Entanglement Entropy at 2D quantum critical points, topological fluids and quantum Hall fluids

 Invited Talk at the Nordita Workshop, Stockholm 2008Eduardo Fradkin

Department of Physics
University of Illinois at Urbana Champaign

August 15, 2008

Llinois

Collaborators and References

- Stefanos Papanikolaou, Kumar Raman, Benjamin Hsu, Shiying Dong, Robert G. Leigh and Sean Nowling (UIUC),
- Michael Mulligan and Eun-Ah Kim (Stanford), Joel E. Moore (University of California Berkeley), Paul Fendley (Virginia)
- S. Dong, E. Fradkin, R. G. Leigh and S. Nowling, JHEP 05, 016 (2008).
- S. Papanikolaou, K. S. Raman, and E. Fradkin, Phys. Rev. B 76, 224421 (2007).
- E. Fradkin and J. E. Moore, Phys. Rev. Lett. 97, 050404 (2006).
- P. Fendley and E. Fradkin, Phys. Rev. B 72, 024412 (2005).

Motivation

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories

Llinois

Motivation

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- It is a very non-local quantity which very difficult to measure

Llinois

Motivation

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)

Motivation

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions

Motivation

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions
- Topological phase \Rightarrow universal topological entropy

Motivation

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions
- Topological phase \Rightarrow universal topological entropy
- Can the structure of the topological field theory can be determined by a suitable set of entanglement measurements?

Motivation

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions
- Topological phase \Rightarrow universal topological entropy
- Can the structure of the topological field theory can be determined by a suitable set of entanglement measurements?
- We will use the effective low energy theory of fractional quantum Hall fluids, the Chern-Simons gauge theory.

Motivation

- Entanglement entropy measures quantum mechanical correlations in many body systems and field theories
- It is a very non-local quantity which very difficult to measure
- Its behavior at generic quantum critical points is not understood, except in 1D (from CFT)
- We will discuss the scaling of the entanglement entropy at a class of special 2D QCP with scale invariant wave functions
- Topological phase \Rightarrow universal topological entropy
- Can the structure of the topological field theory can be determined by a suitable set of entanglement measurements?
- We will use the effective low energy theory of fractional quantum Hall fluids, the Chern-Simons gauge theory.
- Topological Quantum Computing?

Entanglement Entropy

- Given the pure state $\Psi\left[\varphi_{A}, \varphi_{B}\right]$ and the(trivial) density matrix of the combined system $A \cup B$

Entanglement Entropy

- Given the pure state $\Psi\left[\varphi_{A}, \varphi_{B}\right]$ and the(trivial) density matrix of the combined system $A \cup B$

$$
\left\langle\varphi_{A}, \varphi_{B}\right| \rho_{A \cup B}\left|\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right\rangle=\Psi\left[\varphi_{A}, \varphi_{B}\right] \Psi^{*}\left[\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right]
$$

Entanglement Entropy

- Given the pure state $\Psi\left[\varphi_{A}, \varphi_{B}\right]$ and the(trivial) density matrix of the combined system $A \cup B$

$$
\left\langle\varphi_{A}, \varphi_{B}\right| \rho_{A \cup B}\left|\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right\rangle=\Psi\left[\varphi_{A}, \varphi_{B}\right] \Psi^{*}\left[\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right]
$$

- The reduced density matrix for A, which acts only on the states $\left\{\varphi_{A}\right\}$, is constructed by tracing over the degrees of freedom in B :

Entanglement Entropy

- Given the pure state $\Psi\left[\varphi_{A}, \varphi_{B}\right]$ and the(trivial) density matrix of the combined system $A \cup B$

$$
\left\langle\varphi_{A}, \varphi_{B}\right| \rho_{A \cup B}\left|\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right\rangle=\Psi\left[\varphi_{A}, \varphi_{B}\right] \Psi^{*}\left[\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right]
$$

- The reduced density matrix for A, which acts only on the states $\left\{\varphi_{A}\right\}$, is constructed by tracing over the degrees of freedom in B :

$$
\rho_{A}=\operatorname{tr}{ }_{B} \rho_{A \cup B}
$$

Entanglement Entropy

- Given the pure state $\Psi\left[\varphi_{A}, \varphi_{B}\right]$ and the(trivial) density matrix of the combined system $A \cup B$

$$
\left\langle\varphi_{A}, \varphi_{B}\right| \rho_{A \cup B}\left|\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right\rangle=\Psi\left[\varphi_{A}, \varphi_{B}\right] \Psi^{*}\left[\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right]
$$

- The reduced density matrix for A, which acts only on the states $\left\{\varphi_{A}\right\}$, is constructed by tracing over the degrees of freedom in B :

$$
\rho_{A}=\operatorname{tr}_{B} \rho_{A \cup B}
$$

- The von Neumann entanglement entropy is

Entanglement Entropy

- Given the pure state $\Psi\left[\varphi_{A}, \varphi_{B}\right]$ and the(trivial) density matrix of the combined system $A \cup B$

$$
\left\langle\varphi_{A}, \varphi_{B}\right| \rho_{A \cup B}\left|\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right\rangle=\Psi\left[\varphi_{A}, \varphi_{B}\right] \Psi^{*}\left[\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right]
$$

- The reduced density matrix for A, which acts only on the states $\left\{\varphi_{A}\right\}$, is constructed by tracing over the degrees of freedom in B :

$$
\rho_{A}=\operatorname{tr}{ }_{B} \rho_{A \cup B}
$$

- The von Neumann entanglement entropy is

$$
S_{A}=-\operatorname{tr}_{A}\left(\rho_{A} \ln \rho_{A}\right)=-\operatorname{tr}_{B}\left(\rho_{B} \ln \rho_{B}\right)=S_{B}
$$

Entanglement Entropy

- Given the pure state $\Psi\left[\varphi_{A}, \varphi_{B}\right]$ and the(trivial) density matrix of the combined system $A \cup B$

$$
\left\langle\varphi_{A}, \varphi_{B}\right| \rho_{A \cup B}\left|\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right\rangle=\Psi\left[\varphi_{A}, \varphi_{B}\right] \Psi^{*}\left[\varphi_{A}^{\prime}, \varphi_{B}^{\prime}\right]
$$

- The reduced density matrix for A, which acts only on the states $\left\{\varphi_{A}\right\}$, is constructed by tracing over the degrees of freedom in B :

$$
\rho_{A}=\operatorname{tr}{ }_{B} \rho_{A \cup B}
$$

- The von Neumann entanglement entropy is

$$
S_{A}=-\operatorname{tr}_{A}\left(\rho_{A} \ln \rho_{A}\right)=-\operatorname{tr}_{B}\left(\rho_{B} \ln \rho_{B}\right)=S_{B}
$$

Entanglement Entropy and Path Integrals

Entanglement Entropy and Path Integrals

- The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$

Entanglement Entropy and Path Integrals

- The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- $\operatorname{tr}\left(\hat{\rho}_{A}\right)^{n}$ corresponds to a path integral on the manifold shown below (right) (for $n=3$)

Entanglement Entropy and Path Integrals

- The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- $\operatorname{tr}\left(\hat{\rho}_{A}\right)^{n}$ corresponds to a path integral on the manifold shown below (right) (for $n=3$)

Entanglement Entropy and Path Integrals

- The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- $\operatorname{tr}\left(\hat{\rho}_{A}\right)^{n}$ corresponds to a path integral on the manifold shown below (right) (for $n=3$)

- In the $T \rightarrow 0$ limit, the entanglement entropy follows from the "replica trick"

Entanglement Entropy and Path Integrals

- The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- $\operatorname{tr}\left(\hat{\rho}_{A}\right)^{n}$ corresponds to a path integral on the manifold shown below (right) (for $n=3$)

- In the $T \rightarrow 0$ limit, the entanglement entropy follows from the "replica trick"

$$
S_{A}=-\operatorname{tr}\left(\hat{\rho}_{A} \ln \hat{\rho}_{A}\right)=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{tr}\left(\hat{\rho}_{A}\right)^{n}
$$

Entanglement Entropy and Path Integrals

- The entanglement entropy computed from the path integral representation of the Gibbs density matrix at $T \rightarrow 0$
- $\operatorname{tr}\left(\hat{\rho}_{A}\right)^{n}$ corresponds to a path integral on the manifold shown below (right) (for $n=3$)

- In the $T \rightarrow 0$ limit, the entanglement entropy follows from the "replica trick"

$$
S_{A}=-\operatorname{tr}\left(\hat{\rho}_{A} \ln \hat{\rho}_{A}\right)=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{tr}\left(\hat{\rho}_{A}\right)^{n}
$$

Topological Phases of Matter

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.

Topological Phases of Matter

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).

Topological Phases of Matter

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- Hidden Topological Order and Topological Vacuum Degeneracy.

Topological Phases of Matter

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- Hidden Topological Order and Topological Vacuum Degeneracy.
- Finite-dimensional quasiparticle Hilbert spaces \Rightarrow universal topological quantum computer.

Topological Phases of Matter

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- Hidden Topological Order and Topological Vacuum Degeneracy.
- Finite-dimensional quasiparticle Hilbert spaces \Rightarrow universal topological quantum computer.
- Effective field theory description: Topological Field Theory, e.g., Chern-Simons gauge theory, discrete gauge theory.

Topological Phases of Matter

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- Hidden Topological Order and Topological Vacuum Degeneracy.
- Finite-dimensional quasiparticle Hilbert spaces \Rightarrow universal topological quantum computer.
- Effective field theory description: Topological Field Theory, e.g., Chern-Simons gauge theory, discrete gauge theory.
- Best known examples: the fractional quantum Hall fluids and \mathbb{Z}_{2} deconfined phases (quantum dimers and Kitaev's Toric Code.)

Topological Phases of Matter

- Liquid phases of electron fluids and spin systems without long range order, with or without time reversal symmetry breaking.
- Quasiparticles: vortices with fractional charge and fractional statistics (Abelian and non-Abelian).
- Hidden Topological Order and Topological Vacuum Degeneracy.
- Finite-dimensional quasiparticle Hilbert spaces \Rightarrow universal topological quantum computer.
- Effective field theory description: Topological Field Theory, e.g., Chern-Simons gauge theory, discrete gauge theory.
- Best known examples: the fractional quantum Hall fluids and \mathbb{Z}_{2} deconfined phases (quantum dimers and Kitaev's Toric Code.)

Experimentally "Known" Topological Quantum Liquids

- 2DEG Fractional Quantum Hall Liquids.

Experimentally "Known" Topological Quantum Liquids

- 2DEG Fractional Quantum Hall Liquids.
- Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.

Experimentally "Known" Topological Quantum Liquids

- 2DEG Fractional Quantum Hall Liquids.
- Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
- Non-Abelian FQH states:

Experimentally "Known" Topological Quantum Liquids

- 2DEG Fractional Quantum Hall Liquids.
- Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
- Non-Abelian FQH states: $\nu=5 / 2$ a Pfaffian (MooreRead) FQH state (firm candidate). Evidence for $q=e / 4$ vortex.
Shot noise @ point contact (Heiblum)
DC transport @ point contact (Marcus)
Is the plateau at $\nu=12 / 5$ a

2DEG with a single point contact parafermion state?

Experimentally "Known" Topological Quantum Liquids

- 2DEG Fractional Quantum Hall Liquids.
- Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
- Non-Abelian FQH states:
$\nu=5 / 2$ a Pfaffian (MooreRead) FQH state (firm candidate). Evidence for $q=e / 4$ vortex.
Shot noise @ point contact (Heiblum)
DC transport @ point contact (Marcus)
Is the plateau at $\nu=12 / 5$ a

2DEG with a single point contact parafermion state?

- Rapidly rotating Bose gases: possible non-Abelian (Pfaffian) FQH state of bosons at $\nu=1$ (still hard!)

Experimentally "Known" Topological Quantum Liquids

- 2DEG Fractional Quantum Hall Liquids.
- Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
- Non-Abelian FQH states: $\nu=5 / 2$ a Pfaffian (MooreRead) FQH state (firm candidate). Evidence for $q=e / 4$ vortex.
Shot noise @ point contact (Heiblum)
DC transport @ point contact (Marcus)
Is the plateau at $\nu=12 / 5$ a

2DEG with a single point contact parafermion state?

- Rapidly rotating Bose gases: possible non-Abelian (Pfaffian) FQH state of bosons at $\nu=1$ (still hard!)
- Time-Reversal Breaking Superconductors: $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ is a $p_{x}+i p_{y}$ superconductor (strong evidence, controversial)

Experimentally "Known" Topological Quantum Liquids

- 2DEG Fractional Quantum Hall Liquids.
- Abelian FQH states (Laughlin and Jain): fractional charge (noise experiments) and Abelian fractional statistics.
- Non-Abelian FQH states: $\nu=5 / 2$ a Pfaffian (MooreRead) FQH state (firm candidate). Evidence for $q=e / 4$ vortex.
Shot noise @ point contact (Heiblum)
DC transport @ point contact (Marcus)
Is the plateau at $\nu=12 / 5$ a

2DEG with a single point contact parafermion state?

- Rapidly rotating Bose gases: possible non-Abelian (Pfaffian) FQH state of bosons at $\nu=1$ (still hard!)
- Time-Reversal Breaking Superconductors: $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ is a $p_{x}+i p_{y}$ superconductor (strong evidence, controversial)

Hydrodynamic picture: Abelian States

Hydrodynamic picture: Abelian States

- Bulk: Abelian Chern-Simons gauge theory $U(1)_{m}$; Effective action of the hydrodynamic gauge field

Hydrodynamic picture: Abelian States

- Bulk: Abelian Chern-Simons gauge theory $U(1)_{m}$; Effective action of the hydrodynamic gauge field

$$
j_{\mu}=\frac{1}{2 \pi} \epsilon_{\mu \nu \lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A})=\frac{m}{4 \pi} \int_{S^{2} \times S^{1}} d^{3} \times \epsilon_{\mu \nu \lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}
$$

Hydrodynamic picture: Abelian States

- Bulk: Abelian Chern-Simons gauge theory $U(1)_{m}$; Effective action of the hydrodynamic gauge field

$$
j_{\mu}=\frac{1}{2 \pi} \epsilon_{\mu \nu \lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A})=\frac{m}{4 \pi} \int_{S^{2} \times S^{1}} d^{3} \times \epsilon_{\mu \nu \lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}
$$

- The excitations are vortices with fractional charge $q=e / m$ and fractional (braid) statistics $\theta=\pi / m$.

Hydrodynamic picture: Abelian States

- Bulk: Abelian Chern-Simons gauge theory $U(1)_{m}$; Effective action of the hydrodynamic gauge field

$$
j_{\mu}=\frac{1}{2 \pi} \epsilon_{\mu \nu \lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A})=\frac{m}{4 \pi} \int_{S^{2} \times S^{1}} d^{3} \times \epsilon_{\mu \nu \lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}
$$

- The excitations are vortices with fractional charge $q=e / m$ and fractional (braid) statistics $\theta=\pi / m$.
- Edge states: chiral boson CFT $U(1)_{m}$ with compactification radius $R=1 / \sqrt{m}$ and central charge $c=1$.

Hydrodynamic picture: Abelian States

- Bulk: Abelian Chern-Simons gauge theory $U(1)_{m}$; Effective action of the hydrodynamic gauge field

$$
j_{\mu}=\frac{1}{2 \pi} \epsilon_{\mu \nu \lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A})=\frac{m}{4 \pi} \int_{S^{2} \times S^{1}} d^{3} \times \epsilon_{\mu \nu \lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}
$$

- The excitations are vortices with fractional charge $q=e / m$ and fractional (braid) statistics $\theta=\pi / m$.
- Edge states: chiral boson CFT $U(1)_{m}$ with compactification radius $R=1 / \sqrt{m}$ and central charge $c=1$.
- The hydrodynamic description generalizes to the non-Abelian FQH states

Hydrodynamic picture: Abelian States

- Bulk: Abelian Chern-Simons gauge theory $U(1)_{m}$; Effective action of the hydrodynamic gauge field

$$
j_{\mu}=\frac{1}{2 \pi} \epsilon_{\mu \nu \lambda} \partial^{\nu} \mathcal{A}^{\lambda}, \quad S(\mathcal{A})=\frac{m}{4 \pi} \int_{S^{2} \times S^{1}} d^{3} \times \epsilon_{\mu \nu \lambda} \mathcal{A}^{\mu} \partial^{\nu} \mathcal{A}^{\lambda}
$$

- The excitations are vortices with fractional charge $q=e / m$ and fractional (braid) statistics $\theta=\pi / m$.
- Edge states: chiral boson CFT $U(1)_{m}$ with compactification radius $R=1 / \sqrt{m}$ and central charge $c=1$.
- The hydrodynamic description generalizes to the non-Abelian FQH states

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the $\nu=1$ bosonic state it is an $S U(2)_{2}$ Chern-Simons theory. For the $\nu=5 / 2$ fermionic state the $U(1)$ sector is deformed.

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the $\nu=1$ bosonic state it is an $S U(2)_{2}$ Chern-Simons theory. For the $\nu=5 / 2$ fermionic state the $U(1)$ sector is deformed.
- Half-vortices, σ, with charge $q=e / 4$ (fermionic case) and $q=e / 2$ (bosonic case) and non-Abelian fractional (braid) statistics.

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the $\nu=1$ bosonic state it is an $S U(2)_{2}$ Chern-Simons theory. For the $\nu=5 / 2$ fermionic state the $U(1)$ sector is deformed.
- Half-vortices, σ, with charge $q=e / 4$ (fermionic case) and $q=e / 2$ (bosonic case) and non-Abelian fractional (braid) statistics.
- The vortices are charge neutral Majorana fermions ψ

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the $\nu=1$ bosonic state it is an $S U(2)_{2}$ Chern-Simons theory. For the $\nu=5 / 2$ fermionic state the $U(1)$ sector is deformed.
- Half-vortices, σ, with charge $q=e / 4$ (fermionic case) and $q=e / 2$ (bosonic case) and non-Abelian fractional (braid) statistics.
- The vortices are charge neutral Majorana fermions ψ
- Laughlin vortices with charge e / m and abelian fractional statistics π / m

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the $\nu=1$ bosonic state it is an $S U(2)_{2}$ Chern-Simons theory. For the $\nu=5 / 2$ fermionic state the $U(1)$ sector is deformed.
- Half-vortices, σ, with charge $q=e / 4$ (fermionic case) and $q=e / 2$ (bosonic case) and non-Abelian fractional (braid) statistics.
- The vortices are charge neutral Majorana fermions ψ
- Laughlin vortices with charge e / m and abelian fractional statistics π / m
- Edge states

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the $\nu=1$ bosonic state it is an $S U(2)_{2}$ Chern-Simons theory. For the $\nu=5 / 2$ fermionic state the $U(1)$ sector is deformed.
- Half-vortices, σ, with charge $q=e / 4$ (fermionic case) and $q=e / 2$ (bosonic case) and non-Abelian fractional (braid) statistics.
- The vortices are charge neutral Majorana fermions ψ
- Laughlin vortices with charge e / m and abelian fractional statistics π / m
- Edge states bosonic case: $S U(2)_{2}$

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the $\nu=1$ bosonic state it is an $S U(2)_{2}$ Chern-Simons theory. For the $\nu=5 / 2$ fermionic state the $U(1)$ sector is deformed.
- Half-vortices, σ, with charge $q=e / 4$ (fermionic case) and $q=e / 2$ (bosonic case) and non-Abelian fractional (braid) statistics.
- The vortices are charge neutral Majorana fermions ψ
- Laughlin vortices with charge e / m and abelian fractional statistics π / m
- Edge states bosonic case: $S U(2)_{2}$ fermionic case $\mathbb{Z}_{2} \times U(1)_{2}$ chiral CFT $(\nu=5 / 2)$ $\mathbb{Z}_{3} \times U(1)$ chiral parafermion CFT $(\nu=12 / 5$? $)$

Hydrodynamic picture: Non-Abelian States

with Nayak, Tsvelik and Wilczek (1998); with Nayak and Schoutens (1999)

- For the $\nu=1$ bosonic state it is an $S U(2)_{2}$ Chern-Simons theory. For the $\nu=5 / 2$ fermionic state the $U(1)$ sector is deformed.
- Half-vortices, σ, with charge $q=e / 4$ (fermionic case) and $q=e / 2$ (bosonic case) and non-Abelian fractional (braid) statistics.
- The vortices are charge neutral Majorana fermions ψ
- Laughlin vortices with charge e / m and abelian fractional statistics π / m
- Edge states bosonic case: $S U(2)_{2}$ fermionic case $\mathbb{Z}_{2} \times U(1)_{2}$ chiral CFT $(\nu=5 / 2)$ $\mathbb{Z}_{3} \times U(1)$ chiral parafermion CFT $(\nu=12 / 5$? $)$

Quantum Dimer Models

Quantum Dimer Models

- Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

Quantum Dimer Models

- Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$
\left|\Psi_{\mathrm{RVB}}\right\rangle=\sum_{\{C\}}|C\rangle, \quad\{C\}=\text { all dimer coverings of the lattice }
$$

Quantum Dimer Models

- Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$
\left|\Psi_{\mathrm{RVB}}\right\rangle=\sum_{\{C\}}|C\rangle, \quad\{C\}=\text { all dimer coverings of the lattice }
$$

- Bipartite lattices: quantum (multi) critical points

Quantum Dimer Models

- Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$
\left|\Psi_{\mathrm{RVB}}\right\rangle=\sum_{\{C\}}|C\rangle, \quad\{C\}=\text { all dimer coverings of the lattice }
$$

- Bipartite lattices: quantum (multi) critical points Effective field theory with $z=2$ and massless deconfined spinons

Quantum Dimer Models

- Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$
\left|\Psi_{\mathrm{RVB}}\right\rangle=\sum_{\{C\}}|C\rangle, \quad\{C\}=\text { all dimer coverings of the lattice }
$$

- Bipartite lattices: quantum (multi) critical points Effective field theory with $z=2$ and massless deconfined spinons
- Non-bipartite lattices: Topological \mathbb{Z}_{2} deconfined phases with massive spinons and a topological 4-fold ground state degeneracy on a torus (Moessner and Sondhi, 1998)

Quantum Dimer Models

- Solvable case: the Rokhsar-Kivelson (RK) point, exact ground state wave function has the short range RVB form

$$
\left|\Psi_{\mathrm{RVB}}\right\rangle=\sum_{\{C\}}|C\rangle, \quad\{C\}=\text { all dimer coverings of the lattice }
$$

- Bipartite lattices: quantum (multi) critical points Effective field theory with $z=2$ and massless deconfined spinons
- Non-bipartite lattices: Topological \mathbb{Z}_{2} deconfined phases with massive spinons and a topological 4-fold ground state degeneracy on a torus (Moessner and Sondhi, 1998)

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice $\Leftrightarrow 2 \mathrm{D}$ height model

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice $\Leftrightarrow 2 \mathrm{D}$ height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x)+1$.

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice $\Leftrightarrow 2 \mathrm{D}$ height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x)+1$.
- Quantum Lifshitz Model Hamiltonian:

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice $\Leftrightarrow 2 \mathrm{D}$ height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x)+1$.
- Quantum Lifshitz Model Hamiltonian:

$$
H=\int d^{2} x\left[\frac{1}{2} \Pi^{2}+\frac{\kappa^{2}}{2}\left(\nabla^{2} \varphi\right)^{2}\right]
$$

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice $\Leftrightarrow 2 \mathrm{D}$ height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x)+1$.
- Quantum Lifshitz Model Hamiltonian:

$$
H=\int d^{2} x\left[\frac{1}{2} \Pi^{2}+\frac{\kappa^{2}}{2}\left(\nabla^{2} \varphi\right)^{2}\right]
$$

- The Ground State Wave Function $\Psi_{0}[\varphi]$ is Scale Invariant

$$
\psi_{0}[\varphi] \propto e^{-\frac{\kappa}{2} \int d^{2} x(\nabla \varphi(\mathbf{x}))^{2}}
$$

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice $\Leftrightarrow 2 \mathrm{D}$ height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x)+1$.
- Quantum Lifshitz Model Hamiltonian:

$$
H=\int d^{2} x\left[\frac{1}{2} \Pi^{2}+\frac{\kappa^{2}}{2}\left(\nabla^{2} \varphi\right)^{2}\right]
$$

- The Ground State Wave Function $\Psi_{0}[\varphi]$ is Scale Invariant

$$
\psi_{0}[\varphi] \propto e^{-\frac{\kappa}{2} \int d^{2} x(\nabla \varphi(\mathbf{x}))^{2}}
$$

- The norm of the 2D wave function is the partition function of a classical critical conformally invariant system!

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice $\Leftrightarrow 2 \mathrm{D}$ height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x)+1$.
- Quantum Lifshitz Model Hamiltonian:

$$
H=\int d^{2} x\left[\frac{1}{2} \Pi^{2}+\frac{\kappa^{2}}{2}\left(\nabla^{2} \varphi\right)^{2}\right]
$$

- The Ground State Wave Function $\Psi_{0}[\varphi]$ is Scale Invariant

$$
\psi_{0}[\varphi] \propto e^{-\frac{\kappa}{2} \int d^{2} x(\nabla \varphi(\mathrm{x}))^{2}}
$$

- The norm of the 2D wave function is the partition function of a classical critical conformally invariant system!

$$
\left\|\Psi_{0}\right\|^{2}=\int \mathcal{D} \varphi e^{-\kappa \int d^{2} x(\nabla \varphi(\mathbf{x}))^{2}}=" Z "
$$

Effective field theory: the Quantum Lifshitz Model

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

- QDM on a square lattice $\Leftrightarrow 2 \mathrm{D}$ height model
- Physical Operators are invariant under $\varphi(x) \rightarrow \varphi(x)+1$.
- Quantum Lifshitz Model Hamiltonian:

$$
H=\int d^{2} x\left[\frac{1}{2} \Pi^{2}+\frac{\kappa^{2}}{2}\left(\nabla^{2} \varphi\right)^{2}\right]
$$

- The Ground State Wave Function $\Psi_{0}[\varphi]$ is Scale Invariant

$$
\psi_{0}[\varphi] \propto e^{-\frac{\kappa}{2} \int d^{2} x(\nabla \varphi(\mathrm{x}))^{2}}
$$

- The norm of the 2D wave function is the partition function of a classical critical conformally invariant system!

$$
\left\|\Psi_{0}\right\|^{2}=\int \mathcal{D} \varphi e^{-\kappa \int d^{2} x(\nabla \varphi(\mathbf{x}))^{2}}=" Z "
$$

Mapping to a 2D Euclidean CFT

Mapping to a 2D Euclidean CFT

- The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions

Mapping to a 2D Euclidean CFT

- The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge $c=1$.

Mapping to a 2D Euclidean CFT

- The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge $c=1$.
- Time-dependent correlators: dynamical exponent $z=2$.

Mapping to a 2D Euclidean CFT

- The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge $c=1$.
- Time-dependent correlators: dynamical exponent $z=2$.
- Matching the correlation functions of the RK and Lifshitz models, one finds $\kappa=\frac{1}{8 \pi}$.

Mapping to a 2D Euclidean CFT

- The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge $c=1$.
- Time-dependent correlators: dynamical exponent $z=2$.
- Matching the correlation functions of the RK and Lifshitz models, one finds $\kappa=\frac{1}{8 \pi}$.
- Multicritical point with many relevant perturbations: e.g. diagonal dimers drive the system into a \mathbb{Z}_{2} topological phase.

Mapping to a 2D Euclidean CFT

- The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge $c=1$.
- Time-dependent correlators: dynamical exponent $z=2$.
- Matching the correlation functions of the RK and Lifshitz models, one finds $\kappa=\frac{1}{8 \pi}$.
- Multicritical point with many relevant perturbations: e.g. diagonal dimers drive the system into a \mathbb{Z}_{2} topological phase.
- This construction generalizes to more complex states with non-Abelian braid statistics (Fendley and Fradkin, 2005)

Mapping to a 2D Euclidean CFT

- The amplitude of $|\varphi\rangle$ is the Gibbs weight of a Euclidean 2D free massless scalar field: scale invariant wave functions
- The equal-time expectation value of operators in the quantum Lifshitz model are given by correlators of the massless free boson conformal field theory with central charge $c=1$.
- Time-dependent correlators: dynamical exponent $z=2$.
- Matching the correlation functions of the RK and Lifshitz models, one finds $\kappa=\frac{1}{8 \pi}$.
- Multicritical point with many relevant perturbations: e.g. diagonal dimers drive the system into a \mathbb{Z}_{2} topological phase.
- This construction generalizes to more complex states with non-Abelian braid statistics (Fendley and Fradkin, 2005)

Scaling Behavior of Quantum Entanglement

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in $d=1$ critical systems (CFT):

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in $d=1$ critical systems (CFT):
- Spin chains: universal $\log L$ term (Rico, Latorre, Vidal and Kitaev).

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in $d=1$ critical systems (CFT):
- Spin chains: universal $\log L$ term (Rico, Latorre, Vidal and Kitaev).
- Generic scaling behavior in $d=1$ (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in $d=1$ critical systems (CFT):
- Spin chains: universal $\log L$ term (Rico, Latorre, Vidal and Kitaev).
- Generic scaling behavior in $d=1$ (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$
S=\frac{c}{3} \log \left(\frac{L}{a}\right)+\text { finite terms }
$$

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in $d=1$ critical systems (CFT):
- Spin chains: universal $\log L$ term (Rico, Latorre, Vidal and Kitaev).
- Generic scaling behavior in $d=1$ (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$
S=\frac{c}{3} \log \left(\frac{L}{a}\right)+\text { finite terms }
$$

- Also obeyed by random fixed points (Refael and Moore, 2004).

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in $d=1$ critical systems (CFT):
- Spin chains: universal $\log L$ term (Rico, Latorre, Vidal and Kitaev).
- Generic scaling behavior in $d=1$ (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$
S=\frac{c}{3} \log \left(\frac{L}{a}\right)+\text { finite terms }
$$

- Also obeyed by random fixed points (Refael and Moore, 2004).
- Away from criticality, the correlation length ξ is finite and

$$
S=\frac{c}{3} \log \left(\frac{\xi}{a}\right)+\text { finite terms }
$$

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in $d=1$ critical systems (CFT):
- Spin chains: universal $\log L$ term (Rico, Latorre, Vidal and Kitaev).
- Generic scaling behavior in $d=1$ (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$
S=\frac{c}{3} \log \left(\frac{L}{a}\right)+\text { finite terms }
$$

- Also obeyed by random fixed points (Refael and Moore, 2004).
- Away from criticality, the correlation length ξ is finite and

$$
S=\frac{c}{3} \log \left(\frac{\xi}{a}\right)+\text { finite terms }
$$

- Are there universal subleading terms in general dimensions?

Scaling Behavior of Quantum Entanglement

- Entanglement entropy near generic QCPs is not understood.
- Massive relativistic free field theories obey an "area law" $S=$ const. $L^{D-1}+\ldots$ (Srednicki, 1993).
- Calabrese and Cardy (2004): the area law is the generic behavior in all dimensions.
- Universal behavior in $d=1$ critical systems (CFT):
- Spin chains: universal $\log L$ term (Rico, Latorre, Vidal and Kitaev).
- Generic scaling behavior in $d=1$ (CFT) (Callan and Wilczek (1993), Holzhey, Larson and Wilczek (1994), Calabrese and Cardy (2004))

$$
S=\frac{c}{3} \log \left(\frac{L}{a}\right)+\text { finite terms }
$$

- Also obeyed by random fixed points (Refael and Moore, 2004).
- Away from criticality, the correlation length ξ is finite and

$$
S=\frac{c}{3} \log \left(\frac{\xi}{a}\right)+\text { finite terms }
$$

- Are there universal subleading terms in general dimensions?

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore
Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- $\operatorname{tr} \rho_{A}^{n}$: Configurations are glued at the boundary

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
$-\operatorname{tr} \rho_{A}^{n}$: Configurations are glued at the boundary
- n scalar fields ϕ_{i} agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}\left(\phi_{i}-\phi_{i+1}\right)$ which vanish at the boundary.

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- $\operatorname{tr} \rho_{A}^{n}$: Configurations are glued at the boundary
- n scalar fields ϕ_{i} agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}\left(\phi_{i}-\phi_{i+1}\right)$ which vanish at the boundary.
- Dirichlet boundary conditions on Γ for $n-1$ fields $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{i}$ not restricted on Γ.

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- $\operatorname{tr} \rho_{A}^{n}$: Configurations are glued at the boundary
- n scalar fields ϕ_{i} agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}\left(\phi_{i}-\phi_{i+1}\right)$ which vanish at the boundary.
- Dirichlet boundary conditions on Γ for $n-1$ fields $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{i}$ not restricted on Γ.
- In terms of the partition functions Z_{D}, for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ, and $Z_{A \cup B}$, for a field that is free at the boundary

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- $\operatorname{tr} \rho_{A}^{n}$: Configurations are glued at the boundary
- n scalar fields ϕ_{i} agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}\left(\phi_{i}-\phi_{i+1}\right)$ which vanish at the boundary.
- Dirichlet boundary conditions on Γ for $n-1$ fields $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{i}$ not restricted on Γ.
- In terms of the partition functions Z_{D}, for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ, and $Z_{A \cup B}$, for a field that is free at the boundary

$$
\operatorname{tr} \rho_{A}^{n}=\frac{Z_{D}^{n-1} Z_{F}}{Z_{F}^{n}}=\left(\frac{Z_{D}}{Z_{F}}\right)^{n-1} \Rightarrow S=-\ln \left(\frac{Z_{D}}{Z_{F}}\right)=-\ln \frac{Z_{D}^{A} Z_{D}^{B}}{Z_{A \cup B}}
$$

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- $\operatorname{tr} \rho_{A}^{n}$: Configurations are glued at the boundary
- n scalar fields ϕ_{i} agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}\left(\phi_{i}-\phi_{i+1}\right)$ which vanish at the boundary.
- Dirichlet boundary conditions on Γ for $n-1$ fields $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{i}$ not restricted on Γ.
- In terms of the partition functions Z_{D}, for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ, and $Z_{A \cup B}$, for a field that is free at the boundary

$$
\operatorname{tr} \rho_{A}^{n}=\frac{Z_{D}^{n-1} Z_{F}}{Z_{F}^{n}}=\left(\frac{Z_{D}}{Z_{F}}\right)^{n-1} \Rightarrow S=-\ln \left(\frac{Z_{D}}{Z_{F}}\right)=-\ln \frac{Z_{D}^{A} Z_{D}^{B}}{Z_{A \cup B}}
$$

- Entanglement entropy for a general conformal QCP:

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- $\operatorname{tr} \rho_{A}^{n}$: Configurations are glued at the boundary
- n scalar fields ϕ_{i} agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}\left(\phi_{i}-\phi_{i+1}\right)$ which vanish at the boundary.
- Dirichlet boundary conditions on Γ for $n-1$ fields $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{i}$ not restricted on Γ.
- In terms of the partition functions Z_{D}, for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ, and $Z_{A \cup B}$, for a field that is free at the boundary

$$
\operatorname{tr} \rho_{A}^{n}=\frac{Z_{D}^{n-1} Z_{F}}{Z_{F}^{n}}=\left(\frac{Z_{D}}{Z_{F}}\right)^{n-1} \Rightarrow S=-\ln \left(\frac{Z_{D}}{Z_{F}}\right)=-\ln \frac{Z_{D}^{A} Z_{D}^{B}}{Z_{A \cup B}}
$$

- Entanglement entropy for a general conformal QCP:

$$
S=F_{A}+F_{B}-F_{A \cup B}
$$

Entanglement Entropy of Conformal Wave Functions

 with Joel Moore- We split a large region into two disjoint regions A and B, sharing a common boundary Γ.
- $\operatorname{tr} \rho_{A}^{n}$: Configurations are glued at the boundary
- n scalar fields ϕ_{i} agree with each other at the boundary $\Leftrightarrow n-1$ linear combinations $\frac{1}{\sqrt{2}}\left(\phi_{i}-\phi_{i+1}\right)$ which vanish at the boundary.
- Dirichlet boundary conditions on Γ for $n-1$ fields $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi_{i}$ not restricted on Γ.
- In terms of the partition functions Z_{D}, for a field in the whole system $A \cup B$ that vanishes at the common boundary Γ, and $Z_{A \cup B}$, for a field that is free at the boundary

$$
\operatorname{tr} \rho_{A}^{n}=\frac{Z_{D}^{n-1} Z_{F}}{Z_{F}^{n}}=\left(\frac{Z_{D}}{Z_{F}}\right)^{n-1} \Rightarrow S=-\ln \left(\frac{Z_{D}}{Z_{F}}\right)=-\ln \frac{Z_{D}^{A} Z_{D}^{B}}{Z_{A \cup B}}
$$

- Entanglement entropy for a general conformal QCP:

$$
S=F_{A}+F_{B}-F_{A \cup B}
$$

Universal Contributions to the Entanglement Entropy

Universal Contributions to the Entanglement Entropy

- For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

Universal Contributions to the Entanglement Entropy

- For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$
F=\alpha L^{2}+\beta L-\frac{c}{6} \chi \ln L+O(1), \quad \text { (Cardy and Peschel) }
$$

Universal Contributions to the Entanglement Entropy

- For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$
F=\alpha L^{2}+\beta L-\frac{c}{6} \chi \ln L+O(1), \quad \text { (Cardy and Peschel) }
$$

α and β are non-universal constants, \boldsymbol{c} is the central charge of the CFT, and χ is the Euler characteristic of the region:

Universal Contributions to the Entanglement Entropy

- For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$
F=\alpha L^{2}+\beta L-\frac{c}{6} \chi \ln L+O(1), \quad \text { (Cardy and Peschel) }
$$

α and β are non-universal constants, \boldsymbol{c} is the central charge of the CFT, and χ is the Euler characteristic of the region:

$$
\chi=2-2 h-b, \quad h=\# \text { handles, } b=\# \text { boundaries }
$$

Universal Contributions to the Entanglement Entropy

- For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$
F=\alpha L^{2}+\beta L-\frac{c}{6} \chi \ln L+O(1), \quad \text { (Cardy and Peschel) }
$$

α and β are non-universal constants, c is the central charge of the CFT, and χ is the Euler characteristic of the region:

$$
\begin{gathered}
\chi=2-2 h-b, \quad h=\# \text { handles, } b=\# \text { boundaries } \\
\Delta S=-\frac{c}{6}\left(\chi_{A}+\chi_{B}-\chi_{A \cup B}\right) \log L
\end{gathered}
$$

Universal Contributions to the Entanglement Entropy

- For a large bounded region of linear size L and smooth boundary, F obeys the 'Mark Kac law' ('Can you hear the shape of a drum?')

$$
F=\alpha L^{2}+\beta L-\frac{c}{6} \chi \ln L+O(1), \quad \text { (Cardy and Peschel) }
$$

α and β are non-universal constants, \boldsymbol{c} is the central charge of the CFT, and χ is the Euler characteristic of the region:

$$
\begin{gathered}
\chi=2-2 h-b, \quad h=\# \text { handles, } b=\# \text { boundaries } \\
\Delta S=-\frac{c}{6}\left(\chi_{A}+\chi_{B}-\chi_{A \cup B}\right) \log L
\end{gathered}
$$

- The $O(1)$ term has a universal piece proportional to $\log g$, the "boundary entropy" of Affleck and Ludwig

Universal Contributions to the Entanglement Entropy

Universal Contributions to the Entanglement Entropy

- For regions $A \subseteq B$ the coefficient of the $\log L$ term vanishes since

Universal Contributions to the Entanglement Entropy

- For regions $A \subseteq B$ the coefficient of the $\log L$ term vanishes since

$$
\chi_{A}+\chi_{B}=\chi_{A \cup B} \Rightarrow \Delta S=0
$$

Universal Contributions to the Entanglement Entropy

- For regions $A \subseteq B$ the coefficient of the $\log L$ term vanishes since

$$
\chi_{A}+\chi_{B}=\chi_{A \cup B} \Rightarrow \Delta S=0
$$

- A and B are physically separate and have no common intersection, $\chi_{A}+\chi_{B}-\chi_{A \cup B} \neq 0$.
The system physically splits in two disjoint parts $\Rightarrow \log L$ term in the entanglement entropy

Universal Contributions to the Entanglement Entropy

- For regions $A \subseteq B$ the coefficient of the $\log L$ term vanishes since

$$
\chi_{A}+\chi_{B}=\chi_{A \cup B} \Rightarrow \Delta S=0
$$

- A and B are physically separate and have no common intersection, $\chi_{A}+\chi_{B}-\chi_{A \cup B} \neq 0$.
The system physically splits in two disjoint parts $\Rightarrow \log L$ term in the entanglement entropy
- A and B share a common boundary $\Rightarrow \log L$ term whose coefficient is determined by the angles at the intersections

Universal Contributions to the Entanglement Entropy

- For regions $A \subseteq B$ the coefficient of the $\log L$ term vanishes since

$$
\chi_{A}+\chi_{B}=\chi_{A \cup B} \Rightarrow \Delta S=0
$$

- A and B are physically separate and have no common intersection, $\chi_{A}+\chi_{B}-\chi_{A \cup B} \neq 0$.
The system physically splits in two disjoint parts $\Rightarrow \log L$ term in the entanglement entropy
- A and B share a common boundary $\Rightarrow \log L$ term whose coefficient is determined by the angles at the intersections
- If the boundary of A is not smooth, the coefficient depends on the angles α_{i} for both regions

Universal Contributions to the Entanglement Entropy

- For regions $A \subseteq B$ the coefficient of the $\log L$ term vanishes since

$$
\chi_{A}+\chi_{B}=\chi_{A \cup B} \Rightarrow \Delta S=0
$$

- A and B are physically separate and have no common intersection, $\chi_{A}+\chi_{B}-\chi_{A \cup B} \neq 0$.
The system physically splits in two disjoint parts $\Rightarrow \log L$ term in the entanglement entropy
- A and B share a common boundary $\Rightarrow \log L$ term whose coefficient is determined by the angles at the intersections
- If the boundary of A is not smooth, the coefficient depends on the angles α_{i} for both regions

Universal Contributions to the Entanglement Entropy

Universal Contributions to the Entanglement Entropy

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

Universal Contributions to the Entanglement Entropy

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- If the coefficient of the logarithmic term vanishes, the $O(1)$ is universal

Universal Contributions to the Entanglement Entropy

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- If the coefficient of the logarithmic term vanishes, the $O(1)$ is universal
- For the conformally invariant wave function the $O(1)$ term equals $\log \left(4 \pi \kappa R^{2}\right)$, where R is the compactification radius.

Universal Contributions to the Entanglement Entropy

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- If the coefficient of the logarithmic term vanishes, the $O(1)$ is universal
- For the conformally invariant wave function the $O(1)$ term equals $\log \left(4 \pi \kappa R^{2}\right)$, where R is the compactification radius.
- For the RK quantum dimer model, $\kappa=\frac{1}{8 \pi}$ and $R=1$, this term is $\log \frac{1}{2}$, as in the nearby topological phase

Universal Contributions to the Entanglement Entropy

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- If the coefficient of the logarithmic term vanishes, the $O(1)$ is universal
- For the conformally invariant wave function the $O(1)$ term equals $\log \left(4 \pi \kappa R^{2}\right)$, where R is the compactification radius.
- For the RK quantum dimer model, $\kappa=\frac{1}{8 \pi}$ and $R=1$, this term is $\log \frac{1}{2}$, as in the nearby topological phase
- This result generalizes for a general conformally invariant wave function

Universal Contributions to the Entanglement Entropy

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- If the coefficient of the logarithmic term vanishes, the $O(1)$ is universal
- For the conformally invariant wave function the $O(1)$ term equals $\log \left(4 \pi \kappa R^{2}\right)$, where R is the compactification radius.
- For the RK quantum dimer model, $\kappa=\frac{1}{8 \pi}$ and $R=1$, this term is $\log \frac{1}{2}$, as in the nearby topological phase
- This result generalizes for a general conformally invariant wave function

$$
S=\log \left(Z_{D}^{A} Z_{D}^{B} / Z_{A \cup B}\right)=\Delta \log g=\log \left(\frac{\sum_{i, j} N_{a b}^{i} N_{b c}^{j} S_{i}^{0} S_{j}^{0}}{\sum_{k} N_{a b}^{I} S_{l}^{0}}\right)
$$

Universal Contributions to the Entanglement Entropy

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- If the coefficient of the logarithmic term vanishes, the $O(1)$ is universal
- For the conformally invariant wave function the $O(1)$ term equals $\log \left(4 \pi \kappa R^{2}\right)$, where R is the compactification radius.
- For the RK quantum dimer model, $\kappa=\frac{1}{8 \pi}$ and $R=1$, this term is $\log \frac{1}{2}$, as in the nearby topological phase
- This result generalizes for a general conformally invariant wave function

$$
S=\log \left(Z_{D}^{A} Z_{D}^{B} / Z_{A \cup B}\right)=\Delta \log g=\log \left(\frac{\sum_{i, j} N_{a b}^{i} N_{b c}^{j} S_{i}^{0} S_{j}^{0}}{\sum_{k} N_{a b}^{I} S_{l}^{0}}\right)
$$

$N_{a b}^{c}$ are the fusion coefficients and S_{i}^{j} is the modular S-matrix

Universal Contributions to the Entanglement Entropy

with B. Hsu, M. Mulligan and E.-A. Kim (in preparation)

- If the coefficient of the logarithmic term vanishes, the $O(1)$ is universal
- For the conformally invariant wave function the $O(1)$ term equals $\log \left(4 \pi \kappa R^{2}\right)$, where R is the compactification radius.
- For the RK quantum dimer model, $\kappa=\frac{1}{8 \pi}$ and $R=1$, this term is $\log \frac{1}{2}$, as in the nearby topological phase
- This result generalizes for a general conformally invariant wave function

$$
S=\log \left(Z_{D}^{A} Z_{D}^{B} / Z_{A \cup B}\right)=\Delta \log g=\log \left(\frac{\sum_{i, j} N_{a b}^{i} N_{b c}^{j} S_{i}^{0} S_{j}^{0}}{\sum_{k} N_{a b}^{I} S_{l}^{0}}\right)
$$

$N_{a b}^{c}$ are the fusion coefficients and S_{i}^{j} is the modular S-matrix

Entanglement Entropy of 2D Topological States

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

- Universal topological entanglement entropy γ

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

- Universal topological entanglement entropy γ

$$
S=\alpha L-\gamma+O(1 / L) \quad \text { Kitaev and Preskill, Levin and Wen (2006) }
$$

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

- Universal topological entanglement entropy γ
$S=\alpha L-\gamma+O(1 / L) \quad$ Kitaev and Preskill, Levin and Wen (2006)
α : non-universal coefficient, $\gamma=\ln \mathcal{D}$ is a universal finite topological invariant, $\mathcal{D}=\sqrt{\sum_{i} d_{i}^{2}}, d_{i}$: quantum dimensions of the excitations, i.e. the rate of growth of the topological degeneracy.

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

- Universal topological entanglement entropy γ
$S=\alpha L-\gamma+O(1 / L) \quad$ Kitaev and Preskill, Levin and Wen (2006)
α : non-universal coefficient, $\gamma=\ln \mathcal{D}$ is a universal finite topological invariant, $\mathcal{D}=\sqrt{\sum_{i} d_{i}^{2}}, d_{i}$: quantum dimensions of the excitations, i.e. the rate of growth of the topological degeneracy.
- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

- Universal topological entanglement entropy γ
$S=\alpha L-\gamma+O(1 / L) \quad$ Kitaev and Preskill, Levin and Wen (2006)
α : non-universal coefficient, $\gamma=\ln \mathcal{D}$ is a universal finite topological invariant, $\mathcal{D}=\sqrt{\sum_{i} d_{i}^{2}}, d_{i}$: quantum dimensions of the excitations, i.e. the rate of growth of the topological degeneracy.
- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.
- This is the case in the triangular quantum dimer model (Furukawa and Misguich), and for FQH wave functions (Schoutens et al).

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

- Universal topological entanglement entropy γ
$S=\alpha L-\gamma+O(1 / L) \quad$ Kitaev and Preskill, Levin and Wen (2006)
α : non-universal coefficient, $\gamma=\ln \mathcal{D}$ is a universal finite topological invariant, $\mathcal{D}=\sqrt{\sum_{i} d_{i}^{2}}, d_{i}$: quantum dimensions of the excitations, i.e. the rate of growth of the topological degeneracy.
- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.
- This is the case in the triangular quantum dimer model (Furukawa and Misguich), and for FQH wave functions (Schoutens et al).
- The entanglement entropy has a universal piece for a large region, $L \gg \xi>a$, with a smooth boundary.

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

- Universal topological entanglement entropy γ
$S=\alpha L-\gamma+O(1 / L) \quad$ Kitaev and Preskill, Levin and Wen (2006)
α : non-universal coefficient, $\gamma=\ln \mathcal{D}$ is a universal finite topological invariant, $\mathcal{D}=\sqrt{\sum_{i} d_{i}^{2}}, d_{i}$: quantum dimensions of the excitations, i.e. the rate of growth of the topological degeneracy.
- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.
- This is the case in the triangular quantum dimer model (Furukawa and Misguich), and for FQH wave functions (Schoutens et al).
- The entanglement entropy has a universal piece for a large region, $L \gg \xi>a$, with a smooth boundary.
- For any lattice system the boundary of all subsets in general cannot be smooth.

Entanglement Entropy of 2D Topological States

with Stefanos Papanikolaou and Kumar Raman (2007)

- Universal topological entanglement entropy γ
$S=\alpha L-\gamma+O(1 / L) \quad$ Kitaev and Preskill, Levin and Wen (2006)
α : non-universal coefficient, $\gamma=\ln \mathcal{D}$ is a universal finite topological invariant, $\mathcal{D}=\sqrt{\sum_{i} d_{i}^{2}}, d_{i}$: quantum dimensions of the excitations, i.e. the rate of growth of the topological degeneracy.
- All physical systems have a finite correlation length which complicates the computation of the topological entropy γ.
- This is the case in the triangular quantum dimer model (Furukawa and Misguich), and for FQH wave functions (Schoutens et al).
- The entanglement entropy has a universal piece for a large region, $L \gg \xi>a$, with a smooth boundary.
- For any lattice system the boundary of all subsets in general cannot be smooth.

Finite correlation length effects in the entanglement entropy

Finite correlation length effects in the entanglement entropy

- $\xi<\infty$: non-universal $O(1)$ contributions which scale with the number of corners N_{c} with a coefficient $\beta(\xi) \rightarrow 0$ as $\xi \rightarrow 0$:

Finite correlation length effects in the entanglement entropy

- $\xi<\infty$: non-universal $O(1)$ contributions which scale with the number of corners N_{c} with a coefficient $\beta(\xi) \rightarrow 0$ as $\xi \rightarrow 0$: $S(\xi, L)=\alpha(\xi) L+\beta(\xi) N_{c}-\gamma \ldots, \quad L \gg \xi>a$

Finite correlation length effects in the entanglement entropy

- $\xi<\infty$: non-universal $O(1)$ contributions which scale with the number of corners N_{c} with a coefficient $\beta(\xi) \rightarrow 0$ as $\xi \rightarrow 0$: $S(\xi, L)=\alpha(\xi) L+\beta(\xi) N_{c}-\gamma \ldots, \quad L \gg \xi>a$
γ is universal

Finite correlation length effects in the entanglement entropy

- $\xi<\infty$: non-universal $O(1)$ contributions which scale with the number of corners N_{c} with a coefficient $\beta(\xi) \rightarrow 0$ as $\xi \rightarrow 0$: $S(\xi, L)=\alpha(\xi) L+\beta(\xi) N_{c}-\gamma \ldots, \quad L \gg \xi>a$
γ is universal
- We verified this generic behavior explicitly for the case of the ground state wave function of the quantum eight vertex model, with $\gamma=\log 2$ in the entire topological phase.

Finite correlation length effects in the entanglement entropy

- $\xi<\infty$: non-universal $O(1)$ contributions which scale with the number of corners N_{c} with a coefficient $\beta(\xi) \rightarrow 0$ as $\xi \rightarrow 0$: $S(\xi, L)=\alpha(\xi) L+\beta(\xi) N_{c}-\gamma \ldots, \quad L \gg \xi>a$
γ is universal
- We verified this generic behavior explicitly for the case of the ground state wave function of the quantum eight vertex model, with $\gamma=\log 2$ in the entire topological phase.
- We have checked that this is a robust property of the topological (deconfined) phase of the \mathbb{Z}_{2} gauge theory by perturbing away from the Kitaev limit with both \mathbb{Z}_{2} electric and magnetic charges.

Finite correlation length effects in the entanglement entropy

- $\xi<\infty$: non-universal $O(1)$ contributions which scale with the number of corners N_{c} with a coefficient $\beta(\xi) \rightarrow 0$ as $\xi \rightarrow 0$: $S(\xi, L)=\alpha(\xi) L+\beta(\xi) N_{c}-\gamma \ldots, \quad L \gg \xi>a$
γ is universal
- We verified this generic behavior explicitly for the case of the ground state wave function of the quantum eight vertex model, with $\gamma=\log 2$ in the entire topological phase.
- We have checked that this is a robust property of the topological (deconfined) phase of the \mathbb{Z}_{2} gauge theory by perturbing away from the Kitaev limit with both \mathbb{Z}_{2} electric and magnetic charges.

Entanglement in FQH fluids and Chern-Simons theory

Entanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

Entanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

- The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).

Entanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

- The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).

Entanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

- The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).
- One can compute the entanglement entropy directly from the effective field theory of all FQH states: Chern-Simons gauge theory.

Entanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

- The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).
- One can compute the entanglement entropy directly from the effective field theory of all FQH states: Chern-Simons gauge theory.
- This result can be applied directly to all known FQH states.

Entanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

- The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).
- One can compute the entanglement entropy directly from the effective field theory of all FQH states: Chern-Simons gauge theory.
- This result can be applied directly to all known FQH states.
- It computes only the topological invariant piece of the entanglement entropy.

Entanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

- The FQH wave functions represent topological fluids with a finite correlation length $\xi \propto \ell$ (ℓ is the magnetic length).
- The entanglement entropy of FQH states has be computed numerically (K. Schoutens and coworkers, 2007).
- One can compute the entanglement entropy directly from the effective field theory of all FQH states: Chern-Simons gauge theory.
- This result can be applied directly to all known FQH states.
- It computes only the topological invariant piece of the entanglement entropy.

Entanglement in FQH fluids: Chern-Simons theory

Entanglement in FQH fluids: Chern-Simons theory

- We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

Entanglement in FQH fluids: Chern-Simons theory

- We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

$$
S(A)=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

Entanglement in FQH fluids: Chern-Simons theory

- We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

$$
S(A)=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

- States on a closed 2D surface: path integral over a 3D volume

Entanglement in FQH fluids: Chern-Simons theory

- We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

$$
S(A)=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

- States on a closed 2D surface: path integral over a 3D volume
- Chern-Simons states \Leftrightarrow WZW conformal blocks

Entanglement in FQH fluids: Chern-Simons theory

- We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

$$
S(A)=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

- States on a closed 2D surface: path integral over a 3D volume
- Chern-Simons states \Leftrightarrow WZW conformal blocks
- The ground state degeneracy depends on the level k and on the topology of the surface

Entanglement in FQH fluids: Chern-Simons theory

- We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

$$
S(A)=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

- States on a closed 2D surface: path integral over a 3D volume
- Chern-Simons states \Leftrightarrow WZW conformal blocks
- The ground state degeneracy depends on the level k and on the topology of the surface
- The partition functions depend on the matrix elements of the modular S-matrix, e.g. the partition function on S^{3} with a Wilson loop in representation ρ_{j} is

Entanglement in FQH fluids: Chern-Simons theory

- We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

$$
S(A)=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

- States on a closed 2D surface: path integral over a 3D volume
- Chern-Simons states \Leftrightarrow WZW conformal blocks
- The ground state degeneracy depends on the level k and on the topology of the surface
- The partition functions depend on the matrix elements of the modular S-matrix, e.g. the partition function on S^{3} with a Wilson loop in representation ρ_{j} is

$$
Z\left(S^{3}, \rho_{j}\right)=S_{0}^{j}
$$

Entanglement in FQH fluids: Chern-Simons theory

- We have computed the entanglement entropy for a general level k Chern-Simons theory on a smooth manifold with any number of handles, using Witten' results (1989) for the Chern-Simons partition functions (1989),

$$
S(A)=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

- States on a closed 2D surface: path integral over a 3D volume
- Chern-Simons states \Leftrightarrow WZW conformal blocks
- The ground state degeneracy depends on the level k and on the topology of the surface
- The partition functions depend on the matrix elements of the modular S-matrix, e.g. the partition function on S^{3} with a Wilson loop in representation ρ_{j} is

$$
Z\left(S^{3}, \rho_{j}\right)=S_{0}^{j}
$$

Properties of conformal blocks

- WZW primary operators ϕ_{a} live in definite representations of an affine Lie algebra

Properties of conformal blocks

- WZW primary operators ϕ_{a} live in definite representations of an affine Lie algebra
- On S^{2} with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations

Properties of conformal blocks

- WZW primary operators ϕ_{a} live in definite representations of an affine Lie algebra
- On S^{2} with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- On S^{2}, the fusion coefficient $N_{\rho_{a}, \rho_{b}}^{\rho_{c}}$ gives the number of independent ways $\phi_{a} \times \phi_{b} \rightarrow \phi_{c}$

Properties of conformal blocks

- WZW primary operators ϕ_{a} live in definite representations of an affine Lie algebra
- On S^{2} with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- On S^{2}, the fusion coefficient $N_{\rho_{a}, \rho_{b}}^{\rho_{c}}$ gives the number of independent ways $\phi_{a} \times \phi_{b} \rightarrow \phi_{c}$
- Blocks on empty T^{2} are given by WZW characters $\chi_{\rho}(\tau)$

Properties of conformal blocks

- WZW primary operators ϕ_{a} live in definite representations of an affine Lie algebra
- On S^{2} with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- On S^{2}, the fusion coefficient $N_{\rho_{a}, \rho_{b}}^{\rho_{c}}$ gives the number of independent ways $\phi_{a} \times \phi_{b} \rightarrow \phi_{c}$
- Blocks on empty T^{2} are given by WZW characters $\chi_{\rho}(\tau)$
- Modular transformations: Modular S-matrix and the Verlinde formula

Properties of conformal blocks

- WZW primary operators ϕ_{a} live in definite representations of an affine Lie algebra
- On S^{2} with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- On S^{2}, the fusion coefficient $N_{\rho_{a}, \rho_{b}}^{\rho_{c}}$ gives the number of independent ways $\phi_{a} \times \phi_{b} \rightarrow \phi_{c}$
- Blocks on empty T^{2} are given by WZW characters $\chi_{\rho}(\tau)$
- Modular transformations: Modular S-matrix and the Verlinde formula

$$
\chi_{\rho_{\mathbf{a}}}(-1 / \tau)=\sum_{b} S_{a}^{b} \chi_{\rho_{b}}(\tau), \quad N_{\rho_{\mathbf{a}}, \rho_{b}}^{\rho_{c}}=\sum_{\ell} \frac{S_{a}^{\ell} S_{b}^{\ell} S_{\ell}^{c}}{S_{0}^{\ell}}
$$

Properties of conformal blocks

- WZW primary operators ϕ_{a} live in definite representations of an affine Lie algebra
- On S^{2} with zero or one puncture, 1D Hilbert space; with two punctures, conjugate representations
- On S^{2}, the fusion coefficient $N_{\rho_{a}, \rho_{b}}^{\rho_{c}}$ gives the number of independent ways $\phi_{a} \times \phi_{b} \rightarrow \phi_{c}$
- Blocks on empty T^{2} are given by WZW characters $\chi_{\rho}(\tau)$
- Modular transformations: Modular S-matrix and the Verlinde formula

$$
\chi_{\rho_{\mathbf{a}}}(-1 / \tau)=\sum_{b} S_{a}^{b} \chi_{\rho_{b}}(\tau), \quad N_{\rho_{\mathbf{a}}, \rho_{b}}^{\rho_{c}}=\sum_{\ell} \frac{S_{a}^{\ell} S_{b}^{\ell} S_{\ell}^{c}}{S_{0}^{\ell}}
$$

Properties of conformal blocks

Properties of conformal blocks

- For $S U(2)_{k}, j, j^{\prime}=0,1 / 2, \ldots, k / 2$

Properties of conformal blocks

- For $S U(2)_{k}, j, j^{\prime}=0,1 / 2, \ldots, k / 2$

$$
S_{j}^{(k) j^{\prime}}=\sqrt{\frac{2}{k+2}} \sin \left(\pi \frac{(2 j+1)\left(2 j^{\prime}+1\right)}{k+2}\right)
$$

Properties of conformal blocks

- For $S U(2)_{k}, j, j^{\prime}=0,1 / 2, \ldots, k / 2$

$$
S_{j}^{(k) j^{\prime}}=\sqrt{\frac{2}{k+2}} \sin \left(\pi \frac{(2 j+1)\left(2 j^{\prime}+1\right)}{k+2}\right)
$$

- Quantum dimensions

Properties of conformal blocks

- For $S U(2)_{k}, j, j^{\prime}=0,1 / 2, \ldots, k / 2$

$$
S_{j}^{(k) j^{\prime}}=\sqrt{\frac{2}{k+2}} \sin \left(\pi \frac{(2 j+1)\left(2 j^{\prime}+1\right)}{k+2}\right)
$$

- Quantum dimensions

$$
d_{j}=\frac{S_{0}^{j}}{S_{00}}, \quad \mathcal{D} \equiv \sqrt{\sum_{j} d_{j}^{2}}=\frac{1}{S_{00}}
$$

Properties of conformal blocks

- For $S U(2)_{k}, j, j^{\prime}=0,1 / 2, \ldots, k / 2$

$$
S_{j}^{(k) j^{\prime}}=\sqrt{\frac{2}{k+2}} \sin \left(\pi \frac{(2 j+1)\left(2 j^{\prime}+1\right)}{k+2}\right)
$$

- Quantum dimensions

$$
d_{j}=\frac{S_{0}^{j}}{S_{00}}, \quad \mathcal{D} \equiv \sqrt{\sum_{j} d_{j}^{2}}=\frac{1}{S_{00}}
$$

Chern-Simons Surgeries

Chern-Simons Surgeries

- If a 3-manifold M is the connected sum of two 3-manifolds M_{1} and M_{2} joined along an S^{2}, then

Chern-Simons Surgeries

- If a 3-manifold M is the connected sum of two 3-manifolds M_{1} and M_{2} joined along an S^{2}, then

$$
Z(M) Z\left(S^{3}\right)=Z\left(M_{1}\right) Z\left(M_{2}\right)
$$

Chern-Simons Surgeries

- If a 3-manifold M is the connected sum of two 3-manifolds M_{1} and M_{2} joined along an S^{2}, then

$$
Z(M) Z\left(S^{3}\right)=Z\left(M_{1}\right) Z\left(M_{2}\right)
$$

- In particular, if M is M_{1} and M_{2} joined along $n S^{2}$'s,

Chern-Simons Surgeries

- If a 3-manifold M is the connected sum of two 3-manifolds M_{1} and M_{2} joined along an S^{2}, then

$$
Z(M) Z\left(S^{3}\right)=Z\left(M_{1}\right) Z\left(M_{2}\right)
$$

- In particular, if M is M_{1} and M_{2} joined along $n S^{2}$'s,

$$
Z(M)=\frac{Z\left(M_{1}\right) Z\left(M_{2}\right)}{Z\left(S^{3}\right)^{n}}
$$

Chern-Simons Surgeries

- If a 3-manifold M is the connected sum of two 3-manifolds M_{1} and M_{2} joined along an S^{2}, then

$$
Z(M) Z\left(S^{3}\right)=Z\left(M_{1}\right) Z\left(M_{2}\right)
$$

- In particular, if M is M_{1} and M_{2} joined along $n S^{2}$'s,

$$
Z(M)=\frac{Z\left(M_{1}\right) Z\left(M_{2}\right)}{Z\left(S^{3}\right)^{n}}
$$

Entanglement and Chern Simons Theory: Results for the Sphere S^{2}

Entanglement and Chern Simons Theory: Results for the Sphere S^{2}

- S^{2} with one $A-B$ boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3 -geometry is a ball.

Entanglement and Chern Simons Theory: Results for the Sphere S^{2}

- S^{2} with one $A-B$ boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3 -geometry is a ball.
- To construct $\operatorname{tr} \hat{\rho}_{A}^{n}$ we glue $2 n$ such pieces together.

Entanglement and Chern Simons Theory: Results for the Sphere S^{2}

- S^{2} with one $A-B$ boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3 -geometry is a ball.
- To construct $\operatorname{tr} \hat{\rho}_{A}^{n}$ we glue $2 n$ such pieces together.

$$
\frac{\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}^{n}}{\left(\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}\right)^{n}}=\frac{Z\left(S^{3}\right)}{\left(Z\left(S^{3}\right)\right)^{n}}=\left(Z\left(S^{3}\right)\right)^{1-n}=S_{00}^{1-n}
$$

Entanglement and Chern Simons Theory: Results for the Sphere S^{2}

- S^{2} with one $A-B$ boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3 -geometry is a ball.
- To construct $\operatorname{tr} \hat{\rho}_{A}^{n}$ we glue $2 n$ such pieces together.

$$
\begin{gathered}
\frac{\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}^{n}}{\left(\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}\right)^{n}}=\frac{Z\left(S^{3}\right)}{\left(Z\left(S^{3}\right)\right)^{n}}=\left(Z\left(S^{3}\right)\right)^{1-n}=S_{00}^{1-n} \\
S_{A}^{\left(S^{2}, 1\right)}=\ln S_{00}=-\ln \mathcal{D},
\end{gathered}
$$

Entanglement and Chern Simons Theory: Results for the Sphere S^{2}

- S^{2} with one $A-B$ boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3 -geometry is a ball.
- To construct $\operatorname{tr} \hat{\rho}_{A}^{n}$ we glue $2 n$ such pieces together.

$$
\begin{gathered}
\frac{\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}^{n}}{\left(\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}\right)^{n}}=\frac{Z\left(S^{3}\right)}{\left(Z\left(S^{3}\right)\right)^{n}}=\left(Z\left(S^{3}\right)\right)^{1-n}=S_{00}^{1-n} \\
S_{A}^{\left(S^{2}, 1\right)}=\ln S_{00}=-\ln \mathcal{D}
\end{gathered}
$$

- It also holds for surfaces with arbitrary topology if the region being observed A is trivial regardless of the pure state labeled by the representations ρ_{j}

Entanglement and Chern Simons Theory: Results for the

 Sphere S^{2}- S^{2} with one $A-B$ boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3 -geometry is a ball.
- To construct $\operatorname{tr} \hat{\rho}_{A}^{n}$ we glue $2 n$ such pieces together.

$$
\begin{gathered}
\frac{\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}^{n}}{\left(\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}\right)^{n}}=\frac{Z\left(S^{3}\right)}{\left(Z\left(S^{3}\right)\right)^{n}}=\left(Z\left(S^{3}\right)\right)^{1-n}=S_{00}^{1-n} \\
S_{A}^{\left(S^{2}, 1\right)}=\ln S_{00}=-\ln \mathcal{D}
\end{gathered}
$$

- It also holds for surfaces with arbitrary topology if the region being observed A is trivial regardless of the pure state labeled by the representations ρ_{j}
- For the case of a sphere S^{2} and a disconnected connected region A with M boundaries we find $S_{A}^{\left(S^{2}, M\right)}=M \ln S_{00}=-M \ln \mathcal{D}$.

Entanglement and Chern Simons Theory: Results for the

 Sphere S^{2}- S^{2} with one $A-B$ boundary: The Hilbert space is one-dimensional. The two regions A and B are two hemispheres (disks). The 3 -geometry is a ball.
- To construct $\operatorname{tr} \hat{\rho}_{A}^{n}$ we glue $2 n$ such pieces together.

$$
\begin{gathered}
\frac{\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}^{n}}{\left(\operatorname{tr} \rho_{A\left(S^{2}, 1\right)}\right)^{n}}=\frac{Z\left(S^{3}\right)}{\left(Z\left(S^{3}\right)\right)^{n}}=\left(Z\left(S^{3}\right)\right)^{1-n}=S_{00}^{1-n} \\
S_{A}^{\left(S^{2}, 1\right)}=\ln S_{00}=-\ln \mathcal{D}
\end{gathered}
$$

- It also holds for surfaces with arbitrary topology if the region being observed A is trivial regardless of the pure state labeled by the representations ρ_{j}
- For the case of a sphere S^{2} and a disconnected connected region A with M boundaries we find $S_{A}^{\left(S^{2}, M\right)}=M \ln S_{00}=-M \ln \mathcal{D}$.

Entanglement and Chern Simons Theory: Results for the torus T^{2} with more than one $A-B$ boundary

Entanglement and Chern Simons Theory: Results for the

 torus T^{2} with more than one $A-B$ boundary- For a torus T^{2} split into two regions with more than one (say two) boundary, we have two cases,

Entanglement and Chern Simons Theory: Results for the torus T^{2} with more than one $A-B$ boundary

- For a torus T^{2} split into two regions with more than one (say two) boundary, we have two cases,

Entanglement and Chern Simons Theory: Results for the torus T^{2} with more than one $A-B$ boundary

- For a torus T^{2} split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_{A}\left(T^{2}, 2\right)=2 \ln S_{00}$.

Entanglement and Chern Simons Theory: Results for the

 torus T^{2} with more than one $A-B$ boundary- For a torus T^{2} split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_{A}\left(T^{2}, 2\right)=2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_{j}, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

Entanglement and Chern Simons Theory: Results for the

 torus T^{2} with more than one $A-B$ boundary- For a torus T^{2} split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_{A}\left(T^{2}, 2\right)=2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_{j}, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

$$
S_{A}\left(T^{2}, 2, \rho\right)=2 \ln S_{0 \rho}
$$

Entanglement and Chern Simons Theory: Results for the

 torus T^{2} with more than one $A-B$ boundary- For a torus T^{2} split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_{A}\left(T^{2}, 2\right)=2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_{j}, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

$$
S_{A}\left(T^{2}, 2, \rho\right)=2 \ln S_{0 \rho}
$$

- For a state which is a linear superposition, $|\psi\rangle=\sum_{\rho} \psi_{\rho}|\rho\rangle$, we find

Entanglement and Chern Simons Theory: Results for the

 torus T^{2} with more than one $A-B$ boundary- For a torus T^{2} split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_{A}\left(T^{2}, 2\right)=2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_{j}, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

$$
S_{A}\left(T^{2}, 2, \rho\right)=2 \ln S_{0 \rho}
$$

- For a state which is a linear superposition, $|\psi\rangle=\sum_{\rho} \psi_{\rho}|\rho\rangle$, we find

$$
S_{A}\left(T^{2}, 2, \psi\right)=2 \ln S_{00}-\sum_{\rho} d_{\rho}^{2}\left(\frac{\left|\psi_{\rho}\right|^{2}}{d_{\rho}^{2}} \ln \frac{\left|\psi_{\rho}\right|^{2}}{d_{\rho}^{2}}\right)
$$

Entanglement and Chern Simons Theory: Results for the

 torus T^{2} with more than one $A-B$ boundary- For a torus T^{2} split into two regions with more than one (say two) boundary, we have two cases,

- For the trivial state (no Wilson loop) the entropy is the same in both cases, $S_{A}\left(T^{2}, 2\right)=2 \ln S_{00}$.
- If there is a Wilson loop with a non-trivial representation ρ_{j}, we obtain the same result for the case of the left. But, for the case of the right, for a Wilson loop in representation ρ we obtain instead,

$$
S_{A}\left(T^{2}, 2, \rho\right)=2 \ln S_{0 \rho}
$$

- For a state which is a linear superposition, $|\psi\rangle=\sum_{\rho} \psi_{\rho}|\rho\rangle$, we find

$$
S_{A}\left(T^{2}, 2, \psi\right)=2 \ln S_{00}-\sum_{\rho} d_{\rho}^{2}\left(\frac{\left|\psi_{\rho}\right|^{2}}{d_{\rho}^{2}} \ln \frac{\left|\psi_{\rho}\right|^{2}}{d_{\rho}^{2}}\right)
$$

Entanglement Entropy and Quasiparticles

Entanglement Entropy and Quasiparticles

- Let us consider the case of four quasiparticles on $S^{2}: S^{2}$ with four punctures

Entanglement Entropy and Quasiparticles

- Let us consider the case of four quasiparticles on $S^{2}: S^{2}$ with four punctures
- We will consider $S U(N)_{k}$, with $N \geq 2$ and $k \geq 2$, with two punctures carrying fundamental $\hat{\alpha}$ and 2 anti-fundamental $\hat{\alpha}^{*}$ representations.

Entanglement Entropy and Quasiparticles

- Let us consider the case of four quasiparticles on $S^{2}: S^{2}$ with four punctures
- We will consider $S U(N)_{k}$, with $N \geq 2$ and $k \geq 2$, with two punctures carrying fundamental $\hat{\alpha}$ and 2 anti-fundamental $\hat{\alpha}^{*}$ representations.
- If there is only one puncture in $A, S_{A}=\ln S_{0}^{\hat{\alpha}}$

Entanglement Entropy and Quasiparticles

- Let us consider the case of four quasiparticles on $S^{2}: S^{2}$ with four punctures
- We will consider $S U(N)_{k}$, with $N \geq 2$ and $k \geq 2$, with two punctures carrying fundamental $\hat{\alpha}$ and 2 anti-fundamental $\hat{\alpha}^{*}$ representations.
- If there is only one puncture in $A, S_{A}=\ln S_{0}^{\hat{\alpha}}$
- If there are two punctures in A :

Entanglement Entropy and Quasiparticles

- Let us consider the case of four quasiparticles on $S^{2}: S^{2}$ with four punctures
- We will consider $S U(N)_{k}$, with $N \geq 2$ and $k \geq 2$, with two punctures carrying fundamental $\hat{\alpha}$ and 2 anti-fundamental $\hat{\alpha}^{*}$ representations.
- If there is only one puncture in $A, S_{A}=\ln S_{0}^{\hat{\alpha}}$
- If there are two punctures in A :
- There is a pair of $\hat{\alpha}$ and $\hat{\alpha}^{*}$ in A and in B. Each pair can fuse into the identity or into the adjoint. For $k \geq 2$, the Hilbert space on S^{2} with 2 pairs of $\hat{\alpha}$ and $\hat{\alpha}^{* ' s}$ is two dimensional. The entanglement entropy depends on the quantum dimensions of the conformal block.

Entanglement Entropy and Quasiparticles

- Let us consider the case of four quasiparticles on $S^{2}: S^{2}$ with four punctures
- We will consider $S U(N)_{k}$, with $N \geq 2$ and $k \geq 2$, with two punctures carrying fundamental $\hat{\alpha}$ and 2 anti-fundamental $\hat{\alpha}^{*}$ representations.
- If there is only one puncture in $A, S_{A}=\ln S_{0}^{\hat{\alpha}}$
- If there are two punctures in A :
- There is a pair of $\hat{\alpha}$ and $\hat{\alpha}^{*}$ in A and in B. Each pair can fuse into the identity or into the adjoint. For $k \geq 2$, the Hilbert space on S^{2} with 2 pairs of $\hat{\alpha}$ and $\hat{\alpha}^{* ' s}$ is two dimensional. The entanglement entropy depends on the quantum dimensions of the conformal block.
- There are two $\hat{\alpha}$'s in A and two $\hat{\alpha}^{* ' s}$ in B. The entropy now depends on which channels (representation) the quasiparticles fuse and on the choice of state (conformal block).

Entanglement Entropy and Quasiparticles

- Let us consider the case of four quasiparticles on $S^{2}: S^{2}$ with four punctures
- We will consider $S U(N)_{k}$, with $N \geq 2$ and $k \geq 2$, with two punctures carrying fundamental $\hat{\alpha}$ and 2 anti-fundamental $\hat{\alpha}^{*}$ representations.
- If there is only one puncture in $A, S_{A}=\ln S_{0}^{\hat{\alpha}}$
- If there are two punctures in A :
- There is a pair of $\hat{\alpha}$ and $\hat{\alpha}^{*}$ in A and in B. Each pair can fuse into the identity or into the adjoint. For $k \geq 2$, the Hilbert space on S^{2} with 2 pairs of $\hat{\alpha}$ and $\hat{\alpha}^{*}$'s is two dimensional. The entanglement entropy depends on the quantum dimensions of the conformal block.
- There are two $\hat{\alpha}$'s in A and two $\hat{\alpha}^{* ' s}$ in B. The entropy now depends on which channels (representation) the quasiparticles fuse and on the choice of state (conformal block).
- The entropy depends on the conformal block, and on the fusion channel.

Entanglement Entropy and Quasiparticles

- Let us consider the case of four quasiparticles on $S^{2}: S^{2}$ with four punctures
- We will consider $S U(N)_{k}$, with $N \geq 2$ and $k \geq 2$, with two punctures carrying fundamental $\hat{\alpha}$ and 2 anti-fundamental $\hat{\alpha}^{*}$ representations.
- If there is only one puncture in $A, S_{A}=\ln S_{0}^{\hat{\alpha}}$
- If there are two punctures in A :
- There is a pair of $\hat{\alpha}$ and $\hat{\alpha}^{*}$ in A and in B. Each pair can fuse into the identity or into the adjoint. For $k \geq 2$, the Hilbert space on S^{2} with 2 pairs of $\hat{\alpha}$ and $\hat{\alpha}^{*}$'s is two dimensional. The entanglement entropy depends on the quantum dimensions of the conformal block.
- There are two $\hat{\alpha}$'s in A and two $\hat{\alpha}^{* ' s}$ in B. The entropy now depends on which channels (representation) the quasiparticles fuse and on the choice of state (conformal block).
- The entropy depends on the conformal block, and on the fusion channel.

Conclusions

Conclusions

- We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.

Conclusions

- We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms

Conclusions

- We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms
- If the logarithmic term is absent the $O(1)$ term is universal

Conclusions

- We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms
- If the logarithmic term is absent the $O(1)$ term is universal
- In a topological phase the finite term in the entanglement entropy is a universal property of the phase.

Conclusions

- We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms
- If the logarithmic term is absent the $O(1)$ term is universal
- In a topological phase the finite term in the entanglement entropy is a universal property of the phase.
- We computed the topological entanglement entropy for Chern-Simons gauge theories: the entanglement entropy of abelian and non-abelian FQH states by finding the associated modular \mathcal{S} matrix for each state.

Conclusions

- We discussed the behavior of the entanglement entropy near quantum phase transitions and in topological phases.
- The entanglement entropy of 2D QCPs with conformally invariant wave functions has a universal logarithmic terms
- If the logarithmic term is absent the $O(1)$ term is universal
- In a topological phase the finite term in the entanglement entropy is a universal property of the phase.
- We computed the topological entanglement entropy for Chern-Simons gauge theories: the entanglement entropy of abelian and non-abelian FQH states by finding the associated modular \mathcal{S} matrix for each state.

Conclusions

Conclusions

- For a simply connected region it is universal and depends only on the total quantum dimension

Conclusions

- For a simply connected region it is universal and depends only on the total quantum dimension
- For regions which are not simply connected, the entropy is additive.

Conclusions

- For a simply connected region it is universal and depends only on the total quantum dimension
- For regions which are not simply connected, the entropy is additive.
- The entropy of disjoint regions on a torus depends on the effective quantum dimension and on the state on the torus.

Conclusions

- For a simply connected region it is universal and depends only on the total quantum dimension
- For regions which are not simply connected, the entropy is additive.
- The entropy of disjoint regions on a torus depends on the effective quantum dimension and on the state on the torus.
- The entropy for a simply connected region on the sphere with 4 quasiparticles (punctures) depends on the conformal block

Conclusions

- For a simply connected region it is universal and depends only on the total quantum dimension
- For regions which are not simply connected, the entropy is additive.
- The entropy of disjoint regions on a torus depends on the effective quantum dimension and on the state on the torus.
- The entropy for a simply connected region on the sphere with 4 quasiparticles (punctures) depends on the conformal block
- It may be possible to determine the structure of the topological field theory by means of entanglement entropy measurements

