), as the model state, and try to determine
the rank of the reduced density operator associated with a particle cut of the
system and compare this number with the number of independent quasi-hole
wave functions.

As is shown in Section 5.3, the conjecture above is satisfied for the special
case m = 1. For m greater than one, we were not able to find a rigorous proof
but we made some progress. We realized that Conjecture 1.1 is equivalent to
the following mathematically formulated conjecture:

Conjecture 1.2. There is no non-zero symmetric polynomial in mN vari-
ables with degree, in each variable, less than N + 1 that vanishes under the
transformation that clusters the mN variables in m groups, with N variables
in each group, and identifies the variables in each group.

The transformation mentioned in the conjecture above is referred to as the
clustering transformation and it is formally defined in Section 5.1. The content
of Conjecture 1.2 becomes clear during subsequent chapters. This observation
led us to study the properties of symmetric polynomials, and in particular
their properties under clustering transformation. It turned out that proving
Conjecture 1.2 is very hard, and we did not succeed completely. However, we
were able to prove that there are no non-zero symmetric polynomials in mN
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variables with total degree less than N + 1, that vanishes under the clustering
transformation. In addition, we found a full characterization of the symmetric
polynomials that vanish under the clustering transformation.

1.2 Outline

The thesis is organized as follows. Chapter 2 gives a very short introduction
to classical and quantum Hall effects. It also introduces the Laughlin wave
function and gives the physical motivation behind this wave function. Chap-
ter 3 is a review of the reduced density operator and the statement of the
Schmidt decomposition theorem. Here weak Schmidt decomposition is intro-
duced as well. Chapter 4 is a review of the basics of the theory of symmetric
functions. Chapter 5 provides a candidate for a weak Schmidt decomposition
of the Laughlin state Ψm. It also provides an upper bound for the rank of
the reduced density operator for a FQH system modeled by the Laughlin state
when the system is subjected to a particle cut. The last section of this chapter
is devoted to a description of the content of the Conjecture 1.1. Chapter 6,
which is the main contribution of this thesis, introduces a new set of generators
for the algebra of symmetric polynomials and probe some of their interesting
properties. Chapters 5 and 6 are based on the accompanied paper [GEA15].





2

Classical and Quantum Hall Effects

This chapter starts with a brief presentation of classical and quantum Hall
effects and continues by revisiting the well-known problem of determining
the energy levels of an electron in a magnetic field, known as Landau levels.
Then it introduces the Laughlin wave function and explain how Laughlin came
to this particular form of a wave function to describe the fractional quantum
Hall effect. For more detailed calculations the reader can refer to any standard
textbook on quantum Hall effect [K.J07,Eza08,Yos02].

2.1 Classical Hall Effect

In 1879 Edwin Hall, an American physics graduate student at Johns Hopkins
University, observed that if a thin strip of a conducting material that carries a
longitudinal electric current is subjected to a perpendicular uniform magnetic
field B, a transverse voltage appears. Classically this is easy to explain. Con-
sider a thin strip of a conducting material lying on the x1Ox2 plane carrying
a longitudinal electric current along the positive direction of the Ox2 axis,
that is, the electrons are moving in the opposite direction. When a uniform
magnetic field B in the positive direction of the Ox3 axis is turned on, the
electrons in the strip are affected by the Lorentz force F = ev×B that lies on
the plane of the strip perpendicular to its length. Here e (e < 0) is the electric
charge of electron and v is its velocity. Under this force electrons accumulate
on one longitudinal edge of the strip, giving rise to a transverse voltage. This
continues until the magnetic force on the electrons is balanced by the force
exerted on them due to the so-called Hall electric field EH created by the
transverse voltage. At this point, electrons flow along the strip without being
disturbed by any transverse acceleration. Therefore,

ev ×B + eEH = 0. (2.1)

In this context, the transverse resistivity ρ12 is known as Hall resistivity and
it is denoted by ρH . To see how classical physics relates the Hall resistivity to
the magnitude B of the magnetic field, consider the current density

j = nev, (2.2)

7



8 Chapter 2. Classical and Quantum Hall Effects

where n is the number-density of electrons. Two components EH,1 and EH,2
of the Hall electric field are related to components of j through the resistivity
tensor ρ = [ρµν ]2×2 according to

EH,µ =
2∑

ν=1

ρµνjν . (2.3)

For this problem it is straight forward to see that

ρ =
B

n|e|

[
0 −1
1 0

]
, (2.4)

Therefore, classical physics predicts that ρ12 is proportional to the magnitude
of the magnetic field according to the following equation:

ρ12 =
B

n|e|
, (2.5)

and the longitudinal resistivities ρ11 and ρ22 vanish. By taking the inverse of
the resistivity tensor in Equation (2.4) the conductivity tensor σ is found to
be

σ =
n|e|
B

[
0 1
−1 0

]
. (2.6)

In contrast, by doing measurements on a silicon MOSFET (metal-oxide-
semiconductor field effect transistor), von Klitzing found that the Hall resis-
tivity does not follow the classical predictions [vKDP80]. It was revealed that
increasing the magnetic field on some intervals does not affect the Hall resis-
tance ρH so that on these intervals the Hall resistance remains constant. In
other words the graph of ρH versus the magnetic field B shows plateaus. But
of course, as in the classical case, on these plateaus the longitudinal resistance
is zero as is shown in Figure 2.1. It is also measured to a very high accuracy
that the Hall resistance ρH on each plateau obeys the simple relation

ρH =
1

ν

h

e2
, (2.7)

where h is the Planck constant and ν is a rational number and, consequently,

σH = ν
e2

h
· (2.8)

Therefore, on the plateaus, Equations (2.4) and (2.6) are corrected for the
following ones

ρ =
1

ν

h

e2

[
0 −1
1 0

]
, σ = ν

e2

h

[
0 1
−1 0

]
. (2.9)

The experiments also revealed that the number ν is either an integer or a
simple fraction with an odd denominator. As mentioned in Chapter 1, the
former case is called the integral quantum Hall effect (IQHE) and the latter
case is called the fractional quantum Hall effect (FQHE).
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Figure 2.1: FQHE. This picture is taken from [Wil13]

2.2 Landau Levels and Quantum Hall Effects

The corner stone of theoretical understanding of the integral and fractional
quantum Hall effects is the quantum treatment of a free electron in a magnetic
field. Consider an electron of mass me and charge e that is subjected to
a uniform strong§ magnetic field B along the positive Ox3 direction. Also
assume that the electron is somehow confined to move in the x1Ox2 plane¶.
The corresponding Hamiltonian is

H =
1

2me

(
p− e

c
A
)2
, (2.10)

where c is the speed of light, p = −i~∇ is the momentum operator, and A is
the vector potential related to the magnetic field through‡

εij∂
iAj = B, (2.11)

whose general solution is

Ai = −B
2

(
εijxi − ∂iξ

)
, (2.12)

where ξ is an arbitrary scalar function that determines the gauge we are
working in. It turns out that the allowed energy values for the electron are,

§Strong magnetic field makes the chance of finding the electron with an anti-aligned spin
so small that in practice, at least in the first approximation, one can safely ignore the spin
freedom of the electron.
¶In practice, this can be done, for example, by cooling a sample consisting of an interface

of an insulator and a semi-conductor down to almost absolute zero. Page 2 of [Kha05].
‡ε11 = ε22 = 0, and ε12 = −ε21 = 1.
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as in the case of harmonic oscillator, evenly spaced and are given by

En = ~ωc
(
n+

1

2

)
, (2.13)

where the quantum number n is a non-negative integer and the cyclotron
frequency ωc is given by

ωc =
|e|B
mec
· (2.14)

These energy levels are known as Landau levels (LL)s in the honor of Lev
Landau who, in 1930, solved the problem for the first time. The first energy
level E0 = 1/2~ωc is called the lowest Landau level (LLL). Although the
energy levels are independent of the gauge chosen, in general the form of the
corresponding wave functions does depend on the gauge.

In the symmetric gauge where ξ in Equation (2.12) is chosen to be zero, the
wave functions corresponding to the nth LL expressed in complex coordinates
are given by

ψl,n(z) =

√
n!

2π2l(l + n)!
zl Lln

( |z|2
2l2B

)
exp

(
− |z|

2

4l2B

)
. (2.15)

In this equation l is an integer not less than −n, Lln is the associated Laguerre
polynomial, z = x1 + ix2 where (x1, x2) are the Cartesian coordinates of the
electron, and

lB =

√
~c
|e|B
· (2.16)

The Number lB has the dimension of length and it is called the magnetic
length, which can be considered as the natural length scale of the system.

In the symmetric gauge, the L3 component of the angular momentum
commutes with Hamiltonian (2.10) and it turns out that for a given value of
n the wave function ψl,n(z) in Equation (2.15) is also an eigenstate of L3 with
eigenvalue l~. Note that in complex coordinates

L3 = ~(z∂ − z̄∂̄), (2.17)

where z̄ is the complex conjugate of z and

∂ :=
∂

∂z
=

1

2
(∂1 − i∂2), (2.18)

∂̄ :=
∂

∂z̄
=

1

2
(∂1 + i∂2). (2.19)

Since l in Equation (2.15) can take any integer value greater or equal than
−n, each LL is infinitely degenerate. This is a notable characteristic of this
problem. The infiniteness of degeneracy stems from the fact that no constraint,
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except for that the electron is limited to move in the x1Ox2 plane, is imposed
on the motion of the electron. However, in practice one always deals with a
sample of finite size that confines the electron’s motion to a finite region of
the x1Ox2 plane. Finiteness of the sample, as the following argument shows,
provides an upper bound for the degeneracy LLs.

For simplicity we consider only the LLL where the wave functions corre-
spond to zero value for n in Equation (2.15), that is

ψl,0(z) =
1√

2π2ll!
zl exp

(
− |z|

2

4l2B

)
, l = 0, 1, 2, . . . . (2.20)

By calculating the derivative of |ψl,0(z)|2 for a given non-negative integer l, it
is seen that the maximum of this function occurs at the points of the circle of
radius

√
2llB centered at the origin. Hence, for a circular sample of radius R

one should not consider the states ψl,0(z) with
√

2llB > R§ and the degeneracy
of LLL is

lmax =
R2

2l2B
· (2.21)

This degeneracy can also be written as

lmax =
πR2

2πl2B
=
πR2B

2πl2BB
=

Φ

Φ0
· (2.22)

Here Φ is the magnetic flux penetrating through the sample and Φ0 is the flux
quantum defined by

Φ0 =
hc

|e|
, (2.23)

where h is the Planck constant. This ratio is called the number of flux quanta
and it is denoted by NΦ (NΦ = lmax). Another ratio of particular interest in
the context of quantum Hall physics is the filling factor νf . It is defined by

νf =
N

NΦ
, (2.24)

where N denotes the number of electrons in the sample. This ratio can be
expressed in a different way related to the geometry of the sample. From the
discussion above, it is seen that to any value l~ (0 6 l 6 lmax) of the angular
momentum one can associate a circle of radius Rl =

√
2llB centered at the

origin. The area ∆S encircled by two concentric circles corresponding to two
consecutive values l and l + 1 of the angular momentum is

∆S = πR2
l+1 − πR2

l

= 2πl2B, (2.25)

§The wave function is zero outside the sample.
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hence, from Equations (2.22) and (2.24), one gets

νf =
N∆S

S
· (2.26)

It turns out that νf is equal to ν in Equation (2.8), so from now on we denote
it simply by ν.

Now let us look back at the integral and fractional quantum Hall effects.
It is clear that the ground state of a FQH system for an integer value of ν is
the state corresponding to the case in which all the first ν Landau levels are
completely filled§ and, hence, the ground state is a non-degenerate state. In
this case, at least in the first approximation, one can neglect the Coulomb re-
pulsion between electrons since the system is gapped and the typical Coulomb
interaction e2/l is much less than this gap ~ωc. Therefore, essentially, IQHE
is a non-interacting problem and this is why soon after its discovery it was
explained theoretically. The many-body wave function is just a single Slater
determinant.

As an example, consider the simplest case ν = 1 in which the number of
electrons is exactly equal to the number of orbitals in the first LL and let
Ψν=1(z1, . . . , zN ) denotes the unique ground state. This many-body ground
state is the following Slater determinant:

Ψν=1(z1, . . . , zN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ0,0(z1) . . . ψ0,0(zN )
ψ1,0(z1) . . . ψ1,0(zN )

...
...

ψN−1,0(z1) . . . ψN−1,0(zN )

∣∣∣∣∣∣∣∣∣ . (2.27)

Using Equation (2.20) for the entries of this determinant, we come up with

Ψν=1(z1, . . . , zN ) = N

∣∣∣∣∣∣∣∣∣
1 . . . 1
z1 . . . zN
...

...

zN−1
1 . . . zN−1

N

∣∣∣∣∣∣∣∣∣ exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (2.28)

where N is a constant and the determinant above is the well-known Vander-
monde determinant. Using the result of this determinant, one gets

Ψν=1(z1, . . . , zN ) =
∏

16i<j6N

(zi − zj) exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (2.29)

up to a normalization constant. Using wave functions (2.15), this example
can be generalized to an arbitrary integer filling factor. For ν = 2 case, for
example, the reader can refer to [K.J07].

§Note that because of Pauli’s exclusion principle, no more than one electron can be in
the same state.
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In contrast, FQHE is a whole new story. The first substantial progress in
theoretical explanation of this phenomenon was achieved by Laughlin through
his introduction of a set of trial wave functions.

2.3 Laughlin’s Wave Function

In a FQH system only a fraction of orbitals in each LL is filled and as men-
tioned earlier and Figure 2.1 shows, for a FQH system the graph of Hall
resistance ρH versus the magnetic field B shows plateaus as well, which in-
dicates that the system is gapped. This implies that the Coulomb repulsion
between the electrons must definitely be taken into account, since in the ab-
sence of the Coulomb interaction any redistribution of electrons within a LL
can be done at zero energy cost, giving rise to a large degeneracy. To explain
that a gapped quantum Hall state can occur at the observed filling fractions,
one needs the Coulomb interaction to lift the degeneracy. This makes a FQH
system to be a highly-correlated system and difficult to solve.

In 1983, Robert Laughlin achieved a breakthrough by proposing a set of
quantum Hall states in the form of a set of trial wave functions, which were
shown to contain the basic features of this phenomenon. Laughlin proposed
the ansatz wave function

Ψm(z1, . . . , zN ) =
∏

16i<j6N

(zi − zj)m exp
(
− 1

4l2B

N∑
k=1

|zk|2
)

(2.30)

to describe the ground state of the FQHE at filling factor ν = 1/m where m
is an odd integer [Lau83]. Laughlin arrived to this wave function by using
physical constraints and some intuition. These are outlined in the following.

(i) The suitable wave function should be of the following form§

Φ(z1, . . . , zN ) = p(z1, . . . , zN ) exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (2.31)

where p(z1, . . . , zN ) is a polynomial in z1 till zN . To write this, Laughlin
was inspired by the form of the wave function (2.20) for the LLL states.

(ii) Since this wave function is to describe a system of electrons as fermions,
it must be totally anti-symmetric.

(iii) Because of the success of Jastrow-type wave functions in describing the
interacting systems with pairwise interactions, as Coulomb interaction
in this case, Laughlin assumed the following form

p(z1, . . . , zN ) =
∏

16i<j6N

f(zi − zj), (2.32)

§One should find out how Φ depends on the filling factor ν = 1/m.
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for the p(z1, . . . , zN ) polynomial. Here f must be an odd polynomial-
function to be consistent with p(z1, . . . , zN ) to be totally anti-symmetric.

(iv) Since the total angular momentum along the Ox3 direction,

L3 = ~
N∑
i=1

(zi∂i − z̄i∂̄i), (2.33)

commutes with Coulomb interaction and consequently with the Hamil-
tonian, Laughlin demanded that the suitable wave function to be an
eigenstate of L3 as well. A simple calculation shows that for this to hap-
pen, it is sufficient that the polynomial p(z1, . . . , zN ) be an eigenstate of
~
∑N

i=1 zi∂i operator.

It is not hard to see that f(z) = zn, for any odd integer n, is a suitable choice
and gives rise to a polynomial p(z1, . . . , zN ) that is an eigenstate of ~

∑N
i=1 zi∂i

operator. Thus,

Φ(z1, . . . , zN ) =
∏

16i<j6N

(zi − zj)n exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
. (2.34)

Now we need to find the appropriate exponent n. This function is supposed
to describe interacting electrons in the LLL at filling factor ν = 1/m. The
maximum value of angular momentum lmax that one electron in the state
(2.34) can have is the maximum power n(N − 1) of any one of the variables
z1 till zN in Φ. Thus according to Equation (2.21), the area S of the sample
described by (2.34) is

S = 2πlmaxl
2
B = 2πn(N − 1)l2B. (2.35)

By Equations (2.25) and (2.26), the filling factor νf corresponding to the wave
function (2.34) is

νf =
N

n(N − 1)
=

1

n
, (2.36)

for large values of N and, therefore, n = m.
Using his wave function, Laughlin not only explained the ν = 1/3 fractional

quantum Hall effect, but also he predicted that quasi-holes with fractional
charge and statistics can exist in FQH systems. The fractional charge of
these quasi-holes was observed experimentally in 1997 [dPRH+97,SG97], and
Laughlin, Störmer and Tsui were awarded the 1998 Nobel prize in physics.

To understand the quasi-holes, consider a FQH system in the x1Ox2 plane
subjected to a magnetic field in the positive Ox3 direction that exhibits the
fractional value ν = 1/m. Suppose that its state is modeled by the Laughlin
state Ψm given by Equation (2.30). Following Laughlin, we locally increase
the magnetic field at the origin by one flux quantum Φ0. This can be thought
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to be done by considering an infinitesimally thin and infinitely long solenoid
threading normally into the system at the origin and varying slowly (adiabat-
ically) the current through it from zero to some appropriate value and in an
appropriate direction. Such solenoid is referred to as a “flux tube.” Variation
of the magnetic field at the origin generates an electric field E curling around
the origin in a direction resisting this change. This electric field in turn gener-
ates an electric current of density j that relates itself to the Hall conductivity
tensor σ and the electric field E through the following equation:

j = σE. (2.37)

According to Equation (2.9), the entries of the main diagonal of the conduc-
tivity tensor is zero for a FQH system on a plateau and, therefore, j lies along
the radial direction towards the origin, where the flux tube is located. Thus,
Equation (2.37) reduces to the following one

jr = σHEφ, (2.38)

with jr the radial component of current density, Eφ the azimuthal component
of the electric field, and σH is as given in Equation (2.9). This current density
indicates that the electrons flows out from a small region confined by a small
circle centered at the origin, where the flux tube is located, and making a
“hole” behind them known as quasi-holes. During this adiabatic process, the
ground state Ψm evolves to the ground state of the final Hamiltonian where
the magnetic flux is now increased by one flux quantum Φ0. This excess of
magnetic flux can be gauged away and we are left with the new exact quasi-
hole ground state of the Hamiltonian. It turns out that this small region
can act as a particle on its own. Laughlin proposed the following trial wave
function

Ψq.h.
m (z1, . . . , zN ) = Ψm(z1, . . . , zN )

∏
16k6N

zk (2.39)

for theoretical explanation of a FQH system with one quasi-particle at the ori-
gin. Though not a ground state for the Coulomb interaction, Ψq.h.

m (z1, . . . , zN )
is exact for the model Hamiltonian. In general, if the magnetic flux is slowly
changed from zero up to one flux quantum Φ0 at n local points with complex
coordinates w1 till wn, Equation (2.39) then takes the following form:

Ψq.h.
m (z1, . . . , zN ) = Ψm(z1, . . . , zN )

∏
16k6N
16l6n

(zk − wl). (2.40)

Wave functions Ψq.h.
m (z1, . . . , zN ) are known as quasi-hole excitations of Laugh-

lin states Ψm(z1, . . . , zN ).

Let us go back to the simple case of one quasi-hole at the origin to explore
some interesting features of quasi-holes. The state (2.39) has a lack of charge
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of some magnitude Q at the origin. By Faraday’s law∮
Γ
E · dr = −1

c

dΦ

dt
, (2.41)

where Γ is a small circle of radius R centered at the origin. This gives rise to

Eφ = − 1

2πRc

dΦ

dt
, (2.42)

and

Q =

∫
2πR|jr|dt =

1

c
σHΦ0

= ν|e|. (2.43)

This means that this excitation can be regarded as the one with a fractional
charge of magnitude ν|e|.

Fractional statistics is another amazing property of quasi-hole particles.
From quantum mechanics we know that a particle in three spatial dimensions
can be either a boson or a fermion. We also know that if two bosons are
exchanged the wave function is not affected

ψ(z1, z2) = ei0πψ(z2, z1), (2.44)

but if two fermions are exchanged, the wave function picks up a minus sign,

ψ(z1, z2) = ei1πψ(z2, z1). (2.45)

These together with the Pauli exclusion principle constitutes the content of
the spin statistics theorem. Here 0 and 1 in the equations above can, of course,
be replaced by any even and odd integers, respectively. Therefore, bosons and
fermions are said to have integer statistics. In a FQH system the quasi-holes
obey fractional statistics meaning that if two of them are slowly interchanged,
the wave function undergoes as follows

ψ(w1, w2) = eiαπψ(w2, w1), (2.46)

where α is a fraction strictly between zero and one and it turns out that
α is the same as the fraction ν, as was shown by Arovas, Schrieffer and
Wilczek [ASW84], by calculating the phase associated with process of adi-
abatically exchanging two quasi-holes.
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Reduced Density Operator and Schmidt
Decomposition

As mentioned in Chapter 1, the goal of this thesis is to determine the rank
of the reduced density operator corresponding to a quantum Hall system sub-
jected to a bipartition of the system known as the particle cut. This chapter
provides a short reminder of the notion of the reduced density operator and
an operation called partial trace. It also recalls the well-known Schmidt Theo-
rem from linear algebra and provides a theorem to enable us to determine the
rank of the reduced density operator of a pure state that is decomposed into
a single sum composed of products of linearly independent functions, instead
of orthonormal functions, as in the case of Schmidt Theorem. The material
in this chapter, except for the last theorem, can be found in [NC10] in more
detail.

3.1 Reduced Density Operator

Consider a composite system S that is composed of two subsystems A and B.
If H, HA, and HB are Hilbert spaces corresponding to systems S, A, and B,
respectively, then from quantum mechanics one knows that H = HA ⊗ HB.
In this chapter, it is assumed that HA and HB, and consequently, H are
finite-dimensional Hilbert spaces.

Let the system S be described by a density operator ρAB. The reduced
density operator ρA of subsystem A is defined by

ρA = trB(ρAB), (3.1)

where trB is a linear map, called the partial trace over system B, that assigns
to each linear operator onHA a linear operator onH according to the following
rule

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2| tr(|b1〉〈b2|), (3.2)

where |a1〉 and |a2〉 are two states in HA and |b1〉 and |b2〉 are two states in
HB. Note that Equation (3.2) together with the linearity of trB suffices to

17
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know how trB acts on a generic Hermitian operator A⊗B on HA⊗HB. If S
is in the pure state |Ψ〉, then Equation (3.1) reduces to the simple form

ρA = trB(|Ψ〉〈Ψ|). (3.3)

The reduced density operator ρB of subsystem B is defined similarly. For
further studies the reader is referred to [NC10].

3.2 Schmidt Decomposition

Consider a composite system S composed of two parts A and B. We know
that if

{
|ui〉 | 1 6 i 6 NA

}
is an orthonormal basis for the NA-dimensional

state space HA of subsystem A and
{
|vi〉 | 1 6 i 6 NB

}
is an orthonormal

basis for the NB-dimensional state space HB of subsystem B, then the set{
|ui〉 ⊗ |vj〉 | 1 6 i 6 NA , 1 6 j 6 NB

}
(3.4)

is an orthonormal basis for the (NANB)-dimensional state space HA ⊗HB of
the whole system S. Therefore, if |Ψ〉 is a normalized pure state of the system
S, then

|Ψ〉 =

NA∑
i=1

NB∑
j=1

cij ui ⊗ vj , (3.5)

for some complex numbers cij with
∑NA

i=1

∑NB
j=1 |cij |2 = 1. That is any pure

state of the whole system S can be written as a double sum as is indicated in
Equation (3.5). The following theorem, known as the Schmidt Decomposition
Theorem, asserts that it is always possible to write |Ψ〉 as a single sum for
appropriately chosen orthonormal subsets of corresponding state spaces. The
interested reader can refer to [NC10] for a proof.

Theorem 3.1 (Schmidt Decomposition). Let |Ψ〉 be a normalized pure
state of a composite system S composed of subsystems A and B with corre-
sponding Hilbert spaces HA and HB of dimensions NA and NB, respectively.
There exist an orthonormal set of states

{
|φAi 〉

}
i

in HA and an orthonormal

set of states
{
|φBi 〉

}
i

in HB such that

|Ψ〉 =
r∑
i=1

λi |φAi 〉 ⊗ |φBi 〉, (3.6)

where r = min{NA, NB} and λi’s are non-negative real numbers such that∑r
i=1 λ

2
i = 1.

The number of strictly positive λi’s in the theorem above is called the
Schmidt number of |Ψ〉.
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Corollary 3.2. As in the theorem above, let system S be in the pure state
|Ψ〉 given by Equation (3.6). The rank of the reduced density operator of
the subsystem with Hilbert space of lower dimension is equal to the Schmidt
number of |Ψ〉

Proof. Without loss of generality let NA 6 NB. Then plugging Equation (3.6)
into Equation (3.3) and making use of Equation (3.2) gives

ρA =

NA∑
i=1

NA∑
j=1

λiλj |φAi 〉〈φAj | tr(|φBi 〉〈φBj |). (3.7)

On the other hand
tr(|φBi 〉〈φBj |) = 〈φBj |φBi 〉 = δij . (3.8)

Hence,

ρA =

NA∑
i=1

λ2
i |φAi 〉〈φAi |. (3.9)

Thus, Spectral Decomposition Theorem implies that the spectrum of ρA is
the set

{
λ2
i | 1 6 i 6 NA

}
, and therefore, the rank of ρA is the number of

non-zero elements in this set, which is the Schmidt number of |Ψ〉.

Schmidt’s Theorem motivates Theorem 3.3. This theorem asserts that if
a pure state |Ψ〉 is decomposed as in Equation (3.6), one can still conclude
that the number r is the Schmidt number of |Ψ〉, even if, instead of being
orthonormal, the states {|φAi 〉}i and {|φBi 〉}i are only known to be linearly
independent in their corresponding Hilbert spaces. This theorem would be
helpful in Section 5.1 where we need to determine the rank of the reduced
density operator of the Laughlin state.

Theorem 3.3. Let |Ψ〉 be a normalized pure state of a composite system S
composed of subsystems A and B with corresponding Hilbert spaces HA and
HB of dimensions NA and NB, respectively. If

|Ψ〉 =
r∑
i=1

ξi |ϕAi 〉 ⊗ |ϕBi 〉, (3.10)

where r 6 min{NA, NB}, ξi’s are non-zero numbers, and
{
|ϕAi 〉 | 1 6 i 6 r

}
and

{
|ϕBi 〉 | 1 6 i 6 r

}
are linearly independent subsets of HA and HB,

respectively, then the rank of the reduced density operators ρA and ρB is
equal to r.

Proof. In a similar way that gave rise to Equation (3.7), one gets

ρA =
r∑
i=1

r∑
j=1

ξ̄jξi 〈ϕBj |ϕBi 〉|ϕAi 〉〈ϕAj |. (3.11)
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Linearly independent subsets
{
|ϕAi 〉 | 1 6 i 6 r

}
and

{
|ϕBi 〉 | 1 6 i 6 r

}
can

be extended to form bases
{
|ϕAi 〉 | 1 6 i 6 NA

}
and

{
|ϕBi 〉 | 1 6 i 6 NB

}
for

HA and HB, respectively. Let
{
|αAi 〉 | 1 6 i 6 NA

}
and

{
|αBi 〉 | 1 6 i 6 NB

}
be dual bases of the bases mentioned above, thus

〈αAi |ϕAj 〉 = δij , (3.12)

〈αBi |ϕBj 〉 = δij . (3.13)

The goal it to show that the kernel of ρA is of dimension NA − r that implies
the rank of ρA is r. Let |ΦA〉 be a vector in HA and

|ΦA〉 =

NA∑
k=1

αAk |αAk 〉, (3.14)

for numbers αAk . It is seen that

ρA|ΦA〉 =

r∑
i=1

r∑
j=1

αAj ξ̄jξi 〈ϕBj |ϕBi 〉|ϕAi 〉. (3.15)

Therefore, if αAj ’s are zero for 1 6 j 6 r, then |ΦA〉 is in the kernel of ρA.

The converse is also true. To prove it, assume that |ΦA〉 is in the kernel of
ρA, then since |ϕAi 〉’s are linearly independent, from Equation (3.15) we get( r∑

j=1

αAj ξ̄j 〈ϕBj |
)

(ξi |ϕBi 〉) = 0, (3.16)

for all 1 6 i 6 r. Since ξi’s are non-zero, the left factor above is orthogonal to
the subspace spanned by

{
|ϕBi 〉 | 1 6 i 6 r

}
. This factor is also orthogonal to

the complement subspace spanned by
{
|ϕBi 〉 | r + 1 6 i 6 NB

}
, so it should

vanish. Since |ϕBj 〉’s are linearly independent, this implies that αAj = 0 for

1 6 j 6 r. The proof for ρB is similar.

Any decomposition as the one in Equation (3.10) is referred to as a weak
Schmidt decomposition of |Ψ〉.
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Symmetric Functions

This chapter touches only a few aspects of the rich theory of symmetric
functions to that extent that is necessary to understand the proof of The-
orem 4.4. This theorem provides a decomposition for the double product∏n
i=1

∏m
j=1(1 + xiyj) in n variables x1 till xn and m variables y1 till ym in

the form of a single sum of terms with each term being a product of sym-
metric polynomials, one of which a polynomial only in xi’s and the other one
a polynomial only in yj ’s. This, in turn, makes it possible to find a candi-
date for a weak Schmidt decomposition of a generic Laughlin’s wave function
at an arbitrary filling factor ν = 1/m, which is the content of Chapter 5.
The material in this chapter is an standard one on the theory of symmetric
functions [Sta99,Mac95] and the theory of partitions [And84].

4.1 General Terminology

As it becomes clear while we proceed, one needs to introduce different bases
for the vector space of symmetric functions with rational coefficients and in
the meanwhile one also needs to be able to multiply two elements of this vector
space. The former is possible in a vector space structure but the latter is not.
This motivates the introduction of an algebra. The fundamental mathematical
object in this chapter is the algebra of symmetric functions over the field of
rational numbers Q. First, we the describe words written in italics.

For the purpose of this thesis, it is sufficient to think of the field of rational
numbers as the ordinary set of rational numbers together with addition and
multiplication of rational numbers.

A vector space A over Q equipped with an extra operation{
× : A×A −→ A
×(u, v) = u× v

,

called vector product, is said to be an algebra over Q if for any rational numbers
a and b, and any vectors u, v, and w in A,

u× (av + bw) = a(u× v) + b(u× w), (4.1)

(av + bw)× u = a(v × u) + b(w × u). (4.2)

21
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Usually one drops × and simply writes uv for u × v. Moreover, if for any u
and v in A

uv = vu, (4.3)

A is said to be commutative, if for any u, v, and w in A

u(vw) = (uv)w, (4.4)

A is said to be associative, and if there exists an element i in A such that

ui = iu, (4.5)

for any u in A, then A is said to be unital and i, which is easily seen to be
unique, is called the unit vector of A. In this thesis, the zero vector is denoted
by o.

Let us emphasis again that an algebra, a priori, is a vector space. There-
fore, any notion that is applicable to a vector space such as the notion of a
linear combination of vectors, linear independence, basis, etc., is also applica-
ble to an algebra.

One can also define a subalgebra. Let A be an algebra over Q. A vector
subspace of A is said to be a subalgebra of A if it is closed with respect to the
vector product. Another terminology in this context is the notion of an ideal.
A vector subspace I of an algebra A is said to be a left ideal (right ideal) of
A if for any u in A and any ı in I,

uı ∈ I (ıu ∈ I), (4.6)

and it is said to be an ideal of A if both statements in (4.6) are satisfied.
As an example, the vector space

A = {(a, b, c) | a, b, c ∈ Q}, (4.7)

with vector addition and scalar multiplication defined component-wise, to-
gether with the ordinary cross product of vectors as the vector product, forms
an algebra over Q which is neither commutative nor associative. Here (0, 0, 0)
is the zero vector but there is no unit vector. Sets {(0, 0, 0)} and A are the
only ideals of this algebra.

Another example is the algebra of all polynomials in n variables x1 till
xn with rational coefficients, which is denoted by Q[x1, . . . , xn]. Here the
vector addition and scalar multiplication are just the standard addition of
polynomials and multiplication of a polynomial by a rational number, the
zero vector is the zero polynomial, and the vector product is the ordinary
multiplication of polynomials. This is a commutative, associative, and unital
algebra and the polynomial i such that i(x1, . . . , xn) = 1 is the unit vector.
Furthermore, from the properties of polynomials we know that this algebra
does not contain a zero divisor. An algebra A is said to be without zero
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divisor if uv is non-zero for any two non-zero vectors u and v in A. The subset
consisting of symmetric polynomials, as are defined shortly, of Q[x1, . . . , xn]
is a subalgebra and it is denoted by Λ[x1, . . . , xn] or, when the variables are
not important or they are clear from the context, briefly by Λn. As becomes
clear after the definition of a symmetric polynomial, Λn is not an ideal of
Q[x1, . . . , xn].

A polynomial s(x1, . . . , xn) in Q[x1, . . . , xn] is said to be symmetric if

s
(
xσ(1), . . . , xσ(n)

)
= s(x1, . . . , xn), (4.8)

for any permutation σ of the set {1, 2, . . . , n}. The polynomial

s(x1, x2, x3) = x1x2 + x2x3 + x3x1 −
3

2
x1x2x3, (4.9)

is a symmetric polynomial in Q[x1, x2, x3]. It is clear that any constant polyno-
mial, including the zero and the unit polynomials, is symmetric and, therefore,
Λn is a unital (sub)algebra. Obviously, any polynomial in just one variable is
symmetric.

A polynomial h(x1, . . . , xn) is called a homogeneous polynomial of total
degree D if

h(tx1, . . . , txn) = tDh(x1, . . . , xn), (4.10)

for any number t. The polynomial

h(x1, x2, x3) = 2x1x2x3 +
1

2
x2

1x3 (4.11)

is a homogeneous polynomial of total degree three that is not symmetric and

f(x1, x2, x3) = x1x2x3 −
1

2
(x2

1x2 + x1x
2
2 + x2

2x3 + x2x
2
3 + x2

3x1 + x1x
2
3) (4.12)

is a homogenous symmetric polynomial of total degree three as well. In this
thesis, the greatest exponent of any one of the variables in a homogenous
symmetric polynomial is referred to as the degree of the polynomial§. For
example, although the polynomial (4.12) is of total degree three, it is of degree
two. Any non-zero constant polynomial is a homogeneous polynomial of both
total degree and degree equal to zero. Of course, the zero polynomial is also
a homogeneous polynomial but of undefined degree and total degree.

In this context, the subset of Q[x1, . . . , xn] consisting of homogeneous sym-
metric polynomials of total degree D together with the zero polynomial is
denoted by Λn,D and the subset of Q[x1, . . . , xn] consisting of those polyno-
mials of degree at most d together with the zero polynomial is denoted by
Λdn. Although Λn,D and Λdn are vector subspaces of Q[x1, . . . , xn], they do not
form a subalgebra since none of them is closed under the multiplication of
polynomials.

§This is not the same as in the mathematics literatures.
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In Section 4.3, different bases for Λn, Λn,D, and Λdn are introduced. The
following observation is helpful in this regard. Any symmetric polynomial in n
variables can be uniquely decomposed into a sum of homogeneous polynomials
of different total degrees in the same variables. This implies that

Λn =
⊕
D>0

Λn,D, (4.13)

where ⊕ is the direct sum of vector subspaces. Hence, the union of the bases
for subspaces Λn,D constitutes a basis for Λn.

Another concept that needs to be defined is the concept of a generating
set. A set

G =
{
s1(x1, . . . , xn), . . . , sm(x1, . . . , xn)

}
(4.14)

of symmetric polynomials is said to be a generating set for Λn[x1, . . . , xn] if any
polynomial in Λn[x1, . . . , xn] can be written as a polynomial with rational coef-
ficients in elements of G. In other words, if for every polynomial s(x1, . . . , xn)
in Λn[x1, . . . , xn] there exists a polynomial r(X1, . . . , Xm) in Q[X1, . . . , Xm]
such that

r
(
s1(x1, . . . , xn), . . . , sm(x1, . . . , xn)

)
= s(x1, . . . , xn). (4.15)

The polynomial r is called a generating polynomial for s and Equation (4.15)
is read as that s is generated by s1 till sm through r.

The set G above is said to be algebraically independent if the zero poly-
nomial in n variables, o(x1, . . . , xn) ≡ 0, can be generated by s1 till sm only
through the zero polynomial in m variables, o(X1, . . . , Xm) ≡ 0. In other
words, G is said to be algebraically independent if

r
(
s1(x1, . . . , xn), . . . , sm(x1, . . . , xn)

)
= 0, (4.16)

implies r = o. One should note that algebraic independence and linear in-
dependence are not the same. Of course, every algebraically independent set
of polynomials is also a linearly independent set. For example the polynomi-
als p1(x1, x2) = x1 + x2, p2(x1, x2) = x2

1 + x2
2, and p3(x1, x2) = x3

1 + x3
2 are

linearly independent but they are not algebraically independent. They are
linearly independent since for rational numbers a, b, and c the statement

∀x1, x2 : a p1 + b p2 + c p3 = o (4.17)

implies that a = b = c = 0. They are not algebraically independent since
there is a non-zero polynomial

r(X1, X2, X3) =
1

2
X3

1 −
3

2
X1X2 +X3 (4.18)

such that
r
(
p1(x1, x2), p2(x1, x2), p3(x1, x2)

)
= 0. (4.19)
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In the theory of symmetric functions it is almost always easier and some-
times mandatory to work with infinite number of variables. Then, if necessary,
one can draw conclusions for the finite-number case by letting all but finitely
many of the variables go to zero. In this context, one writes Λ[x1, x2, x3 . . .],
or Λ for short, to denote the algebra of all symmetric functions§ in x1, x2, x3,
. . . . The notion of a symmetric polynomial extends itself naturally to that of
a symmetric function. A symmetric function s(x1, x2, x3, . . .) can be viewed
as a polynomial that does not change under the exchange of any pair of its
variables. A homogeneous function can also be defined similar to a homo-
geneous polynomial. In this thesis Λ ,D and Λd denote the sets consisting of
homogeneous symmetric functions of total degree D and degree of at most d,
respectively, in an infinite number of variables. In this case, the analogue of
Equation (4.13) is

Λ =
⊕
D>0

Λ ,D. (4.20)

The notion of a generating set can also be generalized to the case of infinite
number of variables in a natural way.

Finally, a map ψ of an algebra A into itself is called an algebra endomor-
phism on A, if for any two elements u and v in A, and any two numbers a
and b in Q,

ψ(au+ bv) = aψ(u) + bψ(v), (4.21)

ψ(uv) = ψ(u)ψ(v). (4.22)

That is, if ψ preserves the linear combination of vectors as well as the vector
product. By its definition, it is readily seen that an algebra endomorphism
ψ on an algebra A is uniquely determined if one knows how ψ acts on the
elements of an algebraically independent generating set for A. Furthermore,
if ψ is an algebra endomorphism on a unital algebra A with unit vector i and
without a zero divisor, then ψ(i) = 0 or ψ(i) = i.

4.2 Partitions of Non-negative Integers

In order to be able to delve further into the theory of symmetric functions,
one needs some acquaintance with the notion of partitions of non-negative
integers.

4.2.1 Definitions and Notations

Let n be a positive integer. An infinite sequence

λ = (λ1, . . . , λr, 0, 0, 0 . . . ), (4.23)

§When the number of variables is infinite, we talk about symmetric functions rather
than symmetric polynomials.
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consisting of positive integers λ1 till λr together with infinite number of zeros
at the end, is said to be an r-partition of n, if

λ1 > · · · > λr, (4.24)

and
r∑
i=1

λi = n. (4.25)

For simplicity in writing, one usually suppresses the infinite number of tail-
zeros. Thus, the partition (4.23) is simply written as λ = (λ1, . . . , λr). For
example, (3, 1, 1, 0, 0, . . .) is a partition of 5 that is usually written as (3, 1, 1).
We agree that the infinite sequence (0, 0, 0, . . .), or the empty sequence () after
suppressing tail-zeros, is the only partition of zero. This partition is called the
empty partition and it is denoted by ∅. In this thesis, although not a standard
one, a partition is denoted by a bold Greek letter and its parts are denoted
by the same letter in its ordinary style subscripted by positive integers.

To show that λ is a partition of n, one writes λ ` n. The number n
is referred to as the weight of λ and it is denoted by |λ|, so |∅| = 0. Each
(non-zero) λi is called a part of λ. The number of parts of λ is defined to be
its length and it is denoted by l(λ), so l(∅) = 0. The set of all partitions of n
is denoted by Par(n). For instance,

Par(5) = {(5), (4, 1), (3, 2), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}. (4.26)

The set of all partitions is denoted by P and it is defined by

P =
⋃
n>0

Par(n). (4.27)

The multiplicity of a positive integer i in a partition λ is denoted by mi(λ) or,
when the partition λ is clear from the context, briefly by mi and it is defined
to be the the number of parts of λ that are equal to i. In other words,

mi(λ) = Card{ j | λj = i }, (4.28)

where “Card” refers to cardinality or the number of elements of a set. This
provides still another useful notation for a partition. Using the notion of
multiplicity any partition λ can be written as

λ = (1m12m23m3 · · · ), (4.29)

where imi , for any i > 1, means that there are exactly mi parts in λ that are
equal to i. In this notation ∑

i>1

imi = |λ|. (4.30)

For example, λ = (1220344050 · · · ) is the partition (3, 3, 3, 3, 1, 1) of 14 that is
usually written briefly as λ = (1234).
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4.2.2 Graphical Representation of Partitions

To make working with partitions easier, one can associate a graphical repre-
sentation with a partition in some way. One of these representations is called
the Ferrers diagram. By definition, the Ferrers diagram associated with a
non-empty partition λ = (λ1, . . . , λr) is the set of all points (i, j) ∈ N2 such
that 1 6 j 6 λi. Here N refers to the set of all positive integers. In this
thesis matrix convention is adopted to draw the Ferrers diagrams, namely,
the row index i increases as one goes downwards and the column index j in-
creases as one goes from left to right. Figure 4.1 shows the Ferrers diagram
for λ = (5, 3, 3, 2, 1, 1) as a partition of 15.

Figure 4.1: Ferrers diagram for λ = (5, 3, 3, 2, 1, 1).

Given a partition λ = (λ1, . . . , λr), its conjugate λ′ = (λ′1, . . . , λ
′
s) is de-

fined by
λ′i = Card{ j | λj > i } (4.31)

for any i, i = 1, 2, . . . , s. If λ is a partition of a non-negative integer n, then it
is readily seen that λ′ is also a partition of n. Simply, λ′ can be considered as
a partition whose Ferrer diagram is the transpose of the Ferrer diagram of λ.
Transpose of a diagram means a diagram obtained by reflection in the main
diagonal. For partition λ in Figure 4.1, the conjugate is λ′ = (6, 4, 3, 1, 1).
This is shown schematically in Figure 4.2.

Figure 4.2: Ferrers diagram for λ′ = (6, 4, 3, 1, 1).

It is obvious that ∅′ = ∅, (λ′)′ = λ, λ′1 = l(λ), λ1 = l(λ′), and also

mi(λ) = λ′i − λ′i+1. (4.32)

The idea of representing partitions by some pictorial image provides us
with a strong tool that enables us to conclude simple but non-trivial results
about partitions of integers. For instance, using Ferrers diagrams, one can
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easily convince oneself that the number of partitions of a positive integer n
with at most m parts is equal to the number of partitions of n in which no part
exceeds m. To see this, one just needs to establish a one-to-one correspondence
between the two classes of partitions of n by mapping each partition from one
class onto its conjugate, which is definitely an element from the other class,
since from the graphical representation introduced above it is obvious that
under conjugation a partition of n with at most m parts is mapped onto a
partition of n in which no part is greater than m and vice versa.

4.2.3 Orders on Par(n)

Later on, it becomes important to be able to arrange the partitions of an
integer with respect to some kind of order. First, let us have a short review
on the definition of a relation on a set and the notions of partial and total
orders on that set.

A subset R of the Cartesian product A × A of a set A by itself is called
a relation on A. It is said that R is a partial order on A, or A is partially
ordered by R if R is

(i) reflexive, that is, for any x in A, (x, x) is in R,

(ii) anti-symmetric, that is, for any x and y in A, if (x, y) and (y, x) are both
in R then x = y,

(iii) transitive, that is, for any x, y, and z in A, if (x, y) and (y, z) are both
in R then (x, z) is in R as well.

If R is a relation on A, one usually writes xRy instead of (x, y) ∈ R and reads
it as “x is R-related to y.”

Let n be a non-negative integer. It is straight forward to check the prop-
erties (i)–(iii) above for the relation � defined on Par(n) by

∀λ,µ ∈ Par(n), λ � µ←→ ∀i > 1 : λ1 + · · ·+ λi 6 µ1 + · · ·+ µi, (4.33)

and observe that it defines a partial order on Par(n). This relation is called
the dominance or natural order on Par(n). For example, partitions of the set
Par(5) in (4.26) , are ordered as follows:

(1, 1, 1, 1, 1) � (2, 1, 1, 1) � (2, 2, 1) � (3, 2) � (4, 1) � (5), (4.34)

with respect to the dominance order. One should note that not every two
elements of a partially ordered set are necessarily comparable through the
partial order defined on the set. For example consider the set Par(6) together
with dominance order �. For partitions λ = (3, 1, 1, 1) and µ = (2, 2, 2) in
Par(6), none of the relations λ � µ and µ � λ is satisfied.

Despite this, if a finite set is partially ordered by a relation R, it is always
possible to arrange all elements of the set in a row such that the arrangement
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is compatible with the partial order R in the sense that no element y is R-
related to an element x on the left hand side of y. To see this, let R be a
partial order on a finite set A and let A1 be the subset of A such that no
elements of A1 is R-related to some element of A. Since A is assumed to be
finite, A1 is not empty. It is clear that elements of A1 are not comparable
to each other through R. Now consider the complement of A1 in A, that is,
A−A1. If A−A1 is empty then any arrangement of the elements of A1 is an
arrangement of the elements of A compatible with R. Otherwise, let A2 be
the subset of A−A1 such that no elements of A2 is R-related to some element
of A − A1. Again A2 is not empty and none of its elements are comparable
with respect to R. Now juxtaposition of an arrangement of elements of A2

on the left hand side of an arrangement of elements of A1 is still compatible
with R. For the next step, we consider (A−A1)−A2 and if this is not empty
we consider the subset A3 of (A − A1) − A2 and continue as before. Assume
that after n steps the process ends. Then juxtaposition of any arrangement
of elements of these subsets in the order An, An−1, . . . , A1 is an arrangement
of elements of the original set A compatible with R. By construction and
the transitivity property of R it is clear that, if i < j, an element xi in Ai is
whether not comparable to an element xj in Aj or xj is R-related to xi. Of
course this compatible arrangement is not in general unique.

If besides properties (ii) and (iii) on the previous page, a relation R on a
set A is

(i′) total, that is, for any x and y in A, (x, y) ∈ R or (y, x) ∈ R,

it is called a total order. One can check that for n 6 5, the dominance order
on Par(n) is a actually a total order. The elements of a totally ordered set can
be uniquely arranged in a row to be compatible with the total order defined
on the set in the sense that any element in the row is related to every each
element on its right hand side.

4.2.4 Generating Function and the Number of Partitions

The number of partitions of a non-negative integer n is denoted by p(n). There
is no simple closed formula expressing p(n) in terms of n, but one can write a
generating function for the sequence

(
p(k)

)
k>0

. The generating function f(q)

of a sequence (ak)k>0 is defined to be the formal power series

f(q) =
∑
k>0

akq
k. (4.35)

Formal here means that manipulations on these series such as summing and
multiplying them together can be formally done without being concerned with
convergence of the involved series. As an example, the generating function of
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the constant sequence 1, 1, 1, . . . , is

f(q) =
∑
k>0

qk =
1

1− q
, (4.36)

regardless of the value of the variable q.
Now consider the function F (q) defined by

F (q) =
∏
i>1

∑
mi>0

qimi . (4.37)

Expanding the product, F (q) can be written as

F (q) =
∑

qm1+2m2+3m3+···, (4.38)

where the sum is over all non-negative integer values of mi’s. Hence, for a
given non-negative integer k, the coefficient of qk in the sum above is exactly
equal to the number of distinct sequences (m1,m2,m3, . . .) consisting of non-
negative integers such that

∑
i>1 imi = k. By Equation (4.30), this is the

number of partitions of k. Consequently, F (q) is the generating function for
the sequence

(
p(k)

)
k>0

and, therefore,

F (q) =
∑
k>0

p(k)qk. (4.39)

Using geometric series formula in Equation (4.37), one gets∑
k>0

p(k)qk =
∏
i>1

1

1− qi
· (4.40)

Analogously, the function

G(q) =
r∏
i=1

∑
mi>0

qimi , (4.41)

is the generating function for the sequence (p(k, r))k>0, where p(k, r) denotes
the number of partitions of k with each part at most r or, equivalently, the
number of partitions of k with at most r parts§.

Of particular interest in this thesis is the number of partitions with at
most n parts such that each part is at most d. As is explained shortly, this
number is equal to

(
n+d
n

)
. In other words

Card
{
λ ∈P | λ1 6 d , l(λ) 6 n

}
=

(
n+ d

n

)
. (4.42)

One way to see this it to establish a one-to-one correspondence between the
set of partitions that fit into a rectangle of height n and width d and the set
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Figure 4.3: Gray squares represent λ = (8, 6, 3, 3, 1) inside a 6 by 10 rect-
angle and the polygon-line associated with it consists of six vertical and ten
horizontal segments.

of polygon-lines consisting of n vertical (V) and d horizontal (H) segments, as
is shown in Figure 4.3 for a special case of n = 6 and d = 10. Therefore, one
can count the number of these polygon-lines instead of counting the number
of mentioned partitions. It is clear that each such polygon-line consists of
n vertical and d horizontal segments. Consequently, the number of these
polygon-lines is equal to the number of permutations of a string of letters
consisting of n letters of V and d letters of H, which is

(
n+d
n

)
by a simple

combinatorial argument.
Equation (4.42) can be viewed from a different angle. Let p(k, d, n) be the

number of partitions of k that fit into a rectangle of width d and height n. On
page 33 of [And84] it is shown that the generating function for the sequence(
p(k, d, n)

)
k>0

is the following function

G(q, d, n) =
(1− qd+n)(1− qd+n−1) · · · (1− qn+1)

(1− qd)(1− qd−1) · · · (1− q)

=
(q)d+n

(q)d(q)n
, (4.43)

where for any non-negative integer m,

(q)m := (1− qm)(1− qm−1) · · · (1− q). (4.44)

Therefore, ∑
k>0

p(k, d, n)qk =
(q)d+n

(q)d(q)n
· (4.45)

Taking limit of both sides of Equation (4.45) as q goes to 1 and noting that
p(k, d, n) = 0 for all integers k greater than dn, one gets

dn∑
k=0

p(k, d, n) =

(
n+ d

n

)
, (4.46)

§See the paragraph followed by Equation (4.32).
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and Equation (4.42) is recovered.
Finally, the complement of a partition λ with respect to a rectangle of

height n and width d, which we denote by λ̄, is defined as

λ̄ = (d− λn, d− λn−1, . . . , d− λ1). (4.47)

For example, the complement of λ = (8, 6, 3, 3, 1) with respect to the rectangle
shown in Figure 4.3 is λ̄ = (10, 9, 7, 7, 4, 2). It is clear that l(λ̄) 6 n and
λ̄1 6 d.

4.3 Basic Homogeneous Symmetric Functions

This section introduces four of the most important homogeneous symmetric
functions and their properties that are frequently used throughout this thesis.
This includes monomial symmetric functions, elementary symmetric functions,
complete homogeneous symmetric functions, and finally power-sum symmetric
functions. All of them are homogeneous as well, although only the third one
carries the name explicitly.

For simplicity, in the coming subsections one more piece of notation is
employed. Let x = (x1, x2, x3, . . .) be an arrangement of variables and let
α = (α1, α2, , α3 . . .) be a sequence of non-negative integers with αn being the
last non-zero term. Then

xα := xα1
1 xα2

2 · · ·x
αn
n . (4.48)

If α contains no non-zero term, then xα is defined to be one. For example,
xα = x1x

3
4x

2
5 where α = (1, 0, 0, 3, 2, 0, 0, 0, . . .).

We also assume that the argument of any function, which is not mentioned
explicitly, is x.

4.3.1 Monomial Symmetric Functions

Let λ be a partition. The monomial symmetric function corresponding to λ
is denoted by mλ and it is defined by

mλ =
∑
α

xα, (4.49)

where the sum is over all distinct permutations α = (α1, α2, α3, . . .) of the
terms in λ including tail-zeros. For example m∅ = 1 and

m(1) =
∑
i

xi, (4.50)

m(1,1) =
∑
i1<i2

xi1xi2 , (4.51)

m(2,1) =
∑
i1<i2

(x2
i1xi2 + xi1x

2
i2). (4.52)
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It is clear that for a partition λ of D, the function mλ is a symmetric function
of total degree D and degree λ1 and belongs to Λ ,D and also to Λd for all
d > λ1. It is also clear that if f(x) =

∑
α cαx

α is a function in Λ ,D, then

f(x) =
∑
λ`D

cλmλ. (4.53)

Therefore the set {
mλ | λ ` D

}
(4.54)

is a basis for Λ ,D and, as a result,

dim(Λ ,D) = p(D). (4.55)

Here p(D) is the number of partitions of D. From Equation (4.20) it becomes
clear that the set {

mλ | λ ∈P
}

(4.56)

is a basis for Λ.
Now consider the following so-called reduction map ρn of Λ to Λn:

ρn(s)(x) = s(x1, . . . , xn, 0, 0, . . .). (4.57)

The monomial symmetric polynomial in n variables x1 till xn corresponding
to partition λ is denoted explicitly by mλ(x1, . . . , xn) and it is defined by§

mλ(x1, . . . , xn) = ρn(mλ)(x). (4.58)

For example,

m(2,1,1)(x1, x2, x3) = x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3,

m(2,1)(x1, x2, x3) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3,

m(2,1,1)(x1, x2) = 0.

Note that, by definition, mλ(x1, . . . , xn) = 0 if and only if l(λ) > n. It is clear
that {

mλ(x1, . . . , xn) | λ ` D , l(λ) 6 n
}
, (4.59)

is a basis for Λn,D and the set{
mλ(x1, . . . , xn) | l(λ) 6 n

}
, (4.60)

is a basis for Λn. It is also clear that the set{
mλ(x1, . . . , xn) | λ1 6 d , l(λ) 6 n

}
, (4.61)

§The same notation mλ is used to denote both the monomial symmetric function and
the monomial symmetric polynomial. To resolve this ambiguity, we agree to mention the
argument (x1, . . . , xn) explicitly whenever dealing with a polynomial in a finite number of
variables.
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forms a basis for Λdn. Therefore, the dimension of Λdn is the number of parti-
tions of n that fit into a rectangle of height n and width d. Thus by Equa-
tion (4.42),

dim
(
Λdn
)

=

(
n+ d

n

)
. (4.62)

Note that any symmetric polynomial in Λn is the image of a polynomial
in Λ under the action of ρn. To see this, consider a polynomial s(x1, . . . , xn)
in Λn. Since the set (4.54) is a basis for Λn, for some rational numbers aλ one
can write

s(x1, . . . , xn) =
∑
λ

aλmλ(x1, . . . , xn), (4.63)

where the sum is over all partitions λ such that l(λ) 6 n. Then it is obvi-
ous that, for the same partitions λ, the image of

∑
λ aλmλ as a symmetric

function in Λ under ρn is s(x1, . . . , xn).

4.3.2 Elementary Symmetric Functions

Given a partition λ, the elementary symmetric function corresponding to λ
is denoted by eλ and it is defined by

eλ = eλ1eλ2eλ3 · · · , (4.64)

where,
e0 := 1, (4.65)

and for any positive integer r, the rth elementary symmetric function er is
defined by

er = m(1r) =
∑

i1<···<in

xi1 · · ·xin . (4.66)

Evidently, the total degree of eλ is |λ| and its degree is l(λ).
As the next step, let us find out that how these new symmetric functions

are related to the monomial symmetric functions. It is shown in [Sta99] that
for any partition λ of D,

eλ =
∑
µ`D

Mλµmµ, (4.67)

where Mλµ’s are non-negative integers§. It is also shown that if λ′ and µ are
not comparable through the dominance order or if λ′ � µ, then Mλµ = 0 and,
moreover, Mλλ′ = 1.

Now assume that λ1,λ2, . . . ,λp(D) is a particular arrangement of elements

of Par(D) that is compatible with the dominance order¶. Since, λ � µ if and

§In fact, it is shown in [Sta99] that Mλµ is the number of matrices A = [aij ]i,j>1 with
entries 0 and 1 such that for all i,

∑
j>1 aij = λi, and for all j,

∑
i>1 aij = µj .

¶Such an arrangement exists as is discussed at the end of page 28 and at the beginning
of page 29.
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only if µ′ � λ′ [Mac95], λ′p(D), . . . ,λ
′
2,λ
′
1 is also compatible with the domi-

nance order. Now if one defines a p(D)-dimensional square matrixM = [Mij ]
by

Mij = Mλiλ
′
j
, (4.68)

then from the lines followed by Equation (4.67) it is seen thatM is an upper-
triangular matrix with only 1 on the main diagonal and, consequently, it is
invertible. For instance, for the D = 4 case we have

e(1,1,1,1) =m(4) + 4m(3,1) + 6m(2,2) + 12m(2,1,1) + 24m(1,1,1,1),

e(2,1,1) = m(3,1) + 2m(2,2) + 5m(2,1,1) + 12m(1,1,1,1),

e(2,2) = m(2,2) + 2m(2,1,1) + 6m(1,1,1,1),

e(3,1) = m(2,1,1) + 4m(1,1,1,1),

e(4) = m(1,1,1,1).

This means that the transition matrix from the basis set (4.54) to the set{
eλ | λ ` D

}
, (4.69)

is an invertible matrix. This implies that the set (4.69) also forms a basis for
Λ ,D. Therefore, the set {

eλ | λ ∈P
}

(4.70)

forms a basis for Λ and, as a result, the set{
e1, e2, e3, . . .

}
(4.71)

is an algebraically independent generating set for Λ§. Thus any polynomial in
Λ can be uniquely expressed as a polynomial in terms of e1, e2, e3, . . . . The
last two statements constitutes the content of what is known as the Fundamen-
tal Theorem of Symmetric Functions (FTSF), and the lines above sketched
an outline of the proof. This theorem also implies that{

eλ | l(λ) 6 d
}

(4.72)

forms a basis for Λd.

Before investigating the elementary symmetric polynomials in finite num-
ber of variables, let us explore the generating function for the sequence (ek)k>0

that one would need in Section 4.3.4. Consider the function¶

Ex(q) =
∏
i>1

(1 + xiq), (4.73)

§The identity polynomial i(x) = 1 is generated by this set through the identity polyno-
mial itself, namely, i(e1, e2, . . .) = i.
¶as a polynomial in just one single variable q and infinite number of real parameters x1,

x2, x3, . . . . Actually, Ex(q) is a member of Λ1[q].
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and expand the product on the right hand side of this equation. For a given
non-negative integer k, the coefficient of qk in this expansion is ek and, there-
fore, ∑

k>0

ekq
k =

∏
i>1

(1 + xiq). (4.74)

Thus, Ex(q) in Equation (4.73) is the generating function for the sequence
(ek)k>0 .

Let us now consider the case of the finite number of variables. For a non-
negative integer r, the rth elementary symmetric polynomial in variables x1

till xn is denoted explicitly by er(x1, . . . , xn) and it is defined by

er(x1, . . . , xn) = ρn(er)(x), (4.75)

where ρn is the reduction map defined by Equation (4.57). For instance,

e1(x1, x2, x3) = x1 + x2 + x3, (4.76)

e2(x1, x2, x3) = x1x2 + x2x3 + x3x1, (4.77)

e3(x1, x2, x3) = x1x2x3, (4.78)

en(x1, x2, x3) = 0, (4.79)

for all integers n > 4. The definition of eλ(x1, . . . , xn) is the same as its
infinite-case counterpart. For example

e(2,1,1)(x1, x2) = e2(x1, x2)e1(x1, x2)e1(x1, x2)

= x1x2(x1 + x2)2. (4.80)

By definition it is readily seen that eλ(x1, . . . , xn) = 0 if and only if λ1 > n.

Based on triangularity property described in the FTSF, the set{
eλ(x1, . . . , xn) | λ1 6 n , λ ` D

}
, (4.81)

is a basis for Λn,D and the set{
eλ(x1, . . . , xn) | λ1 6 n

}
, (4.82)

is a basis for Λn. Therefore,{
e1(x1, . . . , xn), . . . , en(x1, . . . , xn)

}
(4.83)

is an algebraically independent generating set for Λn. Finally the set{
eλ(x1, . . . , xn) | λ1 6 n , l(λ) 6 d

}
(4.84)

is a basis for Λdn.
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4.3.3 Complete Homogeneous Symmetric Functions

Given a partition λ, the complete homogeneous symmetric function corre-
sponding to λ is denoted by hλ and it is defined by

hλ = hλ1hλ2hλ3 · · · , (4.85)

where
h0 := 1, (4.86)

and for any positive integer r, the rth complete homogeneous symmetric func-
tion hr is defined by

hr =
∑
λ`r

mλ. (4.87)

It is clear that the total degree and the degree of hλ are both equal to |λ|.
There is a relation similar to Equation (4.67) that enables us to write

hλ’s as a linear combination of monomial symmetric functions. It is shown
in [Sta99] that for any partition λ of D,

hλ =
∑
λ`D

Nλµmµ, (4.88)

where Nλµ’s are non-negative integers§. For example, for D = 4 case

h(1,1,1,1) = 24m(1,1,1,1) + 12m(2,1,1) + 6m(2,2) + 4m(3,1) +m(4),

h(2,1,1) = 12m(1,1,1,1) + 7m(2,1,1) + 4m(2,2) + 3m(3,1) +m(4),

h(2,2) = 6m(1,1,1,1) + 4m(2,1,1) + 3m(2,2) + 2m(3,1) +m(4),

h(3,1) = 4m(1,1,1,1) + 3m(2,1,1) + 2m(2,2) + 2m(3,1) +m(4),

h(4) = m(1,1,1,1) + m(2,1,1) + m(2,2) + m(3,3) +m(4).

Thus, as is clear from example above, the transition matrix from the basis set
(4.54) to the set {

hλ | λ ` D
}

(4.89)

is no longer triangular as in the case of elementary symmetric polynomials.
Hence to prove that the set above forms a basis for Λ ,D one needs to follow a
different strategy, which is the subject of Section 4.4. When this is done, one
can see that the set {

hλ | λ ∈P
}

(4.90)

constitutes a basis for Λ and therefore,{
h1, h2, h3, . . .

}
(4.91)

is an algebraically independent generating set for Λ.

§Actually, Nλµ is the number of matrices A = [aij ]i,j>1 with non-negative-integer entries
such that for all i,

∑
j>1 aij = λi, and for all j,

∑
i>1 aij = µj .
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To find out the generating function for the sequence (hk)k>0, consider the
following function

Hx(q) =
∏
i>1

1

1− xiq
, (4.92)

as a function in Λ1[q] for infinite number of parameters x1, x2, x3, . . . . Using
geometric series formula, Equation (4.92) can be written as

Hx(q) =
∏
i>1

(∑
ri>0

xrii q
ri

)
=
∑
r1>0

∑
r2>0

· · ·
(
xr11 x

r2
2 · · · q

r1+r2+···) , (4.93)

and, therefore, for a given non-negative integer k, the coefficient of qk is∑
(xr11 x

r2
2 · · · ) . (4.94)

Here the sum is over all non-negative integers r1, r2, . . . such that∑
i>1

ri = k. (4.95)

Thus, expression (4.94) is equal to∑
µ`k

mµ = hk, (4.96)

and Hx(q) is the desired generating function. In other words∑
k>0

hkq
k =

∏
i>1

1

1− xiq
· (4.97)

The complete homogeneous symmetric polynomial hλ(x1, . . . , xn) corre-
sponding to a given partition λ is defined as for the previous cases through
the reduction map ρn. For a non-negative integer r, the rth complete homo-
geneous symmetric polynomial in n variables x1 till xn is denoted explicitly
by hr(x1, . . . , xn) and it is defined by

hr(x1, . . . , xn) = ρn(hr)(x). (4.98)

For example,

h3(x1, x2) = m(3)(x1, x2) +m(2,1)(x1, x2) +m(1,1,1)(x1, x2)

= x3
1 + x3

2 + x2
1x2 + x1x

2
2, (4.99)
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and

h2(x1, x2) = m(2)(x1, x2) +m(1,1)(x1, x2)

= x2
1 + x2

2 + x1x2, (4.100)

therefore,

h(3,2)(x1, x2) = (x3
1 + x3

2 + x2
1x2 + x1x

2
2)(x2

1 + x2
2 + x1x2). (4.101)

In Section 4.4 it is shown that the set{
hλ(x1, . . . , xn) | λ1 6 n , λ ` D

}
(4.102)

forms a basis for Λn,D and, consequently, the set{
hλ(x1, . . . , xn) | λ1 6 n

}
(4.103)

constitutes a basis for Λn. Hence{
h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)

}
(4.104)

is an algebraically independent generating set for Λn.

4.3.4 Power-sum Symmetric Functions

Let λ be a partition. The power-sum symmetric function corresponding to λ
is denoted by pλ and it is defined by

pλ = pλ1pλ2 · · · , (4.105)

where,

p0 := 1, (4.106)

and for any positive integer r, the rth power-sum symmetric function pr is
defined by

pr = m(r) =
∑
i>1

xri . (4.107)

As in the case of complete homogeneous symmetric functions, the total degree
and the degree of pλ are both equal to |λ|.

Now we want to determine a basis for Λ ,D and Λ composed of power-sum
symmetric functions. To this end, we first determine the generating function
Px(q) for the sequence§ (pk)k>1. By the definition of the generating function
of a sequence

Px(q) =
∑
k>1

pkq
k−1. (4.108)

§Note that the starting index is 1 rather than 0.
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Thus using the defining Equation (4.107) and the geometric series formula

Px(q) =
∑
k>1

(∑
i>1

xki

)
qk−1

=
∑
i>1

xi
1− xiq

=
∑
i>1

d

dq
ln

(
1

1− xiq

)
=

d

dq
ln

(∏
i>1

1

1− xiq

)
, (4.109)

or, using Equation (4.92),

Px(q) =
H ′x(q)

Hx(q)
· (4.110)

Equations (4.73) and (4.92) gives

Hx(q) =
1

Ex(−q)
(4.111)

and, therefore,
H ′x(q) = E′x(−q)H2

x(q). (4.112)

Using Equations (4.111) and (4.112) in Equation (4.110) yields

Px(−q)Ex(q) = E′x(q), (4.113)

and from there, by substituting power-series expansions of Px(−q) and Ex(q),
we get (∑

s>0

(−1)sps+1q
s

)(∑
t>0

etq
t

)
=
∑
m>0

(m+ 1)em+1q
m. (4.114)

Comparing the coefficients of qk−1 on both sides of Equation (4.114), gives

kek =
k∑
r=1

(−1)r−1prek−r, (k > 1). (4.115)

These are called Newton’s identities that establish a relation between e’s and
p’s. Cramer’s rule can be exploited to solve e’s in terms of p’s. Considering e1

till en to be unknowns in the first n Newton’s identities, Cramer’s rule yields

en =
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 . . . 0

p2 p1 2
. . .

...
...

...
. . .

. . . 0
pn−1 pn−2 . . . p1 n− 1
pn pn−1 . . . p2 p1

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.116)
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Reversely, by considering p1 till pn to be unknowns, these equations give

pn =

∣∣∣∣∣∣∣∣∣∣∣∣

e1 1 0 . . . 0

2e2 e1 1
. . .

...
...

...
. . .

. . . 0
(n− 1)en−1 en−2 . . . e1 1

nen en−1 . . . e2 e1

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.117)

Similarly, by plugging power-series expansions of Px(q) and Hx(q) in Equa-
tion (4.110) and comparing the coefficients of qk for a given positive integer
k, yields

khk =
k∑
r=1

prhk−r, (k > 1), (4.118)

that connects h’s and p’s. Using Cramer’s rule one can also write Equa-
tions (4.118) in the form of determinants.

As discussed in Section 4.3.2,
{
e1, e2, e3, . . .

}
is a generating set for Λ.

From Equations (4.115), by iterative calculations, each ek can be written as
a polynomial in terms of p1 till pk with rational coefficients. Hence, the set
{ p1, p2, p3, . . . } also generates Λ. On the other hand, Newton’s identities
also enable us to express a given pk in terms of e1 till ek as a polynomial
with rational (integer, to be more precise) coefficients and, therefore, since
{ e1, e2, e3, . . . } is algebraically independent, so is

{
p1, p2, p3, . . .

}
. This is

equivalent to saying that the set{
pλ | λ ∈P

}
(4.119)

is a basis for Λ. So according to Equation (4.20), the set{
pλ | λ ` D

}
(4.120)

is a basis for Λ ,D.
That the sets (4.119) and (4.120) form bases for Λ and Λ ,D, respectively,

can be viewed from a different angle. In [Sta99], it is shown that for a partition
λ of D,

pλ =
∑
µ`D

Rλµmµ, (4.121)

for some non-negative integers Rλµ such that Rλµ = 0 unless λ � µ and

Rλλ =
∏
i>1

mi(λ)!. (4.122)

Therefore the transition matrix from the basis set (4.54) to the set (4.120)
is triangular with non-zero diagonal entries that implies the sets above form
bases for Λ and Λ ,D, respectively.
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As the final point of this section, we consider the case of finite number of
variables and introduce the power-sum symmetric polynomial pλ(x1, . . . , xn)
that corresponds to the partition λ. This is done as in the case of symmetric
polynomials in the previous sections, namely, through the reduction map ρn.
The rth power-sum symmetric polynomial pr(x1, . . . , xn) is defined by

pr(x1, . . . , xn) = ρn(pr)(x). (4.123)

The only exception is that this time

p0(x1, . . . , xn) := n. (4.124)

Based on triangularity of the R matrix introduced by Equation (4.121), it is
shown in [Sta99] that the set{

pλ(x1, . . . , xn) | λ1 6 n
}

(4.125)

is a basis for Λn and the set{
p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)

}
(4.126)

is algebraically independent. As a result, any polynomial in Λn can be uniquely
expressed as a polynomial in the elements of this set.

4.4 An Involution on Λ

The goal of this section is to show that the sets introduced in (4.89) and (4.90)
are in fact bases for Λ ,D and Λ, respectively, as claimed there. To this end,
we first define an involution on Λ. An involution on a set X is a map f of X
onto itself such that f ◦f = idX , where idX is the identity map on X. In other
words, f is an involution if it is its own inverse. Therefore, any involution is a
bijective map. For example, the function f defined on the set of real numbers
by f(x) = 1− x is an involution.

We use the following strategy to do this. First we define an algebra endo-
morphism ω on Λ by defining how it acts on the elements of the algebraically
independent generating set

{
e1, e2, e3, . . .

}
of Λ§. The definition of ω is en-

gineered such that the image of the set (4.70) under the action of ω is the set
(4.90). Then we show that ω is in fact an involution on Λ and, consequently,
the image of any basis of Λ under ω is another basis of Λ.

The ω mentioned above is defined by{
ω : Λ −→ Λ

ω(ek) = hk
, (4.127)

§Refer to the paragraph just above the Section 4.2.
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for all positive integers k. Since Λ is an algebra without any zero divisor,
ω(e0) = h0 and therefore

ω(eλ) = hλ, (4.128)

for all partitions λ including the empty partition. As mentioned earlier, we
want to show that ω is an involution on Λ. First, we determine how ω affects
on hk’s. Writing Equation (4.111) as

Ex(−q)Hx(q) = 1, (4.129)

and plugging the corresponding power series for Ex(−q) and Hx(q) into the
equation above, yields

∑
k>0

( k∑
r=0

(−1)rerhk−r

)
qk = 1, (4.130)

and, consequently,

k∑
r=0

(−1)rerhk−r = 0, (k > 1). (4.131)

Applying ω on both sides of Equations (4.131), one gets

k∑
r=0

(−1)rhrω(hk−r) = 0, (k > 1), (4.132)

and reversing the order of the terms in this sum gives rise to

k∑
r=0

(−1)rω(hr)hk−r = 0, (k > 1). (4.133)

By writing Equations (4.131) and (4.133) explicitly for all positive integers k
and comparing the resultant equations correspondingly and noting that

ω(h0) = ω(e0) = h0 = 1, (4.134)

one obtains

ω(hk) = ek, (k > 0) (4.135)

or, as a direct result,

ω(hλ) = eλ. (4.136)

Using of Equations (4.128) and (4.136), we get

ω2(eλ) = eλ. (4.137)
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This means that ω2 acts as the identity map on the basis elements eλ of Λ,
that is,

ω2 = idΛ, (4.138)

and ω is an involution on Λ. As becomes clear in the next section, ω defined
in this way turns out to be a valuable tool to help us to prove Theorem 4.4.

Similarly one can define an algebra endomorphism{
ωn : Λn −→ Λn

ωn(ek) = hk
, (4.139)

for all positive integers k not greater than n§. Thus, ωn(eλ) = hλ for all
partitions λ with λ1 6 n. Analogously, one can show that ω2

n(eλ) = eλ for all
partitions λ with λ1 6 n. Since the set (4.82) is a basis for Λn, this yields

ω2
n = idΛn , (4.140)

and the set (4.103) is a basis for Λn.

4.5 The Main Theorem

This last section contains the proof for Theorem 4.4, which is the main point
of this long chapter and is of particular interest in this thesis. To this end,
some machinery must be developed first.

As the first step, we try to determine the effect of the involution ω, defined
in the preceding section, on pλ for a given partition λ. Multiplying both sides
of Equation (4.110) by Hx(q) and acting both sides of the followed equation
by ω, yields

ω
(
Px(q)

)
ω
(
Hx(q)

)
= ω

(
H ′x(q)

)
. (4.141)

One can employ Equation (4.135) and write

ω
(
Hx(q)

)
=
∑
k>0

ω(hk)q
k

=
∑
k>0

ekq
k

= Ex(q). (4.142)

Similarly,
ω
(
H ′x(q)

)
= E′x(q). (4.143)

Plugging the results of the last two equations in Equation (4.141) and com-
paring the resultant equation with Equation (4.113), yields

ω
(
Px(q)

)
= Px(−q), (4.144)

§Here ek and hk, although written without argument (x1, . . . , xn), refer to elements of
Λn.
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or, equivalently, ∑
k>1

ω(pk)q
k−1 =

∑
k>1

(−1)k−1pkq
k−1, (4.145)

and, therefore, for all positive integers k,

ω(pk) = (−1)k−1pk. (4.146)

For a given non-empty partition λ = (λ1, . . . , λr), Equation (4.146) gives

ω(pλ) = ω(pλ1) · · ·ω(pλr)

= (−1)λ1+···+λr−rpλ1 · · · pλr , (4.147)

which can be written as
ω(pλ) = ελpλ, (4.148)

where
ελ = (−1)|λ|−l(λ). (4.149)

Equation (4.148) can be separately checked to be true for the empty partition.
As the second step, we derive an alternative expressions for the generating

functions Hx(q) and Ex(q). Solving Equation (4.110) as a differential equation
for Hx(q) and noting that Hx(0) = 1, we get

Hx(q) = exp

(∫ q

0
Px(s) ds

)
= exp

[ ∫ q

0

(∑
k>1

pks
k−1

)
ds

]

= exp

(∑
k>1

pkq
k

k

)

=
∏
k>1

exp

(
pkq

k

k

)

=
∏
k>1

∑
r>0

(pkq
k)r

krr!
· (4.150)

Expanding the product above gives

Hx(q) =
∑
r1>0

(p1q
1)r1

1r1r1!

∑
r2>0

(p2q
2)r2

2r2r2!

∑
r3>0

(p3q
3)r3

3r3r3!
· · ·

=
∑ pr11 p

r2
2 p

r3
3 · · ·

1r1r1! 2r2r2! 3r3r3! · · ·
qr1+2r2+3r3+···, (4.151)

where the last sum is over all possible distinct combinations of non-negative
integers r1, r2, r3, . . . . Now let λ be a partition whose ith multiplicity mi(λ)
equals ri. Then

qr1+2r2+3r3+··· = q|λ|, (4.152)
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and

pr11 p
r2
2 p

r3
3 · · · = pλ. (4.153)

Moreover, when ri’s run through the set of all non-negative integers, λ runs
through all partitions. Therefore, Equation (4.151) can be written in a more
compact form as

Hx(q) =
∑
λ∈P

z−1
λ pλq

|λ|, (4.154)

where

zλ =
∏
i>1

imi(λ)mi(λ)!. (4.155)

For a given non-negative integer k, the coefficient of qk in Hx(q) is hk. Thus,
from Equation (4.154) we get

hk =
∑
λ`k

z−1
λ pλ, (k > 0). (4.156)

Applying ω on both sides of Equation (4.154) and exploiting Equations (4.142)
and (4.148) results in

Ex(q) =
∑
λ∈P

ελz
−1
λ pλq

|λ|, (4.157)

and, therefore,

ek =
∑
λ`k

ελz
−1
λ pλ, (k > 0). (4.158)

Now we prove two lemmas that are not only interesting results on their
own rights but also pave the way to prove Theorem 4.4. In what follows,
x = (x1, x2, . . .) and y = (y1, y2, . . .).

Lemma 4.1. The following two identities∏
i>1

∏
j>1

1

1− xiyj
=
∑
λ∈P

z−1
λ pλ(x)pλ(y), (4.159)

and ∏
i>1

∏
j>1

1

1− xiyj
=
∑
λ∈P

hλ(x)mλ(y) =
∑
λ∈P

mλ(x)hλ(y), (4.160)

hold.

Proof. For the kth power-sum symmetric function pk, using simple algebra
one can show

pk(w) = pk(x)pk(y), (4.161)
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where w = (w1, w2, w3, . . .) is defined by

w = (x1y1, x1y2, x1y3, . . . , x2y1, x2y2, x2y3 . . . , x3y1, x3y2, x3y3, . . .). (4.162)

Consequently, for any partition λ,

pλ(w) = pλ(x)pλ(y). (4.163)

Assuming w as given in Equation (4.162), the function Hw(q) defined by

Hw(q) =
∏
s>1

1

1− wsq
, (4.164)

is the generating function for the sequence
(
hk(w)

)
k>0

and, moreover,

Hw(1) =
∏
s>1

1

1− ws

=
∏
i>1

∏
j>1

1

1− xiyj
· (4.165)

On the other hand, by Equations (4.154) and (4.163)

Hw(q) =
∑
λ∈P

z−1
λ pλ(w)q|λ|

=
∑
λ∈P

z−1
λ pλ(x)pλ(y)q|λ|. (4.166)

Thus
Hw(1) =

∑
λ∈P

z−1
λ pλ(x)pλ(y). (4.167)

The proof for the first identity is done if one compares Equation (4.165) with
Equation (4.167).

To prove the second identity, one notes that the left hand side of this
identity is

m∏
j=1

Hx(yj), (4.168)

where Hx(yj) is the generating function for the sequence
(
hk(x)

)
k>0

with yj
as its variable. Thus, the left hand side of the second identity can be written
as ∏

i>1

∏
j>1

1

1− xiyj
=
∏
j>1

(∑
k>0

hk(x)ykj

)

=

(∑
k1>0

hk1(x)yk11

)(∑
k2>0

hk2(x)yk22

)
· · ·

=
∑

hk1(x)hk2(x) · · · yk11 y
k2
2 · · · , (4.169)
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where the last sum is over all possible arrangements of non-negative integers
k1, k2, . . . and, by definitions of hλ and mλ, it is equal to

∑
λ∈P hλ(x)mλ(y).

Interchanging x’s and y’s, one can prove the other part of the second identity.

Corollary 4.2. For a finite number of variables

n∏
i=1

m∏
j=1

1

1− xiyj
=
∑
λ∈P

z−1
λ pλ(x1, . . . , xn)pλ(y1, . . . , ym), (4.170)

and

n∏
i=1

m∏
j=1

1

1− xiyj
=
∑
λ

hλ(x1, . . . , xn)mλ(y1, . . . , ym) (4.171)

=
∑
λ

mλ(x1, . . . , xn)hλ(y1, . . . , ym), (4.172)

where the sum in Equation (4.171) is on all partitions of maximally m parts
and the sum in Equation (4.172) is on all partitions of maximally n parts.

Proof. Setting xn+1, xn+2, . . . and ym+1, ym+2, . . . to zero in Equation (4.159),
identity (4.170) is immediately deduced.

Doing the same in both parts of Equation (4.160) proves Equations (4.171)
and (4.172). One should only note that mλ, as a polynomial in a finite number
of variables, vanishes if l(λ) is greater than the number of variables.

Lemma 4.3. Identities∏
i>1

∏
j>1

(1 + xiyj) =
∑
λ∈P

ελz
−1
λ pλ(x)pλ(y), (4.173)

and ∏
i>1

∏
j>1

(1 + xiyj) =
∑
λ∈P

mλ(x)eλ(y) =
∑
λ∈P

eλ(x)mλ(y), (4.174)

hold.

Proof. First note that regarding ω as an involution on Λ[x1, x2, . . .] and using
Equation (4.92) we have

ω

(∏
i>1

∏
j>1

1

1− xiyj

)
= ω

(∏
j>1

Hx(yj)

)
=
∏
j>1

ω
(
Hx(yj)

)
. (4.175)
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From this by using Equations (4.142) and (4.73) we get

ω

(∏
i>1

∏
j>1

1

1− xiyj

)
=
∏
i>1

∏
j>1

(1 + xiyj). (4.176)

Of course, if ω was regarded as an involution on Λ[y1, y2, . . .], Equation (4.176)
still holds.

To prove the identity (4.173), it suffices to act both sides of Equation (4.159)
by ω and make use of Equations (4.148) and (4.176).

For the second identitites, Applying ω as an involution on Λ[x1, x2, . . .] on
both sides of the first part of Equation (4.160) and using Equations (4.136) and
(4.176) gives rise to the first part of the second identity. Similarly, applying
ω as an involution on Λ[y1, y2, . . .] on both sides of of the second part of
Equation (4.160) and using the same Equation (4.136) gives rise to the second
part of the second identity.

Theorem 4.4. For a finite number of variables

n∏
i=1

m∏
j=1

(1 + xiyj) =
∑
λ∈P

ελz
−1
λ pλ(x1, . . . , xn)pλ(y1, . . . , ym), (4.177)

and

n∏
i=1

m∏
j=1

(1 + xiyj) =
∑
λ

mλ(x1, . . . , xn)eλ(y1, . . . , ym), (4.178)

=
∑
λ

eλ(x1, . . . , xn)mλ(y1, . . . , ym), (4.179)

where the sum in Equation (4.178) is on all partitions λ for which l(λ) 6 n
and λ1 6 m, and the sum in Equation (4.179) is on all partitions λ for which
l(λ) 6 m and λ1 6 n.

Proof. To prove these identities, it suffices to set xn+1, xn+2, . . . and ym+1,
ym+2, . . . to zero in Lemma 4.3. For the second identities one should also note
that mλ, as a polynomial in a finite number of variables, vanishes if and only
if l(λ) is greater than the number of variables and eλ, as such a polynomial,
vanishes if and only if λ1 is greater than the number of variables.





5

Decomposition of the Laughlin State and the
Rank Saturation Conjecture

This chapter tries to find a weak Schmidt decomposition of the Laughlin state
and delves more into the contents of Conjecture 1.1 and Conjecture 1.2, as
outlined below.

In Section 5.1 we try to determine a weak Schmidt decomposition for a
generic Laughlin state Ψm for a particle cut of the system. Typically this is
a hard problem. To make progress we do a mathematical trick and define
a transformation Cm and then using this transformation we reduce the prob-
lem to the simpler problem of determining a weak Schmidt decomposition of a
“copy” of Ψ1 but with larger number of variables. The latter problem is easier
since we can use Theorem 4.4 to easily write this copy in a decomposed form.
As is explained at the end of this section, by applying Cm on both sides of this
decomposition, we find a decomposition of Ψm, which has the same mathe-
matical form as of a weak Schmidt decomposition. The number of summands
in this decomposition can be counted by Equation (4.42) and Theorem 3.3
then makes it possible to determine the rank of the reduced density operator.
All this, is applicable on the condition that this decomposition is in fact a
weak Schmidt decomposition of Ψm. As we see at the end of this section,
that this decomposition is actually a weak decomposition for Ψm translates
itself to proving that the kernel of Cm is trivial. This motivates our study of
properties of symmetric polynomials that vanish under Cm, which is followed
in Chapter 6.

In Section 5.2 we show that by a simple argument one can convince oneself
that the rank of the reduced density operator is actually bounded from above.

In Section 5.3, we show that the upper bound for the reduced density
operator found in Section 5.2 can be viewed as the number of quasi-hole states
for a FQH system of reduced size, in the sense of the number of particles, but
with an appropriate number of additional flux quanta. This chapter is based
on the accompanied paper.
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5.1 Weak Schmidt Decomposition of Ψm

Consider a FQH system S consisting of N electrons with coordinates z1 till
zN in a pure state that can be modeled by a Laughlin state of filling factor
ν = 1/m,

Ψm(z1, . . . , zN ) =
∏

16i<j6N

(zi − zj)m exp
(
− 1

4l2B

N∑
k=1

|zk|2
)
, (5.1)

where m is an odd integer. As mentioned in Chapter 1, one way to probe
the properties of the S is to look at the rank of the reduced density operator
corresponding to a particle cut of the system S. Consider the particle cut
in which we declare the electrons numbered 1 till NA to constitute subsys-
tem A and electrons numbered NA+1 till N to constitute subsystem B. Here
NB = N −NA is the number of electrons in subsystem B and without the loss
of generality one can assume that NA 6 NB. Let x1 till xNA

indicate the co-
ordinates of particles in A and y1 till yNB

indicate the coordinates of particles
in B. One should note that HA is the space of all physically acceptable totally
anti-symmetric functions in variables x1 till xNA

and HB is the space of all
physically acceptable totally anti-symmetric functions in variables y1 till yNB

.
The goal is to try to determine the rank of the reduced density operator ρA

corresponding to the pure state Ψm(z1, . . . , zN ). To this end, by Theorem 3.3,
it suffices to find a weak Schmidt decomposition of Ψm(z1, . . . , zN ) and count
the number of summands in that decomposition. Taking x = (x1, . . . , xNA

),
y = (y1, . . . , yNB

), and z = (z1, . . . , zN ), Equation (5.1) can be written as

Ψm(z) = Fm(x)Φm(x,y)Gm(y), (5.2)

where

Fm(x) =
∏
i1<i2

(xi1 − xi2)m exp
(
− 1

4l2B

NA∑
k=1

|xk|2
)
, (5.3)

Φm(x,y) =

NA∏
i=1

NB∏
j=1

(xi − yj)m, (5.4)

Gm(y) =
∏
j1<j2

(yj1 − yj2)m exp
(
− 1

4l2B

NB∑
k=1

|yk|2
)
. (5.5)

We now define the clustering transformation Cm as an algebra endomorphism
from ΛmNB

to ΛNB
such that

Cm(s) = t, (5.6)

where

t(y1, . . . , yNB
) = s(y1, . . . , y1︸ ︷︷ ︸

m

, y2, . . . , y2︸ ︷︷ ︸
m

, . . . , yNB
, . . . , yNB︸ ︷︷ ︸
m

). (5.7)
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It is straight forward to see that, if w = (w1, . . . , wmNB
), the effect of cluster-

ing transformation Cm on

Ω(x,w) :=

NA∏
i=1

mNB∏
j=1

(xi − wj), (5.8)

considered as a symmetric polynomial in ΛmNB
with w variables, is as follows:

Cm(Ω)(x,w) = Φm(x,y). (5.9)

On the other hand, pulling out the x’s in Equation (5.8) yields

Ω(x,w) =

[ NA∏
i=1

xmNB
i

][ NA∏
i=1

mNB∏
j=1

(
1− 1

xi
wj

)]

=

[ NA∏
i=1

xmNB
i

]∑
λ

mλ(−1/x)eλ(w), (5.10)

where (−1/x) is a shorthand for (1/x1, . . . , 1/xNA
). In the last step, the

first part of Equation (4.178) is used and, therefore, the sum is over all par-
titions that fit into a rectangle of height NA and width mNB. So, from
Equation (4.42), this sum consists of

lm =

(
NA +mNB

NA

)
(5.11)

number of terms. It is straight forward to check that[ NA∏
i=1

xmNB
i

]
mλ(−1/x) = (−1)|λ|mλ̄(x), (5.12)

where λ̄ is the complement of λ with respect to the rectangle of height NA

and width mNB defined by Equation (4.47). Hence, Equation (5.10) can be
written as

Ω(x,w) =
∑
λ

(−1)|λ|mλ̄(x)eλ(w), (5.13)

with lm number of summands. Thus, from Equation (5.9),

Φm(x,y) =
∑
λ

(−1)|λ|mλ̄(x)Cm(eλ)(y). (5.14)

Plugging this back into Equation (5.2), yields

Ψm(z) =
∑
λ

(
Fm(x)(−1)|λ|mλ̄(x)

)(
Cm(eλ)(y)Gm(y)

)
. (5.15)
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This is a weak Schmidt decomposition of Ψm(z) provided that the set{
Cm(eλ)(y) | λ1 6 mNB , l(λ) 6 NA

}
(5.16)

forms a linearly independent subset of ΛNB
. Therefore proving that the rank

of the reduced density operator ρA, when the total system S is in the pure
state Ψm(z), is given by lm in Equation (5.11), boils down to proving that the
set (5.16) is linearly independent. On the other hand, as we see in (4.84), the
set {

eλ(w1, . . . , wmNB
) | λ1 6 mNB , l(λ) 6 NA

}
(5.17)

is a basis for ΛNA
mNB

and therefore it is linearly independent. Thus if one can

show that the restriction of Cm to ΛNA
mNB

, which is a linear map to ΛmNA
NB

, is
injective as long as NA 6 NB, it proves that the set (5.16) is linearly inde-
pendent, since injective linear maps respect linear independence. Moreover,
a linear map is injective if and only if its kernel is trivial. Thus one needs
to show that, besides the zero polynomial, no symmetric polynomial in mNB

variables and maximum degree NA can vanish under Cm. This, in fact, is the
content of Conjecture 1.2 that motivates the subject on the next chapter.

It is worth noting that for m = 1, the clustering transformation C1 is just
the identity map on ΛNB

and, therefore, the set (5.16) reduces to{
eλ(y1, . . . , yNB

) | λ1 6 NB , l(λ) 6 NA

}
. (5.18)

Comparing this with the set (4.84) makes it clear that this set is a basis for
ΛNA
NB

and, consequently, linearly independent. Thus the rank of the reduced
density operator in this simple case is indeed

l1 =

(
NA +NB

NA

)
. (5.19)

5.2 Upper Bound for the Rank of the Reduced Density
Operator

In this section, by a straight forward argument, we show that lm given in
Equation (5.11), is an upper bound of the reduced density operator for the
Laughlin state (5.1) when the system is subjected to a particle cut as described
on the first paragraph of the last section. Consider a Schmidt decomposition
of Ψm(z) as follow§:

Ψm(z) =

r∑
i=1

λi φ
A
i (x)φAi (y). (5.20)

§In the following argument the Gaussian exponential term of the Laughlin wave function
has no effect and it is suppressed.
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Since Ψm(z) vanishes as mth power when two variables coincide, this implies
that φAi (x) vanishes asmth power when two x coordinates coincide. Therefore,

φAi (x) = PAi (x)
∏

16i<j6NA

(xi − xj)m, (5.21)

where PAi (x) is a symmetric polynomial in NA variables of some degree d.
Since the degree of the symmetric polynomial expressed as a product on the
right hand side of Equation (5.21) is m(NA − 1) and the degree of Ψm is
m(N − 1), one should have

d+m(NA − 1) 6 m(N − 1), (5.22)

or

d 6 mNB. (5.23)

Hence, polynomials PAi (x) belong to ΛmNB
NA

and by Equation (4.62) the num-
ber of linearly independent such polynomials is at most lm and, consequently,
the number of linearly independent φAi (x)’s, which is an upper bound for the
rank of the reduced density operator of Ψm, is also at most lm. It shown in
section 5.3 that lm is precisely equal to the number of quasi-hole states for a
system of only NA particles, but with mNB additional flux quanta.

One should note that if one could prove Conjecture 1.2, then this would
mean that the rank of the reduced density operator of a FQH system modeled
by the Laughlin state and subjected to a particle cut always reaches this upper
bound. In other words the rank of the reduced density operator is “saturated”.

5.3 Rank Saturation Conjecture

In this section we expand the content of Conjecture 1.1 and then determine
the number of quasi-hole states considering the Laughlin state as the model
state.

Consider a FQH system S consisting of N = NA + NB electrons with
NA 6 NB that is described by a model state, like Laughlin or Moore–Read
state, at a generic filling factor ν. As mentioned in Chapter 2, these model
states are exact ground states of some model Hamiltonians.

Any ground state of the corresponding model Hamiltonian is called a quasi-
hole state. It was also mentioned in Chapter 2, for the special case of the
Laughlin state, that quasi-hole states are suitable trial wave functions to de-
scribe the system S with some number of flux quanta added locally to the
system. These states are usually referred to as quasi-hole excitations of the
corresponding model state. In this context, the model state itself can be re-
garded as a quasi-hole state corresponding to zero number of additional flux
quanta or quasi-holes. The number of quasi-hole states #q.h.(N,NΦ) for a
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FQH system with N number of electrons and NΦ number of flux quanta can
often be obtained exactly [RR96,GR01,ARRS01,Ard02,Rea06].

Now let us open the content of Conjecture 1.1. Suppose that the system
S described above is subjected to a particle cut that divides S into two sub-
systems A and B with NA and NB number of electrons, respectively, and let
rAν (NA, NB) be the rank of the reduced density operator ρA. Conjecture 1.1
claims that

rAν (NA, NB) = #q.h.(NA, ν
−1NB). (5.24)

Now let us consider the special case of the Laughlin state Ψm at fill factor
ν = 1/m, which is our interest in this thesis, and calculate the right hand side
of Equation (5.24).

Consider a FQH system consisting of NA number of particles and ν−1NB =
mNB number of flux quanta located at unspecified points with complex co-
ordinates w1 till wmNB

. It turns out that the ground state Ψq.h.
m of the corre-

sponding model Hamiltonian takes the following form:

Ψq.h.
m (z1, . . . , zNA

) = Ψm(z1, . . . , zNA
)Pw(z1, . . . , zNA

), (5.25)

where Ψm is the Laughlin wave function at filling factor 1/m, Pw(z1, . . . , zNA
),

with w = (w1, . . . , wmNB
) being the coordinates of the added flux quanta, is

a symmetric polynomial in z’s. On the other hand, the degree of Ψm is
m(NA−1) and the degree of Ψq.h.

m is m(NA−1)+mNB. Thus Pw(z1, . . . , zNA
)

is a symmetric polynomial in NA variables and the degree at most mNB, that
is, Pw(z1, . . . , zNA

) belongs to ΛmNB
NA

. Therefore, by Equation (4.62), for the
special case of the Laughlin state Ψm

#q.h.(NA, ν
−1NB) =

(
NA +mNB

NA

)
. (5.26)

This is the same upper bound found for the rank of the reduced density
operator in the last section.

One should note that for the special case of m = 1, Equation (5.24) claims

rA1 (NA, NB) = #q.h.(NA, NB), (5.27)

which is true based on Equations (5.19) and (5.26). That is the rank saturation
conjecture for the Laughlin state Ψ1 is seen to be correct in this simple case.
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Clustering Properties of Symmetric
Polynomials

The goal of this chapter is to explore some characteristics of symmetric poly-
nomials that vanish under the clustering transformation Cm introduced in the
last chapter by Equations (5.6) and (5.7). In this chapter, however, we sup-
press the subscript B and simply write N instead of NB. Moreover, in what
follows we assume that m and N are given positive integers.

In Section 6.1 we prove that a necessary condition for a non-zero symmertic
polynomial in mN variables to vanish under Cm is that its total degree be at
least N + 1. It is also shown that there is a unique (up to a scaling numerical
factor) symmetric polynomial of total degree N + 1 in mN variables that
vanishes under Cm. We also present a constructive way to determine these
symmetric polynomials with the mentioned propety and introduce a basis for
the ideal of ΛmN consisting of symmetric polynomials that vanish under Cm.
All is realized by introducing a new family of generators for ΛmN that are
engineered so that they behave in a controllable manner under Cm.

Section 6.2, which is divided into five subsections, is dedicated to exploring
some properties of this new family of generators that might pave the way for
more investigations in the future. This chapter is based on the accompanied
paper [GEA15].

6.1 New Generating Set for ΛmN

From all algebraically independent set of generators introduced for ΛmN in
Chapter 4 only the elements of the set

{
p1, . . . , pmN

}
, consisting of power-

sum symmetric polynomials pi, have a simple behavior under Cm that is

Cm(pi)(w1, . . . , wmN ) = mpi(y1, . . . , yN ). (6.1)

Despite of this simple behavior, these polynomials don’t seem convenient if
one needs to describe the property of polynomials in ΛmN that vanish when
acted on by Cm, so we try to explore a new set of generators for ΛmN that are
suitable in this regard. The strategy is to introduce a family of polynomials
in ΛmN , which depend on a real parameter and we show that any member of
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this family corresponding to a non-zero value of the parameter constitutes an
algebraically independent generating set for ΛmN .

Let x be a real parameter and let n be a non-negative integer. The poly-

nomial r
(x)
n in ΛmN is defined by

r(x)
n = n!

∑
λ`n

(−x)l(λ) pλ
zλ
· (6.2)

It is clear that r
(x)
n is a symmetric polynomial of total degree n. In Section

6.2.1 it is shown that the degree of this polynomial is also n. The first five of
these polynomials are listed below.

r
(x)
0 = 1, (6.3)

r
(x)
1 = −xp1, (6.4)

r
(x)
2 = x2p2

1 − xp2, (6.5)

r
(x)
3 = −x3p3

1 + 3x2p1p2 − 2xp3, (6.6)

r
(x)
4 = x4p4

1 − 6x3p2
1p2 + 3x2p2

2 + 8x2p1p3 − 6xp4. (6.7)

From Equation (6.2), it is clear that for a given positive integer n, the term

corresponding to λ = (n) in r
(x)
n is a monomial in x times pn. Therefore,

iterative computation shows that, for a non-zero value of the parameter x and
any positive integer n, the power-sum pn can be written as a polynomial in

r
(x)
1 till r

(x)
n with functions of x as coefficients. Thus, since

{
p1, . . . , pmN

}
is

an algebraically independent generating set for ΛmN , so is
{
r

(x)
1 , . . . , r

(x)
mN

}
for any non-zero x. Therefore we proved the following lemma:

Lemma 6.1. For any non-zero value of the parameter x, the set
{
r

(x)
1 , . . . , r

(x)
mN

}
forms an algebraically independent generating set for ΛmN .

The key property of polynomials r
(x)
n is that they behave nicely under the

action of Cm, namely
Cm
(
r(x)
n

)
= r(mx)

n . (6.8)

This is readily seen by applying Cm on both sides of Equation (6.2) and using

Cm( pλ) = ml(λ)pλ, (6.9)

which, in turn, is a consequence of Equation (6.1). Replacing x by −1 in
Equation (6.2) and using Equation (4.156), yields

r(−1)
n = n!hn, (6.10)

and similarly, replacing x by 1 in that equation and making use of Equa-
tion (4.158), yields

r(1)
n = (−1)nn! en. (6.11)
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Now, for a non-negative integer n, we define the nth modified power-sum
symmetric polynomial p̃n as an element in ΛmN by

p̃n =
(−1)n

n!
r(1/m)
n . (6.12)

The total degree of p̃n is n and by Lemma 6.1, the set
{
p̃1, . . . , p̃mN

}
is an

algebraically independent generating set for ΛmN . Actually, these polynomials
are engineered to enjoy the property

Cm( p̃n) = en, (6.13)

that can be obtained by applying Cm on both sides of Equation (6.12) and
using Equations (6.8) and (6.11). We remind the reader that p̃n in Equa-
tion (6.13) contains mN variables while en in that equation contains N vari-
ables. Hence, we have the following lemma:

Lemma 6.2. The set G =
{
p̃1, . . . , p̃mN

}
is an algebraically independent

generating set for ΛmN and Cm( p̃n) = en for all integers n, 1 6 n 6 mN .

Based on the fact that en = 0 for n > N and Lemma 6.2, we can conclude
that:

Corollary 6.3. For N + 1 6 n 6 mN , Cm( p̃n) = 0.

Polynomials p̃n’s have the exact right property that enables us to prove
the following theorem.

Theorem 6.4. A non-zero symmetric polynomial in ΛmN vanishes under Cm
if and only if, when expressed as a polynomial in p̃1 till p̃mN , each monomial
term contains some power of at least one of the polynomials p̃N+1 till p̃mN .

Proof. First, Let s be a symmetric polynomial in ΛmN such that Cm(s) = o.
By Lemma 6.1, there exists a polynomial r in mN variables such that

s(w1, . . . , wmN ) = r( p̃1, . . . , p̃mN ). (6.14)

In general, there are two kinds of monomials on the right hand side of the
equation above, those that contain some power of at least one of the poly-
nomials p̃N+1 till p̃mN and those that don’t. Thus, s(w1, . . . , wmN ) can be
decomposed uniquely into two parts as follows

s(w1, . . . , wmN ) = a( p̃1, . . . , p̃N ) + b( p̃1, . . . , p̃mN ), (6.15)

where a( p̃1, . . . , p̃N ) consists of the monomials on the right hand side of Equa-
tion (6.14) that do not depend on any of the polynomials p̃N+1 till p̃mN and
b( p̃1, . . . , p̃mN ) consists of the rest. Based on its construction and Corol-
lary 6.3, b( p̃1, . . . , p̃mN ) vanishes under Cm.
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Applying Cm on both sides of Equation (6.15) and making use of Equa-
tion (6.13) yields

Cm(s)(y1, . . . , yN ) = a(e1, . . . , eN ), (6.16)

and therefore a(e1, . . . , eN ) vanishes. From Chapter 4 we know that the set
{e1, . . . , eN} as polynomials in ΛN are algebraically independent. Therefore,
a is the zero polynomial and from Equation (6.15) we get

s(w1, . . . , wmN ) = b( p̃1, . . . , p̃mN ). (6.17)

The converse is obviously true.

Since the total degree of p̃n is equal to n for all positive integers n, the
following two corollaries are immediate consequences of Theorem 6.4.

Corollary 6.5. In ΛmN , the polynomial p̃N+1 is the unique (up to an overall
factor) symmetric polynomial of total degree N + 1 that vanishes under Cm.

Corollary 6.6. In ΛmN , there is no non-zero symmetric polynomial with
total degree less than N + 1 that vanishes under Cm.

In other words the kernel of the restriction of Cm to ΛmN,N is trivial. At
this stage it might be instructive to state a brief version of Conjecture 1.2 here
again to compare it with the statement in Corollary 6.6.

Conjecture 1.2. In ΛmN , there is no non-zero symmetric polynomial with
degree less than N + 1 that vanishes under Cm.

To formulate Theorem 6.4 in the language of Chapter 4, for a given parti-
tion λ = (λ1, . . . , λr), we define p̃λ by

p̃λ = p̃λ1 · · · p̃λr . (6.18)

Thus, Theorem 6.4 asserts that a symmetric polynomial s in ΛmN of total
degree D vanishes under clustering transformation Cm if and only if

s =
∑
λ

aλ p̃λ, (6.19)

where aλ’s are rational numbers and the sum is over all partitions λ of D
such that λ1 6 mN and the multiplicity of at least one of the numbers N + 1
till mN in λ is non-zero. This equivalent to saying that N + 1 6 λ1 6 mN .
Hence:

Corollary 6.7. The set{
p̃λ | λ ` D , N + 1 6 λ1 6 mN

}
, (6.20)
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is a basis for the vector subspace of ΛmN,D consisting of symmetric polynomials
that vanish under clustering transformation Cm and the set{

p̃λ | λ ∈P , N + 1 6 λ1 6 mN
}
, (6.21)

is a basis for the ideal of ΛmN consisting of symmetric polynomials that vanish
under clustering transformation Cm.

Example 6.1. Consider the simplest non-trivial case where m = 2 and N = 1.
We want to describe all non-zero polynomials in Λ2 that vanish under clus-
tering transformation C2. Assume that s is such a polynomial. As in Equa-
tion (6.17),

s(w1, w2) = b
(
p̃1(w1, w2), p̃2(w1, w2)

)
, (6.22)

for some polynomial b that each term in b( p̃1, p̃2) contains some power of p̃2.
From Equations (6.5) and (6.12),

p̃2(w1, w2) =
1

8

(
p2

1(w1, w2)− 2p2(w1, w2)
)

=
1

8
(w1 − w2)2. (6.23)

Thus

s(w1, w2) = (w1 − w2)2q(w1, w2), (6.24)

where q is some symmetric polynomial in Λ2.

Example 6.2. As another example, consider the case in which m = N = 2. Let
s be a symmetric polynomial in Λ4 such that C2(s) = o. As in the previous
example,

s = b( p̃1, p̃2, p̃3, p̃4). (6.25)

where b is a polynomial such that each term in b( p̃1, p̃2, p̃3, p̃4) contains at
least some power of p̃3 or p̃4 (or both). So

s = p̃3q1 + p̃4q2 + p̃3p̃4q3, (6.26)

where q1, q2, and q3 are some symmetric polynomials in Λ4 such that q1 does
not involve p̃4 and q2 does not involve p̃3. Moreover

p̃3 =
1

48
( p3

1 − 6p2p1 + 8p3), (6.27)

and

p̃4 =
1

384
( p4

1 − 12p2
1p2 + 12p2

2 + 32p1p3 − 48p4), (6.28)

each in four variables.
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Before ending this section some comment on the Conjecture 1.2, rephrased
as the one on page 60, seems in order. Despite the apparent similarity between
statements of the Corollary 6.6 and the Conjecture 1.2, it turned out that the
proof for Conjecture 1.2 is much harder and highly non-trivial. This is due
to the fact that upon taking linear combinations of symmetric polynomials
the total degree does not change, as long as the resulting polynomial does not
vanish while the degree can be lowered.

6.2 Properties of Polynomials in G
This section is devoted to probing some properties of the polynomials p̃i in
G introduced in the last section. This includes, determining the degree, the
generating function, the determinant expansion, the monomial decomposition

and finally how they behave under translation. Since p̃n and r
(x)
n differ only

by a multiplicative factor, it suffices to go through these steps only for the
latter.

6.2.1 Degree of r
(x)
n

Consider the monomial decomposition of r
(x)
n

r(x)
n =

∑
λ`n

q(λ)
n (x)mλ, (6.29)

for a certain number of variables. It is clear that for those values of x that
q

(λ=(n))
n (x), the coefficient of m(n), is non-zero the degree of r

(x)
n is equal to

n. This motivates us to search for those x such that this coefficient vanishes.
From Equation (6.2) we get

r(x)
n (w, 0, 0, . . . , 0) = n!wn

∑
λ`n

(−x)l(λ)

zλ
, (6.30)

and from Equation (6.29) we get

r(x)
n (w, 0, 0, . . . , 0) = q(λ=(n))

n (x)wn. (6.31)

Consequently

q(λ=(n))
n (x) = n!

∑
λ`n

(−x)l(λ)

zλ
, (6.32)

that is, q
(λ=(n))
n (x) is a polynomial in x of total degree n. Now we show that

n integers 0, 1, . . . , n− 1 are the roots of q
(λ=(n))
n (x). Let m be any of these

integers. Then using Equations (6.8) and (6.11),

r(m)
n = Cm

(
r(1)
n

)
= (−1)nn! Cm(en). (6.33)
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Hence,

r(m)
n (w, 0, 0, . . . , 0) = (−1)nn! en(w, . . . , w︸ ︷︷ ︸

m

, 0, . . . , 0)

= (−1)nn! en(w, . . . , w︸ ︷︷ ︸
m

)

= 0. (6.34)

The last step is because the number of variables is less than n. So Equa-

tion (6.31) implies that q
(λ=(n))
n (m) = 0. Thus if x 6= 0, 1, 2, . . . , n − 1, then

the degree of r
(x)
n , as its total degree, is equal to n.

From Equation (6.32), it is also clear that for large values of x,

q(λ=(n))
n (x) ∼ (−1)nxn (6.35)

and consequently,

q(λ=(n))
n (x) = (−1)nx(x− 1)(x− 2) · · · (x− n+ 1). (6.36)

An explicit expression for q
(λ)
n (x) for all partitions λ is given in Section 6.2.4.

6.2.2 Generating Function for r
(x)
n

Polynomials r
(x)
n fulfill the following generating function formula

exp

(
− x

∑
k>1

pk
qk

k

)
=
∑
n>0

r(x)
n

qn

n!
· (6.37)

To see this, one needs to Taylor expand formally the left hand side of the
equation above. Then one should show that n! times the coefficient of qn in

this expansion is r
(x)
n . A straight forward calculation shows that this coefficient

equals

(−x)

1!

pn
n

+
(−x)2

2!

∑
r1,r2>1
r1+r2=n

pr1pr2
r1 r2

+ · · ·+ (−x)n

n!

∑
r1,...,rn>1
r1+···+rn=n

pr1 · · · prn
r1 · · · rn

· (6.38)

A generic term in the sum above can be written as∑
r1,...,rk>1
r1+···+rk=n

pr1 · · · prk
r1 · · · rk

=
∑
λ`n
l(λ)=k

k!∏
i>1mi(λ)!

pλ∏
i>1 i

mi(λ)

= k!
∑
λ`n
l(λ)=k

pλ
zλ
· (6.39)
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Consequently, n! times the expression (6.38) is the right hand side of Equa-
tion (6.2).

It is worth to know that using Equation (6.37) one can prove the following
identity:

r(x+y)
n =

n∑
k=0

(
n

k

)
r

(x)
k r

(y)
n−k. (6.40)

6.2.3 Determinant Expansion for r
(x)
n

Acting on both sides of Equation (6.11) by Cm, using Equations (6.8), (6.1),
and (4.116), and finally relabelling m by x, give rise to

r(x)
n = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

xp1 1 0 . . . 0

xp2 xp1 2
. . .

...
...

...
. . .

. . . 0
xpn−1 xpn−2 . . . xp1 n− 1
xpn xpn−1 . . . xp2 xp1

∣∣∣∣∣∣∣∣∣∣∣∣
. (6.41)

6.2.4 Monomial Decomposition of r
(x)
n

In this section an explicit expression for q
(λ)
n (x) is found that enables one,

using Equation (6.29), to write the full monomial decomposition of r
(x)
n .

A direct application of the differentiation operator ∂x on both sides of
Equation (6.2) shows that

∂xr
(x)
n

∣∣∣
x=0

= −(n− 1)! pn, (6.42)

for a positive integer n.

Lemma 6.8. Let i be a given non-negative integer. For any non-negative

integers j and n, the monomial expansion of ∂jxr
(x)
n

∣∣∣
x=i

involves only partitions

λ with λj+1 6 i.

Proof. The proof is by induction on i for a fixed value of j. For i = 0, by a
straight forward calculation on Equation (6.37), it is readily seen that for a
given j and n,

∂jxr
(x)
n

∣∣∣
x=0

= (−1)jn!
∑

k1,...,kj>1
k1+···+kj=n

∏
r>1

pkr
kr
· (6.43)

Here each expression
∏
r pkr has a monomial decomposition that involves only

those partitions λ such that l(λ) 6 j. Therefore, λj+1 6 0 or, in fact,
λj+1 = 0.
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Now assume that the statement is correct for i− 1. From Equation (6.40)
we get,

∂jxr
(x+y)
n =

n∑
k=0

(
k

n

)
∂jxr

(x)
k r

(y)
n−k. (6.44)

Choosing x = i − 1 and y = 1 in equation above and using Equation (6.11)
yields

∂jxr
(x)
n

∣∣∣
x=i

= n!

n∑
k=0

(−1)n−k

k!
m(1n−k)

(
∂jxr

(x)
k

∣∣∣
x=i−1

)
. (6.45)

Therefore, by induction hypothesis and the following formula

mµmλ = mµ+λ +
∑

ν≺µ+λ

aνλµmν , (6.46)

in which aνλµ’s are non-negative integers and µ+λ is defined componentwise,
the statement is proved for i.

Theorem 6.9. The coefficients q
(λ)
n (x) in the monomial expansion of r

(x)
n ,

where n is not less than the number of variables, is determined by the following
equation

q(λ)
n (x) = (−1)n

(
n

λ1, . . . , λn

) n−1∏
i=0

(x− i)λ′i+1 , (6.47)

where (
n

λ1, . . . , λn

)
=

n!

λ1! · · ·λn!
, (6.48)

and λ′i+1 is the (i+ 1)th component of the conjugate partition λ′.

Proof. Let i and j be two non-negative integers. Equation (6.29) yields

∂jxr
(x)
n

∣∣∣
x=i

=
∑
λ`n

(
∂jxq

(λ)
n (x)

∣∣∣
x=i

)
mλ. (6.49)

Therefore Lemma 6.8 implies that

∂jxq
(λ)
n (x)

∣∣∣
x=i

= 0, (6.50)

for any partition λ of n such that λj+1 > i+ 1.
Now the claim is that for a given partition λ of n and any non-negative

integer i, Equation (6.50) is satisfied only for j = 0, 1, 2, . . . , λ′i+1 − 1. Let
k be an integer such that 0 6 k 6 (λ′i+1 − 1), then λk+1 > λλ′i+1

> i + 1,

since λ′i+1 is the number of parts of λ that are greater than or equal to i+ 1.
So Equation (6.50) is fulfilled for these values of j. Now assume that this
equation is also satisfied for a greater value of j. Since the last argument is

valid for any non-negative integer i, the total number of roots of q
(λ)
n (x) would
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be greater than
∑

k>1 λ
′
k = n that is impossible, since q

(λ)
n (x) is a polynomial

of degree at most n. Thus, x = i is a root of q
(λ)
n (x) with multiplicity λ′i+1

and consequently

q(λ)
n (x) = c(λ)

n

n−1∏
i=0

(x− i)λ′i+1 , (6.51)

where c
(λ)
n is a constant.

To determine this constant coefficient, one notes that for large values of x,
Equation (6.29) gives rise to

(−1)npn1 =
∑
λ`n

c(λ)
n mλ. (6.52)

By multinomial theorem, the left hand side of the equation above is∑
k1,...,kmN>0
k1+···+kmN=n

(−1)n
n!

k1! · · · kmN !
wk11 · · ·w

kmN
mN =

∑
λ`n

(−1)n
(

n

λ1, . . . , λn

)
mλ, (6.53)

if mN > n. Hence

c(λ)
n = (−1)n

(
n

λ1, . . . , λn

)
, (6.54)

and the theorem is proved.

6.2.5 Behavior of r
(x)
n under Translations

This section is devoted to investigate the behavior of polynomials r
(x)
n under

the translation operator

L− =

mN∑
i=1

∂i, (6.55)

where ∂i refers to the derivative with respect to the ith variable. It is straight
forward to see that, for any positive integer r, L− acts on the rth power-sum
polynomial pr according to

L−pr = r pr−1. (6.56)

Recall that p0 is the number of variables mN . Using the Leibniz rule for
differentiating a product of two functions a certain number of times, one can
show that for any two functions f and g,

L−(fg) = (L−f)g + f(L−g). (6.57)

The next theorem shows how L− acts on r
(x)
n . To prove this theorem one

needs a recursion relation for r
(x)
n that is the content of Lemma 6.10.
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Lemma 6.10. Polynomials r
(x)
n satisfy the recursion relation

r(x)
n = −x(n− 1)!

n∑
i=1

pi
r

(x)
n−i

(n− i)!
, (6.58)

where pi is the ith power-sum symmetric polynomial.

Proof. From Equations (4.115) and (6.11) one can get the following equation

r(1)
n = −(n− 1)!

n−1∑
i=0

r
(1)
i

pn−i
i!
· (6.59)

Applying Cm on both sides of Equation (6.59) and using Equations (6.1) and
(6.8) and then relabelling m by x and reordering the resultant sum yields
Equation (6.58).

Theorem 6.11. The operator L− acts on r
(x)
n as follows

L−r(x)
n = n(n− 1− xp0) r

(x)
n−1, (6.60)

where p0 is the 0th power-sum.

Proof. By Equation (6.57), if pλ =
∏
i>1 pλi ,

L−pλ =
∑
j>1

mj(λ)j pj−1pλ−{j}, (6.61)

where mj(λ) is the multiplicity of j in λ and λ − {j} denotes the partition
derived from λ by deleting one part that is equal to j. Acting by L− on both
sides of Equation (6.2) and employing Equation (6.61) gives

L−r(x)
n = n!

∑
λ`n

(
(−x)l(λ)

zλ

n∑
j=1

mj(λ)j pj−1pλ−{j}

)
. (6.62)

Now let us change the summation index from λ to µ = λ− {j}. Then

l(λ) = l(µ) + 1, (6.63)

mj(λ) = mj(µ) + 1, (6.64)

zλ = zµ(mj(µ) + 1)j, (6.65)

and Equation (6.62) can be written as

L−r(x)
n = (−x)n!

n∑
j=1

(
pj−1

∑
µ`(n−j)

(−x)l(µ)

zµ
pµ

)
. (6.66)
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The sum above can be split into two parts, one part corresponding to j = 1
and the other part corresponding to the rest of j values. By Equation (6.2),
the first part is

(−x)n! p0

∑
µ`(n−1)

(−x)l(µ)

zµ
pµ = (−x)np0 r

(x)
n−1, (6.67)

and, by Equation (6.58), the second part is

(−x)n!
n∑
j=2

(
pj−1

∑
µ`(n−j)

(−x)l(µ)

zµ
pµ

)
= (−x)n!

n∑
j=2

(
pj−1

r
(x)
n−j

(n− j)!

)
= n(n− 1) r

(x)
n−1. (6.68)

Adding both sides of Equations (6.66) and (6.68) proves the theorem.



7

Epilogue

The main goal of our work was to provide evidence for Conjecture 1.1 by con-
sidering a FQH system consisting of N electrons in its ground state modeled
by a generic Laughlin state Ψm and show that the rank of the reduced den-
sity operator, obtained by dividing the system into two parts by means of the
particle cut scheme, is equal to the number of quasi-hole states, which in turn
forms an upper bound on this rank. The hard part of this problem is showing
that this upper bound is satisfied.

Our strategy in this regard was to find a weak Schmidt decomposition
of Ψm and then use Theorem 3.3 to determine the demanded rank. The
technique we used was to define a particular transformation (5.6), referred as
clustering transformation in the text. Roughly speaking, this mathematical
trick enabled us to look for the weak Schmidt decomposition of a copy of Ψ1

instead of Ψm but for a larger number of variables. This seemed easier to do,
since then we were able to use a known decomposition rule in the theory of
symmetric polynomials expressed as the second part of Theorem 4.4. Finally
we came to Equation (5.15) as a candidate for the weak Schmidt decomposition
of Ψm. According to Theorem 3.3, for Equation (5.15) to be a weak Schmidt
decomposition one should prove that the set (5.16) is linearly independent.
This motivated us to look at symmetric polynomials in mN variables that
vanish under clustering transformation Cm. Probably one of the alternatives
in this regard was to try to characterize these polynomials with respect to
their total degree. We succeeded to do that by constructing a new set of
generators for symmetric polynomials in mN variables that helped us to prove
that the total degree of any non-zero symmetric polynomial in mN variables
that vanishes under Cm is at least N + 1.

Although this is a very interesting result on its own right but, unfortu-
nately, it turned out that it is not sufficient for our initial goal. To be able to
prove the Conjecture 1.1, one needs to show that the degree in any variable of
any non-zero symmetric polynomial in mN variables that vanishes under Cm
is at least N + 1. This puts the physical Conjecture 1.1 for the Laughlin case
equivalent to the mathematically formulated Conjecture 1.2.

Naturally afterwards, we tried to discover some useful properties of the
new introduced generators to be able to go further and complete the proof.

69
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Although we did not succeed, but this attempt gave rise to some interesting
results for the properties of these generators that might be useful for more
investigations on the problem. Probably the most interesting result is that in
the set of these generators, the ones that vanish under Cm have degree at least
N + 1, which is a special case of the more general Conjecture 1.2.
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The study of the entanglement entropy and entanglement spectrum has proven to be very fruitful
in identifying topological phases of matter. Typically, one performs numerical studies of finite-size
systems. However, there are few rigorous results for finite-size systems. We revisit the problem of
determining the rank of the “particle entanglement spectrum” of the Laughlin states. We reformulate
the problem into a problem concerning the ideal of symmetric polynomials that vanish under the
formation of several clusters of particles. We give an explicit generating family of this ideal, and we
prove that polynomials in this ideal have a total degree that is bounded from below. We discuss
the difficulty in proving the same bound on the degree of any of the variables, which is necessary to
determine the rank of the particle entanglement spectrum.

I. INTRODUCTION

The study of topological phases of matter has benefited greatly from considering the entanglement
properties of the ground states of topological phases. The work of Kitaev and Preskill1 and of Levin and
Wen2 revealed that the entanglement entropy is a good probe of the topological nature of a system and
provides a measure for the particle content of the topological phase3.The entanglement entropy of a pure
quantum state |Ψ〉 relative to a bipartite partition of the total Hilbert space H = HA ⊗HB provides a
measure of the entanglement of |Ψ〉. The entanglement entropy is defined as the Von Neumann entropy
of the reduced density matrix of either one of the two parts,

S = −Tr(ρA log ρA), (1)

where ρA = TrB (|Ψ〉〈Ψ|).
In the context of the fractional quantum Hall (FQH) effect, various ways to partition the Hilbert space

were proposed4. Of particular importance is the spatial partitioning scheme, in which the system is split
into two regions A and B separated by a real-space cut of length L. For a system exhibiting topological
order the real-space entanglement entropy is of the form2,3

S = αL− γ + · · · , (2)

where · · · stands for subdominant terms as L becomes large. The subdominant term γ is universal,
and depends only on the nature of the topological phase. It bears the name topological entanglement
entropy, and is a measure for the particle content of the topological phase3. The first term αL, while
non-universal, means that the amount of entanglement is proportional to the length of the boundary
separating the two regions. This property called area law has appeared in various areas of physics,
such as black-hole physics and quantum information. For a quantum many-body state this property is
of particular importance since it opens the way to extremely efficient numerical simulations such as the
Density Matrix Renomalization Group5 and Matrix Product States6 methods. For FQH state this avenue
of research was successfully undertaken7–9 and opened the way to a reliable microscopic calculation of
quasi-holes properties such as radius and braiding10.

Although the real-space cut plays is of paramount importance in the study of topological phases of
matter, there are other natural ways to partition a quantum Hall system: the orbital cut, and the particle
cut4. While, in principle, the entanglement entropy behaves according to the area law Eq. (2) only for
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real-space cuts, it was numerically observed11 that the area law is also valid for orbital cuts. In this
paper we will concentrate on the particle cut, in which one numbers the (identical) particles constituting
the phase (for instance, the electrons in the quantum Hall case), and one declares the particles numbered
1, 2, . . . , NA to belong to subsystem A, while the remaining particles numbered NA + 1, NA + 2, . . . ,
N belong to subsystem B. The spectrum of the reduced density matrix obtained by tracing out the
particles in subsystem B is the “particle entanglement spectrum” (PES).

While the entanglement entropy S provides a good probe of topological order, the topological entan-
glement entropy γ does not determine unambiguously the universality class of the topological state. Li
and Haldane12 realized that the spectrum of HA = − log ρA itself contains much more information than
the entanglement entropy. They proposed to use the low lying part of this entanglement spectrum as a
“fingerprint” of the topological phase. To be more specific, under a bipartition H = HA ⊗ HB a pure
quantum state |Ψ〉 admits a Schmidt decomposition

|Ψ〉 =
∑
i

e−ξi/2|ψAi 〉 ⊗ |ψBi 〉, (3)

where the e−ξi/2’s are positive numbers called the Schmidt singular values, while |ψAi 〉 and |ψBi 〉 form
orthonormal sets in HA and HB , respectively. The reduced density matrix is then simply

ρA =
∑
i

e−ξi |ψAi 〉〈ψAi | = e−HA . (4)

The entanglement spectrum is the set of all entanglement energies ξi. The bipartition can be chosen
to preserve as much symmetry as possible, which in turn yields quantum numbers for the ξi’s, such
as the momentum along the cut. Li and Haldane observed that–per momentum sector–the number of
entanglement energies reproduces exactly the number of gapless edge modes. They proposed that tracing
out the degrees of freedom of part B introduces a virtual edge for part A. The Li-Haldane conjecture is
therefore two-fold. For a FQH state in the thermodynamic limit:

(i) the entanglement energies and edge modes have the same counting,

(ii) the entanglement spectrum is proportional to the (edge) CFT spectrum.

It is now understood that (ii) can only hold in the case of a real-space cut, which maintains locality along

the cut13,15,16. For an orbital cut the entanglement Hamiltonian HA has no reason to be local. On the
other hand the point (i) holds irrespective of the cut for model wave functions that can be written as

correlation functions in a CFT. Such wave functions are precisely of MPS form14, and the CFT Hilbert
space provides a one-to-one mapping17 between edge modes and entanglement energies.

While the agreement between the counting of the number of modes in the entanglement spectrum
and the counting of the edge excitations is well understood, in practice, this fingerprint is used for finite
-size systems. The entanglement counting develops finite-size effects, which naively have no structure.
However, it has been conjectured and numerically substantiated18 that there is a counting principle
underlying the finite-size entanglement counting of model states. To be more specific, let us focus on the
PES.

Consider the ground state |Ψ〉 of a model quantum Hall state, such as the Laughlin19 or Moore-Read20

state, that are the exact zero energy states of a model Hamiltonian. For a given number N of particles,
this is the unique zero-energy state of a model Hamiltonian that occurs at the following number of flux
quanta

Nφ =
1

ν
N − S, (5)

where ν is the filling fraction and S is the shift. Now suppose that the N particles are divided into
two groups, group A containing NA of the particles, and group B containing NB = N − NA of the
particles. Without any loss of generality we can assume NA ≤ NB . Let x = (x1, x2, · · · , xNA

) and
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y = (y1, y2, · · · , yNB
) be the coordinates of particles in A and B, respectively. The Schmidt decomposi-

tion of the wave function Ψ(z)

Ψ(z) =
∑
i

e−ξi/2ψAi (x)ψBi (y), (6)

involves wave functions ψAi (x) for NA particles. After tracing out the particles of part B, we are left
with a reduced system of NA particles, but the amount of flux remains the same, namely

Nφ =
1

ν
NA − S + ∆Nφ, (7)

where ∆Nφ = ν−1NB . The presence of this excess flux ∆Nφ indicates that we should view the reduced
system as one with NA particles, in the presence of quasi-hole excitations. For a real system with NA
particles, and ∆Nφ excess flux quanta the number of zero-energy states of the model Hamiltonian (which

we will call the number of quasi-hole states) can often be obtained exactly21–25. For instance, in the case
of the ν = 1/m Laughlin case, quasi-hole states of NA particles in ∆Nφ excess flux are of the form

ψi(x) = Pi(x)
∏
i<j

(xi − xj)m, (8)

where Pi(x) is a symmetric polynomial in NA variables with degree in each variable at most ∆Nφ. The
number of quasi-hole states is therefore (

∆Nφ +NA
NA

)
. (9)

This number forms an upper bound for the rank of the reduced density matrix26.
From numerical investigations, it is known that in all cases considered, this upper bound is in fact

reached33. This observation has led to the “rank saturation” conjecture, which can be thought of as a
finite-size version of the Li-Haldane conjecture, namely, the entanglement level counting of the PES of a
model state is equal to the number of bulk quasi-hole states. This means that the states ψAi (x) appearing
in the Schmidt decomposition of Ψ(z) span all the quasi-hole states of NA particles in ∆Nφ excess flux.
Proving analytically that this upper bound is indeed reached has proven to be a difficult problem.

In this paper, we revisit this problem for the general ν = 1
m Laughlin states. We start by considering

the ν = 1 Laughlin state, which is simply the Slater determinant of the completely filled lowest Landau
level. We explain how to obtain the rank of the reduced density matrix of the particle entanglement
spectrum in this case. To do so, we will make some use of the properties of symmetric polynomials.
To get a grip on the ν = 1

m Laughlin states, we then use the following strategy. After partitioning the
particles into two sets A and B, we “split” the NB particles in part B into mNB particles, and consider
the ν = 1 Laughlin state of the system thus obtained. For this system, we already obtained the rank
of the reduced density matrix. If one can show that clustering the mNB particles into groups of size
m, does not lead to a smaller rank of the reduced density matrix, one deduces the rank of the reduced
density matrix for the ν = 1

m Laughlin state, and shows that the upper bound is indeed reached.
The hard step in the strategy outlined above is to show that the clustering of the mNB particles into

NB groups of of size m does not reduce the rank of the reduced density matrix. Proving this statement
turns out to be highly non-trivial. As we explain in the main text, one has to show that there is no
(non-zero) symmetric polynomial in mNB variables that vanishes under the formation of NB groups of
variables each of size m, and whose degree in any of the variables is NB or less. Although we did not
fully succeed in proving this statement, we did make substantial progress. In particular, we constructed
an explicit generating family of the ideal of polynomials that vanish under this clustering. Using this
construction we were able to show that a non-zero symmetric polynomial in mNB variables that vanishes
under the formation of NB groups of variables each of size m must have a total degree at least NB + 1.
Proving this weaker statement is already a non-trivial result, mainly because the positions of the various
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clusters can be arbitrary, which means that the clustering condition is non-local. Moreover we were able
to prove that all polynomials in the generating family have a degree at least NB + 1.

The outline of the article is as follows. In section II, we introduce the notion of partitions, and
several types of symmetric polynomials, that we make use of throughout the article. The PES of the
ν = 1 Laughlin state is discussed in section III. We continue in section IV by explaining how the result
for ν = 1 can be used to make progress for the ν = 1/m Laughlin states, and recast the problem in
terms of clustering properties of symmetric polynomials. In section V, we prove that the total degree of
polynomials that vanish under clustering is bounded from below, and provide an explicit construction for
such polynomials in general. In section VII, we make some comments on why it is much harder to prove
that not only the total degree, but also the degree of any variable for polynomials that vanish under the
clustering is bounded from below. In addition, we provide a proof for the statement in the case where
one forms two clusters of size m. Finally, we discuss our results in section VIII. In the Appendix, we
derive some properties of the polynomials which are used in section V, and also provide an alternate set
of polynomials that can be used in the proof of section V.

II. SOME NOTATION

In this section we introduce some definitions and notations that are used in what follows. We start by
introducing the notion of partitions, which play a central role in the theory of symmetric polynomials.
For a general introduction to the subject of partitions, we refer to28 and for the theory of symmetric
polynomials to27.

A. Partitions

For a positive integer D, a non-increasing sequence λ = (λ1, λ2, . . . , λr) of strictly positive integers λ1,

λ2, . . . , λr is called an r-partition of D if
∑r
i=1 λi = D. The λi’s are the parts of λ, and r is called the

length of λ, which is denoted by l(λ). We call D the weight of λ, which is denoted by |λ|. We write
λ ` D to indicate that λ is a partition of D. By convention, λ = ∅ is the only partition of zero which
we call the empty partition. The number of parts of partition λ which are equal to a given integer j is
denoted by nj(λ) or simply nj . We also define

zλ =

λ1∏
j=1

jnjnj !. (10)

Finally, The set of all partitions of D is denoted by Par(D). It is not too hard to convince oneself (see

Ref. 28) that the number of partitions with at most r parts and each part at most d is equal to
(
r+d
r

)
.

B. Symmetric polynomials

In what comes, we will be dealing with the ring ΛN of symmetric polynomials in N variables. A
polynomial P is called a symmetric polynomial in N variables, if for all permutations σ of {1, . . . , N},

P
(
xσ(1), . . . , xσ(N)

)
= P (x1, . . . , xN ). (11)

The degree d of a symmetric polynomial is simply the degree in one of its variables.
A polynomial P (x1, . . . , xN ) is called homogeneous of total degree D, if for any real number l,

P (l x1, . . . , l xN ) = lDP (x1, . . . , xN ). (12)
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For instance, the polynomial P (x1, x2) = x2
1x2 +x1x

2
2 is a homogeneous symmetric polynomial of degree

d = 2 and total degree D = 3.
There are different bases that one can consider for ΛN . A natural one, is given by the set of, so-called,

symmetric monomials. Given a partition λ = (λ1, λ2, · · · , λr) with r ≤ N , the symmetric monomial
mλ(x1, · · · , xN ) is defined as

mλ(x1, · · · , xN ) :=
∑
σ

xλ1

σ(1)x
λ2

σ(2) · · ·x
λr

σ(r)x
0
σ(r+1) · · ·x

0
σ(N), (13)

where the sum is over all distinct permutations σ of the parts of λ, and it is defined to be 1 if λ is the
empty partition. On the other hand if r > N we set mλ(x1, · · · , xN ) = 0. For example,

m(2,1,1)(x1, x2, x3) = x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3,

m(2,1)(x1, x2, x3) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3,

m(2,1,1)(x1, x2) = 0.

(14)

When studying rank saturation of the PES for the Laughlin state, finite-size effects imply an upper
bound for the degree of polynomials. We will therefore be led to consider the space ΛdN of symmetric
polynomials in N variables, with degree (in each of the variables) at most d. A basis for this space is
given by the symmetric monomials mλ(x1, . . . , xN ) corresponding to partitions λ with at most N parts
and each part at most d. Therefore, we have

dim
(
ΛdN
)

=

(
N + d

N

)
. (15)

Another important family of symmetric polynomials is the set of elementary symmetric polynomials.
The elementary symmetric polynomials that are labelled by an integer n are defined in terms of symmetric
monomials as en := m(1, . . . , 1︸ ︷︷ ︸

n ones

). For instance,

e0(x1, x2, x3) = 1,

e1(x1, x2, x3) = x1 + x2 + x3,

e2(x1, x2, x3) = x1x2 + x1x3 + x2x3,

e3(x1, x2, x3) = x1x2x3,

en≥4(x1, x2, x3) = 0. (16)

For a partition λ = (λ1, . . . , λr), the elementary symmetric polynomial eλ is defined as eλ := eλ1 · · · eλr .
As an example,

e(2,1,1)(x1, x2) = e2(x1, x2)e1(x1, x2)e1(x1, x2)

= x1x2(x1 + x2)2.
(17)

It is known that the set of all polynomials eλ(x1, . . . , xN ), where λ is a partition with at most d parts

and each part at most N , forms a basis of the space ΛdN .
Lastly, the power sum symmetric polynomials, defined as

pi(x1, . . . , xN ) := xi1 + · · ·+ xiN , (18)

are of special importance. In fact, the set {p1, p2, . . . , pN} generates ΛN . This means that any symmetric
polynomial P in N variables can be written as a polynomial in (p1, . . . , pN ). In other words, the set of
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polynomials pλ := pλ1
· · · pλr

, where λ is a partition with each part at most N , forms a basis of ΛN . For
example,

e2 =
∑
i<j

xixj =
p2

1 − p2

2
, (19)

independent of the number of variables N . Most importantly, the decomposition of any symmetric
polynomial P in N variables as a polynomial in (p1, . . . , pN ) is unique. One should note that, unlike
for the symmetric monomials mλ and the elementary symmetric polynomials eλ, there is no natural
restriction on λ such that the corresponding pλ’s form a basis for ΛdN .

III. THE ν = 1 STATE

To obtain the rank of the reduced density matrix of the Laughlin states in the case of the “particle
cut”, we start by considering the simplest case, the ν = 1 Laughlin state, which is just a single Slater
determinant,

Ψν=1(z1, . . . , zN ) =
∏

1≤i<j≤N

(zi − zj), (20)

up to a geometry-dependent Gaussian factor. For instance, the plane and sphere geometry give rise to
different Gaussian factors, inherited from the respective inner products. However, for our purposes the
precise form of the Gaussian factor is irrelevant. The results presented in this paper involves only the
notion of linear independence, and does not refer to the notion of orthogonality. As a consequence, the
underlying inner product plays no role and our result is equally valid on the plane, sphere, and cylinder.

Now suppose that the N particles are divided into two groups A, containing NA of the particles, and
B containing NB = N − NA particles. At this stage we do not assume NA ≤ NB . Let us rename the
coordinates of particles in A and B to x = (x1, x2, · · · , xNA

) and y = (y1, y2, · · · , yNB
), respectively. The

rank of the reduced density matrix in the case of such a particle cut can be obtained from a decomposition
of the wave function Ψ(z) of the form

Ψ(z) =
∑
i

ψAi (x)ψBi (y), (21)

where the set of wave functions ψAi (resp. ψBi ) are independent. Note that this is not quite a Schmidt

decomposition since we do not demand the ψAi ’s to form an orthonormal set. Although this is not a
Schmidt decomposition, the number of terms in the sum is equal to the Schmidt rank, or equivalently,
to the rank of the reduced density matrix. Therefore, we will call the decomposition (21) a Schmidt
decomposition, although strictly speaking this is an abusive notation.

Before we explicitly write the ν = 1 Laughlin state in such a “Schmidt-decomposed” form, we note
that we can obtain the rank of the reduced density matrix in the ν = 1 case in a straightforward way.
This state is simply obtained by filling the Landau orbitals from 0 up to NΦ = N − 1

|Ψν=1〉 = |111 · · · 111〉. (22)

The Schmidt decomposition relative to particle cut amounts to choose NA out of the N particles

|Ψν=1〉 ∝ | 111 · · · 11︸ ︷︷ ︸
NA

00 · · · 0〉 ⊗ |000 · · · 0011 · · · 1〉

+ | 111 · · · 10︸ ︷︷ ︸
NA

10 · · · 0〉 ⊗ |000 · · · 0101 · · · 1〉+ · · ·

+ | 000 · · · 00︸ ︷︷ ︸
NB

11 · · · 1〉 ⊗ |111 · · · 1100 · · · 0〉, (23)
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which means that the rank of the reduced density matrix is given by the number of ways in which the
NA particles of system A can be divided over the number of orbitals. The number of orbitals is given

by N = NA + NB , so we obtain that the rank of the reduced density matrix is given by
(
NA+NB

NA

)
. We

note that the same result can be obtained directly from the wave function15, which is a single Slater
determinant Ψν=1(z) =

∏
i<j(zi − zj).

It is instructive to perform a more explicit Schmidt decomposition of the ν = 1 Laughlin wave function.
We start by writing the state explicitly in terms of the variables xi and yi of groups A and B, respectively.
Dropping the exponential factors, we have

Ψν=1(z) = Ψν=1(x)

∏
i,j

(xi − yj)

Ψν=1(y). (24)

We are going to use the following result27

NA∏
i=1

NB∏
j=1

(1 + xiyj) =
∑
λ

mλ(x)eλ(y). (25)

where the sum is over all partitions λ with maximally NA parts, and each part being maximally NB ,
i.e., all partitions which fit in a rectangle of height NA and width NB . Thus,∏

i,j

(xi − yj) =
∑
λ

(−1)|λ|mλ̄(x)eλ(y). (26)

Here, we used the relation (∏
i

xNB
i

)
mλ(−1/x) = (−1)|λ|mλ̄(x), (27)

where the partition λ̄ stands for the complement of λ with respect to the rectangle of height NA and
width NB . In addition, (−1/x) is shorthand for (−1/x1, . . . , 1/xNA

). As an example, it is shown in

Fig. 1 that for NA = 3, NB = 4 and λ = (2, 1), one finds λ̄ = (4, 3, 2). We then obtain a Schmidt

NA = 3

NB = 4

� = (2, 1)

�̄ = (4, 3, 2)

FIG. 1: The relation between the partition λ and its complement λ̄ for given NA and NB .

decomposition for the ν = 1 Laughlin state

Ψν=1 =
∑
λ

(−1)|λ|qAλ (x)qBλ (y), (28)
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where

qAλ (x) = mλ̄(x) Ψν=1(x), (29)

and

qBλ (y) = eλ(y) Ψν=1(y). (30)

A few remarks on this formula are in order here. The number of terms in the sum is most important
here. The sum over λ, is over all partitions with maximally NA parts, and each part being maximally

NB , i.e., all partitions which fit in a rectangle of height NA and width NB . There are
(
NA+NB

NA

)
such

partitions. The rank of the reduced density matrix of the ν = 1 Laughlin state is thus given by(
NA +NB

NA

)
, (31)

and we recover the dimension of ΛNB

NA
. It is straightforward to check that this is also the dimension of

the set of anti-symmetric polynomials in NA variables with maximum degree N = NA + NB , which is
nothing but the space of ‘quasi-hole’ states for the non-interacting ν = 1 case. The set of polynomials
qAλ (resp. qBλ ) forms a basis for the space of anti-symmetric polynomials in NA (resp. NB) variables with
maximum degree N . Note that this result is symmetric under exchange of A and B, and in particular
it holds whether or not NA ≤ NB . This is a particularity of the ν = 1 case and it will no longer be true
for the ν = 1

m Laughlin state with m > 1.

IV. SCHMIDT DECOMPOSITION OF THE ν = 1
m

LAUGHLIN STATE

We are now going to compute the rank of the reduced density matrix for the generic ν = 1/m Laughlin
state

Ψm(z1, . . . , zN ) =
∏

1≤i<j≤N

(zi − zj)m. (32)

As usual we divide the particles into two groups A and B, containing NA and NB = N −NA of them,
respectively, and we assume that NA ≤ NB . We are interested in obtaining a Schmidt decomposition of
this state. As for the ν = 1 case, we can write

Ψm(z) = Ψm(x)

NA∏
i=1

NB∏
j=1

(xi − yj)m
Ψm(y). (33)

Proving that the rank of the PES for the ν = 1/m Laughlin state is saturated boils down to finding a
Schmidt decomposition for the wave function (33) and counting the number of terms in the decomposition.
As in the ν = 1 case, one need to take care of only the middle term of the wave function (33)

Φm(x,y) :=

NA∏
i=1

NB∏
j=1

(xi − yj)m. (34)

To do so we start from

Φ1(x,w) :=

NA∏
i=1

mNB∏
j=1

(xi − wj), (35)
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for w = (w1, . . . , wmNB
). From (26),

Φ1(x,w) =
∑
λ

(−1)|λ|mλ̄(x)eλ(y), (36)

but this time sum is over all partitions λ which fit in a rectangle of height NA and width mNB . We then
relate Φm to Φ1 through the clustering transformation, which is a linear transformation from ΛmNB

to
ΛNB

defined as follow.

To a symmetric polynomial P (w) in mNB variables, we associate the polynomial variables Cm
(
P (y)

)
in NB variables obtained by regrouping the particles into clusters of m, i.e.,

(CmP )(y1, y2, . . . , yNB
) = P (y1, y1, . . . , y1︸ ︷︷ ︸

m

, y2, y2, . . . , y2︸ ︷︷ ︸
m

, . . . , yNB
, yNB

, . . . , yNB︸ ︷︷ ︸
m

). (37)

It is easy to see that after clustering Φ1 becomes Φm, i.e.,

Cm(Φ1) = Φm. (38)

Applying the clustering transformation to both sides of Eq. (36) results in

Φm(x,y) =
∑
λ

(−1)|λ|mλ(x)Cm
(
eλ
)
(y). (39)

As mentioned earlier, the sum is over all partitions λ with maximally NA parts, and each part being

maximally mNB . There are
(
NA+mNB

NA

)
such partitions. This is precisely the number of Laughlin quasi-

hole states for NA particles in ∆NΦ = mNB extra fluxes, and we recover the usual upper bound for the
rank of the reduced density matrix.

Rank saturation of the PES for the ν = 1/m Laughlin state boils down to the following, non-trivial
result: the polynomials Cm(eλ) are independent. More precisely, one has to prove that the linear trans-
formation

ΛNA

mNB
−→ ΛmNA

NB

P (w) −→ Cm(P )(y)

is injective as long as NA ≤ NB . Since dim ΛmNA

NB
≥ dim ΛNA

mNB
, it is sufficient to show that this linear

map has a trivial kernel. Namely, besides P = 0, no polynomial in mNB variables and maximum degree
NA can vanish under the clustering transformation.

V. CLUSTERING PROPERTIES OF SYMMETRIC POLYNOMIALS

In this section we are going to describe the ideal of symmetric polynomials in q = mN variables
that vanishes under the clustering transformation Eq. (37). In particular, we are going to construct a
generating set of this subspace, and prove that a non-zero symmetric polynomial in q = mN variables
that vanishes under the clustering transformation has a total degree D of at least N+1. We are also going
to prove that this symmetric polynomial of minimal total degree is unique (up to a scaling numerical
factor).

The statement that the total degree of a symmetric polynomial in q = mN variables that vanishes
under the clustering conditions is at least N + 1 is a weaker statement than stating that the degree of
each variable is at least N + 1, but easier to prove. After finishing the proof of the statement on the
total degree, we come back to the problem of proving the stronger statement, limiting the degree of the
polynomials.
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As a warmup, we start with two simple examples, which we will come back to after the proof. We
start with the case m = 2 and N = 1, i.e., we are looking for a symmetric polynomial in two variables
y1 and y2, of total degree 2, that vanishes when y1 = y2. It is easy to see that the polynomial has degree
two, namely (y1 − y2)2.

The case m = 2 and N = 2 is already more complicated. With some thought, one can construct a
total degree 3 symmetric polynomial in four variables y1, . . . , y4, that vanishes when y1 = y2 and y3 = y4,
namely (y1 + y2 − y3 − y4)(y1 − y2 + y3 − y4)(y1 − y2 − y3 + y4). It is already less trivial to convince
oneself that no lower degree symmetric polynomial with the same vanishing properties exists. Upon
increasing the m and N , even finding polynomials with the correct vanishing properties becomes a hard
problem, which is caused by the non-locality of their defining property. Namely, polynomials have to
vanish, independent of the position of the various clusters. As we indicated above, we solve this problem
in a constructive way.

Our construction is motivated by the following observation. The ring Λq of symmetric polynomials in
q = mN variables is generated by {p1, · · · , pq}, and the power sum polynomials pi have a very simple
behavior under the clustering (37), namely

Cm(pi) = mpi. (40)

However, after the clustering transformation there are only N variables left. This means that
AN = {p1, . . . , pN} forms a minimal set of generators, and the polynomials {pN+1, · · · , pq} are no longer
independent after being clustered. The generators pi are not very convenient to describe the clustering

transformation, and this is why we introduce a new set of generators Ãq = {p̃1, . . . , p̃q} of Λq as

p̃n =
∑
λ`n

(−1)|λ|
(
− 1

m

)l(λ)
pλ
zλ

(41)

Alternatively, the polynomials p̃n can be defined in terms of the polynomials r
(x)
n of Appendix A through

p̃n = (−1)n

n! r
(1/m)
n . The main property of these new polynomials is that they behave nicely under clus-

tering:

Cm
(
p̃n) = en, n = 1, · · · , N, (42)

Cm
(
p̃n) = 0, n > N, (43)

as inherited from the properties of r
(x)
n described in Appendix A. In terms of these modified power sums

p̃n, it is now relatively easy to describe the ideal of polynomials in Λq that vanishes under the clustering
transformation Eq. (37):

Theorem 1. The ideal of symmetric polynomials in q = mN variables that vanishes under the clustering
transformation is generated by {p̃N+1, p̃N+2, · · · p̃q}.

Proof. Suppose that P is a symmetric polynomial in q variables. Because Ãq is a generating set, there
exists a polynomial R in q variables such that

P = R(p̃1, . . . , p̃q).

Generically, there are two kinds of monomials in the polynomial R. Those that depend only on the first
N variables p̃1, . . . , p̃N , and the ones that depend on at least one of the p̃n, with n > N . Accordingly, R
can be decomposed uniquely into a sum of two polynomials

R(p̃1, . . . , p̃q) = A(p̃1, . . . , p̃N ) +B(p̃1, . . . , p̃q).

Thus, by construction, Cm
(
B
)

= 0. It is now straightforward to check that Cm
(
R
)

= 0 if and only if
A = 0, since

Cm
(
P
)

= A(e1, . . . , eN ),
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and the {e1, · · · eN} are algebraically independent in N variables. Therefore the set {p̃n, n > N} gener-
ates the kernel of the clustering transformation. �

Corollary 1. The only symmetric polynomial P in mN variables with total degree N or less that vanishes
under the clustering conditions (37) is P = 0. Moreover, p̃N+1 is the unique (up to an overall factor)
symmetric polynomial in q variables and total degree N + 1 that vanishes under this clustering.

Since the modified power sum p̃n has total degree n, this corollary follows directly from Theorem 1.
Let us illustrate this with two simple examples.

Example 1. Consider the simplest non-trivial case where q = 2, N = 1, and m = 2. In this case, the
clustering condition is y1 = y2. The definition of p̃2 yields

p̃2 =
1

8

(
p2

1 − 2p2

)
= −1

8
(y1 − y2)2, (44)

which reproduces the expected result.

Example 2. As another example, let q = 4, N = 2, and m = 2. This time, clustering conditions are
y1 = y3, y2 = y4. We have

p̃3 = − 1

48
(p3

1 − 6p2p1 + 8p3). (45)

For q = 4 variables, this is

p̃3 = − 1

16
(y1 + y2 − y3 − y4)(y1 − y2 + y3 − y4)(y1 − y2 − y3 + y4). (46)

We should note that these two examples are not representative for the general case, in the sense that
the polynomials p̃N+1 do not generically factorize to a simpler form. For instance, for N = 3 and m = 2,
we have

p̃4 = −1

8
p4 +

1

16
p1p3 +

1

32
p2

2 −
1

32
p2p

2
1 −

1

384
p4

1,

which does not have a simple factorized form when restricting to q = 6 variables.

Conjecture 1. There is no non-zero symmetric polynomial P in mN variables with degree N or less
that vanishes under the clustering transformation.

While we know that the modified power sum p̃n has degree n (see Appendix A), this is not sufficient
to prove this conjecture.

VI. SU(2) INVARIANCE

In the context of the fractional quantum Hall effect, there is a natural action of SU(2) on ΛNΦ

N coming

from the rotational invariance of the sphere. The angular momentum operators on the sphere29 are

L− =

N∑
i=1

∂

∂zi
, (47)

L3 =

N∑
i=1

(
zi

∂

∂zi
− NΦ

2

)
, (48)

L+ =

N∑
i=1

(
ziNΦ − z2

i

∂

∂zi

)
. (49)
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Every polynomial P in ΛNΦ

N has a SU(2) symmetric Ω(P ) with opposite angular momentum L3 given
by

Ω(P )(z1, · · · , zN ) =

(
N∏
i=1

zNΦ
i

)
P (1/z1, · · · , 1/zN ). (50)

Under this Z2 operation L− and L+ are exchanged, and L3 → −L3.
These linear operators are compatible with the clustering, in the sense that CmLi = LiCm. Note that

in these identities the SU(2) operators in the l.h.s. act in ΛNΦ

mN , while in the r.h.s. they act in ΛmNΦ

N :

ΛNΦ

mN
Li

−−−−→ ΛNΦ

mNyCm yCm
ΛmNΦ

N
Li

−−−−→ ΛmNΦ

N

(51)

The same is true for the Z2 operation Ω. These commuting properties are straightforward to check for
L3, L−, and for Ω. Therefore it also holds for L+ = ΩL−Ω. For instance the clustering transformation
clearly preserves the total degree, therefore the action of clustering commutes with L3. Likewise, L−

being the generator of global translations, it commutes with the clustering. The following theorem follows
immediately:

Theorem 2. The ideal of symmetric polynomials in mN variables that vanishes under the clustering
transformation is invariant under the action of Li and Ω.

Corollary 2. The polynomial p̃N+1 is translationally invariant.

The polynomial p̃N+1 vanishes under clustering, and therefore so does L−p̃N+1. If this last polynomial
was non-zero, it would have a total degree N , which is forbidden by Corollary 1. Therefore L−p̃N+1 = 0
and p̃N+1 is translationally invariant.

In fact, it is possible to directly calculate L−p̃i, and one gets

L−p̃i = (N + 1− i)p̃i−1. (52)

Note that this results only hold for q = mN variables. This follows from the behavior of r
(x)
n under

translations, which is given in Appendix A 4.
Since the kernel of Cm is invariant under the action of Li, it can be decomposed into irreducible

representations of SU(2). In order to prove that non zero polynomials that vanish under the clustering
have degree at least N+1, it is therefore sufficient to prove it for lowest weights, that is to say translation
invariant polynomials. Therefore Conjecture 1 is equivalent to the following:

Conjecture 2. The only translationally invariant symmetric polynomial P in mN variables with degree
N or less that vanishes under the clustering transformation is P = 0.

VII. A POSSIBLE ROAD TOWARDS FINISHING THE PROOF

As we saw in the previous section, we were able to prove that the total degree of a symmetric polynomial
is at least N + 1, if the polynomial vanishes under the clustering transformation Eq. (37). However, we
would like to show that the the maximum degree of any of the variables (i.e., the number of fluxes Nφ)
is at least N + 1. Proving this statement turns out to be much harder than it looks at first. One of the
reasons is that the clustering we consider is a non-local process. Namely, the positions of the various
clusters are arbitrary. Therefore, proving that the total degree is bounded from below is already a non-
trivial result. What makes proving a bound on the total degree more tractable in comparison to proving
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a bound on the degree, is that upon taking linear combinations, the total degree of the polynomials does
not change, provided the resulting polynomial does not vanish. The degree of the polynomial, however,
can be lowered by taking linear combinations.

To show that the rank of the reduced density matrix for the particle cut does indeed satisfy the upper

bound given in the introduction, it suffices to prove that the clustering map Cm : ΛNA

mNB
−→ ΛmNA

NB
, is

injective if NA ≤ NB . In the case NA = NB , the map Cm would then actually be bijective. One possible
route in trying to prove this, is to find two suitable bases for ΛNmN and ΛmNN in which the map Cm acts in
an upper-triangular way, and then check that all diagonal elements are non-zero. We did not, however,
succeed in finding suitable bases.

A completely different route to prove that the rank of the reduced density matrix is given by the
upper bound is to try to make use of the results for the Read-Rezayi states30. These states are defined
by the property that they vanish if k+ 1 particles are put at the same location (in their simplest bosonic
incarnation). In particular, it is known exactly that how many symmetric polynomials there are, that

satisfy this clustering condition, for an arbitrary number of particles, and arbitrary degree24,25. In
addition, there are explicit expressions for these polynomials25, see also31. Using these results, we can
prove the wanted result for N = 2 and arbitrary m. That is, we can show that any symmetric polynomial
in 2m variables, that vanishes if two clusters of m variables each are formed, has degree at least three.

To do so, assume that P is a polynomial in 2m variables that vanishes under the clustering, CmP = 0.
We know that the total degree of this polynomial is at least 3, and we want to show that the minimal
value of the degree is three as well.

To show this, we note that the polynomial P also vanishes if we make one big cluster of 2m variables.
From the results on the Read-Rezayi states, we know that such symmetric polynomials have degree at
least two (it vanishes, so it should vanish quadratically), and that it is unique (up to an overall factor).
In addition, we know an explicit form of this polynomial P ′, namely

P ′(z1, . . . , z2m) = S[(z1 − z3)(z2 − z3)], (53)

where S denotes the complete symmetrization over all 2m variables. In this case, by inspection, one can
convince oneself that P ′ does not vanish if one makes two clusters of m variables. Thus, the minimal
degree of a polynomial P in 2m variables that does vanish under Cm has degree at least three. In fact,
it is not too hard to find an expression similar to the one for P ′, namely

P (z1, . . . , z2m) = S[(z1 − z4)(z2 − z4)(z3 − z4)]. (54)

It is not completely obvious that this vanishes under the clustering for m > 2, but one can convince
oneself that after symmetrization, one indeed does get zero.

Though it is not going to be easy, one could try to proceed in this way. Constructing the next case,
namely polynomials that vanish for three clusters of m variables, is already more involved. Writing down
an explicit form similar to the ones above is not straightforward, but one can for instance symmetrize
the following combination

P (z1, . . . , z3m) = S[(z1 − z5)(z2 − z5)(z3 − z5)(z4 − z5)− (z1 − z5)(z2 − z5)(z2 − z6)(z3 − z6)]. (55)

This polynomial is the unique polynomial (up to a constant factor) in 3m variables, of degree and total
degree 4, that vanishes under formation of three clusters of m variables. We stress, however, that this
alone does not imply that there are no polynomials of degree three, that vanish under the same clustering
conditions.

The lowest degree polynomial for N = 4 and arbitrary m can still be written by symmetrizing an
expression like the one in Eq. (55), i.e., two terms only, but it seems likely that these expressions become
more complicated upon increasing N . In addition, having these explicit expressions does not help in
excluding the existence of lower degree polynomials with the same clustering conditions.
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VIII. DISCUSSION

In this paper, we revisited the study of the PES for the ν = 1/m Laughlin states, in particular the
rank of the associated reduced density matrix. To determine this rank, we make use of the rank of the
reduced density matrix for the ν = 1 Laughlin state. We showed that to relate the rank for the ν = 1/m
Laughlin state to the case ν = 1, one has to prove a bound on the degree of symmetric polynomials
that vanish under the formation of certain clusters. Though we were not able to finish the proof of
this statement, we made substantial progress by explicitly constructing a set of polynomials that vanish
under the clustering, and we proved that the total degree of these polynomials is bounded from below.

We commented on a possible, though most likely rather hard, route towards finishing the proof. In
this paper, we concentrated on the Laughlin states. It would be interesting to see if similar methods can
be used to make progress on different model states, such as the Moore-Read and Read-Rezayi states,
that exhibit excitations obeying non-Abelian statistics.
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Appendix A: Properties of the polynomials r
(x)
n

In this Appendix we introduce a family of symmetric polynomials {r(x)
n } defined through the generating

function

exp

(
−x

∞∑
k=1

pk
tk

k

)
=

∞∑
n=0

r(x)
n

tn

n!
. (A1)

The key property of the r
(x)
n ’s is their behavior under the clustering transformation Cm:

Cm
(
r(x)
n

)
= r(mx)

n , (A2)

which is a direct consequence of their definition. Further properties follow from the generating function,
namely

• r(1)
n = (−1)n n! en,

• r(−1)
n = n!hn with hn =

∑
λ`nmλ,

• ∂xr(x)
n

∣∣∣
x=0

= −(n− 1)!pn for n ≥ 1,

where the first two relations are obtained by comparison to the generating functions for the en and hn,
see for instance27. Therefore, this family of polynomials interpolates between power sums pn, elemen-
tary symmetric polynomials en, and complete homogeneous symmetric polynomials hn. We give one
additional property,

r(x+y)
n =

n∑
k=0

(
n

k

)
r

(x)
k r

(y)
n−k, (A3)

that follows from the definition.
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1. Explicit formulas for r
(x)
n

The generating function can be expanded using Bell’s polynomials32, yielding an explicit expression

for r
(x)
n , that is

r(x)
n = n!

∑
λ`n

(−x)l(λ) pλ
zλ
. (A4)

Alternatively, this expression can be obtained by acting with Cx on Newton’s identity expressing elemen-
tary symmetric polynomials in terms of power sums (here, we allow x to be real, and set Cxpi = xpi, for
an infinite number of variables). Another explicit expression is given in terms of a determinant of power
sums

r(x)
n = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

xp1 1 0 · · · 0

xp2 xp1 2
. . .

...
...

. . .
. . . 0

xpn−1 xpn−2 · · · xp1 n− 1
xpn xpn−1 · · · xp2 xp1

∣∣∣∣∣∣∣∣∣∣∣∣
. (A5)

The first few polynomials are given by

r
(x)
0 = 1,

r
(x)
1 = −xp1,

r
(x)
2 = x2p2

1 − xp2,

r
(x)
3 = −x3p3

1 + 3x2p1p2 − 2xp3,

r
(x)
4 = x4p4

1 − 6x3p2
1p2 + 3x2p2

2 + 8x2p1p3 − 6xp4,

r
(x)
5 = −x5p5

1 + 10x4p3
1p2 − 15x3p1p

2
2 − 20x3p2

1p3 + 20x2p2p3 + 30x2p1p4 − 24xp5.

From triangularity it follows that the family {r(x)
1 , . . . , r

(x)
n } algebraically spans all symmetric polynomials

in n variables as long as x 6= 0.

2. Degree of r
(x)
n

Let us consider the monomial decomposition of r
(x)
n

r(x)
n =

∑
λ`n

q(λ)
n (x)mλ. (A6)

We are going to compute the first coefficient, namely q
(λ)
n (x) for λ = (n). If this first coefficient is

non-zero, the degree of r
(x)
n is n. This coefficient is a polynomial of degree n in x, since from (A4) we

have r
(x)
n (z, 0, 0, . . .) ∼ (−x)nzn as x goes to infinity.

We now take x = m to be an integer, and write r
(m)
n = Cm

(
r

(1)
n

)
= (−1)nn! Cm

(
en
)
. By considering

the definition of en, it follows that m ≥ n in order for r
(m)
n (z, 0, 0, . . .) to be non-zero, because mλ = 0

if the number of variables is less than l(λ).
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Therefore, q
(λ=(n))
n (x) vanishes for x = 0, 1, · · · , n− 1. It follows from the asymptotic behavior given

above that

q(λ=(n))
n (x) = (−1)nx(x− 1)(x− 2) · · · (x− n+ 1). (A7)

Hence, the degree of r
(x)
n is n as long as x 6= 0, 1, · · · , n− 1.

3. Monomial decomposition of r
(x)
n

In this Appendix we quote the full monomial decomposition of r
(x)
n , namely

q(λ)
n (x) = (−1)n

(
n

λ1, . . . , λn

) n−1∏
i=0

(x− i)λ
t
i+1 , (A8)

where λt stands for the transpose of λ. The parts of λt are given by λti = l(λ) −
∑i−1
j=1 nj(λ), or

equivalently, λti − λti+1 = ni(λ). Below, we sketch how this can be established.

Lemma 1. The monomial expansion of ∂jxr
(x)
n

∣∣∣
x=0

involves only partitions λ such that λj+1 ≤ 0, i.e.,

λi = 0 for i ≥ j + 1.

Proof. From the generating function for the r
(x)
n we get

∂jxr
(x)
n

∣∣
x=0

= (−1)jn!
∑

k1,...,kj≥1
k1+···+kj=n

∏
i

pki
ki
, (A9)

In this expression each term
∏
i pki has a monomial decomposition that involve only partitions λ with a

length l(λ) ≤ j, from which lemma 1 follows. �

Lemma 2. The monomial expansion of ∂jxr
(x)
n

∣∣∣
x=i

, with i an integer, involves only partitions with

λj+1 ≤ i.

Proof. The case i = 0 boils down to Lemma 1. Lemma 2 can be proven by induction on i using

∂jxr
(x)
n

∣∣
x=i

= n!
∑
p

(−1)n−p

p!
en−p

(
∂jxr

(x)
p

∣∣
x=i−1

)
, (A10)

which follows from taking ∂jx in (A3), namely

∂jxr
(x+y)
n =

∑
p

(
n

p

)
∂jxr

(x)
p r

(y)
n−p, (A11)

and then choosing x = i− 1 and y = 1. �

Corollary 3. The coefficient q
(λ)
n (x) is of the form

q(λ)
n (x) = c(λ)

n

∏
i

(x− i)λ
t
i+1 . (A12)
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Proof. Lemma 2 is equivalent to stating that ∂jxq
(λ)
n (x) = 0 for x = 0, 1, . . . , λj+1 − 1. Thus, x = i is a

root with degeneracy λti+1 of the polynomial in x q
(λ)
n (x), because λti+1 is the number of parts of λ that

are bigger or equal to i + 1. Since this is true for all i ∈ N, we have a total of
∑
i λ

t
i = n zeros. Since

q
(λ)
n (x) is of degree at most n, Corollary 3 follows. �

Lemma 3. The coefficients c
(λ)
n are given by

c(λ)
n = (−1)n

n!

λ1! · · ·λn!
= (−1)n

(
n

λ1, . . . , λn

)
. (A13)

Proof. The asymptotic behavior of (A6) for x going to infinity yields

(−1)npn1 =
∑
λ`n

c(λ)
n mλ. (A14)

Lemma 3 follows by expanding the left hand side using the multinomial theorem (assuming the number
of variables p ≥ n) (

p∑
i=1

xi

)n
=

∑
k1,...,kp≥0
k1+···+kp=n

n!

k1! · · · kp!
∏
i

xkii , (A15)

and then gathering the terms of the r.h.s. into symmetric monomials. �

4. Behavior of r
(x)
n under translations

Translations are well defined in the case of finitely many variables {x1, · · · , xr}, in which case we set
p0 = r, i.e., the number of variables. In that case L− is the generator of translations

L− =

r∑
i=1

∂

∂xi
. (A16)

By Leibniz’s rule, its action on pλ =
∏
j pλj

is

L−pλ =
∑
j≥1

nj(λ)jpj−1pλ\{j}, p0 = r, (A17)

where the nj(λ) is the number of parts of λ that equal j, and λ \ {j} denotes the partition derived from

λ by deleting one part that equals j. We can now act on r
(x)
n ,

L−r(x)
n = n!

∑
λ`n

(−x)l(λ)

zλ

n∑
j=1

nj(λ)jpj−1pλ\{j}. (A18)

We can change the summation variable from λ to µ = λ \ {j}, after noticing that µ is in one-to-one
mapping with (λ, j), since

j = n− |µ|, λ = µ ∪ {j}. (A19)
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In particular l(λ) = l(µ) + 1, nj(λ) = nj(µ) + 1 and zλ = zµ(nj(µ) + 1)j. We find

L−r(x)
n = n!

n−1∑
µ`0

(−x)l(µ)+1

zµ
pn−1−|µ|pµ. (A20)

We now split the sum into two parts. First the term |µ| = n− 1 is simply

n!
∑

µ`n−1

(−x)l(µ)+1

zµ
p0pµ = −xnp0r

(x)
n−1. (A21)

Now the reminder is

n!

n−2∑
µ`0

(−x)l(µ)+1

zµ
pn−1−|µ|pµ = n(n− 1)r

(x)
n−1, (A22)

as can be seen from the determinant formula (A5) by repeatedly developing along the last column until
the matrix is 1 by 1. These last ‘determinants’ correspond to the factor pn−1−|µ| in the sum above.

Finally we get

L−r(x)
n = n(n− 1− xp0)r

(x)
n−1, (A23)

from which Eq. (52) in the main text follows.

Appendix B: An alternate set of generators

In this Appendix, we briefly give an alternate set of generators p′i, that can be used in the proof in

section V. This set of generators of Λq=mN is constructed to satisfy p′i = pi for i ≤ N , and Cm
(
p′i
)

= 0
for i > N , and have total degree i. In the construction, to keep track of the number of variables of the
power sums, we introduce an additional index N , so

pi,N (x1, . . . , xN ) = xi1 + · · ·+ xiN . (B1)

Recall that AN = {p1,N , · · · , pN,N} are algebraically independent and generates all symmetric poly-
nomials in N variables. In particular for each i ∈ N∗ there exists a unique polynomial Ti,m,N in N
variables, such that

mpi,N = Ti,m,N (mp1,N , . . . ,m pN,N ). (B2)

The p′i,q are now defined as follows

p′i,q =

 pi,q, 1 ≤ i ≤ N

pi,q − Ti,m,N (p1,q, . . . , pN,q), N < i ≤ q.
(B3)

By construction, they obey Cm
(
p′i,q
)

= 0 for i ≥ N+1, are non-zero, and have total degree i. In addition,

they form an alternate generating set A′q = {p′1,q, . . . , p′q,q} of Λq, because the pi,q of the generating set

Aq can be expressed in terms of the p′i,q in Eq. (B3).

Since, as is shown in Corollary 1, p̃N+1 is the unique (up to a scale factor) polynomial that vanishes
under the clustering Cm, we find that p′N+1 ∝ p̃N+1, and that L−p′N+1 = 0. In addition, by a direct

calculation, one finds that L−p′i,q = ip′i−1,q for 1 ≤ i < N and N + 1 < i ≤ q.
Namely, by acting on both sides of the definition of Ti,m,N , Eq. (B2) with L− gives
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L−Ti,m,N (mp1,N , . . . ,mpN,N ) = qTi,m,N ;1(mp1,N , . . . ,mpN,N ) +

N∑
j=2

mj pj−1,NTi,m,N ;j(mp1,N , . . . ,mpN,N )

= impi−1,N = iTi−1,m,N (mp1,N , . . . ,mpN,N ),

where Ti,m,N ;j denotes the derivative of Ti,m,N with respect to its jth argument. In particular by setting
Xj = mpj,N , we find that for general arguments,

iTi−1,m,N (X1, . . . , XN ) = qTi,m,N ;1(X1, . . . , XN ) +

N∑
j=2

jXj−1Ti,m,N ;j(X1, . . . , XN ). (B4)

We can now act with L− on both sides of the definition of p′i,q, Eq. (B3). Using the relation Eq. (B4),

we find that, for i > N + 1,

L−p′i,q = L−pi,q − L−Ti(p1,q, . . . , pN,q)

= ipi−1,q − iTi−1(p1,q, . . . , pN,q)

= ip′i−1,q,

(B5)

which is what we wanted to show. We note that in the case that i = N + 1, the only thing that changes
in the argument above is that the left hand side of Eq. (B4) is replaced by iXN , leading to the result
L−p′N+1,q = 0, which we showed in the main text using a different method.

Finally, we mention that it is also possible to prove that the degree of p′i,q equals i forN+1 ≤ i ≤ 2N+1,

directly from the definition. We believe that the degree of p′i,q also equals i for 2N + 1 < i ≤ q, but did

not find a proof of this.
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