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Abstract
The one dimensional Transverse Field Ising Model is diagonalized for periodic
and open boundary conditions. A third boundary condition imposed by
fixing the spin in a arbitrary direction on one end of the one-dimensional
Ising-chain is defined and diagonalized. Some similarities between the models
are noted and a selection of properties are given.

1 Introduction

The systems we consider are chains of spin 1/2 particles that interact with
uniform strenght with nearest neighbours as well as with a transverse field,
namely one-dimensional Transverse Field Ising Models (TFIM). The Hamil-
tonian whose exact definition will be given later is without additional con-
straints given by

H = −
∑
n

σxnσ
x
n+1 −

∑
n

hσzn. (1)

The first sum describes the nearest neighbour interaction and the second
sum characterises the interaction with the external field. The strength of the
external field is captured by the variable h. The two sums in the Hamiltonian
work against each other, the first sum preferring to align the spins in the plus
or minus x-direction and the second sum preferring the z-direction.

We look at three different boundary conditions, periodic, open and what
we will call fixed. Although similar systems have been considered[7], treat-
ments of the fixed TFIM model is not readily found in the literature. On
the other hand the periodic and open models were solved and analyzed as
early as 1970 by Pfeuty[1] using the techniques introduced by Lieb, Schultz
and Mattis[5]. The periodic and open TFIM are thus well known but we
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will spend some time exploring these systems for completeness and to intro-
duce techniques useful for diagonalizing the fixed TFIM. The key will be to
write the Hamiltonian in terms of suitably defined fermionic operators, the
spectrum can then be extracted straightforwardly.

As expected from the argument in part I of the book Quantum Phase
Transitions by Sachdev[2] and the results by Pfeuty[1], we find in later sections
that the periodic TFIM exhibits a phase transition in the thermodynamic
limit. As a natural extension of the periodic and open TFIM family of
systems we consider the same model but impose a boundary condition by
choosing a fixed spin direction for one end of the chain, hence the name fixed
TFIM.

2 Periodic Transverse Field Ising Model

2.1 Model description and diagonalization

We start by considering a Periodic Transverse Field Ising Model in one di-
mension, this is a chain of spin 1/2 particles with the ends connected. In
this section we first find formulas that give the energy levels of the periodic
TFIM and then show a selection of properties when the number of particles
gets large. The formulas for the periodic TFIM will inspire some of the steps
used to solve the open TFIM as will become clear in section 3. As a simpli-
fication we normalize the interaction strenght between the spins to be one,
the Hamiltionian is then

H = −
N−1∑
n=1

σxnσ
x
n+1 − σxNσx1 −

N∑
n=1

hσzn. (2)

Where h is a number representing the strength of interaction with the trans-
verse field, N is the number of sites (particles) in the chain and σxn and σzn
are the x and z Pauli matrices acting on site n. Two Pauli matrices acting
on different sites are assumed to commute, i.e. [σρn, σ

δ
m] = 0 for all n 6= m

and ρ, δ ∈ {x, y, z}. On any given site n and ρ, δ, τ ∈ {x, y, z}, the σρn op-
erators satisfy the ordinary Pauli matrix relations (σρn)† = σρn, (σρn)2 = 1,
{σρn, σδn} = 0 for ρ 6= δ. And [σρn, σ

δ
n] = 2iερδτσ

τ
n where ερδτ is the Levi-Civita

symbol, εxyz = 1 and totally antisymmetric.

Without any further manipulations we consider two limiting cases in the
parameter h. When the parameter h is set to zero, the energy is lowered by
setting the spins in the same x-direction, anti aligning the spins at one or
more sites raises the energy. So the ground state is degenerate and has all
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spins in the plus or minus x-direction. In the limit as h→ +∞, the energy is
lowered by aligning the spins in the up z-direction. So in this case the ground
state is non degenerate and has all spins pointing in the up z-direction.

We proceed to diagonalize the Hamiltonian (2) by following section II in
the paper by Dutta, Divakaran, Sen, Chakrabarti, Rosenbaum and Aeppli[3],
the first step is to do a Jordan-Wigner transformation[4] by rewriting it in
terms of the fermionic operators cn defined by

σzn = 2c†ncn − 1

1

2
(σxn − iσyn) = cn exp (iπ

n−1∑
j=1

c†jcj).
(3)

The exponential in the definition (3) links different sites, so although the
Pauli matrices commute on different sites the operators cn obey the fermionic
anti commutation relations {cn, c†m} = δn,m and {cn, cm} = 0. After the
transformation the Hamiltonian takes the following form

H =
N−1∑
n=1

[−(c†ncn+1 + c†n+1cn) + (c†n+1c
†
n + cncn+1)]

−(−1)Nf [−(c†Nc1 + c†1cN) + (c†1c
†
N + cNc1)]−

N∑
n=1

h(2c†ncn − 1).

(4)

The symbol Nf counts the number of fermions and is given by Nf =∑N
j=1 c

†
jcj and (−1)Nf = exp (iπNf ). We note that (−1)Nf commutes with

the Hamiltonian [H, (−1)Nf ] = 0, so the spectrum of (4) can be separated into
two sectors Nf = even and Nf = odd. If we impose the periodicity condition
cN+1 = c1 if Nf = odd and cN+1 = −c1 if Nf = even, the Hamiltonian can
be written on the form

H =
N∑
n=1

[−(c†ncn+1 + c†n+1cn) + (c†n+1c
†
n + cncn+1)]

−
N∑
n=1

h(2c†ncn − 1).

(5)

To make further progress we introduce the Fourier transform of the op-
erators cn

c̃k =
1√
N

N∑
n=1

cn exp (−i2πkn/N). (6)
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The periodicity condition cN+1 = c1 if Nf = odd and cN+1 = −c1 if
Nf = even imply that

k = −N − 1

2
,−N − 1

2
+ 1, ...,

N − 1

2
if N = even,Nf = even

k = −N − 1

2
,−N − 1

2
+ 1, ...,

N − 1

2
if N = odd,Nf = odd

k = −N
2
,−N

2
+ 1, ...,

N

2
− 1 if N = even,Nf = odd

k = −N
2
,−N

2
+ 1, ...,

N

2
− 1 if N = odd,Nf = even.

(7)

The Fourier transform of the Hamiltonian can be written as

H =
∑
k

[−2(cos
2πk

N
+ h)c̃†kc̃k + i sin

2πk

N
(c̃†−kc̃

†
k + c̃−kc̃k) + h].

(8)

Next we introduce the following matrix

Hk = 2

[
− cos 2πk

N
− h −i sin 2πk

N

i sin 2πk
N

cos 2πk
N

+ h

]
. (9)

Equation (8) can then be written on the form

H =
∑
k>0

[c̃†k c̃−k]Hk

[
c̃k
c̃†−k

]
N = even,Nf = even

(10)

H =
∑
k>0

[c̃†k c̃−k]Hk

[
c̃k
c̃†−k

]
− 2(1 + h)c̃†0c̃0 + 2(1− h)c̃†−N/2c̃−N/2 + 2h

N = even,Nf = odd.

(11)

And similarly for the remaining two cases. In (10) and (11) the k values
are given by (7) and we dropped a term

∑
k>0 cos 2πk

N
that sums to zero for

these cases. In (11) the k = −N
2
, 0 terms have been separated out from

the sum since they are in diagonal form.The next step is to do a fermionic
Bogoliubov transformation defined for k > 0
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d†k = sin θkc̃k + i cos θkc̃
†
−k

d†−k = sin θkc̃−k − i cos θkc̃
†
k.

(12)

By constraining the parameter θk with the equation

tan 2θk =
sin 2πk

N

cos 2πk
N

+ h
(13)

we have the diagonal expression

[c̃†k c̃−k]Hk

[
c̃k
c̃†−k

]
= εk(d

†
kdk + d†−kd−k − 1). (14)

Where ±εk are the eigenvalues of Hk for k 6= −N
2
, 0

εk = 2

√
1 + h2 + 2h cos (

2πk

N
). (15)

Note that the operators dk are also fermionic. Combining expression
(14) with (10) and (11) we have after simplification the Hamiltonian (2) in
diagonal form

H =
∑
k

εk(d
†
kdk −

1

2
)

N = even,Nf = even

k = −N − 1

2
,−N − 1

2
+ 1, ...,

N − 1

2

(16)

H =
∑

k 6=−N
2
,0

εk(d
†
kdk −

1

2
)− 2(1 + h)(c̃†0c̃0 −

1

2
) + 2(1− h)(c̃†−N/2c̃−N/2 −

1

2
)

N = even,Nf = odd

k = −N
2
,−N

2
+ 1, ...,

N

2
− 1.

(17)
The expressions for the remaining two cases N = odd, Nf = even and

N = odd, Nf = odd are obtained similarly but are not stated here. We note
that our results differ from those of Dutta, Divakaran, Sen, Chakrabarti,
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Rosenbaum and Aeppli[3], it appears that k = −N
2
, 0 terms are handled dif-

ferently in their stated results.

2.2 Asymptotic behaviour

In this subsection we analyze the properties of the periodic TFIM. For sys-
tems with an even number of sites and h > 0, the lowest energies of (16) and
(17) are respectively

E0(Nf = even) = −1

2

∑
k

εk

N = even,Nf = even

k = −N − 1

2
,−N − 1

2
+ 1, ...,

N − 1

2

(18)

E0(Nf = odd) = −1

2
(
∑

k 6=−N
2
,0

εk)− 2

N = even,Nf = odd, h > 0

k = −N
2
,−N

2
+ 1, ...,

N

2
− 1.

(19)

The first excited state in the respective Nf sectors have energies E1(Nf =
even) and E1(Nf = odd) given by

E1(Nf = even) = −1

2

∑
k

εk + ε(−N−1
2

) + ε(N−1
2

)

N = even,Nf = even

k = −N − 1

2
,−N − 1

2
+ 1, ...,

N − 1

2

(20)

E1(Nf = odd) = −1

2

∑
k 6=−N

2
,0

εk + ε(−N
2
+1) − 2h

N = even,Nf = odd, h > 0

k = −N
2
,−N

2
+ 1, ...,

N

2
− 1.

(21)
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These four energy levels are guaranteed to contain the ground state energy
E0 and the first excited energy level E1 of the system. From numerical
calculations we see that E1−E0 aproach zero as ∼ 1

N
when h = 1. For other

values of h the behaviour is exponential as can be seen from figure 1 where
the difference E1 − E0 is logarithmically plotted against N for h = 0.9 and
h = 1.1.

Figure 1: Periodic-TFIM with even number of sites (N = even). The dif-
ference E1 − E0 is plotted against 1

N
for h = 1 in the upper right plot. In

the upper left plot the natural logarithm of the difference E1−E0 is plotted
against N for h = 0.9. The natural logarithm of the difference (E1−E0)−0.2
is plotted against N for h = 1.1 in the lower plot. The solid line in the plot
for h = 0.9 is the function α + βN with parameters α = −2.6315 and
β = −0.1090. The solid line in the plot for h = 1.1 is the function α + βN
with α = −2.5897 and β = −0.0989.
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When N � 1 using a power expansion in terms of 1
N

of ε(N/2+α) where α is
some constant we see that in the N = even,Nf = even sector the difference
of the two lowest energies E1(Nf = even) − E0(Nf = even) aproaches an h
dependent constant as ∼ 1

N
when h = 1 and as ∼ 1

N2 when h 6= 1, h > 0. A
similar behaviour is also seen in the N = even, Nf = odd sector.

If we also write down the third energy level in each sector

E2(Nf = even) = −1

2

∑
k

εk + ε(−N−1
2

) + ε(N−1
2

) + ε(−N−1
2

+1) + ε(N−1
2
−1)

N = even,Nf = even

k = −N − 1

2
,−N − 1

2
+ 1, ...,

N − 1

2

(22)

E2(Nf = odd) = −1

2

∑
k 6=−N

2
,0

εk + 2

N = even,Nf = odd, h > 0

k = −N
2
,−N

2
+ 1, ...,

N

2
− 1,

(23)

we are guaranteed to find the second excited energy level E2 of the system.
In figure 2 the difference of the second excited energy level and the ground
state energy E2 − E0 is plotted for values of h = 0.9, h = 1 and h = 1.1.

From the plots we find that unlike E1 − E0 the bahaviour is no longer
exponential for h = 0.9 and h = 1.1, instead we have that E2 − E0 ∼ 1

N2 . If
h = 1 we still have that the difference falls of like ∼ 1

N
.

Note that when h = 0.9 the gap between E1 and E0 approaches zero.
But the gap between E2 and E0 is non zero. Thus the ground state energy
is degenerate up to a exponentially small error when N >> 1. But finite
energy is required to excite the system to E2. When h = 1.1 the difference
E1 − E0 is unlike before non zero meaning that energy is required to excite
the system. With h = 1 the energy levels E0, E1 and E2 aproach the same
value. Numerically this structure apears to hold for 0 < h < 1, h = 1 and
h > 1 pointing to h = 1 separating two phases.
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Figure 2: Periodic-TFIM with even number of sites (N = even). In the upper
and lower left plots the difference of the second excited energy level and the
ground state energy E2 − E0 is plotted against 1

N2 for values of h = 0.9 and
h = 1.1. In the upper right plot the difference is plotted against 1

N
for h = 1.

In the thermodynamic limit N →∞, the summation in the formulas (18)
and (19) for the ground state energy is replaced by an integral and we have

E0(Nf = even) = −N
π

∫ π

0

√
(h2 + 1 + 2h cosx)dx

N = even,Nf = even

(24)
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E0(Nf = odd) = −N
π

∫ π

0

√
(h2 + 1 + 2h cosx)dx+ g

g = 0 if 0 < h ≤ 1, g = 2(h− 1) if h > 1

N = even,Nf = odd.

(25)

The first derivative with respect to h of the integral in (24) and (25) is
finite but the second derivative with respect to h of the integral shows a di-
vergent behaviour when h = ±1, in figure 3 the second derivative is plotted
against h and the divergent behaviour can be seen. Note that the expressions
(24) and (25) have the same value when 0 < h ≤ 1.

Figure 3: Periodic-TFIM, The second derivative with respect to h of the
integral in (24) plotted as a function of h. The behaviour is divergent for
h = ±1.

3 Open Transverse Field Ising Model

3.1 Model description and diagonalization

In this section we look at the open TFIM. It is a model consisting of a one
dimensional chain of spin 1/2 particles that interact with nearest neighbours
and with a transverse field. The chain is open in the sence that the spins at
the two endpoints do not interact with each other. The Hamiltonian is given
by
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H = −
N−1∑
n=1

σxnσ
x
n+1 −

N∑
n=1

hσzn. (26)

The operator U = σx1σ
x
2 ...σ

x
N with inverse U−1 = U acts on the hamil-

tonian by conjugation without changing the eigenvalues but the sign of h is
inverted

U−1HU = −
N−1∑
n=1

σxnσ
x
n+1 −

N∑
n=1

(−h)σzn. (27)

Since the sign of h is irrelevant for the spectrum of the system we can
restrict ourself to h ≥ 0. In section 2 we saw that h = 1 is of special interest,
presumably this is still the case for the open TFIM. In this section we only
consider the case h = 1, we first diagonalize the model and then give some
of the properties.

The Hamiltonian (26) is algebraically nicer if we write it in terms of the
fermionic operators (3) previously defined

H =
N−1∑
n=1

[−(c†ncn+1 + c†n+1cn) + (c†n+1c
†
n + cncn+1)]

−
N∑
n=1

(2c†ncn − 1).

(28)

To diagonalize the open chain we follow a method from Lieb, Schultz
and Mattis[5], we use the method as it is given by Mahyaeh and Ardonne[6].
The first step is to realize that up to some constant, the Hamiltonian (28) is
written on the form

H =
N∑

i,j=1

[c†iAijcj +
1

2
(c†iBijc

†
j + h.c.)]. (29)

Where Aij and Bij are numbers determined by (28). These numbers
form the elements of a hermitian matrix A and an antisymmetric matrix B
respectively. The hermiticity of A and the antisymmetry of B ensures that
H is hermitian. We then define the operators

ηα =
N∑
i=1

(gα,ici + hα,ic
†
i ). (30)
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Where gα,i and hα,i are real functions to be determined. The antisymmetry
of the matrix B together with the hermiticity of A ensures that the ηα are
fermionic as is explained in appendix A of the paper by Lieb, Schultz and
Mattis[5]. Introducing the numbers Λα the Hamiltonian (29) can up to some
constant be diagonalized as

H =
∑
α

Λαη
†
αηα. (31)

Here α runs over N values. To determine the values of Λα we first define the
linear combinations

φα,i = gα,i + hα,i (32)

ψα,i = gα,i − hα,i. (33)

Then treating φα,i and ψα,i as the elements of two vectors φα and ψα we use
the commutation relation [H, ηα] = −Λαηα, (29) and (30) to arrive at a pair
of coupled matrix equations for Λα, φα and ψα

φα(A−B) = Λαψα

ψα(A+B) = Λαφα.
(34)

These equations can be decoupled by multiplication from the right by (A+B)
and (A−B) respectively. Since φα and ψα mutually determine each other, it
is sufficient to only consider φα. The decoupled equation for φα is given by

φα(A−B)(A+B) = Λ2
αφα. (35)

This introduces an aparent but resolvable ambiguity of the sign of Λα. Chang-
ing the sign of Λα leaves φα unchanged but flips the sign of ψα. This in turn
changes ηα into η†α, which does not affect the energy gaps of the system. We
may therefore assume that Λα is positive. In order to reproduce (28), the
matrices A and B are given by

A−B = (−2)



1
1 1

1 1
.
.
.
1 1

1 1


(36)
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A+B = (−2)



1 1
1 1

1 1
.
.
.

1 1
1


. (37)

The omitted entries are zero. From equation (35) we note that the effect
of the multiplicative constant (−2) is to scale Λ2

α with a factor of 4. In
the following calculations we simply drop the (−2) terms to simplify the
expressions, they can be reintroduced later if needed. Substituting into (35)
leads to the equations for the boundary

φα,1 + φα,2 = Λ2
αφα,1 (38)

φα,(N−1) + 2φα,N = Λ2
αφα,N , (39)

as well as the bulk equations for the interior

φα,(n−1) + 2φα,n + φα,(n+1) = Λ2
αφα,n

n = 2, 3, ..., N − 1.
(40)

Inspired by the periodic-TFIM we make the anzats Λ2
α = 2(1+cosα) and

to solve (40) we further assume that φα,n ∼ xnα. Under these assumptions
the solution of (40) is given by

φα,n = A1e
inα + A2e

−inα. (41)

Here A1 and A2 are some numbers not yet determined. Using this solution
we write the boundary equations (38) and (39) as a matrix equation for A1

and A2. [
eiα + 1 e−iα + 1
ei(N+1)α e−i(N+1)α

] [
A1

A2

]
=

[
0
0

]
(42)

To avoid the zero vector we are only interested in nontrivial solutions for
φα,n. We thus require that

0 = det

[
eiα + 1 e−iα + 1
ei(N+1)α e−i(N+1)α

]
. (43)

The values of α then become constrained by the equation
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0 = sin (Nα) + sin ((N + 1)α). (44)

To avoid any remaining trivial solutions for φα,n and not overcounting
Λα, we need to choose a subset of the solutions to (44)

α =
2π

(2N + 1)
j

j = 1, 2, ..., N.

(45)

We note that this result holds for h = 1 and hence also for h = −1. In
section 4 we will derive equation (65), an analog to equation (44) that with
the appropriate identifications can be used when h 6= 1. With arbitrary h
determining the possible values of α requires numerical methods.

3.2 Asymptotic behaviour

Because the operators ηα are fermionic, the energy gaps are determined by
specifying the occupation number nα ∈ {0, 1} for each α. Choosing Λα to be
positive, we have from (31)

E(nα)− E0 =
∑
α

Λαnα. (46)

In (46) we omit any overall multiplicative constant that may differ from (28).
Since each α is determined by some integer (45), we might as well use the

label j instead of α and write Λj =
√

2(1 + cos [ 2π
(2N+1)

(N + 1− j)])1/2 . For

very large systems we aproximate Λj as a function of 1
2N

. The function then
takes the simple form

Λj = C(j − 1

2
)

j = 1, 2, ..., N.
(47)

Where C is a O( 1
N

) constant for any given N. Using (46) and (47) we
have an expression for the energy levels of large systems

E(nj)− E0 = C
∑

j=1,2,...,N

(j − 1

2
)nj. (48)

The energy levels come in even steps. So there are ∼ N2 energy levels
and 2N energy eigenstates. We estimate the average degeneracy to be 2N

N2 .
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For large systems, expression (48) enables us to write the partition func-
tion Z on the form

Z = e−βE0

∏
j=1,2,...,N

[1 + e−βC(j− 1
2
)]. (49)

4 Fixed Transverse Field Ising Model

4.1 Model description and diagonalization

In this section we consider systems goverened by the same interactions as the
open TFIM but with the spin of one of the endpoints held fixed. We first
define the system and diagonalize it, we then consider a few special cases and
give two explicit examples of the model.

Fixing the spin on one of the ends reduces the number of states available
and the Hamiltonian for the system will differ from the periodic and open
TFIM. To be more precise we first note that the open TFIM (26) is equipped
with a Hilbert-space H. Specifying the z-direction of the spin at each site
gives a natural basis for H. We write such states as |n >= |n1n2...nN >
where ni is 1 if the spin on site i is up and −1 if the spin is down. Taking
{|n >} to mean the set over all possible n we have H = span{|n1n2...nN >}.
For a given choice of constants α1, α2 obeying |α1|2 + |α2|2 = 1, the fixed
TFIM as we define it is given by the subset H′ ⊂ H

H′ = span{α1|1n2...nN > +α2|(−1)n2...nN >}. (50)

And the Hamiltonian H ′ given by

H ′ : H′ → H′

< ψ|H ′|φ >=< ψ|H|φ >
∀ |ψ >, |φ >∈ H′.

(51)

Here H is the Hamiltonian for the open TFIM (26). To determine (51)
it is sufficient to consider the action of the Hamiltonian on the basis vectors.
For any pair of basis-vectors |ψ >, |φ > of (50) we have
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< ψ|H ′|φ >=< ψ|H|φ >=< ψ| −
N−1∑
i=1

σxi σ
x
i+1 − h

N∑
i=1

σzi |φ >=

=< ψ| −
N−1∑
i=2

σxi σ
x
i+1 − h

N∑
i=2

σzi − (α∗1α2 + α∗2α1)σ
x
2 − h(|α1|2 − |α2|2)|φ > .

(52)
Since (52) holds for all pairs of basis vectors in H′ we conclude that

H ′ = −
N−1∑
i=2

σxi σ
x
i+1 − h

N∑
i=2

σzi − aσx2 − r

a = α∗1α2 + α∗2α1

r = h(|α1|2 − |α2|2).

(53)

For the special case a = 0 the fixed TFIM with N sites is reduced to diag-
onalizing [−

∑N−1
i=2 σxi σ

x
i+1−h

∑N
i=2 σ

z
i ], which we identify as the open TFIM

with (N − 1) sites. The energy-gaps for a system with h = 1 would then be
given by (46) with the appropriate number of sites. The set of solutions to
a = 0 contain α1 = 1, α2 = 0 (the first spin fixed in the z-direction) and is
thus nontrivial.

Before solving the general case a 6= 0 we consider the operator R =
σz2σ

z
3...σ

z
N with inverse R−1 = R. Letting this operator act by conjugation

on (53) we obtain the useful relation

R−1H ′R = −
N−1∑
i=2

σxi σ
x
i+1 − h

N∑
i=2

σzi + aσx2 − r. (54)

Note that the sign of a is inverted while the other terms stay the same.
Since we just showed that H ′ is similar to R−1H ′R, both (53) and (54) have
the same eigenvalues, this will be important when we determine the spec-
trum. Similarly the operator U = σx2σ

x
3 ...σ

x
N shows that inverting the sign of

the parameter h gives the same eigenvalues.

For systems with a 6= 0 the method used in section 3 is not directly appli-
cable. However, adapting the methods introduced by Campostrini, Palissetto
and Vicari[7], it is possible to find analytic expressions for the eigenvalues of
(53). The first step is to introduce the extended hamiltonian
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He = −
N−1∑
i=2

σxi σ
x
i+1 − h

N∑
i=2

σzi − aσx1σx2 − r. (55)

Since He and σx1 commute they have simultaneous eigenvectors. So the
eigenvalues {λ} with corresponding eigenvectors such that σx1 = 1 give the
spectrum for (53). And similarly the eigenvalues {δ} of He with correspond-
ing eigenvectors such that σx1 = −1 give the spectrum for (54). As was shown
previously (53) and (54) have the same eigenvalues, it follows that {λ} = {δ}.
This means that we can unambiguously extract the spectrum of H ′ given the
spectrum of He.

Reusing the methods introduced in section 3, He can be diagonalized and
up to some constant be written on the form He =

∑
α Λαη

†
αηα. As before the

first step is to write it in terms of fermionic operators (3)

He =
N−1∑
n=2

[−(c†ncn+1 + c†n+1cn) + (c†n+1c
†
n + cncn+1)]

−h
N∑
n=2

(2c†ncn − 1) + a[−(c†1c2 + c†2c1) + (c†2c
†
1 + c1c2)]− r.

(56)

The analogous matrices A and B in (29) are for this hamiltonian given
by

A−B = (−2)



0 0
a h

1 h
1 h

.
.
.
1 h

1 h


(57)

A+B = (−2)



0 a
h 1

h 1
.
.
.
h 1

h


. (58)
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Just as in section 3 we will drop the (−2) terms in the following calculations,
without them we have

C = (A−B)(A+B) =



0 0
a2 + h2 h
h 1 + h2 h

.
.
.
h 1 + h2 h

h 1 + h2


.

(59)
Equation (35) then gives us the eigenvalue equation

Cφtα = Λ2
αφ

t
α

C = (A−B)(A+B).
(60)

We would like to calculate the eigenvalues Λ2
α since they together with (31)

give us the spectrum of (55). They are given by the condition det(C−Λ2
α) =

0, directly from C we find the eigenvalue 0 belonging to the eigenvector
(1, 0, 0, ..., 0), we should thus always find one zero eigenvalue. The zero eigen-
value can be explained by the degeneracy due to [He, σ

x
1 ] = 0. The form of

C−Λ2
α suggests the ansatz Λ2

α = 1 +h2− 2h cosα. To calculate det(C−Λ2
α)

we first introduce the n× n matrix Dn and define dn = det(Dn)

Dn =



2 cosα 1
1 2 cosα 1

1 2 cosα 1
.
.
.
1 2 cosα 1

1 2 cosα


. (61)

With the above ansatz and definitions we expand the determinant to find

det(C − Λ2
α) = −Λ2

α[(a2 − 1 + 2h cosα)hN−2dN−2 − hN−1dN−3]. (62)

Expanding the determinants dn we find the recursion relation
dn = 2(cosα)dn−1 − dn−2. Solutions can be found by setting dn ∼ xn, we
obtain dn = F1e

iαn+F2e
−iαn for some constants F1 and F2. From an explicit

calculation we find d1 = 2 cosα and d2 = 4 cosα2 − 1. This is enough to fix
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the constants to F1 = −i eiα

2 sinα
, F2 = i e

−iα

2 sinα
, and the determinants are given

by

dn =
sin [α(n+ 1)]

sinα
. (63)

The eigenvalues Λ2
α = 1 + h2 − 2h cosα are thus given by the equation

0 = det(C − Λ2
α) = −(1 + h2 − 2h cosα)hN−2

[(a2 − 1 + 2h cosα)
sin [α(N − 1)]

sinα
− hsin [α(N − 2)]

sinα
].

(64)

Or more compactly

0 = det(C − Λ2
α) = −(1 + h2 − 2h cosα)hN−2

[(a2 − 1)
sin [α(N − 1)]

sinα
+ h

sin [αN ]

sinα
].

(65)

Note that we should always have a zero eigenvalue, depending on the
value of h this is not always possible if we restrict α to be real. With a = 0
we previously identified the fixed TFIM with the open TFIM, equation (65)
can thus be used to find the spectrum of the open TFIM (26) with arbitrary
h. In general we need to use numerical methods to find the possible values
of α.

4.2 Special cases and examples

Adapting the methods by Campostrini, Palissetto and Vicari[7] we obtained
equations for the eigenvalues that we now solve for two cases.

First we note that if a2 = 1, equation (65) reduces to 0 = (1 + h2 −
2h cosα) sin [αN ]

sinα
= Λ2

α
sin [αN ]
sinα

, the solutions are

α =
π

N
k k = 0, 1, ..., N − 1 h = 1 (66)

α =
π

N
k k = 1, 2, ..., N h = −1 (67)

α =
π

N
k k = 1, 2, ..., N − 1

α1 s.t. Λ2
α1

= 0

|h| 6= 1.

(68)
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We can combine these cases into one and write

He = −2
N−1∑
k=1

√
(1 + h2 − 2h cos (πk/N))η†α(k)ηα(k) + (constant)

a2 = 1.

(69)

Above the zero eigenvector is not explicitly summed over but it is impor-
tant to remember that α runs over N values. Note also the factor of −2 that
we have reintroduced after dropping it earlier. The identifications between
the spectrum of (53), (54) and (55) given earlier determine the spectrum of
(53).

We showed earlier that inverting the sign of the parameter h gives the
same spectrum. Therefore if we invert the sign of h in Λ2

α the same eigenvalues
are also given by

0 = (1 + h2 + 2h cosα)hN−2

[(a2 − 1)
sin [α(N − 1)]

sinα
− hsin [αN ]

sinα
].

(70)

If the parameters obey a2 − 1 = ±h, we can if necessary invert the sign
of h and determine the non zero eigenvalues from the the equation

0 =
sin [α(N − 1)]

sinα
+

sin [αN ]

sinα
. (71)

This also requires the appropriate change of sign in Λ2
α. The non redun-

dant solutions are given by

α =
2π

2N − 1
k, k = 1, 2, ..., N − 1

α1 s.t. Λ2
α1

= 0.
(72)

Note the similarity with the solutions for the open TFIM with h = 1 (45).

We will now validate the conclusions drawn earlier in this section with two
explicit examples. The first example corresponds to a = 0 (53), the second
example similarly corresponds to a = 1. We start with the open TFIM (26)
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with 3 sites and h = 1, as a matrix in the z-basis

H = −
2∑

n=1

σxnσ
x
n+1 −

3∑
n=1

σzn =

=



−3 0 0 −1 0 0 −1 0
0 −1 −1 0 0 0 0 −1
0 −1 −1 0 −1 0 0 0
−1 0 0 1 0 −1 0 0
0 0 −1 0 −1 0 0 −1
0 0 0 −1 0 1 −1 0
−1 0 0 0 0 −1 1 0
0 −1 0 0 −1 0 0 3


.

(73)

Fixing the spin in the z-direction on site one give us H′ = span{|1n2n3 >}.
The hamiltonian H ′ is then in matrix form given by the upper left quarter
of (73).

H ′ =


−3 0 0 −1
0 −1 −1 0
0 −1 −1 0
−1 0 0 1

 (74)

The matrix for the open TFIM with 2 sites is in the z-basis given by

H =


−2 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 2

 =

=


−3 0 0 −1
0 −1 −1 0
0 −1 −1 0
−1 0 0 1

+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = H ′ + 1,

(75)

as expected from (53) for a systems with a = 0.

Next we consider fixing the first spin in the x-direction. This is the case
a = 1 in (53). It is now convenient to use the x-basis, the starting point is
still the open TFIM Hamiltonian (26) with 3 sites and h set to one. As a
matrix in the x-basis we have
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H = −
2∑

n=1

σxnσ
x
n+1 −

3∑
n=1

σzn =

=



−2 −1 −1 0 −1 0 0 0
−1 0 0 −1 0 −1 0 0
−1 0 2 −1 0 0 −1 0
0 −1 −1 0 0 0 0 −1
−1 0 0 0 0 −1 −1 0
0 −1 0 0 −1 2 0 −1
0 0 −1 0 −1 0 0 −1
0 0 0 −1 0 −1 −1 −2


.

(76)

Writing the x-basis in a similar fashion as the z-basis, we have for a
system with the first spin fixed in the x-direction H′ = span{|1n2n3 >}. So
the associated Hamiltonian H ′ is given by the upper left quarter of (76).

H ′ =


−2 −1 −1 0
−1 0 0 −1
−1 0 2 −1
0 −1 −1 0

 (77)

We then introduce

He = −
2∑
i=2

σxi σ
x
i+1 −

3∑
i=2

σzi − σx1σx2 . (78)

In the x-basis it is given by

He =



−2 −1 −1 0 0 0 0 0
−1 0 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 0 0 0 0 0
0 0 0 0 0 −1 −1 0
0 0 0 0 −1 2 0 −1
0 0 0 0 −1 0 0 −1
0 0 0 0 0 −1 −1 −2


. (79)

The upper left quarter of (79) is the same as the Hamiltonian (77) we
want to diagonalize. The two 4 × 4 blocks on the diagonal of (79) do not
mix, so the eigenvalues of (79) are given by the eigenvalues for the matrix
constituting the upper left quarter together with the aigenvalues for the ma-
trix constituting the lower right quarter. The spectrum of the Hamiltonian
(79) thus contains the spectrum of (77). Note also that the spectrum of (79)
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is doubly degenerate.

5 Summary

After diagonalizing the periodic TFIM we analyzed it both numerically and
analytically. In the thermodynamic limit we found that the second derivative
of the ground state energy with respect to the transverse field strengh h is
divergent for h = 1, signifying a phase transition. The first few excited
energy levels fall of towards the ground state energy as ∼ 1

N
when h = 1.

For other h we found that the falloff can be exponential or ∼ 1
N2 depending

on the energy level under consideration.
The open TFIM was diagonalized for h = 1 and we saw that in the limit of

large systems N >> 1 the energy levels are highly structured. The structure
of the spectrum enabled us to write the partition function on a simple form
for N >> 1.

The fixed TFIM proved after defining it to share similarities with the
open TFIM, under certain circumstances they give rise to essentially the
same system. We also found ‘rotational’ symmetries that were important
when determining the spectrum of the fixed TFIM.

acknowledgments - The author would like to thank Stockholm University
and Fysikum for housing this study. And the authors supervisor Eddy Ar-
donne at Fysikum for his advice on various topics and proposing a study of
the fixed TFIM.

References

[1] P. Pfeuty, The One-Dimensional Ising Model with a Transverse Field,
Annals of Physics: 57, 79 (1970).

[2] S. Sachdev, Quantum Phase Transitions, Cambridge University Press,
second edition, (2011).

[3] A. Dutta, U. Divakaran, D. Sen, B. K. Chakrabarti, T. F. Rosenbaum,
G. Aeppli, Quantum phase transitions in transverse field spin models:
From statistical Physics to Quantum Information, arXiv:1012.0653v3,
(an expanded version has been published as a book (330 pages, 72 fig-
ures, 874 references) as A. Dutta, G. Aeppli, B. K. Chakrabarti, U.
Divakaran, T. F. Rosenbaum and D. Sen, Quantum Phase Transitions



TFIM with different boundary conditions

in Transverse Field Spin Models: From Statistical Physics to Quantum
Information (Cambridge University Press, Cambridge, 2015)).
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