Entanglement Entropy at 2D quantum critical points, topological fluids and quantum Hall fluids Invited Talk at the Nordita Workshop, Stockholm 2008

Eduardo Fradkin

Department of Physics University of Illinois at Urbana Champaign

August 15, 2008

Collaborators and References

- Stefanos Papanikolaou, Kumar Raman, Benjamin Hsu, Shiying Dong, Robert G. Leigh and Sean Nowling (UIUC),
- Michael Mulligan and Eun-Ah Kim (Stanford), Joel E. Moore (University of California Berkeley), Paul Fendley (Virginia)
- S. Dong, E. Fradkin, R. G. Leigh and S. Nowling, JHEP 05, 016 (2008).
- S. Papanikolaou, K. S. Raman, and E. Fradkin, Phys. Rev. B 76, 224421 (2007).
- ► E. Fradkin and J. E. Moore, Phys. Rev. Lett. 97, 050404 (2006).
- ▶ P. Fendley and E. Fradkin, Phys. Rev. B 72, 024412 (2005).

 Entanglement entropy measures quantum mechanical correlations in many body systems and field theories

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- ▶ It is a very non-local quantity which very difficult to measure

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- ► It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- ▶ It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- ► It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions
- ► Topological phase ⇒ universal topological entropy

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- ► It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions
- ► Topological phase ⇒ universal topological entropy
- Can the structure of the topological field theory can be determined by a suitable set of entanglement measurements?

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- ▶ It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions
- ► Topological phase ⇒ universal topological entropy
- Can the structure of the topological field theory can be determined by a suitable set of entanglement measurements?
- ► We will use the effective low energy theory of fractional quantum Hall fluids, the Chern-Simons gauge theory.

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- ▶ It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions
- ► Topological phase ⇒ universal topological entropy
- Can the structure of the topological field theory can be determined by a suitable set of entanglement measurements?
- ► We will use the effective low energy theory of fractional quantum Hall fluids, the Chern-Simons gauge theory.
- Topological Quantum Computing?

▶ Given the pure state $\Psi[\varphi_A, \varphi_B]$ and the(trivial) density matrix of the combined system $A \cup B$

▶ Given the pure state $\Psi[\varphi_A, \varphi_B]$ and the(trivial) density matrix of the combined system $A \cup B$

$$\langle \varphi_{A}, \varphi_{B} | \rho_{A \cup B} | \varphi_{A}', \varphi_{B}' \rangle = \Psi[\varphi_{A}, \varphi_{B}] \Psi^{*}[\varphi_{A}', \varphi_{B}']$$

▶ Given the pure state $\Psi[\varphi_A, \varphi_B]$ and the(trivial) density matrix of the combined system $A \cup B$

$$\langle \varphi_{A}, \varphi_{B} | \rho_{A \cup B} | \varphi'_{A}, \varphi'_{B} \rangle = \Psi[\varphi_{A}, \varphi_{B}] \Psi^{*}[\varphi'_{A}, \varphi'_{B}]$$

• The reduced density matrix for A, which acts only on the states $\{\varphi_A\}$, is constructed by tracing over the degrees of freedom in B:

▶ Given the pure state $\Psi[\varphi_A, \varphi_B]$ and the(trivial) density matrix of the combined system $A \cup B$

$$\langle \varphi_{A}, \varphi_{B} | \rho_{A \cup B} | \varphi'_{A}, \varphi'_{B} \rangle = \Psi[\varphi_{A}, \varphi_{B}] \Psi^{*}[\varphi'_{A}, \varphi'_{B}]$$

► The reduced density matrix for *A*, which acts only on the states $\{\varphi_A\}$, is constructed by tracing over the degrees of freedom in *B*:

 $\rho_A = \operatorname{tr}_B \rho_{A \cup B}$

► Given the pure state \[\[\varphi_A, \varphi_B\]\] and the(trivial) density matrix of the combined system \[A \cup B\]

$$\langle \varphi_{A}, \varphi_{B} | \rho_{A \cup B} | \varphi'_{A}, \varphi'_{B} \rangle = \Psi[\varphi_{A}, \varphi_{B}] \Psi^{*}[\varphi'_{A}, \varphi'_{B}]$$

► The reduced density matrix for *A*, which acts only on the states $\{\varphi_A\}$, is constructed by tracing over the degrees of freedom in *B*:

$$\rho_A = \operatorname{tr}_B \rho_{A \cup B}$$

► The von Neumann entanglement entropy is

► Given the pure state \[\[\varphi_A, \varphi_B\]\] and the(trivial) density matrix of the combined system \[A \cup B\]

$$\langle \varphi_{A}, \varphi_{B} | \rho_{A \cup B} | \varphi'_{A}, \varphi'_{B} \rangle = \Psi[\varphi_{A}, \varphi_{B}] \Psi^{*}[\varphi'_{A}, \varphi'_{B}]$$

► The reduced density matrix for *A*, which acts only on the states $\{\varphi_A\}$, is constructed by tracing over the degrees of freedom in *B*:

$$\rho_A = \operatorname{tr}_B \rho_{A \cup B}$$

► The von Neumann entanglement entropy is

$$S_A = -\mathrm{tr}_A \left(\rho_A \ln \rho_A \right) = -\mathrm{tr}_B \left(\rho_B \ln \rho_B \right) = S_B$$

► Given the pure state \[\[\varphi_A, \varphi_B\]\] and the(trivial) density matrix of the combined system \[A \cup B\]

$$\langle \varphi_{A}, \varphi_{B} | \rho_{A \cup B} | \varphi'_{A}, \varphi'_{B} \rangle = \Psi[\varphi_{A}, \varphi_{B}] \Psi^{*}[\varphi'_{A}, \varphi'_{B}]$$

► The reduced density matrix for *A*, which acts only on the states $\{\varphi_A\}$, is constructed by tracing over the degrees of freedom in *B*:

$$\rho_A = \operatorname{tr}_B \rho_{A \cup B}$$

► The von Neumann entanglement entropy is

$$S_A = -\mathrm{tr}_A \left(\rho_A \ln \rho_A \right) = -\mathrm{tr}_B \left(\rho_B \ln \rho_B \right) = S_B$$

▶ The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$

- \blacktriangleright The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $\mathcal{T}\to 0$
- ► tr $(\hat{\rho}_A)^n$ corresponds to a path integral on the manifold shown below (right) (for n = 3)

- ▶ The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- ► tr $(\hat{\rho}_A)^n$ corresponds to a path integral on the manifold shown below (right) (for n = 3)

- ▶ The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- ► tr $(\hat{\rho}_A)^n$ corresponds to a path integral on the manifold shown below (right) (for n = 3)

 \blacktriangleright In the $T \rightarrow 0$ limit, the entanglement entropy follows from the "replica trick"

- ▶ The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- ► tr $(\hat{\rho}_A)^n$ corresponds to a path integral on the manifold shown below (right) (for n = 3)

▶ In the $T \rightarrow 0$ limit, the entanglement entropy follows from the "replica trick"

$$S_A = -\mathrm{tr}\left(\hat{
ho}_A \,\ln \hat{
ho}_A
ight) = -\lim_{n \to 1} \frac{\partial}{\partial n} \mathrm{tr}\left(\hat{
ho}_A
ight)^n$$

- ▶ The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- ► tr $(\hat{\rho}_A)^n$ corresponds to a path integral on the manifold shown below (right) (for n = 3)

▶ In the $T \rightarrow 0$ limit, the entanglement entropy follows from the "replica trick"

$$S_A = -\mathrm{tr}\left(\hat{
ho}_A \,\ln \hat{
ho}_A
ight) = -\lim_{n \to 1} \frac{\partial}{\partial n} \mathrm{tr}\left(\hat{
ho}_A
ight)^n$$

Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- ► Hidden Topological Order and Topological Vacuum Degeneracy.

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- ► Hidden Topological Order and Topological Vacuum Degeneracy.
- ► Finite-dimensional quasiparticle Hilbert spaces ⇒ universal topological quantum computer.

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- ► Hidden Topological Order and Topological Vacuum Degeneracy.
- ► Finite-dimensional quasiparticle Hilbert spaces ⇒ universal topological quantum computer.
- ► Effective field theory description: Topological Field Theory, *e.g.*, Chern-Simons gauge theory, discrete gauge theory.

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- ► Hidden Topological Order and Topological Vacuum Degeneracy.
- ► Finite-dimensional quasiparticle Hilbert spaces ⇒ universal topological quantum computer.
- ► Effective field theory description: Topological Field Theory, *e.g.*, Chern-Simons gauge theory, discrete gauge theory.
- ▶ Best known examples: the fractional quantum Hall fluids and Z₂ deconfined phases (quantum dimers and Kitaev's Toric Code.)

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- ► Hidden Topological Order and Topological Vacuum Degeneracy.
- ► Finite-dimensional quasiparticle Hilbert spaces ⇒ universal topological quantum computer.
- ► Effective field theory description: Topological Field Theory, *e.g.*, Chern-Simons gauge theory, discrete gauge theory.
- ▶ Best known examples: the fractional quantum Hall fluids and Z₂ deconfined phases (quantum dimers and Kitaev's Toric Code.)

► 2DEG Fractional Quantum Hall Liquids.

- ► 2DEG Fractional Quantum Hall Liquids.
 - ► Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.

- ► 2DEG Fractional Quantum Hall Liquids.
 - ► Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
 - Non-Abelian FQH states:

- ► 2DEG Fractional Quantum Hall Liquids.
 - Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
 - Non-Abelian FQH states: $\nu = 5/2$ a Pfaffian (Moore-

Read) FQH state (firm candidate). Evidence for q = e/4 vortex.

Shot noise @ point contact (Heiblum)

DC transport @ point contact (Marcus)

Is the plateau at $\nu = 12/5$ a parafermion state?

2DEG with a single point contact

- ► 2DEG Fractional Quantum Hall Liquids.
 - ► Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
 - ► Non-Abelian FQH states: ν = 5/2 a Pfaffian (Moore-

Read) FQH state (firm candidate). Evidence for q = e/4 vortex.

Shot noise @ point contact (Heiblum)

DC transport @ point contact (Marcus)

Is the plateau at $\nu = 12/5$ a parafermion state?

Rapidly rotating Bose gases: possible non-Abelian (Pfaffian) FQH state of bosons at $\nu = 1$ (still hard!)

Experimentally "Known" Topological Quantum Liquids

- ► 2DEG Fractional Quantum Hall Liquids.
 - ► Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
 - Non-Abelian FQH states:

 $\nu = 5/2$ a Pfaffian (Moore-Read) FQH state (firm candidate). Evidence for q = e/4vortex.

Shot noise @ point contact (Heiblum)

DC transport @ point contact (Marcus)

Is the plateau at $\nu = 12/5$ a parafermion state?

► Rapidly rotating Bose gases: possible non-Abelian (Pfaffian) FQH state of bosons at v = 1 (still hard!)

► Time-Reversal Breaking Superconductors: Sr₂RuO₄ is a p_x + ip_y superconductor (strong evidence, controversial)

Experimentally "Known" Topological Quantum Liquids

- ► 2DEG Fractional Quantum Hall Liquids.
 - ► Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
 - Non-Abelian FQH states:

 $\nu = 5/2$ a Pfaffian (Moore-Read) FQH state (firm candidate). Evidence for q = e/4vortex.

Shot noise @ point contact (Heiblum)

DC transport @ point contact (Marcus)

Is the plateau at $\nu = 12/5$ a parafermion state?

► Rapidly rotating Bose gases: possible non-Abelian (Pfaffian) FQH state of bosons at v = 1 (still hard!)

► Time-Reversal Breaking Superconductors: Sr₂RuO₄ is a p_x + ip_y superconductor (strong evidence, controversial)

▶ Bulk: Abelian Chern-Simons gauge theory U(1)_m; Effective action of the hydrodynamic gauge field

▶ Bulk: Abelian Chern-Simons gauge theory U(1)_m; Effective action of the hydrodynamic gauge field

$$j_{\mu} = \frac{1}{2\pi} \epsilon_{\mu\nu\lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A}) = \frac{m}{4\pi} \int_{S^{2} \times S^{1}} d^{3}x \; \epsilon_{\mu\nu\lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}$$

 Bulk: Abelian Chern-Simons gauge theory U(1)_m; Effective action of the hydrodynamic gauge field

$$j_{\mu} = \frac{1}{2\pi} \epsilon_{\mu\nu\lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A}) = \frac{m}{4\pi} \int_{S^{2} \times S^{1}} d^{3}x \; \epsilon_{\mu\nu\lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}$$

► The excitations are vortices with fractional charge q = e/m and fractional (braid) statistics $\theta = \pi/m$.

 Bulk: Abelian Chern-Simons gauge theory U(1)_m; Effective action of the hydrodynamic gauge field

$$j_{\mu} = \frac{1}{2\pi} \epsilon_{\mu\nu\lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A}) = \frac{m}{4\pi} \int_{S^{2} \times S^{1}} d^{3}x \; \epsilon_{\mu\nu\lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}$$

- ► The excitations are vortices with fractional charge q = e/m and fractional (braid) statistics $\theta = \pi/m$.
- Edge states: chiral boson CFT $U(1)_m$ with compactification radius $R = 1/\sqrt{m}$ and central charge c = 1.

▶ Bulk: Abelian Chern-Simons gauge theory U(1)_m; Effective action of the hydrodynamic gauge field

$$j_{\mu} = \frac{1}{2\pi} \epsilon_{\mu\nu\lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A}) = \frac{m}{4\pi} \int_{S^2 \times S^1} d^3 x \; \epsilon_{\mu\nu\lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}$$

- ► The excitations are vortices with fractional charge q = e/m and fractional (braid) statistics $\theta = \pi/m$.
- ► Edge states: chiral boson CFT $U(1)_m$ with compactification radius $R = 1/\sqrt{m}$ and central charge c = 1.
- The hydrodynamic description generalizes to the non-Abelian FQH states

▶ Bulk: Abelian Chern-Simons gauge theory U(1)_m; Effective action of the hydrodynamic gauge field

$$j_{\mu} = \frac{1}{2\pi} \epsilon_{\mu\nu\lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A}) = \frac{m}{4\pi} \int_{S^2 \times S^1} d^3 x \; \epsilon_{\mu\nu\lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}$$

- ► The excitations are vortices with fractional charge q = e/m and fractional (braid) statistics $\theta = \pi/m$.
- ► Edge states: chiral boson CFT $U(1)_m$ with compactification radius $R = 1/\sqrt{m}$ and central charge c = 1.
- The hydrodynamic description generalizes to the non-Abelian FQH states

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

For the *v* = 1 bosonic state it is an SU(2)₂ Chern-Simons theory. For the *v* = 5/2 fermionic state the U(1) sector is deformed.

- For the v = 1 bosonic state it is an SU(2)₂ Chern-Simons theory. For the v = 5/2 fermionic state the U(1) sector is deformed.
- Half-vortices, σ, with charge q = e/4 (fermionic case) and q = e/2 (bosonic case) and non-Abelian fractional (braid) statistics.

- For the *v* = 1 bosonic state it is an SU(2)₂ Chern-Simons theory. For the *v* = 5/2 fermionic state the U(1) sector is deformed.
- Half-vortices, σ, with charge q = e/4 (fermionic case) and q = e/2 (bosonic case) and non-Abelian fractional (braid) statistics.
 - \blacktriangleright The vortices are charge neutral Majorana fermions ψ

- For the v = 1 bosonic state it is an SU(2)₂ Chern-Simons theory. For the v = 5/2 fermionic state the U(1) sector is deformed.
 - Half-vortices, σ, with charge q = e/4 (fermionic case) and q = e/2 (bosonic case) and non-Abelian fractional (braid) statistics.
 - \blacktriangleright The vortices are charge neutral Majorana fermions ψ
 - \blacktriangleright Laughlin vortices with charge e/m and abelian fractional statistics π/m

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the v = 1 bosonic state it is an SU(2)₂ Chern-Simons theory. For the v = 5/2 fermionic state the U(1) sector is deformed.
- Half-vortices, σ, with charge q = e/4 (fermionic case) and q = e/2 (bosonic case) and non-Abelian fractional (braid) statistics.
 - \blacktriangleright The vortices are charge neutral Majorana fermions ψ
 - \blacktriangleright Laughlin vortices with charge e/m and abelian fractional statistics π/m

Edge states

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the v = 1 bosonic state it is an SU(2)₂ Chern-Simons theory. For the v = 5/2 fermionic state the U(1) sector is deformed.
- Half-vortices, σ, with charge q = e/4 (fermionic case) and q = e/2 (bosonic case) and non-Abelian fractional (braid) statistics.
 - \blacktriangleright The vortices are charge neutral Majorana fermions ψ
 - \blacktriangleright Laughlin vortices with charge e/m and abelian fractional statistics π/m
- Edge states

bosonic case: $SU(2)_2$

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the v = 1 bosonic state it is an SU(2)₂ Chern-Simons theory. For the v = 5/2 fermionic state the U(1) sector is deformed.
- Half-vortices, σ, with charge q = e/4 (fermionic case) and q = e/2 (bosonic case) and non-Abelian fractional (braid) statistics.
 - \blacktriangleright The vortices are charge neutral Majorana fermions ψ
 - \blacktriangleright Laughlin vortices with charge e/m and abelian fractional statistics π/m
- Edge states

bosonic case: $SU(2)_2$ fermionic case $\mathbb{Z}_2 \times U(1)_2$ chiral CFT ($\nu = 5/2$) $\mathbb{Z}_3 \times U(1)$ chiral parafermion CFT ($\nu = 12/5$?)

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the v = 1 bosonic state it is an SU(2)₂ Chern-Simons theory. For the v = 5/2 fermionic state the U(1) sector is deformed.
- Half-vortices, σ, with charge q = e/4 (fermionic case) and q = e/2 (bosonic case) and non-Abelian fractional (braid) statistics.
 - \blacktriangleright The vortices are charge neutral Majorana fermions ψ
 - \blacktriangleright Laughlin vortices with charge e/m and abelian fractional statistics π/m
- Edge states

bosonic case: $SU(2)_2$ fermionic case $\mathbb{Z}_2 \times U(1)_2$ chiral CFT ($\nu = 5/2$) $\mathbb{Z}_3 \times U(1)$ chiral parafermion CFT ($\nu = 12/5$?)

 Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

 Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

 $|\Psi_{\rm RVB}\rangle = \sum_{\{C\}} |C\rangle, \qquad \{C\} = \text{ all dimer coverings of the lattice}$

 Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$|\Psi_{\rm RVB}
angle = \sum_{\{C\}} |C
angle, \qquad \{C\} = \text{ all dimer coverings of the lattice}$$

Bipartite lattices: quantum (multi) critical points

 Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$|\Psi_{\rm RVB}\rangle = \sum_{\{C\}} |C\rangle, \qquad \{C\} = \text{ all dimer coverings of the lattice}$$

Bipartite lattices: quantum (multi) critical points
 Effective field theory with z = 2 and massless deconfined spinons

 Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$|\Psi_{\rm RVB}\rangle = \sum_{\{C\}} |C\rangle, \qquad \{C\} = \text{ all dimer coverings of the lattice}$$

- Bipartite lattices: quantum (multi) critical points Effective field theory with z = 2 and massless deconfined spinons
 - ► Non-bipartite lattices: Topological Z₂ deconfined phases with massive spinons and a topological 4-fold ground state degeneracy on a torus (Moessner and Sondhi, 1998)

 Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$|\Psi_{\rm RVB}\rangle = \sum_{\{C\}} |C\rangle, \qquad \{C\} = \text{ all dimer coverings of the lattice}$$

- Bipartite lattices: quantum (multi) critical points Effective field theory with z = 2 and massless deconfined spinons
 - ► Non-bipartite lattices: Topological Z₂ deconfined phases with massive spinons and a topological 4-fold ground state degeneracy on a torus (Moessner and Sondhi, 1998)

Effective field theory: the Quantum Lifshitz Model Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

• QDM on a square lattice \Leftrightarrow 2D height model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice \Leftrightarrow 2D height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x) + 1$.

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice \Leftrightarrow 2D height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x) + 1$.
- Quantum Lifshitz Model Hamiltonian:

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice \Leftrightarrow 2D height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x) + 1$.
- Quantum Lifshitz Model Hamiltonian:

$$H = \int d^2 x \left[\frac{1}{2} \Pi^2 + \frac{\kappa^2}{2} \left(\nabla^2 \varphi \right)^2 \right]$$

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice \Leftrightarrow 2D height model
- ▶ Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x) + 1$.
- Quantum Lifshitz Model Hamiltonian:

$$H = \int d^2 x \left[\frac{1}{2} \Pi^2 + \frac{\kappa^2}{2} \left(\nabla^2 \varphi \right)^2 \right]$$

▶ The Ground State Wave Function $\Psi_0[\varphi]$ is Scale Invariant

$$\Psi_0[\varphi] \propto e^{-rac{\kappa}{2}} \int d^2 x \ (
abla \varphi(\mathbf{x}))^2$$

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice \Leftrightarrow 2D height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x) + 1$.
- Quantum Lifshitz Model Hamiltonian:

$$H = \int d^2 x \left[\frac{1}{2} \Pi^2 + \frac{\kappa^2}{2} \left(\nabla^2 \varphi \right)^2 \right]$$

▶ The Ground State Wave Function $\Psi_0[\varphi]$ is Scale Invariant

$$\Psi_0[\varphi] \propto e^{-rac{\kappa}{2}} \int d^2 x \ (
abla \varphi(\mathbf{x}))^2$$

► The norm of the 2D wave function is the partition function of a classical critical conformally invariant system!

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice \Leftrightarrow 2D height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x) + 1$.
- Quantum Lifshitz Model Hamiltonian:

$$H = \int d^2 x \left[\frac{1}{2} \Pi^2 + \frac{\kappa^2}{2} \left(\nabla^2 \varphi \right)^2 \right]$$

▶ The Ground State Wave Function $\Psi_0[\varphi]$ is Scale Invariant

$$\Psi_0[\varphi] \propto e^{-rac{\kappa}{2}} \int d^2 x \ (
abla \varphi(\mathbf{x}))^2$$

► The norm of the 2D wave function is the partition function of a classical critical conformally invariant system!

$$\|\Psi_0\|^2 = \int \mathcal{D}\varphi \ e^{-\kappa \int d^2 x \ (\nabla \varphi(\mathbf{x}))^2} = "Z"$$

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice \Leftrightarrow 2D height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x) + 1$.
- Quantum Lifshitz Model Hamiltonian:

$$H = \int d^2 x \left[\frac{1}{2} \Pi^2 + \frac{\kappa^2}{2} \left(\nabla^2 \varphi \right)^2 \right]$$

▶ The Ground State Wave Function $\Psi_0[\varphi]$ is Scale Invariant

$$\Psi_0[\varphi] \propto e^{-rac{\kappa}{2}} \int d^2 x \ (
abla \varphi(\mathbf{x}))^2$$

► The norm of the 2D wave function is the partition function of a classical critical conformally invariant system!

$$\|\Psi_0\|^2 = \int \mathcal{D}\varphi \ e^{-\kappa \int d^2 x \ (\nabla \varphi(\mathbf{x}))^2} = "Z"$$

Mapping to a 2D Euclidean CFT

Mapping to a 2D Euclidean CFT

 \blacktriangleright The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions

- \blacktriangleright The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- ▶ The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge *c* = 1.

- \blacktriangleright The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- ► The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge c = 1.
- Time-dependent correlators: dynamical exponent z = 2.

- \blacktriangleright The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- ► The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge c = 1.
- Time-dependent correlators: dynamical exponent z = 2.
- ► Matching the correlation functions of the RK and Lifshitz models, one finds $\kappa = \frac{1}{8\pi}$.

- \blacktriangleright The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- ► The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge c = 1.
- Time-dependent correlators: dynamical exponent z = 2.
- ► Matching the correlation functions of the RK and Lifshitz models, one finds $\kappa = \frac{1}{8\pi}$.
- ► Multicritical point with many relevant perturbations: *e.g.* diagonal dimers drive the system into a Z₂ topological phase.

- \blacktriangleright The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- ► The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge c = 1.
- Time-dependent correlators: dynamical exponent z = 2.
- ► Matching the correlation functions of the RK and Lifshitz models, one finds $\kappa = \frac{1}{8\pi}$.
- ► Multicritical point with many relevant perturbations: e.g. diagonal dimers drive the system into a Z₂ topological phase.
- This construction generalizes to more complex states with non-Abelian braid statistics (Fendley and Fradkin, 2005)

- \blacktriangleright The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- ► The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge c = 1.
- Time-dependent correlators: dynamical exponent z = 2.
- ► Matching the correlation functions of the RK and Lifshitz models, one finds $\kappa = \frac{1}{8\pi}$.
- ► Multicritical point with many relevant perturbations: e.g. diagonal dimers drive the system into a Z₂ topological phase.
- This construction generalizes to more complex states with non-Abelian braid statistics (Fendley and Fradkin, 2005)

► Entanglement entropy near generic QCPs is not understood.

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in d = 1 critical systems (CFT):

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in d = 1 critical systems (CFT):
 - ► Spin chains: universal log *L* term (Rico, Latorre, Vidal and Kitaev).

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in d = 1 critical systems (CFT):
 - ▶ Spin chains: universal log *L* term (Rico, Latorre, Vidal and Kitaev).
 - ▶ Generic scaling behavior in d = 1 (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in d = 1 critical systems (CFT):
 - ▶ Spin chains: universal log *L* term (Rico, Latorre, Vidal and Kitaev).
 - ▶ Generic scaling behavior in d = 1 (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$S = \frac{c}{3} \log \left(\frac{L}{a}\right) + \text{finite terms}$$

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in d = 1 critical systems (CFT):
 - ▶ Spin chains: universal log *L* term (Rico, Latorre, Vidal and Kitaev).
 - ▶ Generic scaling behavior in d = 1 (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$S = \frac{c}{3} \log \left(\frac{L}{a}\right) + \text{finite terms}$$

► Also obeyed by random fixed points (Refael and Moore, 2004).

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in d = 1 critical systems (CFT):
 - ▶ Spin chains: universal log *L* term (Rico, Latorre, Vidal and Kitaev).
 - ▶ Generic scaling behavior in d = 1 (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$S = \frac{c}{3} \log \left(\frac{L}{a}\right) + \text{finite terms}$$

- ► Also obeyed by random fixed points (Refael and Moore, 2004).
- \blacktriangleright Away from criticality, the correlation length ξ is finite and

$$S = \frac{c}{3} \log \left(\frac{\xi}{a}\right) + \text{finite terms}$$

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in d = 1 critical systems (CFT):
 - ▶ Spin chains: universal log *L* term (Rico, Latorre, Vidal and Kitaev).
 - ▶ Generic scaling behavior in d = 1 (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$S = \frac{c}{3} \log \left(\frac{L}{a}\right) + \text{finite terms}$$

- ► Also obeyed by random fixed points (Refael and Moore, 2004).
- Away from criticality, the correlation length ξ is finite and

$$S = \frac{c}{3} \log \left(\frac{\xi}{a}\right) + \text{finite terms}$$

► Are there *universal* subleading terms in general dimensions?

- ► Entanglement entropy near generic QCPs is not understood.
- ► Massive relativistic free field theories obey an "area law" S = const. L^{D-1} + ... (Srednicki, 1993).
- ► Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in d = 1 critical systems (CFT):
 - ▶ Spin chains: universal log *L* term (Rico, Latorre, Vidal and Kitaev).
 - ▶ Generic scaling behavior in d = 1 (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$S = \frac{c}{3} \log \left(\frac{L}{a}\right) + \text{finite terms}$$

- ► Also obeyed by random fixed points (Refael and Moore, 2004).
- Away from criticality, the correlation length ξ is finite and

$$S = \frac{c}{3} \log \left(\frac{\xi}{a}\right) + \text{finite terms}$$

► Are there *universal* subleading terms in general dimensions?

Entanglement Entropy of Conformal Wave Functions

with Joel Moore

We split a large region into two disjoint regions A and B, sharing a common boundary Γ.

- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- tr ρ_A^n : Configurations are glued at the boundary

- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- tr ρ_A^n : Configurations are glued at the boundary
- ▶ *n* scalar fields ϕ_i agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}(\phi_i \phi_{i+1})$ which vanish at the boundary.

- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- tr ρ_A^n : Configurations are glued at the boundary
- ▶ *n* scalar fields ϕ_i agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}(\phi_i \phi_{i+1})$ which vanish at the boundary.
- ► Dirichlet boundary conditions on Γ for n-1 fields $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi_i$ not restricted on Γ .

- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- tr ρ_A^n : Configurations are glued at the boundary
- ▶ *n* scalar fields ϕ_i agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}(\phi_i \phi_{i+1})$ which vanish at the boundary.
- ► Dirichlet boundary conditions on Γ for n-1 fields $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi_i$ not restricted on Γ .
- ► In terms of the partition functions Z_D , for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ , and $Z_{A \cup B}$, for a field that is free at the boundary

- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- tr ρ_A^n : Configurations are glued at the boundary
- ▶ *n* scalar fields ϕ_i agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}(\phi_i \phi_{i+1})$ which vanish at the boundary.
- ► Dirichlet boundary conditions on Γ for n-1 fields $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi_i$ not restricted on Γ .
- ► In terms of the partition functions Z_D , for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ , and $Z_{A \cup B}$, for a field that is free at the boundary

$$\operatorname{tr} \rho_A^n = \frac{Z_D^{n-1} Z_F}{Z_F^n} = \left(\frac{Z_D}{Z_F}\right)^{n-1} \Rightarrow S = -\ln\left(\frac{Z_D}{Z_F}\right) = -\ln\frac{Z_D^A Z_D^B}{Z_{A\cup B}}$$

- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- tr ρ_A^n : Configurations are glued at the boundary
- ▶ *n* scalar fields ϕ_i agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}(\phi_i \phi_{i+1})$ which vanish at the boundary.
- ► Dirichlet boundary conditions on Γ for n-1 fields $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi_i$ not restricted on Γ .
- ► In terms of the partition functions Z_D , for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ , and $Z_{A \cup B}$, for a field that is free at the boundary

$$\operatorname{tr} \rho_A^n = \frac{Z_D^{n-1} Z_F}{Z_F^n} = \left(\frac{Z_D}{Z_F}\right)^{n-1} \Rightarrow S = -\ln\left(\frac{Z_D}{Z_F}\right) = -\ln\frac{Z_D^A Z_D^B}{Z_{A\cup B}}$$

Entanglement entropy for a general conformal QCP:

- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- tr ρ_A^n : Configurations are glued at the boundary
- ▶ *n* scalar fields ϕ_i agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}(\phi_i \phi_{i+1})$ which vanish at the boundary.
- ► Dirichlet boundary conditions on Γ for n-1 fields $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi_i$ not restricted on Γ .
- ► In terms of the partition functions Z_D , for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ , and $Z_{A \cup B}$, for a field that is free at the boundary

$$\operatorname{tr} \rho_A^n = \frac{Z_D^{n-1} Z_F}{Z_F^n} = \left(\frac{Z_D}{Z_F}\right)^{n-1} \Rightarrow S = -\ln\left(\frac{Z_D}{Z_F}\right) = -\ln\frac{Z_D^A Z_D^B}{Z_{A\cup B}}$$

Entanglement entropy for a general conformal QCP:

$$S = F_A + F_B - F_{A \cup B}$$

- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- tr ρ_A^n : Configurations are glued at the boundary
- ▶ *n* scalar fields ϕ_i agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}(\phi_i \phi_{i+1})$ which vanish at the boundary.
- ► Dirichlet boundary conditions on Γ for n-1 fields $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi_i$ not restricted on Γ .
- ► In terms of the partition functions Z_D , for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ , and $Z_{A \cup B}$, for a field that is free at the boundary

$$\operatorname{tr} \rho_A^n = \frac{Z_D^{n-1} Z_F}{Z_F^n} = \left(\frac{Z_D}{Z_F}\right)^{n-1} \Rightarrow S = -\ln\left(\frac{Z_D}{Z_F}\right) = -\ln\frac{Z_D^A Z_D^B}{Z_{A\cup B}}$$

Entanglement entropy for a general conformal QCP:

$$S = F_A + F_B - F_{A \cup B}$$

For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$F = \alpha L^2 + \beta L - \frac{c}{6} \chi \ln L + O(1)$$
, (Cardy and Peschel)

For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$F = \alpha L^2 + \beta L - \frac{c}{6} \chi \ln L + O(1)$$
, (Cardy and Peschel)

 α and β are non-universal constants, c is the central charge of the CFT, and χ is the Euler characteristic of the region:

For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$F = \alpha L^2 + \beta L - \frac{c}{6} \chi \ln L + O(1)$$
, (Cardy and Peschel)

 α and β are non-universal constants, c is the central charge of the CFT, and χ is the Euler characteristic of the region:

$$\chi = 2 - 2h - b, \quad h = \# \text{ handles}, \ b = \# \text{ boundaries}$$

For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$F = \alpha L^2 + \beta L - \frac{c}{6} \chi \ln L + O(1)$$
, (Cardy and Peschel)

 α and β are non-universal constants, c is the central charge of the CFT, and χ is the Euler characteristic of the region:

$$\chi=2-2h-b, \quad h=\# \ {\rm handles}, \ b=\# \ {\rm boundaries}$$

$$\Delta S = -\frac{c}{6} \left(\chi_A + \chi_B - \chi_{A \cup B} \right) \log L$$

For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$F = \alpha L^2 + \beta L - \frac{c}{6} \chi \ln L + O(1)$$
, (Cardy and Peschel)

 α and β are non-universal constants, c is the central charge of the CFT, and χ is the Euler characteristic of the region:

$$\chi = 2 - 2h - b, \quad h = \# \text{ handles}, \ b = \# \text{ boundaries}$$

$$\Delta S = -\frac{c}{6} \left(\chi_A + \chi_B - \chi_{A \cup B} \right) \log L$$

► The *O*(1) term has a *universal piece* proportional to log *g*, the "boundary entropy" of Affleck and Ludwig

• For regions $A \subseteq B$ the coefficient of the log *L* term vanishes since

• For regions $A \subseteq B$ the coefficient of the log *L* term vanishes since

$$\chi_{A} + \chi_{B} = \chi_{A \cup B} \Rightarrow \Delta S = 0$$

• For regions $A \subseteq B$ the coefficient of the log *L* term vanishes since

$$\chi_A + \chi_B = \chi_{A \cup B} \Rightarrow \Delta S = 0$$

• A and B are physically separate and have no common intersection, $\chi_A + \chi_B - \chi_{A\cup B} \neq 0$. The system physically splits in two disjoint parts $\Rightarrow \log L$ term in the entanglement entropy

• For regions $A \subseteq B$ the coefficient of the log *L* term vanishes since

$$\chi_{A} + \chi_{B} = \chi_{A \cup B} \Rightarrow \Delta S = 0$$

 A and B are physically separate and have no common intersection, *χ*_A + *χ*_B − *χ*_{A∪B} ≠ 0. The system physically splits in two disjoint parts ⇒ log L term in the entanglement entropy

► A and B share a common boundary ⇒ log L term whose coefficient is determined by the angles at the intersections

• For regions $A \subseteq B$ the coefficient of the log *L* term vanishes since

$$\chi_A + \chi_B = \chi_{A \cup B} \Rightarrow \Delta S = 0$$

 A and B are physically separate and have no common intersection, *χ_A* + *χ_B* − *χ_{A∪B}* ≠ 0. The system physically splits in two disjoint parts ⇒ log L term in the entanglement entropy

- ► A and B share a common boundary ⇒ log L term whose coefficient is determined by the angles at the intersections
- ► If the boundary of A is not smooth, the coefficient depends on the angles α_i for both regions

• For regions $A \subseteq B$ the coefficient of the log *L* term vanishes since

$$\chi_A + \chi_B = \chi_{A \cup B} \Rightarrow \Delta S = 0$$

 A and B are physically separate and have no common intersection, *χ_A* + *χ_B* − *χ_{A∪B}* ≠ 0. The system physically splits in two disjoint parts ⇒ log L term in the entanglement entropy

- ► A and B share a common boundary ⇒ log L term whose coefficient is determined by the angles at the intersections
- ► If the boundary of A is not smooth, the coefficient depends on the angles α_i for both regions

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

► If the coefficient of the logarithmic term vanishes, the *O*(1) is universal

- ► If the coefficient of the logarithmic term vanishes, the *O*(1) is universal
- ► For the conformally invariant wave function the O(1) term equals log $(4\pi\kappa R^2)$, where R is the compactification radius.

- ► If the coefficient of the logarithmic term vanishes, the O(1) is universal
- ► For the conformally invariant wave function the O(1) term equals log $(4\pi\kappa R^2)$, where R is the compactification radius.
- ► For the RK quantum dimer model, $\kappa = \frac{1}{8\pi}$ and R = 1, this term is $\log \frac{1}{2}$, as in the nearby topological phase

- ► If the coefficient of the logarithmic term vanishes, the *O*(1) is universal
- ► For the conformally invariant wave function the O(1) term equals log $(4\pi\kappa R^2)$, where R is the compactification radius.
- ► For the RK quantum dimer model, $\kappa = \frac{1}{8\pi}$ and R = 1, this term is $\log \frac{1}{2}$, as in the nearby topological phase
- This result generalizes for a general conformally invariant wave function

- ► If the coefficient of the logarithmic term vanishes, the O(1) is universal
- ► For the conformally invariant wave function the O(1) term equals log $(4\pi\kappa R^2)$, where R is the compactification radius.
- ► For the RK quantum dimer model, $\kappa = \frac{1}{8\pi}$ and R = 1, this term is $\log \frac{1}{2}$, as in the nearby topological phase
- This result generalizes for a general conformally invariant wave function

$$S = \log \left(Z_D^A Z_D^B / Z_{A \cup B} \right) = \Delta \log g = \log \left(\frac{\sum_{i,j} N_{ab}^i N_{bc}^j S_i^0 S_j^0}{\sum_k N_{ab}^l S_i^0} \right)$$

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- ► If the coefficient of the logarithmic term vanishes, the O(1) is universal
- ► For the conformally invariant wave function the O(1) term equals log $(4\pi\kappa R^2)$, where R is the compactification radius.
- ► For the RK quantum dimer model, $\kappa = \frac{1}{8\pi}$ and R = 1, this term is $\log \frac{1}{2}$, as in the nearby topological phase
- This result generalizes for a general conformally invariant wave function

$$S = \log \left(Z_D^A Z_D^B / Z_{A \cup B} \right) = \Delta \log g = \log \left(\frac{\sum_{i,j} N_{ab}^i N_{bc}^j S_i^0 S_j^0}{\sum_k N_{ab}^l S_l^0} \right)$$

 N_{ab}^{c} are the fusion coefficients and S_{i}^{j} is the modular S-matrix

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- ► If the coefficient of the logarithmic term vanishes, the O(1) is universal
- ► For the conformally invariant wave function the O(1) term equals log $(4\pi\kappa R^2)$, where R is the compactification radius.
- ► For the RK quantum dimer model, $\kappa = \frac{1}{8\pi}$ and R = 1, this term is $\log \frac{1}{2}$, as in the nearby topological phase
- This result generalizes for a general conformally invariant wave function

$$S = \log \left(Z_D^A Z_D^B / Z_{A \cup B} \right) = \Delta \log g = \log \left(\frac{\sum_{i,j} N_{ab}^i N_{bc}^j S_i^0 S_j^0}{\sum_k N_{ab}^l S_l^0} \right)$$

 N_{ab}^{c} are the fusion coefficients and S_{i}^{j} is the modular S-matrix

with Stefanos Papanikolaou and Kumar Raman (2007)

with Stefanos Papanikolaou and Kumar Raman (2007)

 \blacktriangleright Universal topological entanglement entropy γ

with Stefanos Papanikolaou and Kumar Raman (2007)

 \blacktriangleright Universal topological entanglement entropy γ

 $S = \alpha L - \gamma + O(1/L)$ Kitaev and Preskill, Levin and Wen (2006)

with Stefanos Papanikolaou and Kumar Raman (2007)

 \blacktriangleright Universal topological entanglement entropy γ

 $S = \alpha L - \gamma + O(1/L)$ Kitaev and Preskill, Levin and Wen (2006)

with Stefanos Papanikolaou and Kumar Raman (2007)

- \blacktriangleright Universal topological entanglement entropy γ
 - $S = \alpha L \gamma + O(1/L)$ Kitaev and Preskill, Levin and Wen (2006)

 α : non-universal coefficient, $\gamma = \ln D$ is a universal finite topological invariant, $D = \sqrt{\sum_i d_i^2}$, d_i : quantum dimensions of the excitations, *i.e.* the rate of growth of the topological degeneracy.

 All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.

with Stefanos Papanikolaou and Kumar Raman (2007)

- \blacktriangleright Universal topological entanglement entropy γ
 - $S = \alpha L \gamma + O(1/L)$ Kitaev and Preskill, Levin and Wen (2006)

- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.
- ► This is the case in the triangular quantum dimer model (Furukawa and Misguich), and for FQH wave functions (Schoutens *et al*).

with Stefanos Papanikolaou and Kumar Raman (2007)

- \blacktriangleright Universal topological entanglement entropy γ
 - $S = \alpha L \gamma + O(1/L)$ Kitaev and Preskill, Levin and Wen (2006)

- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.
- ► This is the case in the triangular quantum dimer model (Furukawa and Misguich), and for FQH wave functions (Schoutens *et al*).
- ► The entanglement entropy has a universal piece for a large region, $L \gg \xi > a$, with a smooth boundary.

with Stefanos Papanikolaou and Kumar Raman (2007)

- \blacktriangleright Universal topological entanglement entropy γ
 - $S = \alpha L \gamma + O(1/L)$ Kitaev and Preskill, Levin and Wen (2006)

- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.
- ► This is the case in the triangular quantum dimer model (Furukawa and Misguich), and for FQH wave functions (Schoutens *et al*).
- ► The entanglement entropy has a universal piece for a large region, $L \gg \xi > a$, with a smooth boundary.
- For any lattice system the boundary of all subsets in general cannot be smooth.

with Stefanos Papanikolaou and Kumar Raman (2007)

- \blacktriangleright Universal topological entanglement entropy γ
 - $S = \alpha L \gamma + O(1/L)$ Kitaev and Preskill, Levin and Wen (2006)

- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.
- ► This is the case in the triangular quantum dimer model (Furukawa and Misguich), and for FQH wave functions (Schoutens *et al*).
- ► The entanglement entropy has a universal piece for a large region, $L \gg \xi > a$, with a smooth boundary.
- For any lattice system the boundary of all subsets in general cannot be smooth.

► $\xi < \infty$: non-universal O(1) contributions which scale with the number of corners N_c with a coefficient $\beta(\xi) \rightarrow 0$ as $\xi \rightarrow 0$:

► $\xi < \infty$: non-universal O(1) contributions which scale with the number of corners N_c with a coefficient $\beta(\xi) \to 0$ as $\xi \to 0$: $S(\xi, L) = \alpha(\xi)L + \beta(\xi)N_c - \gamma \dots, L \gg \xi > a$

► $\xi < \infty$: non-universal O(1) contributions which scale with the number of corners N_c with a coefficient $\beta(\xi) \rightarrow 0$ as $\xi \rightarrow 0$: $S(\xi, L) = \alpha(\xi)L + \beta(\xi)N_c - \gamma \dots, L \gg \xi > a$ γ is universal

- ► $\xi < \infty$: non-universal O(1) contributions which scale with the number of corners N_c with a coefficient $\beta(\xi) \to 0$ as $\xi \to 0$: $S(\xi, L) = \alpha(\xi)L + \beta(\xi)N_c - \gamma \dots, L \gg \xi > a$ γ is universal
- ► We verified this generic behavior explicitly for the case of the ground state wave function of the quantum eight vertex model, with γ = log 2 in the entire topological phase.

- ► $\xi < \infty$: non-universal O(1) contributions which scale with the number of corners N_c with a coefficient $\beta(\xi) \to 0$ as $\xi \to 0$: $S(\xi, L) = \alpha(\xi)L + \beta(\xi)N_c - \gamma \dots, L \gg \xi > a$ γ is universal
- We verified this generic behavior explicitly for the case of the ground state wave function of the quantum eight vertex model, with $\gamma = \log 2$ in the entire topological phase.
- ▶ We have checked that this is a robust property of the topological (deconfined) phase of the Z₂ gauge theory by perturbing away from the Kitaev limit with both Z₂ electric and magnetic charges.

- ► $\xi < \infty$: non-universal O(1) contributions which scale with the number of corners N_c with a coefficient $\beta(\xi) \to 0$ as $\xi \to 0$: $S(\xi, L) = \alpha(\xi)L + \beta(\xi)N_c - \gamma \dots, L \gg \xi > a$ γ is universal
- We verified this generic behavior explicitly for the case of the ground state wave function of the quantum eight vertex model, with $\gamma = \log 2$ in the entire topological phase.
- ▶ We have checked that this is a robust property of the topological (deconfined) phase of the Z₂ gauge theory by perturbing away from the Kitaev limit with both Z₂ electric and magnetic charges.

with Shying Dong, Sean Nowling and Rob Leigh (2008)

with Shying Dong, Sean Nowling and Rob Leigh (2008)

► The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).

with Shying Dong, Sean Nowling and Rob Leigh (2008)

- ► The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).

- ► The FQH wave functions represent topological fluids with a finite correlation length ξ ∝ ℓ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).
- One can compute the entanglement entropy directly from the effective field theory of all FQH states: Chern-Simons gauge theory.

- ► The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).
- One can compute the entanglement entropy directly from the effective field theory of all FQH states: Chern-Simons gauge theory.
- ► This result can be applied directly to all known FQH states.

- ► The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).
- One can compute the entanglement entropy directly from the effective field theory of all FQH states: Chern-Simons gauge theory.
- ► This result can be applied directly to all known FQH states.
- It computes only the topological invariant piece of the entanglement entropy.

- ► The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).
- One can compute the entanglement entropy directly from the effective field theory of all FQH states: Chern-Simons gauge theory.
- ► This result can be applied directly to all known FQH states.
- It computes only the topological invariant piece of the entanglement entropy.

$$S(A) = rac{k}{4\pi}\int \mathrm{Tr}\left(A\wedge dA + rac{2}{3}A\wedge A\wedge A
ight)$$

▶ We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

$$S(A) = rac{k}{4\pi}\int \operatorname{Tr}\left(A\wedge dA + rac{2}{3}A\wedge A\wedge A
ight)$$

States on a closed 2D surface: path integral over a 3D volume

$$S(A) = rac{k}{4\pi}\int \mathrm{Tr}\left(A\wedge dA + rac{2}{3}A\wedge A\wedge A
ight)$$

- States on a closed 2D surface: path integral over a 3D volume
- ► Chern-Simons states ⇔ WZW conformal blocks

$$S(A) = rac{k}{4\pi}\int \mathrm{Tr}\left(A\wedge dA + rac{2}{3}A\wedge A\wedge A
ight)$$

- States on a closed 2D surface: path integral over a 3D volume
- ► Chern-Simons states ⇔ WZW conformal blocks
- ► The ground state degeneracy depends on the level *k* and on the topology of the surface

$$S(A) = rac{k}{4\pi}\int \mathrm{Tr}\left(A\wedge dA + rac{2}{3}A\wedge A\wedge A
ight)$$

- ► States on a closed 2D surface: path integral over a 3D volume
- ► Chern-Simons states ⇔ WZW conformal blocks
- ► The ground state degeneracy depends on the level *k* and on the topology of the surface
- The partition functions depend on the matrix elements of the modular S-matrix, e.g. the partition function on S³ with a Wilson loop in representation ρ_j is

$$S(A) = rac{k}{4\pi}\int \mathrm{Tr}\left(A\wedge dA + rac{2}{3}A\wedge A\wedge A
ight)$$

- States on a closed 2D surface: path integral over a 3D volume
- ► Chern-Simons states ⇔ WZW conformal blocks
- ► The ground state degeneracy depends on the level *k* and on the topology of the surface
- The partition functions depend on the matrix elements of the modular S-matrix, e.g. the partition function on S³ with a Wilson loop in representation ρ_j is

$$Z(S^3,\rho_j)=S_0^j$$

$$S(A) = rac{k}{4\pi}\int \mathrm{Tr}\left(A\wedge dA + rac{2}{3}A\wedge A\wedge A
ight)$$

- States on a closed 2D surface: path integral over a 3D volume
- ► Chern-Simons states ⇔ WZW conformal blocks
- ► The ground state degeneracy depends on the level *k* and on the topology of the surface
- The partition functions depend on the matrix elements of the modular S-matrix, e.g. the partition function on S³ with a Wilson loop in representation ρ_j is

$$Z(S^3,\rho_j)=S_0^j$$

 \blacktriangleright WZW primary operators ϕ_a live in definite representations of an affine Lie algebra

- \blacktriangleright WZW primary operators ϕ_a live in definite representations of an affine Lie algebra
- ► On S² with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations

- \blacktriangleright WZW primary operators ϕ_a live in definite representations of an affine Lie algebra
- ► On S² with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- On S², the fusion coefficient N^{ρ_c}_{ρ_a,ρ_b} gives the number of independent ways φ_a × φ_b → φ_c

- ▶ WZW primary operators ϕ_a live in definite representations of an affine Lie algebra
- ► On S² with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- On S², the fusion coefficient N^{ρ_c}_{ρ_a,ρ_b} gives the number of independent ways φ_a × φ_b → φ_c
- Blocks on empty T^2 are given by WZW characters $\chi_{\rho}(\tau)$

- ▶ WZW primary operators ϕ_a live in definite representations of an affine Lie algebra
- ► On S² with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- ► On *S*², the *fusion coefficient* $N_{\rho_a,\rho_b}^{\rho_c}$ gives the number of independent ways $\phi_a \times \phi_b \rightarrow \phi_c$
- Blocks on empty T^2 are given by WZW characters $\chi_{\rho}(\tau)$
- ► Modular transformations: Modular *S*-matrix and the Verlinde formula

- ► WZW primary operators φ_a live in definite representations of an affine Lie algebra
- ► On S² with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- ► On *S*², the *fusion coefficient* $N_{\rho_a,\rho_b}^{\rho_c}$ gives the number of independent ways $\phi_a \times \phi_b \rightarrow \phi_c$
- Blocks on empty T^2 are given by WZW characters $\chi_{\rho}(\tau)$
- Modular transformations: Modular S-matrix and the Verlinde formula

$$\chi_{\rho_{a}}(-1/\tau) = \sum_{b} S^{b}_{a} \chi_{\rho_{b}}(\tau), \quad N^{\rho_{c}}_{\rho_{a},\rho_{b}} = \sum_{\ell} \frac{S^{\ell}_{a} S^{\ell}_{b} S^{c}_{\ell}}{S^{\ell}_{0}}$$

- ► WZW primary operators φ_a live in definite representations of an affine Lie algebra
- ► On S² with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- ► On *S*², the *fusion coefficient* $N_{\rho_a,\rho_b}^{\rho_c}$ gives the number of independent ways $\phi_a \times \phi_b \rightarrow \phi_c$
- Blocks on empty T^2 are given by WZW characters $\chi_{\rho}(\tau)$
- Modular transformations: Modular S-matrix and the Verlinde formula

$$\chi_{\rho_{a}}(-1/\tau) = \sum_{b} S^{b}_{a} \chi_{\rho_{b}}(\tau), \quad N^{\rho_{c}}_{\rho_{a},\rho_{b}} = \sum_{\ell} \frac{S^{\ell}_{a} S^{\ell}_{b} S^{c}_{\ell}}{S^{\ell}_{0}}$$

• For $SU(2)_k$, j, j' = 0, 1/2, ..., k/2

• For $SU(2)_k$, j, j' = 0, 1/2, ..., k/2

$$S_j^{(k)j'} = \sqrt{\frac{2}{k+2}} \sin\left(\pi \frac{(2j+1)(2j'+1)}{k+2}\right)$$

• For
$$SU(2)_k$$
, $j, j' = 0, 1/2, ..., k/2$

$$S_j^{(k)j'} = \sqrt{rac{2}{k+2}} \sin\left(\pi rac{(2j+1)(2j'+1)}{k+2}
ight)$$

Quantum dimensions

• For
$$SU(2)_k$$
, $j, j' = 0, 1/2, ..., k/2$

$$S_j^{(k)j'} = \sqrt{\frac{2}{k+2}} \sin\left(\pi \frac{(2j+1)(2j'+1)}{k+2}\right)$$

Quantum dimensions

$$d_j = rac{S_0^j}{S_{00}}, \quad \mathcal{D} \equiv \sqrt{\sum_j d_j^2} = rac{1}{S_{00}}$$

• For
$$SU(2)_k$$
, $j, j' = 0, 1/2, ..., k/2$

$$S_j^{(k)j'} = \sqrt{\frac{2}{k+2}} \sin\left(\pi \frac{(2j+1)(2j'+1)}{k+2}\right)$$

Quantum dimensions

$$d_j = rac{S_0^j}{S_{00}}, \quad \mathcal{D} \equiv \sqrt{\sum_j d_j^2} = rac{1}{S_{00}}$$

► If a 3-manifold M is the connected sum of two 3-manifolds M₁ and M₂ joined along an S², then

• If a 3-manifold M is the connected sum of two 3-manifolds M_1 and M_2 joined along an S^2 , then

$$Z(M)Z(S^3)=Z(M_1)Z(M_2)$$

► If a 3-manifold M is the connected sum of two 3-manifolds M₁ and M₂ joined along an S², then

$$Z(M)Z(S^3)=Z(M_1)Z(M_2)$$

• In particular, if M is M_1 and M_2 joined along $n S^2$'s,

► If a 3-manifold M is the connected sum of two 3-manifolds M₁ and M₂ joined along an S², then

$$Z(M)Z(S^3)=Z(M_1)Z(M_2)$$

▶ In particular, if M is M_1 and M_2 joined along $n S^{2's}$,

$$Z(M) = \frac{Z(M_1)Z(M_2)}{Z(S^3)^n}$$

► If a 3-manifold M is the connected sum of two 3-manifolds M₁ and M₂ joined along an S², then

$$Z(M)Z(S^3)=Z(M_1)Z(M_2)$$

▶ In particular, if M is M_1 and M_2 joined along $n S^{2's}$,

$$Z(M) = \frac{Z(M_1)Z(M_2)}{Z(S^3)^n}$$

Entanglement and Chern Simons Theory: Results for the Sphere \mathcal{S}^2

Entanglement and Chern Simons Theory: Results for the Sphere \mathcal{S}^2

► S² with one A – B boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3-geometry is a ball.

Entanglement and Chern Simons Theory: Results for the Sphere \mathcal{S}^2

- ► S² with one A B boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3-geometry is a ball.
- To construct $tr\hat{\rho}_A^n$ we glue 2n such pieces together.

Entanglement and Chern Simons Theory: Results for the Sphere S^2

- S² with one A − B boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3-geometry is a ball.
- To construct $tr\hat{\rho}_A^n$ we glue 2n such pieces together.

$$\frac{\operatorname{tr}\rho_{A(S^{2},1)}^{n}}{\left(\operatorname{tr}\rho_{A(S^{2},1)}\right)^{n}} = \frac{Z(S^{3})}{\left(Z(S^{3})\right)^{n}} = \left(Z(S^{3})\right)^{1-n} = S_{00}^{1-n}$$

- S² with one A − B boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3-geometry is a ball.
- To construct $tr\hat{\rho}_A^n$ we glue 2n such pieces together.

$$\frac{\operatorname{tr}\rho_{\mathcal{A}(S^2,1)}^n}{\left(\operatorname{tr}\rho_{\mathcal{A}(S^2,1)}\right)^n} = \frac{Z(S^3)}{\left(Z(S^3)\right)^n} = \left(Z(S^3)\right)^{1-n} = S_{00}^{1-n}$$
$$S_{\mathcal{A}}^{(S^2,1)} = \ln S_{00} = -\ln \mathcal{D},$$

- S² with one A − B boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3-geometry is a ball.
- To construct $tr\hat{\rho}_A^n$ we glue 2n such pieces together.

$$\frac{\operatorname{tr}\rho_{A(S^{2},1)}^{n}}{\left(\operatorname{tr}\rho_{A(S^{2},1)}\right)^{n}} = \frac{Z(S^{3})}{\left(Z(S^{3})\right)^{n}} = \left(Z(S^{3})\right)^{1-n} = S_{00}^{1-n}$$
$$S_{A}^{(S^{2},1)} = \ln S_{00} = -\ln \mathcal{D},$$

 It also holds for surfaces with arbitrary topology if the region being observed A is trivial regardless of the pure state labeled by the representations ρ_j

- S² with one A − B boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3-geometry is a ball.
- To construct $tr\hat{\rho}_A^n$ we glue 2n such pieces together.

$$\frac{\operatorname{tr}\rho_{A(S^{2},1)}^{n}}{\left(\operatorname{tr}\rho_{A(S^{2},1)}\right)^{n}} = \frac{Z(S^{3})}{\left(Z(S^{3})\right)^{n}} = \left(Z(S^{3})\right)^{1-n} = S_{00}^{1-n}$$
$$S_{A}^{(S^{2},1)} = \ln S_{00} = -\ln \mathcal{D},$$

- It also holds for surfaces with arbitrary topology if the region being observed A is trivial regardless of the pure state labeled by the representations ρ_j
- ► For the case of a sphere S^2 and a disconnected connected region A with M boundaries we find $S_A^{(S^2,M)} = M \ln S_{00} = -M \ln \mathcal{D}$.

- S² with one A − B boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3-geometry is a ball.
- To construct $tr\hat{\rho}_A^n$ we glue 2n such pieces together.

$$\frac{\operatorname{tr}\rho_{A(S^{2},1)}^{n}}{\left(\operatorname{tr}\rho_{A(S^{2},1)}\right)^{n}} = \frac{Z(S^{3})}{\left(Z(S^{3})\right)^{n}} = \left(Z(S^{3})\right)^{1-n} = S_{00}^{1-n}$$
$$S_{A}^{(S^{2},1)} = \ln S_{00} = -\ln \mathcal{D},$$

- It also holds for surfaces with arbitrary topology if the region being observed A is trivial regardless of the pure state labeled by the representations ρ_j
- ► For the case of a sphere S^2 and a disconnected connected region A with M boundaries we find $S_A^{(S^2,M)} = M \ln S_{00} = -M \ln \mathcal{D}$.

► For a torus T² split into two regions with more than one (say two) boundary, we have two cases,

► For a torus T² split into two regions with more than one (say two) boundary, we have two cases,

► For a torus T² split into two regions with more than one (say two) boundary, we have two cases,

For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_A(T^2, 2) = 2 \ln S_{00}$.

► For a torus T² split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_A(T^2, 2) = 2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_j, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

► For a torus T² split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_A(T^2, 2) = 2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_j, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

$$S_A(T^2,2,\rho)=2\ln S_{0\rho}$$

► For a torus T² split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_A(T^2, 2) = 2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_j, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

$$S_A(T^2,2,\rho)=2\ln S_{0\rho}$$

• For a state which is a linear superposition, $|\psi\rangle = \sum_{\rho} \psi_{\rho} |\rho\rangle$, we find

► For a torus T² split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_A(T^2, 2) = 2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_j, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

$$S_A(T^2,2,\rho)=2\ln S_{0\rho}$$

• For a state which is a linear superposition, $|\psi\rangle = \sum_{\rho} \psi_{\rho} |\rho\rangle$, we find

$$S_{\mathcal{A}}(T^2, 2, \psi) = 2 \ln S_{00} - \sum_{\rho} d_{\rho}^2 \left(\frac{|\psi_{\rho}|^2}{d_{\rho}^2} \ln \frac{|\psi_{\rho}|^2}{d_{\rho}^2} \right)$$

► For a torus T² split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_A(T^2, 2) = 2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_j, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

$$S_A(T^2,2,\rho)=2\ln S_{0\rho}$$

• For a state which is a linear superposition, $|\psi\rangle = \sum_{\rho} \psi_{\rho} |\rho\rangle$, we find

$$S_{\mathcal{A}}(T^2, 2, \psi) = 2 \ln S_{00} - \sum_{\rho} d_{\rho}^2 \left(\frac{|\psi_{\rho}|^2}{d_{\rho}^2} \ln \frac{|\psi_{\rho}|^2}{d_{\rho}^2} \right)$$

► Let us consider the case of four quasiparticles on S²: S² with four punctures

- ► Let us consider the case of four quasiparticles on S²: S² with four punctures
- ▶ We will consider $SU(N)_k$, with $N \ge 2$ and $k \ge 2$, with two punctures carrying fundamental $\hat{\alpha}$ and 2 anti-fundamental $\hat{\alpha}^*$ representations.

- ► Let us consider the case of four quasiparticles on S²: S² with four punctures
- We will consider SU(N)_k, with N ≥ 2 and k ≥ 2, with two punctures carrying fundamental â and 2 anti-fundamental â* representations.
- If there is only one puncture in A, $S_A = \ln S_0^{\hat{\alpha}}$

- ► Let us consider the case of four quasiparticles on S²: S² with four punctures
- We will consider SU(N)_k, with N ≥ 2 and k ≥ 2, with two punctures carrying fundamental â and 2 anti-fundamental â* representations.
- If there is only one puncture in A, $S_A = \ln S_0^{\hat{\alpha}}$
- ▶ If there are two punctures in A:

- ► Let us consider the case of four quasiparticles on S²: S² with four punctures
- We will consider SU(N)_k, with N ≥ 2 and k ≥ 2, with two punctures carrying fundamental â and 2 anti-fundamental â* representations.
- If there is only one puncture in A, $S_A = \ln S_0^{\hat{\alpha}}$
- ► If there are two punctures in A:
 - ▶ There is a pair of $\hat{\alpha}$ and $\hat{\alpha}^*$ in A and in B. Each pair can fuse into the identity or into the adjoint. For $k \ge 2$, the Hilbert space on S^2 with 2 pairs of $\hat{\alpha}$ and $\hat{\alpha}^*$'s is two dimensional. The entanglement entropy depends on the quantum dimensions of the conformal block.

- ► Let us consider the case of four quasiparticles on S²: S² with four punctures
- We will consider SU(N)_k, with N ≥ 2 and k ≥ 2, with two punctures carrying fundamental â and 2 anti-fundamental â* representations.
- If there is only one puncture in A, $S_A = \ln S_0^{\hat{\alpha}}$
- ► If there are two punctures in A:
 - ▶ There is a pair of $\hat{\alpha}$ and $\hat{\alpha}^*$ in A and in B. Each pair can fuse into the identity or into the adjoint. For $k \ge 2$, the Hilbert space on S^2 with 2 pairs of $\hat{\alpha}$ and $\hat{\alpha}^*$'s is two dimensional. The entanglement entropy depends on the quantum dimensions of the conformal block.
 - ▶ There are two $\hat{\alpha}$'s in A and two $\hat{\alpha}^*$'s in B. The entropy now depends on which channels (representation) the quasiparticles fuse and on the choice of state (conformal block).

- ► Let us consider the case of four quasiparticles on S²: S² with four punctures
- We will consider SU(N)_k, with N ≥ 2 and k ≥ 2, with two punctures carrying fundamental â and 2 anti-fundamental â* representations.
- If there is only one puncture in A, $S_A = \ln S_0^{\hat{\alpha}}$
- ► If there are two punctures in A:
 - ▶ There is a pair of $\hat{\alpha}$ and $\hat{\alpha}^*$ in A and in B. Each pair can fuse into the identity or into the adjoint. For $k \ge 2$, the Hilbert space on S^2 with 2 pairs of $\hat{\alpha}$ and $\hat{\alpha}^*$'s is two dimensional. The entanglement entropy depends on the quantum dimensions of the conformal block.
 - ► There are two $\hat{\alpha}$'s in A and two $\hat{\alpha}^*$'s in B. The entropy now depends on which channels (representation) the quasiparticles fuse and on the choice of state (conformal block).
- ► The entropy depends on the conformal block, and on the fusion channel.

- ► Let us consider the case of four quasiparticles on S²: S² with four punctures
- We will consider SU(N)_k, with N ≥ 2 and k ≥ 2, with two punctures carrying fundamental â and 2 anti-fundamental â* representations.
- If there is only one puncture in A, $S_A = \ln S_0^{\hat{\alpha}}$
- ► If there are two punctures in A:
 - ▶ There is a pair of $\hat{\alpha}$ and $\hat{\alpha}^*$ in A and in B. Each pair can fuse into the identity or into the adjoint. For $k \ge 2$, the Hilbert space on S^2 with 2 pairs of $\hat{\alpha}$ and $\hat{\alpha}^*$'s is two dimensional. The entanglement entropy depends on the quantum dimensions of the conformal block.
 - ► There are two $\hat{\alpha}$'s in A and two $\hat{\alpha}^*$'s in B. The entropy now depends on which channels (representation) the quasiparticles fuse and on the choice of state (conformal block).
- ► The entropy depends on the conformal block, and on the fusion channel.

► We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.

- ► We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms

- ► We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms
- If the logarithmic term is absent the O(1) term is universal

- ► We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- ► The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms
- If the logarithmic term is absent the O(1) term is universal
- In a topological phase the finite term in the entanglement entropy is a universal property of the phase.

- ► We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- ► The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms
- If the logarithmic term is absent the O(1) term is universal
- In a topological phase the finite term in the entanglement entropy is a universal property of the phase.
- ► We computed the topological entanglement entropy for Chern-Simons gauge theories: the entanglement entropy of abelian and non-abelian FQH states by finding the associated modular S matrix for each state.

- ► We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- ► The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms
- If the logarithmic term is absent the O(1) term is universal
- In a topological phase the finite term in the entanglement entropy is a universal property of the phase.
- ► We computed the topological entanglement entropy for Chern-Simons gauge theories: the entanglement entropy of abelian and non-abelian FQH states by finding the associated modular S matrix for each state.

► For a simply connected region it is universal and depends only on the total quantum dimension

- ► For a simply connected region it is universal and depends only on the total quantum dimension
- ► For regions which are not simply connected, the entropy is additive.

- ► For a simply connected region it is universal and depends only on the total quantum dimension
- ► For regions which are not simply connected, the entropy is additive.
- ► The entropy of disjoint regions on a torus depends on the effective quantum dimension and on the state on the torus.

- ► For a simply connected region it is universal and depends only on the total quantum dimension
- ► For regions which are not simply connected, the entropy is additive.
- ► The entropy of disjoint regions on a torus depends on the effective quantum dimension and on the state on the torus.
- The entropy for a simply connected region on the sphere with 4 quasiparticles (punctures) depends on the conformal block

- ► For a simply connected region it is universal and depends only on the total quantum dimension
- ► For regions which are not simply connected, the entropy is additive.
- ► The entropy of disjoint regions on a torus depends on the effective quantum dimension and on the state on the torus.
- The entropy for a simply connected region on the sphere with 4 quasiparticles (punctures) depends on the conformal block
- It may be possible to determine the structure of the topological field theory by means of entanglement entropy measurements

