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Kitaev honeycomb lattice model

Without external magnetic field:

Hy=1J, 2;; 0%,0% + +1], 2, 0%0%

. 5) .
x-lin z-link

— ZO( JOL 21,_] Oal()'aj — 20{ JOL 21,_] Kal_] o -link

Analytical insights into the model on a plane at the thermodynamic limit:

J=1,1=J=0 Phase diagram

* phase A - can be mapped perturbatively
A onto abelian Z, X Z, topological phase (Toric code)

* phase B - gapless

A.Y Kitaev, Anyons in an exactly sovable model and beyond, Ann. Phys. 321, 2 (2006).



Kitaev honeycomb lattice model

With magnetic field:

H=H,+%3_ .. B,o

o0=X,y,Z o0,

Phase diagram
* phase A - abelian topological phase Z, X Z,;
» phase B is on 3™ order perturbation theory A

related to non-abelian topological phase SU(2),
with quasiparticles (1, o, €);

* FQH state at v=5/2,
p-wave sc,
graphene.

A.Y Kitaev, Anyons in an exactly sovable model and beyond, Ann. Phys. 321, 2 (2006).



Mapping to Toric code

When S, == Jy,

5o E : x_x E : y_y
HD = —J. Z O'_?O';é, 1 - Jil? O-Jo-k Jy O-‘ja-k

z—links r—links y—links

I Effective spins Derr =111 | Desr= [11)

The first non-constant term of PT occurs on the 4t order
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() is defined on the lattice in which effective spins lie on the vertices.

For the green lattice, H_; can be written as the toric code Hamiltonian.

Heﬁ' = T Jeff ( Z ('25 + Z (;}P)

vertices plaquettes

A.Y Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).



Vortex operators

= % X =
W, = 0%0%, 0%,0% 0¥;0%
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K 1,2K 2,3Ky3,4K 4,5K 5,6Ky6,1

[H09 W] =0 (K% k1 )*=1

o o o
Kﬁk+1,k+2 K kk+1™ ~ K k,k+1KBk+1,k+2

H, n>=E_ |n> w, =<n|W [n>=+1 no vortex at plaquette p

w,=<n|W |n>=-1 avortex at plaquette p

Each energy eigenstate is characterized by some vortex configuration and
the Hilbert space splits into vortex sectors.

L= ® L



Loop symmetries on torus

On torus, there is one nontrivial relation between the plaquette operators
IL, W, = I

which, for a system of N spins on torus (i.e. a system with N/2 plaquettes), implies that there are
N/2-1 independent quantum numbers {w, ..., Wy, }-

Loops on torus Kl,J,a(l) K] ka(Z) Kp,qa(M—l) Kq,ia(M)

. .. (K% 1) =1
- all homologically trivial loops are generated by plaquette operators. ’
- two homologically nontrivial loops have to be introduced to generate the full loop symmetry

group (the third nontrivial loop is a product of these two).

The full loop symmetry of the torus is the abelian group with N/2+1 independent generators of
the order 2 (loop?=I), i.e. Z,NV?*1,

All loop symmetries can be written as

C(k,l) =G LW, Wy oo, Wyy)

where k 1s from {0,1,2,3} and G, =1, and G,, G,, G; are arbitrarily chosen symmetries from
the three nontrivial homology classes, and F), with [ from {1, ..., 2N>1} run through
all monomials in the ¥,



Effective (low energy) Hamiltonian

OO0
LI 1l m = Z plep 2N2 degenerate ground state =
l l III z—links
r rrua
Vo= —J, Z olon —Jy Z oloy
z—links y—links

Projected onto the “ground state manifold”, the loop symetries play an important role in

the Brillouin-Wigner perturbation theory which allows exact perturbative derivation of

the effective (low energy) Hamiltonian on torus in the abelian phase of the model :

2N/2—2

Heﬁ’ = i Eci,jGi(ZaY)Fj(Qlana ------- Ov/2-2)

The eigenstates of the effective system are

the zeroth order approximations to those of the full system.

trivial

VVP%QP

The loop symmetries further allow:
» C(lassification of all finite size effects.

*  Manipulation of vortices in the effective system.

nontrivial
- reflects topology

G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos and J.
Topological degeneracy and vortex manipulation in the Kitaev honeycomb
arXiv:0804.2753 (submitted).

Vala,
model,




Finite-size effects in small systems on torus

Toric code emerges on the 4th order of perturbation theory the low energy sector of H:

| o(H)=E =0 (] o H o)+ o(J°) j”"leéy}rjf:lﬁfrzf J=J=T,< ],
A The minimal size of the lattice with
‘*‘ no finite size terms on the 4th order is
i.e. Toric code on the lattice of 3x3 square plaquettes
which properly represents the torus

For smaller systems, the finite size effects are substantial on the 4th order,
for example N=16:

J2j2 B
W _1£‘|_f| Z[{'J? + R,, —5A,)
.}f,ﬁf” .
— lb|I~| (Z,, +5Y,,)
- 2 4
_ lbr]z| ( }f ;Xﬂ + Tj 2 X,

The toric code spectrum can be reconstructed by extracting the finite size effects from
the spectrum of H.

G. Kells, N. Moran, J. Vala,
Finite size corrections in the Kitaev honeycomb lattice model, (to be submitted).



Mutual statistics of fermions and vortices
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Mutual statistics of fermions and vortices
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Mutual statistics of fermions and vortices
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Mutual statistics of fermions and vortices
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Mutual statistics of fermions and vortices

e S

PSS PoN S
1

©oarhoul Al A 11

-, .
K" =eof@a? along 3-links.

We can rotate the pair of vortices around
some other vortices without changing
the energy of the system.

The net operation corresponds to
the multiplication of the plaquette
operators, i.e. vortices, inside the loop.

This is the cleanest way to observe the statistics of vortices of the honeycomb model,
circumventing approximations associated with direct mapping of the toric code operations.




Kitaev honeycomb lattice model

With magnetic field:

H=H,+%3_ . B,o

0=X,y,Z 0o,

Phase diagram
* phase A - abelian topological phase Z, X Z,
» phase B is on 3™ order perturbation theory A

related to non-abelian topological phase SU(2),
with quasiparticles (1, o, ¢€)
bg, _.ﬁ.[.qj B

\\(‘:__I__i’;’
* FQH state at v=5/2, 54, A A
p-wave sc A J.=1 y o
graphene T J,=1,=0 J=1=0

A.Y Kitaev, Anyons in an exactly sovable model and beyond, Ann. Phys. 321, 2 (2006).c



Effect of magnetic field

Perturbative effect of magnetic field in all vortex sectors

y z
x—links y-links z-links [7

_ X X y y z X y z
H=-J Moo, -J o0, —-J o Oki +K » o;0;0;

Exact numerical diagonalisation of finite size toroidal systems:

1N
)
L% 504

Confirmation of opening and closing of gaps within particular
vortex sectors.

Exact numerical confirmation of analytical results.

V. Lahtinen, G. Kells, A. Carollo, T. Stitt, J. Vala, J. K. Pachos

Spectrum of the non-abelian phase in Kitaev's honeycomb lattice model

arXiv:0712.1164 (to appear in Annals of Physics)
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Technical developments

Code development for generating parallel multi-spin-lattice operators
* Excellent scalability on shared and distributed memory machines
Eigensolvers and analysis

* Linear scaling exact diagonalization techniques
ARPACK, PETSc and SLEPc libraries

Capabilities: > 36 spin lattice systems (real, using symmetries)
~ 32 spin (complex, e.g. Kitaev model with B field)

*  Approximate techniques:
~ 2-D open b.c 100-spin systems with local Hamiltonian
Projected Entangled Pair States (PEPS) approach

Quantum propagation
*  Chebyshev polynomial expansion of quantum evolution operator
T. Stitt, G. Kells and J. Vala ‘LAW: A Tool for Improved Productivity with

High-Performance Linear Algebra Codes. Design and Applications’,
arXiv:0710.4896 (To be submitted to Computer Physics Communications)

Schroedinger/Lanczos
ICHEC BlueGene/P/L

4096/2048 cores
33 TB memory
3D toroidal network

Walton
IBM cluster 1350

958 processing cores
14 TB memory




Technical developments
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Under development

« extension of the exact diagonalization code to include Bloch basis representation
* integration of our exact diagonalization code with ALPS
* PEPS representation for topologically ordered systems with open and closed boundary



Work in progress

Kitaev honeycomb lattice model

» thin torus limit of the model
* quasiparticle properties and dynamics in phase B in perturbative magnetic field and beyond
» spectral properties of phase B in magnetic field

* quantum phase transitions between topological phases
» modified and alternative models (with Joost Slingerland and Hector Bombin)

Fendley quantum loop gas models - modified inner product allows for nonabelian phases in contrast to Freedman models

* low energy spectral properties of the Fendley Hamiltonian at k=2 (Toric code)
» extension to k=3 theory —Fibonacci anyons



Thin torus limit of the Kitaev model - preliminary results

One-dimensional limit that is more accessible by both analytical (CFT)
and numerical (DMRG) techniques.

Low energy spectrum in the vortex free sector appear to mimic
the spectral properties of the uncompactified system:
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Scaling of the gap with 1/L was studied
using both exact diagonalization (up to N=28)
and DMRG (up to N=80):
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Thin torus with magnetic field - preliminary results

Magnetic field opens a gap in the “B-phase” sector of the model

Energy
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Energy Gap Scaling with Field at IJx = Jy = Jz = 1/3
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Fendley quantum loop gas models

Two state quantum system at each vertex of the completely packed quantum loop model

1) = N T = >< Paul Fendley
Fah arXiv/0804.0625

Introducing topological inner product and new orthogonal basis

<1‘1> <1|T> (1A = d21—1(di>+1>) g B bde 1
<T‘1> <T|T> RV o= (d\1>+\’1“>) Jan En Vi alny 4

d?—1

leads to cracking 2! barrier encountered in quantum loop gas models by Freedman.

Starting point: toric code
1

L Wy = 5(1 — OV10Y 20301 4),
H = HtOT?:C —|_ H‘Hu Htoric = WV + WF L LT ed 1 r o T _T
ZV Wrp = 5(1 — OP10 a0 30 hy)

vertex and face operators

4 4
HMZZWVZO'%?@ +ZWFZJ%Q'
v =1 F a=1

adding Jones-Wenzl projectors provides SO(3), theory at arbitrary level of theory k.
n| |1]1 n| |1]1 1 1 d =2 cos(/(k+2))

U A, =0
| | — | |

An+1: d An - An—l




Fendley quantum loop gas models - preliminary results

Starting point: toric code
1

L Wy = 5(1 — OV10Y 203301 4),
H = HtOT?:C + MHU Htoric = WV + WF % Ve 1 r x T _T
Z Wrp = 5(1 — OP 0T 3T hy)

v

4 4
i = ZWVZO'fra ~|—ZWFZO'%Q.
1% a=1 ¥ a=1

vertex and face operators

Gap Flot for 3 x 4 Faces
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