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Single Component Fractional Quantum 
Hall States

• Unified description of FQH ground states and excitations in terms of 
Jack polynomials

• Generalized Pauli principle: exclusion statistics and clustering

• States beyond the Read-Rezayi sequence – at filling k/r

• Quasiparticle (not quasi-hole) excitations

• Non-Abelian Hierarchy States - Revisiting Jain states

• Specific Heat, electron and quasi-hole propagators, a first principle 
study! 

• Connection to Conformal Field Theory.

• Topological entanglement: Jain vs Jack (with Nicolas Regnault)





Model FQH States
Laughlin

• Fundamental property: Zeroes of the 
wavefunction sit on the particles

•Unique quasihole excitations, but not 
unique quasiparticle excitations 
(Laughlin VS Jain VS Girvin)

•Zeroes of the wf NOT on the particles; 
vanishes for 3 particles together.

•Quasiparticle excitations not known. No 
connection to the Laughlin state

•Physical properties obtained from CFT, 
not from wavefunction

•FQH states beyond Laughlin, Read-
Rezayi? Unified picture? Quasiparticles? 
Relation to the Jain states?

• UNITARY VS NONUNITARY

Moore-Read



Free Boson Many Body Wavefunctions

• Boson analog of the Slater det. Orbital occupation basis

• Monomial basis; partition:

Orbital occupation                                Monomial basis

• Monomials (Permanents) = Det with all signs positive

• Squeezing Rules in 
Orbital Space A

BB Squeezed from A (A>B)



Laughlin and Moore-Read FQH States
• Annihilation operators on the

Laughlin state

• Linear combination of the annihilation operators = Laplace Beltrami Operator

• Laughlin and Moore-Read (also Read-Rezayi): eigenstates of the Laplace-Beltrami

DMR
i• Annihilation operators on the Pfaffian state

• All single component CFT FQH states are eigenstates of the same operator!



Jack Polynomials (Jacks)

• Eigenstates of the Laplace Beltrami Operator are explicitly known

Henry Jack, 1976

• Decomposition of Jack polynomials in free boson many-body states known

• Jacks at : 1D integrable at RG fixed point. Haldane Shastry, CS eigenst.

• Jacks at  first studied in 2001! (Feigin et al math.QA/0112127)

• N particles: N-multiplet of operators, starting with the angular momentum:
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• Read-Rezayi parafermion sequence Quantum Hall states are also Jacks:.

The Jacks as FQH states

• Density Wave states in the orbital basis. But NOT Tao-Thouless!

• Moore-Read state is a single polynomial of root orbital occupation

• Laughlin states are  single Jack of root orbital occupation:

• Dominance relation (for r=2) numerically observed by Haldane (March 
Meering 2006 talk) now explained by identification of states with Jacks. 



Generalized Pauli Principle: (k,r) statistics

• Model WF: Highest Weight (no quasiholes)  and Lowest Weight (no quasiparticles)

• These uniquely define ALL good FQH Jacks :

• r=2 is the Read-Rezayi  Z_k  sequence. Laughlin(k=1), Read-Moore(k=2)

The FQH ground states above are the maximum density states 
satisfying a generalized Pauli principle of not more than k
particles in r consecutive orbitals!

• Quasihole excitations also satisfy the Pauli principle and are Jack polynomials



Torus Degeneracy of (k,r) Statistics
Topological Order = ground state degeneracy on the torus = how many 
ways we can put k particles in r boxes

Laughlin GS
(k,r)=(1,2)

Pfaffian GS
(k,r)=(2,2)

Read-Rezayi
(k,r)=(k,2)

Degeneracy of an SU(2) spin k/2 
Spin chain

2/3 GS (k,r)=(2,3)

Simon, Rezayi, Cooper, 2007
Bernevig, Haldane, 2007



• Form a k particle cluster

• Bring the k+1’th particle close to the k particle cluster

• For the (k,r) sequence, the GS and quasihole
Jack WF vanish as the r’th power of the difference

Clustering Conditions

k particle cluster

k+1’th particle

• Clustering number k AND vanishing power r are the fundamental properties

• Feigin et al math.QA/0112127 showed the Jacks span the basis of 
polynomials that vanish when k+1 particles come together: complete basis



• The (k,r) statistics  ground state (maximal 
density) satisfies a  remarkable entanglement 
property

k particle cluster

N-k’th 
particle FQH
system

N’th particle 
FQH
system

• As a corollary, every paired FQH ground-state is 
a Laughlin state in clustered coordinates

The Jacks and Clustering Conditions



Excitations of (k,r) Statistics
• Maintain Pauli principle of (k,r) statistics (not more than k particles in r consecutive 
orbitals) but add fluxes (zeroes) on the sphere:

Laughlin GS
(k,r)=(1,2)

1-Quasihole 
Multiplet
L=N/2

Pfaffian GS
(k,r)=(2,2)

Abelian 
Quasiholes

Non-Abelian 
Fractionalized
Quasihole 

• For r=2 (Read-Rezayi sequence) this gives the counting of states of Conformal Field 
Theory 



Unpinned Quasihole Hilbert Space
• Number of partitions satisfying (k,r) Pauli Principle

• For k>1, dimension space at 1 flux corresponds to 
angular momentum addition of more than 1 particle

D1 qh =

µ
N
k + k
k

¶

1010101010

2020202020

1111111111

k=1 Laughlin Abelian quasihole south pole

k=2; two quasiholes at south pole

k=2; one fractionalized quasihole at 
north pole, another fractionalized 
quasihole at south pole



Pinned Quasiholes
• Coherent State superposition of un-pinned quasiholes (Jack polynomials)QN

i (zi − zA)
QN
i<j(zi − zj)

r =
PN

i=1 z
i
APi(z1, ..., zN )

zA

• k-1 fractionalized quasiholes at the origin, one at        . Example for k=2:zA

QN
i (zi − zA)

QN
i<j(zi − zj)

r =
PN

i=1 z
i
AJi(z1, ..., zN )

|0i→ |0202...0202i

|1i→ |1102...0202i

|2i→ |1111...0202i
...
|N2 − 1i→ |1111...1102i

|N2 i→ |1111...1111i Ψ(zA, 0
k−1; z1, ..., zN ) =

PN
k

i=0
1
ki z

i
A|ii

• Quantum dimension             ;dimension of pinned quasihole Hilbert space ∼ dknd ≥ 1



One Quasiparticle States (Abelian)

Quasiparticle States:

Start with Laughlin state:

Add 3 fluxes:

Add 2 particles at north pole:

From Jacks, Generalized Clustering properties satisfied by polynomials:

The quasiparticle states necessarily break the (k,r) statistics of the parent state



One Quasiparticle States (Abelian)
• Laughlin quasiparticle satisfies first clustering 
but not second

• Our quasiparticle has more zeroes, due to 
generalized clustering



Jack Hierarchy States

Jack Quasiparticle Jain Quasiparticle

1

2

3

4

Hierarchy leads to the Jack polynomial state from before: (k,r)=(2,3) (Simon, Rezayi, 2007)
(Bernevig, Haldane 2007)



New Wavefunctions for k/(k+1) Filling
• Fermionic states at Jain fillings are Vandermonde times r=k+1 Jacks:

• All of them are non-abelian, satisfy (k,k+1) Pauli Generalized Principle

• Ground-states of k+1 body pseudopotentials with cluster angular mom < k+1

• Jain 2/3 state is excitation of the (k,r)=(2,3) (Gaffnian) state 

(2z1z2 − 2z3z4 − z3z2 − z1z3 − z1z4 − z4z2)×
(2z1z3 + 2z4z2 − z3z2 − z3z4 − z1z4 − z1z2)×
(2z1z4 + 2z3z2 − z1z3 − z3z4 − z1z2 − z4z2)

• N=4 Particle Jack 2/3 state:



Numerics on the 2/3 state

kE
ne

rg
y 

of
 N

eu
tra

l E
xc

ita
tio

n 
To

ru
s

E
ne

rg
y 

of
 N

eu
tra

l E
xc

ita
tio

n 
S

ph
er

e

Simon, Rezayi, Cooper, Berdnikov, PRB 2007

• Overlaps >0.96 on sphere (Rezayi; Regnault) for N=12, 14
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Topological Entanglement
Hui and Haldane, 2008:



Collaboration with N. Regnault

Topological Entanglement for 2/5



The Quantum Numbers of Topological 
Order in FQH States

From (k,r) Generalized 
Pauli Principle, using 

• counting of partitions

• existence of one-to one 
map to wavefunctions 
(Jack Polyn)

Involves taking norms, 
hence scalar products



Conformal Field Theory Connection

• The clustering conditions as well as the quantum dimensions point to (k,r) 
Jacks as correlation functions of                             algebras (conjectured: Feigin, et 

al,2003; “proved” Bernevig, Haldane 2008). 

• The W CFTs  are unitary for  A: k=1 and any r  B: r=2 and any k

• All other W’s are non-unitary: really bad stuff happens (see papers by Read) 

• Negative specific heat

• Negative scaling dimension: field correlators blow up at large distances

• Plasma in non-screening phase (conjecture) 

• FQH states can empirically be written as CFT correlators:Q
i<j(zi − zj)

r = hψe(z1)...ψe(zN )i; ψe(zN ) = e
i
√
rφ

Wk(k + 1, k + r)



Edge Thermal Hall Coefficient
• Compute entropy of our non-abelian k/r states: High Temperature expansion

• We computed        using the theory of partitions (ex Andrews book)

Fermi Sea Excitations

C = −T ∂2F
∂T 2 =

πLT
3vF

cF = −T ln(Z)

2π/L

• c = central charge in CFT



Edge Specific Heat and Quantum Dimensions
• The (k,r) Pauli Principle also gives the quantum dimensions      (Chebyshev Polyn)! 

• Hence positive specific heat from the Pauli Principle of the FQH states, even 
though non-unitary CFT

• For 2/3 (or 2/5) Non-Abelian state: 

c = 1 + r(k−1)
r+k

U(1) charge part Non-abelian part >0

c = 1 +
P

i L
³
1
d2i

´ di

• Using dilogarithm identities: (Kirilov, 1992, Nahm et al, 1992)

L(z) =
P∞

i=1
zn

n2 +
1
2 ln(z)ln(1− z)

c = 1 + 3
5

d = 2 cos(π5 )
Golden Number, 
Fibonacci AnyonscJain = 1 + 1



Central Charge

• Is a coefficient embedded deep in the polynomial ground-state wave-function

• Amazing fact: c is identical to the (physical) one obtained on the edge from 
counting excitations, but only for unitary theories. For non-unitary, they are 
different.

• For the Jacks, I obtain:

• Same as c for W models. Means we now have both c and c_eff identical to W 
models, which means h_{min} also matches. c=c_{eff} for r=2



Particle Propagator

Particles

• For Laughlin States:

nM =
R 2π
0
e−iMφG(φ) ∼ (Nφ −M)

ge−1

Luttinger Liquid Behavior

nM ∼ (Nφ−M+ge−1)!
(ge−1)!(Nφ−M)!

k r nNφ
nNφ−1 nNφ−2

1 2 1 2 2.88
2 2 1 2.21 3.4
4 3 1 3.07 6.24
3 4 1 3.93 8.43

ge = r



Quasihole Propagators

Quasiholes

• For Laughlin States:

• If calculated using non-unitary CFT               ; Using many-body WF      

• Remarkable fact: for FQH states described by unitary CFTs, the CFT and 
quantum mechanical scalar product give the same               . Very mysterious!!!  gqh > 0

• New Proposal: Non-Unitary CFT’s have “effective” Quantum Mechanical scaling 
dimensions               , just like the well-known “effective central charge”  

gqh > 0

gqh > 0

gqh < 0



Quasihole Propagators

(k,r) =(1,2)

(k,r) =(2,2)

(k,r) =(2,3)

(k,r) =(3,2)

(k,r) =(1,4)

3
8 > gqh >

3
10

φ

Gqh(φ)



Quasihole Propagators and Plasma Screening

R
r

IF in screening phase, 
image charge interaction

For (k,r) sequence quasiholes, can prove exactly

g cannot be obtained exactly (yet) but: We know 
the expression of n(r) in terms of Jacks:

k=2, r=2 Moore Read

N=6: g=0.36;         N=8: g= 0.37085;         N=10: g=0.378535

CFT prediction 3/8=0.375; First time from a first principle calculation

k=3, r=2 Read-Rezayi

N=9: g=0.292355;         N=12: g= 0.296632;        

CFT prediction 3/10; First time from a first principle calculation

k=2, r=3 Non-Unitary Gaffnian

N=6: g=0.2825;         N=9: g= 0.31075;         Conjecture: N=Large: g=0.33333  

CFT prediction 1/15 (plasma almost doesn’t screen); 



Non-Abelian Qp Qh State – Read Moore

Start with Read-Moore state:

Add 1 particle  from 2nd to 0th orbital:

Make a non-abelian string:

From Jacks, Generalized Clustering properties satisfied by polynomials:



Laughlin qh and qp density profiles

Exact Density Profiles

Read-Moore qh and qp density 
profiles



Conclusions

• Unified description of FQH states; explicit decomposition in monomials

• Generalized Pauli principle; clustering conditions

• Series beyond Read-Rezayi

• Quasiparticles 

• New Hierarchy scheme leads to nonabelian LLL states, 2/5,3/7,…

• Specific heat, propagators

• Can non-unitary CFT’s describe FQH states



Integrable 1D models and Spin Chains

• Haldane Shastry (1D lattice)

• Calogero Sutherland (1D continuum)



Beyond Parafermions
• Model Fractional Quantum Hall states satisfy 2 conditions:

Highest Weight
(absence of quasiholes)

Lowest Weight
(absence of quasiparticles)

• Highest and Lowest Weight uniquely define ALL good FQH Jacks :



Zeroes of the FQH States

Moore Read Z3 parafermion



Zeroes of the FQH States

Gaffnian 2/3 state

Zero energy states of k-body 
potentials:



Abelian Quasiparticles– Read Moore

Start with Read-Moore state:

Add 3 fluxes:

Add 4 particles at north pole:

From Jacks, Generalized Clustering properties satisfied by polynomials:



Quasiparticle States Read-Rezayi
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