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Why topologial states in CMP?

@ Phases with order provide organizing principle

@ Topological defects occur as excitations of condensates.

YBCO single crystal @ 22.3K.
Scan height 420nm

@ Topological order a new paradigm
for many body physics.



In search of topological states
with fractionalized excitations.

® Topological order and fractionalization

® Poking at Fractional quantum Hall states
e Stability of 1/2-qvs in SrRuO

e Summary and outlook
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@ No local order parameter.

@ Topological degeneracy Ng.

& topological invariance
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How to tell?

@ Fractionalization of quantum numbers
> charge e*=e/q
> vorticity h/4e = 1/2 h/2e

@ Fractional statistics (spin) Y(r1,r2) = €9 P(rar1)

03D

v 2D

» double exchange =/ » 6 can be arbitrary
» 6 =0 (boson), 7 (fermion) » (abelian) Anyon
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@n- nonabelian vortex states

Y1 exchange of gps:
Wy, i e e f - rotation in d(n) dim
Va(n) Hilbert space

U(ry o x3) = MY (21, - ,2p)
Uz, <o P=iNW (x5 -

d(2n) = 2™! for MR state or p+ip SC
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Ng & fractionalization

@ Fractional charge e*=e/qg

Ngzqg e.g., N1=3

@ 2n Non-abelian vortices /@ T 7

N2,=2""! for MR state or p+ip SF
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Topological Quantum Computation

@Requirements for quantum computation

-Qubits = Non-abelian anyons

-Unitary operation: = Braiding
computation

-Decoherence control: = Automatic
quantum error correction
code
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FQH and Topology

@ Ruras a fopological invariant: & Experimental check

= precise and robust v v =1/3 charge
@ Anyon v v = 1/3 statistics
» e.g., Moore-Read state / v =5/2 point contact
- V=

- gp types: 1, o (e*=1/4), ¥ operation, e/4 charge

- 4-0%: 2 states <1 qubit

[WANTED: signature of non-abelian anyons]
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DWitten: Quantum Field Theory and Jones Polynomial

In a lecture at the Hermann Weyl Symposium last year [1], Michael Atiyah
proposed two problems for quantum field theorists. The first problem was to

give a physical interpretation to Donaldson theory. The second problem was to

find an intrinsically three dimensional definition of the Jones polynomial of knot

theory. These two problems might roughly be described as follows.
As for the Jones polynomial and its generalizations [5-11], these deal with
the mysteries of knots in three dimensional spaée (figure 1). The puzzle on ths

mathematical side was that these objects are invariants of a three dimensional sit-

uation, but one did not have an intrinsically three dimensional definition. There

-Wilson line

:knots & representation of compact gauge group
—Cutting three manifold M with a Riemann surface 2.
:cut Wilson lines mark points
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In a lecture at the Hermann Weyl Symposium last year [1], Michael Atiyah
proposed two problems for quantum field theorists. The first problem was to

give a physical interpretation to Donaldson theory. The second problem was to

find an intrinsically three dimensional definition of the Jones polynomial of knot

theory. These two problems might roughly be described as follows.
As for the Jones polynomial and its generalizations [5-11], these deal with
the mysteries of knots in three dimensional spaée (figure 1). The puzzle on ths

mathematical side was that these objects are invariants of a three dimensional sit-

uation, but one did not have an intrinsically three dimensional definition. There

-Wilson line
:knots & representation of compact gauge group
—Cutting three manifold M with a Riemann surface 2.

:cut Wilson lines mark points

-CS theory is the effective field theory
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Jones Polynomial &

@ Wilson loop insertions in spin-1/2 representation:
Gauge invariant observable of CS theory

@ Jones Polynomial of the loops evaluated at ¢ =¢""

2 2
Jortfoeolfo]Jon[ 2. s S

% Vv(em/él)

-V, (q) topological invariant of a knot
—Quantum mechanical amplitudes’
dependence on the braiding of world lines
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@ Finite size sample &

cutting 2+1D space with
a 1+1D surface

@ Cut Wilson lines mark

@ The theory at the
boundary is relativistic

( (x-vt) )
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Transport measurements of QHE

@Quantum Hall setting @Quantized magnetotransport

-2D electron system
-low T, large magnetic field ™ 10 T

- 0.0
32 34 36 38 40 42
MAGNETIC FIELD [T]

(from W. Pan et al, 1999)

- and quantization Ry =h/ve’



PC tunneling: poking at the edge states

Device 1

©
o

Height (h/e?)

20 30 40 5060
T (mK)

FWHM (nA)

10 20 30 40 50 60
T (mK)

Radu et al, ArXiv: 0803.3530

. 0.0 . - 505 -505 -505
lio/T (NA/MK) lie (NA)

0
eV /KT

Chiral Luttinger liquid behavior



PC tunneling: poking at the edge states

Dolev et al, Nature vol 452, 829 (2008)

Fractional charge




Double PC interferometer

@ Success in the abelian case v = 1/3

— V. Goldman (2005) _ Theory (E.-A. Kim, 2006)

> correct superperiod
> T-dep oscillation amplitude

-
- >, -

100 125 150
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Proposal for MR state

@ The interferometer setup

@ Perturbative calculation of funneling response:
current ¢ I )and noise {S(w)),

= involves a pair of Wilson lines
terminating at four marked points
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The topology of Wilson line configs.

@ Lowest order tunneling interference.

@ Different FQH states < Different for

untangling or a Wilson line through another.

@ Lines can, effectively, be pulled through for
abelian states



r

Can these two possibilities
show up in measurable

\

quantities for the MR state ?



The v.S. the

@ Current defined as a response

commutator

anti-commutator




Edge state theory

@The charge: chiral boson

L.=1/(2m)0z0c(0+v0z)pc

@Non-Abelian statistics: Ising conformal field theory

—Primary fields 1, ¢, o

—Electron operator:

—Quasi-particle operator: RrNE NS EATNE

where




double PC calculation

0'(331, t)O'(:B2, t)ei/\/g(pc(xl’t)e_i/\/g‘PC(-’L'mt)

o (z3,t)0 (T4, t)e? V3P (2a:t) =1/ VBPc(2at)




current and noise

(NP + cos(E)DE) =

[ Y Ty [em o (709 )0, 7)) 0)]

_ <S(w)>(p)+COS(£)<S(CU)>(p)

OSC

[ a S I [ (0P )+ 7))

% k=1

Both require four-o correlator



Ising CFT technology

@Fusion rule: a part of definition of CFT

@four o correlator:
simplest object displaying non-Abelian nature

(0(21)0(22)0(23)0(20)) P = %(zl_zz)—g(z3_z4)—%(1_§)_1/s

X1+(—1) 1—-¢& ¢ = (21—22)(23—24)

(21— 24)(23 — 22)

@Two channels : the key feature of non-
Abelian statistics. (qubit)
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® Current ® Noise
- A response to — Fluctuation (correlation)
external voltage in current
- Causality - Not bound by causality

7)®) = d4e*v/7T|T;,T / . osilwt)
L)sse = de"vrl|ly 2|s1nh(7rT(t a))/4sinh(#xT (t + a))t/4

(SW)E = 4(e")*VaT|T1Ts| x

>~ cos((w + wp)t) + cos((w — wo)t)
(/a o E — ) s (T £ )78

/ W)
sinh(7T'(t — a))/4 sinh(#xT'(t 4 a))1/4
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® Current ® Noise
- A response to — Fluctuation (correlation)
external voltage in current
- Causality - Not bound by causality

1)) = 4e*VaT|T,T / gl osimlwet)
(e = 4e" VT, 2|smh(ﬂ'T(t a))/4sinh(#xT (t + a))t/4

<S(W)>g§3 = 4(6 27rT|I‘1I‘2|><

g CoSUw +wo)t) + cos((w —wo)t)
smh 7T (t — a))/4sinh (7T (t + a))1/4

“W)
sinh(77T'(t — a))1/4 sinh(xT'(t + a))1/4




Two states in interference noise

@ State dependence only for space-like separation.
i .

.I.

space-like time-like
@ Interference noise: qualifative state dependence.

a=>5um, V=.38uV (wo=100 MHz), v=1.10"m/s
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Interpretation

@ Why only in the

- can only be seen by
space-like separated events

@ Why decreasing function of win the state (1)
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K. Ishida et al, Nature (1998)

Spin-friplet superconductivity in Sr2RuO4
identified by 170 Knight shift



: P-T breaking SC
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@ Triplet gap matrix —d,(k)+id, (k) d,(k)
- d,(k) d,(k)+id, (k)







1/2 QV in p+ip SC

@ The gap matrix

App(k) Aq(k)
Apk) Apy(k)

A(k)=




1/2 QV in p+ip SC

@ The gap matrix

App(k) A (k)
Apr(k) Ak

A(k)=




1/2 QV in p+ip SC

@ The gap matrix

Ao | Ak L\.Tl(k)]El—dr-i—idy d.

Apr(k) Ay (k) d. dy + id,

@ 1/2 QV when d.=0 i.e., d = (cosa, sina, 0)



1/2 QV in p+ip SC

@ The gap matrix
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1/2 QV in p+ip SC

@ The gap matrix

Ao | Ak /‘_\.T|(k)]El—d$+'z’dy d.

App(k) Ap(k) d, dy + idy

@ 1/2 QV when d.=0 i.e., d = (cosa, sina, 0)
<» 27 winding for only one spin component

<> 7 winding of order parameter phase ¢
+ m rotation of d vector

Ap=21

-

hc/2e vortex hc/4e vortices
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@Vortices of p+ip SF=p zero modes at the core
Kopnin and Salomaa PRB (1991)

@ Zero modes are Majorana

» BdG qP,S /Y;r = Ulbj + VY, ’V;r(En) e ’Vi(_En)
» zero mode: 7! (0) = ~;(0)

@ Majorana + vortex composite

=» non-Abelian statistics /ﬁ 5‘7

( 1/2 QV's: single Majorana zero mode )
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@ Energy competition between full-QV and 1/2-QV

» Reducing vorticity magnetic energy
» d-vector bending energy

@ Gradient free energy when d.LL (London limit)

(VA2

@® Spin current energy diverges logarithmically!



stability of 1/2 QV

A(lf = 47 E_l.-"Eq'.-'-puir[:r:}_E_ir‘u]]—qn.-
.A\\ “’\.
N N

Ax=m

@ Competition between screened magnetic repulsion
and unscreened spin attraction

@ Finite equilibrium size for small

@ Use mesoscopic samples.
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