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◮ The O(1) term has a universal piece proportional to log g , the
“boundary entropy” of Affleck and Ludwig
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◮ If there is a Wilson loop with a non-trivial representation ρj , we
obtain the same result for the case of the left. But, for the case of
the right, for a Wilson loop in representation ρ we obtain instead,

SA(T 2, 2, ρ) = 2 lnS0ρ

◮ For a state which is a linear superposition, |ψ〉 =
∑

ρ ψρ|ρ〉, we find
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◮ For a simply connected region it is universal and depends only on
the total quantum dimension

◮ For regions which are not simply connected, the entropy is additive.

◮ The entropy of disjoint regions on a torus depends on the effective
quantum dimension and on the state on the torus.

◮ The entropy for a simply connected region on the sphere with 4
quasiparticles (punctures) depends on the conformal block

◮ It may be possible to determine the structure of the topological field
theory by means of entanglement entropy measurements
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