Unified Description of Unitary and Nonunitary FQH States

Jack Polynomials, the Generalized Pauli Principle and Non-Abelian Statistics
(or: Everything you always wanted to know about Jack but were afraid to ask)

B. Andrei Bernevig

Colaboration with: F.D.M. Haldane

Princeton Physics

Squeezed Polynomials/Jacks/FQH: Bernevig and Haldane, 2007, PRL

Beyond Jacks: Bernevig and Haldane, 2007,PRB
Nonunitary/Unitary/First Principle Propagators: Bernevig and Haldane, 2008 Submitted
Mathematics of Jacks : Jimbo, Miwa, et al, 2003

Multiple Condition Statistics:Thomale, Bernevig, Greiter, in preparation
Entanglement Entropy Jain VS Jack: Regnault, Bernevig, in preparation

Simplest Nonunitary State: Simon, Rezayi, et al., 2007, PRB
Thin torus/Jain hierarchy: Karlhede, Viefers, Hermanns, Ardonne, Hansson, Bergholtz, Wikberg, Kailasvuori, Haldane, Rezayi, 1990-2008

No Nonunitary FQH: N. Read (3 most recent papers)

Single Component Fractional Quantum Hall States

- Unified description of FQH ground states and excitations in terms of Jack polynomials
- Generalized Pauli principle: exclusion statistics and clustering
- States beyond the Read-Rezayi sequence - at filling k/r
- Quasiparticle (not quasi-hole) excitations
- Non-Abelian Hierarchy States - Revisiting Jain states
- Specific Heat, electron and quasi-hole propagators, a first principle study!
- Connection to Conformal Field Theory.
- Topological entanglement: Jain vs Jack (with Nicolas Regnault)

Exact Quantization of the Even-Denominator Fractional Quantum Hall State at $\nu=5 / 2$ Landau Level Filling Factor

W. Pan, ${ }^{12}$ J.-S. Xia, ${ }^{2,3}$ V. Shvarts, ${ }^{2,3}$ D. E. Adams, ${ }^{23}$ H. L. Stormer, ${ }^{4.5}$ D. C. Tsui, ${ }^{1}$ L. N. Pfeiffer, ${ }^{5}$ K. W. Baldwin, ${ }^{5}$ and K. W. West ${ }^{5}$

Mobility $=17$ million $\mathrm{cm}^{2} / \mathrm{V} \mathrm{sec}$

$v=5 / 2$ is a FQHE state

$$
v=13 / 5 \text { and } 12 / 5
$$

Look Like they might be forming

Model FQH States

Laughlin

$$
\psi_{L}=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{r}
$$

- Fundamental property: Zeroes of the wavefunction sit on the particles
-Unique quasihole excitations, but not unique quasiparticle excitations (Laughlin VS Jain VS Girvin)

$$
\begin{gathered}
\psi_{q p}=\prod_{i=1}^{N} \frac{\partial}{\partial z_{i}} \prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{r} \\
\psi_{q p}=\left(z_{i}-z_{j}\right) \prod_{i=1}^{N} \frac{\partial}{\partial z_{i}} \prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{r-1}
\end{gathered}
$$

Moore-Read
$\psi_{M R}=\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)$
-Zeroes of the wf NOT on the particles; vanishes for 3 particles together.
-Quasiparticle excitations not known. No connection to the Laughlin state
-Physical properties obtained from CFT, not from wavefunction
-FQH states beyond Laughlin, ReadRezayi? Unified picture? Quasiparticles? Relation to the Jain states?

- UNITARY VS NONUNITARY

Free Boson Many Body Wavefunctions

- Boson analog of the Slater det. Orbital occupation basis $\left[\begin{array}{ccc}0 & 1 & 2 \ldots N_{\Phi} \\ n_{0}, n_{1}, n_{2} \ldots n_{N_{\Phi}}\end{array}\right]$
- Monomial basis; partition: $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)=(\underbrace{N_{\Phi} \ldots N_{\Phi}}_{n_{N_{\Phi}}}, \ldots, \underbrace{2, \ldots, \underbrace{1}_{n_{1}}, 1}_{n_{2}})$

Orbital occupation

$$
012345678 . .
$$

\longrightarrow Monomial basis
[101010101...]

$$
\longrightarrow \quad(\ldots 8,6,4,2,0)
$$

- Monomials (Permanents) $=$ Det with all signs positive

$$
\begin{aligned}
& m_{\lambda}\left(z_{1}, \ldots, z_{N}\right)=\operatorname{Per}\left(z_{i}^{\lambda_{j}}\right)=\operatorname{Symm}\left(z_{1}^{\lambda_{1}} \ldots . \cdot z_{N}^{\lambda_{N}}\right) \\
& N=3, \lambda=(4,2,0)=[10101] \rightarrow m_{4,2,0}=\operatorname{Symm}\left(z_{1}^{4} z_{2}^{2} z_{3}^{0}\right) \\
& \text { • Squeezing Rules in } \\
& \text { Orbital Space } \\
& \text { B Squeezed from A (A>B) }
\end{aligned}
$$

Laughlin and Moore-Read FQH States

- Annihilation operators on the

Laughlin state $\psi_{L}=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{r}$

$$
D_{i}^{L, r}=\frac{\partial}{\partial z_{i}}-r \sum_{j(\neq i)}{ }^{\prime} \frac{1}{z_{i}-z_{j}} ; \quad D_{i}^{L, r} \psi_{L}=0
$$

- Linear combination of the annihilation operators = Laplace Beltrami Operator

$$
\begin{gathered}
\sum_{i=1}^{N} z_{i} D_{i}^{L, 1} z_{i} D_{i}^{L, r}=H_{L B}\left(\alpha_{1, r}\right) \quad \mathcal{H}_{L B}(\alpha)=\sum_{i=1}^{N}\left(z_{i} \frac{\partial}{\partial z_{i}}\right)^{2}+\frac{1}{\alpha} \sum_{i<j}^{N} \frac{z_{i}+z_{j}}{z_{i}-z_{j}}\left(z_{i} \frac{\partial}{\partial z_{i}}-z_{j} \frac{\partial}{\partial z_{j}}\right) \\
\alpha_{k, r}=-\frac{k+1}{r-1}
\end{gathered}
$$

- Annihilation operators on the Pfaffian state $D_{i}^{M R} \operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)=0$
- Laughlin and Moore-Read (also Read-Rezayi): eigenstates of the Laplace-Beltrami
- All single component CFT FQH states are eigenstates of the same operator!

Jack Polynomials (Jacks) $J_{\lambda}^{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
 Henry Jack, 1976

- Eigenstates of the Laplace Beltrami Operator are explicitly known

$$
\mathcal{H}_{L B}(\alpha) J_{\lambda}^{\alpha}\left(z_{1} \ldots z_{N}\right)=\epsilon_{\lambda} J_{\lambda}^{\alpha}\left(z_{1} \ldots z_{N}\right) \quad \begin{aligned}
& \alpha=\text { Jack polynomial parameter } \\
& \lambda=\text { monomial root occupation (partition) }=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)
\end{aligned}
$$

- Decomposition of Jack polynomials in free boson many-body states known

$$
J_{\lambda}^{\alpha}\left(z_{1}, \ldots, z_{N}\right)=m_{\lambda}\left(z_{1}, \ldots, z_{N}\right)+\sum_{\mu<\lambda} v_{\mu \lambda}(\alpha) m_{\mu}\left(z_{1}, \ldots, z_{N}\right)
$$

- Jacks at $\alpha>0: 1 \mathrm{D}$ integrable at RG fixed point. Haldane Shastry, CS eigenst.
- Jacks at $\alpha<0$ first studied in 2001! (Feigin et al math.QA/0112127)
- \mathbf{N} particles: \mathbf{N}-multiplet of operators, starting with the angular momentum:
$D_{N-1}=\sum_{i} z_{i} \frac{\partial}{\partial z_{i}}=$ angular momentum $\quad D_{N-2}=\mathcal{H}_{L B}=$ Laplace Beltrami

How the Jacks Look

$$
\begin{gathered}
J_{10101}^{-2} \\
m_{4,2}-2 m_{3,3}-2 m_{4,1,1}+2 m_{3,2,1}-6 m_{2,2,2} \\
= \\
z_{3}^{4} z_{2}^{2}-2 z_{3}^{4} z_{2} z_{1}+z_{3}^{4} z_{1}^{2}-2 z_{3}^{3} z_{2}^{3}+2 z_{3}^{3} z_{2}^{2} z_{1}+2 z_{3}^{3} z_{2} z_{1}^{2} \\
-2 z_{3}^{3} z_{1}^{3}+z_{3}^{2} z_{2}^{4}+2 z_{3}^{3} z_{2}^{3} z_{1}-6 z_{3}^{2} z_{2}^{2} z_{1}^{2}+2 z_{3}^{2} z_{2} z_{1}^{3}+z_{3}^{2} z_{1}^{4} \\
-2 z_{3}^{4} z_{2}^{4} z_{1}+2 z_{3} z_{2}^{3} z_{1}^{2}+2 z_{3} z_{2}^{2} z_{1}^{3}-2 z_{3} z_{2} z_{1}^{4}+z_{2}^{4} z_{1}^{2}-2 z_{2}^{3} z_{1}^{3}+z_{2}^{2} z_{1}^{4} \\
= \\
\left(z_{1}-z_{3}\right)^{2}\left(z_{2}-z_{3}\right)^{2}\left(-z_{2}+z_{1}\right)^{2}
\end{gathered}
$$

[02001]
[10101]

[10020]
[01110]
[00300]

The Jacks as FQH states

- Laughlin states are single Jack of root orbital occupation:

$$
\nu=\frac{1}{2}:|[1010101 \ldots]\rangle \rightarrow J_{1010101 \ldots}^{-2}\left(z_{1}, \ldots, z_{N}\right)
$$

- Moore-Read state is a single polynomial of root orbital occupation

$$
\nu=1:|[2020202 \ldots]\rangle \rightarrow J_{2020202 \ldots}^{-3}\left(z_{1}, \ldots, z_{N}\right)
$$

- Read-Rezayi parafermion sequence Quantum Hall states are also Jacks:.

$$
\nu=\frac{k}{2}:|[k 0 k 0 k 0 k \ldots]\rangle \rightarrow J_{k 0 k 0 k 0 k \ldots}^{-(k+1)}\left(z_{1}, \ldots, z_{N}\right)
$$

- Density Wave states in the orbital basis. But NOT Tao-Thouless!
- Dominance relation (for $r=2$) numerically observed by Haldane (March Meering 2006 talk) now explained by identification of states with Jacks.

Generalized Pauli Principle: (k,r) statistics

- Model WF: Highest Weight (no quasiholes) and Lowest Weight (no quasiparticles)
- These uniquely define ALL good FQH Jacks :

$$
\begin{gathered}
\nu=\frac{k}{r}:\left|\left[k \mathrm{O}^{r-1} k \mathrm{O}^{r-1} k \mathrm{O}^{r-1} \ldots\right]\right\rangle \rightarrow J_{n^{v}(k, r)}^{-\frac{k+1}{-1}}\left(z_{1}, \ldots, z_{N}\right) \\
n^{v}(k, r)=k 0^{r-1} k 0^{r-1} k \mathrm{O}^{r-1} \ldots 0^{r-1} k
\end{gathered}
$$

- $r=2$ is the Read-Rezayi Z_k sequence. Laughlin(k=1), Read-Moore(k=2)

The FQH ground states above are the maximum density states satisfying a generalized Pauli principle of not more than \mathbf{k} particles in r consecutive orbitals!

- Quasihole excitations also satisfy the Pauli principle and are Jack polynomials

Torus Degeneracy of (k,r) Statistics

Topological Order = ground state degeneracy on the torus = how many ways we can put k particles in r boxes

```
Laughlin GS |[1010101...1010]\rangle
(k,r)=(1,2) |[01010101...101]\rangle
```

Pfaffian GS $(k, r)=(2,2)$	$\|[2020202 \ldots 2020]\rangle$ $\|[11111111 \ldots 111]\rangle$ $\|[02020202 \ldots 202]\rangle$

```
\(|[k 0 k 0 k 0 k \ldots k 0 k 0]\rangle\)
\(|[k-11 k-11 \ldots k-11]\rangle\)
```

Read-Rezayi $(k, r)=(k, 2)$
$|[1 k-11 k-1 \ldots 1 k-1]\rangle$ $|[0 k 0 k 0 k 0 k \ldots k 0 k]\rangle$

	$\|[k 0 k 0 k 0 k \ldots k 0 k 0]\rangle$
Read-Rezayi $(\mathrm{k}, \mathrm{r})=(\mathrm{k}, 2)$	$\|[k-11 k-11 \ldots k-11]\rangle$
	$\|[1 k-11 k-1 \ldots 1 k-1]\rangle$
	$\|[0 k 0 k 0 k 0 k \ldots k 0 k]\rangle$

Degeneracy of an SU(2) spin k/2 Spin chain
$2 / 3$ GS (k,r)=(2,3)
|[2002002...200200]〉
|[0200200...020020]〉
|[0020020...002002]>
|[1101101...110110]>
|[0110110...011011] \rangle
|[1011011...101101]>

Simon, Rezayi, Cooper, 2007 Bernevig, Haldane, 2007

$$
N_{G S}=\frac{(k+r-1)!}{k!(r-1)!}
$$

Clustering Conditions

- Form a k particle cluster
- Bring the $\mathbf{k}+\mathbf{1}$ 'th particle close to the \mathbf{k} particle cluster
- For the (\mathbf{k}, \mathbf{r}) sequence, the GS and quasihole Jack WF vanish as the r'th power of the difference

- Clustering number \mathbf{k} AND vanishing power \mathbf{r} are the fundamental properties
- Feigin et al math.QA/0112127 showed the Jacks span the basis of polynomials that vanish when $k+1$ particles come together: complete basis

The Jacks and Clustering Conditions

- The (k,r) statistics ground state (maximal density) satisfies a remarkable entanglement property

$$
\prod_{i=1}^{N}\left(Z-z_{i}\right)^{r} J_{n^{v}(k, r)}^{-\frac{k+1}{r-1}}\left(z_{1} \ldots z_{N}\right)=J_{n^{v}(k, r)}^{-\frac{k+1}{r-1}}(z_{1} \ldots z_{N}, \underbrace{Z \ldots Z}_{k})
$$

- As a corollary, every paired FQH ground-state is a Laughlin state in clustered coordinates
$J_{n^{v}(k, r)}^{-\frac{k+1}{r-1}}(\underbrace{z_{1}, \ldots, z_{1}}, \underbrace{z_{2}, \ldots, z_{2}}, \ldots)=\prod_{i<j}^{N / k}\left(z_{i}-z_{j}\right)^{k r}$

Excitations of (k,r) Statistics

- Maintain Pauli principle of (k, r) statistics (not more than k particles in r consecutive orbitals) but add fluxes (zeroes) on the sphere:

		Pfaffian GS $(k, r)=(2,2)$	\|[20202]>
Laughlin GS$(k, r)=(1,2)$	\|[10101]>		$\xrightarrow{\mid[020202]}\rangle$
		Abelian Quasiholes	$\|[200202]\rangle$ $\|[202002]\rangle$
	\|[010101]>		\|[202020]>
1-Quasihole Multiplet L=N/2	\|[100101]>		
	\|[101001]>		$\|[111102]\rangle$
	\|[101010]>		\|[111111] ${ }^{\text {[}}$
		Quasihole	\|[201111]>
			\|[202011]>
			\|[201102]

- For $r=2$ (Read-Rezayi sequence) this gives the counting of states of Conformal Field Theory

Unpinned Quasihole Hilbert Space

- Number of partitions satisfying (k,r) Pauli Principle
- For $k>1$, dimension space at 1 flux corresponds to

$$
D_{1 q h}=\binom{\frac{N}{k}+k}{k}
$$ angular momentum addition of more than 1 particle

$\mathrm{k}=1$ Laughlin Abelian quasihole south pole
$\square 2020202020^{\circ}$
$k=2$; two quasiholes at south pole
© 1111111111°
$\mathrm{k}=2$; one fractionalized quasihole at north pole, another fractionalized quasihole at south pole

Pinned Quasiholes

- Coherent State superposition of un-pinned quasiholes (Jack polynomials)

$$
\prod_{i}^{N}\left(z_{i}-z_{A}\right) \prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{r}=\sum_{i=1}^{N} z_{A}^{i} J_{i}\left(z_{1}, \ldots, z_{N}\right)
$$

- $\mathrm{k}-1$ fractionalized quasiholes at the origin, one at z_{A}. Example for $\mathrm{k}=2$:

$$
\begin{aligned}
& |0\rangle \rightarrow|0202 \ldots 0202\rangle \\
& |1\rangle \rightarrow|1102 \ldots . .0202\rangle \\
& |2\rangle \rightarrow|1111 \ldots . .0202\rangle \\
& \vdots \\
& \left|\frac{N}{2}-1\right\rangle \rightarrow|1111 \ldots 1102\rangle
\end{aligned}
$$

$$
\left|\frac{N}{2}\right\rangle \rightarrow|1111 \ldots 1111\rangle
$$

$$
\Psi\left(z_{A}, 0^{k-1} ; z_{1}, \ldots, z_{N}\right)=\sum_{i=0}^{\frac{N}{k}} \frac{1}{k^{i}} z_{A}^{i}|i\rangle
$$

- Quantum dimension $d \geq 1$;dimension of pinned quasihole Hilbert space $\sim d^{k n}$

One Quasiparticle States（Abelian）

Quasiparticle States：$\quad L^{+} \psi=\sum_{i=1}^{N} \frac{\partial}{\partial z_{i}} \psi=0$

Start with Laughlin state：
Add 3 fluxes：

Add 2 particles at north pole：
｜1010101．．．101〉
｜0001010101．．．101〉
2001010101．．．101》

From Jacks，Generalized Clustering properties satisfied by polynomials：

$$
\begin{gathered}
P\left(z_{1}, z_{1}, z_{1}, z_{4}, z_{5}, \ldots\right)=0 \text { as } l=3 \\
P\left(z_{1}, z_{1}, z_{3}, z_{3}, z_{5}, z_{6} \ldots\right)=0
\end{gathered}
$$

The quasiparticle states necessarily break the（k，r）statistics of the parent state

One Quasiparticle States (Abelian)

- Laughlin quasiparticle satisfies first clustering but not second

$$
\psi_{L}=\prod_{i=1}^{N} \frac{\partial}{\partial z_{i}} \prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{r}
$$

- Our quasiparticle has more zeroes, due to generalized clustering

$$
\begin{gathered}
P_{J a i n}^{1 q p}=\left(\begin{array}{cccc}
z_{1}^{\star} & z_{2}^{\star} & \cdots & z_{N}^{\star} \\
1 & 1 & \cdots & 1 \\
z_{1} & z_{2} & \ldots & z_{N} \\
z_{1}^{N-2} & z_{2}^{N-2} & \ldots & z_{N}^{N-2}
\end{array}\right) \\
P_{J a i n}^{1 q p} \prod_{i<j}^{N}\left(z_{i}-z_{j}\right)
\end{gathered}
$$

Jack Hierarchy States

Bosonic state at $\nu=\frac{2}{3}$ (fermionic $\nu=\frac{2}{5}$) by dumping $\frac{N}{2}$ quasiparticles in Laughlin $\nu=\frac{1}{2}$ (fermionic $\nu=\frac{1}{3}$) state.

	Jack Quasiparticle	Jain Quasiparticle
1	$\|20010101010101\rangle$	$\|20010101010101\rangle$
2	$\|2002001010101\rangle$	$\|2010101010101\rangle$
3	$\|200200200101\rangle$	$\|201011010101\rangle$
4	$\|2002002002\rangle$	$\|2010110102\rangle$

Hierarchy leads to the Jack polynomial state from before: $(\mathrm{k}, \mathrm{r})=(2,3)$ (Simon, Rezayi, 2007)
(Bernevig, Haldane 2007)

$$
\psi_{\nu=\frac{2}{5}}=J_{2002002 \ldots 2002}^{-\frac{3}{2}}\left(z_{1}, \ldots, z_{N}\right) \cdot \prod_{i<j}\left(z_{i}-z_{j}\right)
$$

New Wavefunctions for k/(k+1) Filling

- Fermionic states at Jain fillings are Vandermonde times $r=k+1$ Jacks:
- All of them are non-abelian, satisfy ($k, k+1$) Pauli Generalized Principle

$$
\psi_{\nu=\frac{k}{2 k+1}}=J_{k 0^{k} k 0^{k} k \ldots k 0^{k} k}^{-\frac{k+1}{k}}\left(z_{1}, \ldots, z_{N}\right) \cdot \prod_{i<j}\left(z_{i}-z_{j}\right)
$$

- Ground-states of $\mathrm{k}+1$ body pseudopotentials with cluster angular mom $<\mathrm{k}+1$
- Jain $2 / 3$ state is excitation of the $(k, r)=(2,3)$ (Gaffnian) state

Numerics on the $2 / 3$ state

- Overlaps >0.96 on sphere (Rezayi; Regnault) for $\mathrm{N}=12,14$

Simon, Rezayi, Cooper, Berdnikov, PRB 2007

Gap scaling for different ratios $\mathrm{a}=\mathrm{V}^{\wedge} 3 _3 / \mathrm{V}^{\wedge} 3_{-} 5$

Coulomb

Topological Entanglement

Hui and Haldane, 2008:

$$
|\psi\rangle=\sum_{\alpha} e^{-\xi_{\alpha} / 2}\left|\psi_{N_{\alpha}}\right\rangle \otimes\left|\psi_{S_{\alpha}}\right\rangle
$$

Topological Entanglement for 2/5

Collaboration with N. Regnault $|\psi\rangle=\sum_{\alpha} e^{-\xi_{\alpha} / 2}\left|\psi_{N_{\alpha}}\right\rangle \otimes\left|\psi_{S_{\alpha}}\right\rangle$

The Quantum Numbers of Topological Order in FQH States

Filling $\nu=\frac{k}{r}$
Degeneracy on the torus $D_{T^{2}}=\frac{(k+r-1)!}{k!(r-1)!}$

Quantum dimensions of primary fields: d

Hall Thermal coefficient \equiv central charge

Particle propagator exponent g_{e}

Quasi-hole propagator exponent $g_{q h}$

- counting of partitions
- existence of one-to one map to wavefunctions (Jack Polyn)

Involves taking norms, hence scalar products

Conformal Field Theory Connection

- FQH states can empirically be written as CFT correlators:

$$
\prod_{i<j}\left(z_{i}-z_{j}\right)^{r}=\left\langle\psi_{e}\left(z_{1}\right) \ldots \psi_{e}\left(z_{N}\right)\right\rangle ; \quad \psi_{e}\left(z_{N}\right)=e^{i \sqrt{r} \phi}
$$

- The clustering conditions as well as the quantum dimensions point to (k, r) Jacks as correlation functions of $W_{k}(k+1, k+r)$ algebras (conjectured: Feigin, et al,2003; "proved" Bernevig, Haldane 2008).
- The W CFTs are unitary for $A: k=1$ and any r B: $r=2$ and any k
- All other W's are non-unitary: really bad stuff happens (see papers by Read)
- Negative specific heat
- Negative scaling dimension: field correlators blow up at large distances
- Plasma in non-screening phase (conjecture)

Edge Thermal Hall Coefficient

- Compute entropy of our non-abelian k/r states: High Temperature expansion

$$
\begin{gathered}
\ldots k \mathrm{O}^{r-1} k \mathrm{O}^{r-1} \ldots k \mathrm{O}^{r-1} k \mathrm{O}^{r-1} \mathrm{COO}_{2 \pi / L}^{\text {Fermi Sea }} \ldots \mathrm{Oxcitations} \\
Z=\operatorname{Tr}(\exp (-\beta H))=\sum_{D=1}^{\infty} N_{D} q^{D} \quad q=e^{-\frac{2 \pi \beta v_{F}}{L}} \\
F=-T \ln (Z) \quad C=-T \frac{\partial^{2} F}{\partial T^{2}}=\frac{\pi L T}{3 v_{F}} c
\end{gathered}
$$

- c = central charge in CFT
- We computed N_{D} using the theory of partitions (ex Andrews book)

Edge Specific Heat and Quantum Dimensions

- The (k,r) Pauli Principle also gives the quantum dimensions d_{i} (Chebyshev Polyn)!

$$
c=1+\sum_{i} L\left(\frac{1}{d_{i}^{2}}\right) \quad L(z)=\sum_{i=1}^{\infty} \frac{z^{n}}{n^{2}}+\frac{1}{2} \ln (z) \ln (1-z)
$$

- Using dilogarithm identities: (Kirilov, 1992, Nahm et al, 1992)

- Hence positive specific heat from the Pauli Principle of the FQH states, even though non-unitary CFT
- For 2/3 (or 2/5) Non-Abelian state:
$c=1+\frac{3}{5}$
$c_{J a i n}=1+1$
$d=2 \cos \left(\frac{\pi}{5}\right)$
Golden Number, Fibonacci Anyons

Central Charge

- Is a coefficient embedded deep in the polynomial ground-state wave-function

$$
\psi\left(z_{1}\right) \psi\left(z_{2}\right)=\frac{1}{\left(z_{1}-z_{2}\right)^{2 h}}\left(1+\frac{2 h}{c}\left(z_{1}-z_{2}\right)^{2} T\left(z_{2}\right)+O\left(\left(z_{1}-z_{2}\right)^{3}\right)\right)
$$

- Amazing fact: c is identical to the (physical) one obtained on the edge from counting excitations, but only for unitary theories. For non-unitary, they are different.
- For the Jacks, I obtain:

$$
c=(k-1)\left(1-\frac{k(r-1)^{2}}{k+r}\right)
$$

- Same as c for W models. Means we now have both c and c_eff identical to W models, which means h_\{min\} also matches. $c=c _\{e f f\}$ for $r=2$

Particle Propagator

- For Laughlin States:

$$
G(\phi) \sim \frac{1}{\left(\sin \left(\frac{\phi}{2}\right)\right)^{g e}}
$$

$$
n_{M}=\int_{0}^{2 \pi} e^{-i M \phi} G(\phi) \sim\left(N_{\phi}-M g_{e}-1\right.
$$

Particles

Luttinger Liquid Behavior

$$
n_{M} \sim \frac{\left(N_{\phi}-M+g_{e}-1\right)!}{\left(g_{e}-1\right)!\left(N_{\phi}-M\right)!}
$$

g_{e}	$n_{N_{\phi}}$	$n_{N_{\phi}-1}$	$n_{N_{\phi}-2}$	$n_{N_{\phi}-3}$	$n_{N_{\phi}-4}$	$n_{N_{\phi}-5}$
2	1	2	3	4	5	6
3	1	3	6	10	15	21
4	1	4	10	20	35	56
5	1	5	15	35	70	126

k	r	$n_{N_{\phi}}$	$n_{N_{\phi}-1}$	$n_{N_{\phi}-2}$
1	2	1	2	2.88
2	2	1	2.21	3.4
4	3	1	3.07	6.24
3	4	1	3.93	8.43

Quasihole Propagators

- For Laughlin States:

$$
\mathfrak{G}(\phi)=\frac{1}{(\sin (\phi / 2))^{g} q q_{l}}
$$

Quasiholes

- Remarkable fact: for FQH states described by unitary CFTs, the CFT and quantum mechanical scalar product give the same $g_{q h}>0$. Very mysterious!!!
- If calculated using non-unitary CFT $g_{q h}<0$; Using many-body WF $g_{q h}>0$
- New Proposal: Non-Unitary CFT's have "effective" Quantum Mechanical scaling dimensions $g_{q h}>0$, just like the well-known "effective central charge"

Quasihole Propagators

Comparing states at the same $\bar{N}=N / k$
The $\nu=\frac{2}{3}$ state quasihole exponent is bounded by Read-Rezayi states:

$$
\frac{3}{8}>g_{q h}>\frac{3}{10}
$$

Quasihole Propagators and Plasma Screening

For (k,r) sequence quasiholes, can prove exactly $\quad \alpha=\frac{N}{k}, g=g_{q h}, q=1 / r$
g cannot be obtained exactly (yet) but: We know the expression of $n(r)$ in terms of Jacks: $|j\rangle$

$$
n_{q h}(r) \exp \left(q r^{2} / 2 l^{2}\right)=\sum_{j=0}^{N / k}\left(\frac{r}{k}\right)^{2 j}\langle j \mid j\rangle
$$ $k=2, r=3$ Rlewdelfiteayk Gaffnian

Non－Abelian Qp Qh State－Read Moore

Start with Read－Moore state：
Add 1 particle from $2^{\text {nd }}$ to $0^{\text {th }}$ orbital：
Make a non－abelian string：
｜2020202．．．202〉
｜3010202．．．202〉
｜3011111．．．111〉

From Jacks，Generalized Clustering properties satisfied by polynomials：

$$
P\left(z_{1}, z_{1}, z_{1}, z_{1}, z_{5}, z_{6} \ldots\right)=0 \text { as } l=5
$$

Exact Density Profiles

Laughlin qh and qp density profiles

Read-Moore qh and qp density profiles

Conclusions

- Unified description of FQH states; explicit decomposition in monomials
- Generalized Pauli principle; clustering conditions
- Series beyond Read-Rezayi
- Quasiparticles
- New Hierarchy scheme leads to nonabelian LLL states, $2 / 5,3 / 7, \ldots$
- Specific heat, propagators
- Can non-unitary CFT's describe FQH states

Integrable 1D models and Spin Chains

- Haldane Shastry (1D lattice)

$$
\mathcal{H}=\left(\frac{2 \pi}{N}\right)^{2} \sum_{i<j} \frac{\vec{S}_{i} \vec{S}_{j}}{\left|z_{i}-z_{j}\right|^{2}}
$$

$$
z_{j}=\exp \left(\frac{2 \pi i}{N} j\right)
$$

- Calogero Sutherland (1D continuum)

$$
z_{j}=\exp \left(i \theta_{j}\right)
$$

$$
\mathcal{H}=\sum_{i=1}^{N}\left(z_{i} \frac{\partial}{\partial z_{i}}\right)^{2}+\frac{1}{\alpha}\left(\frac{1}{\alpha}-1\right) \sum_{i<j}^{N} \frac{1}{\left|z_{i}-z_{j}\right|^{2}}
$$

Beyond Parafermions

- Model Fractional Quantum Hall states satisfy 2 conditions:

Highest Weight
(absence of quasiholes)

Lowest Weight (absence of quasiparticles)

$$
L^{+} \psi=\sum_{i=1}^{N} \frac{\partial}{\partial z_{i}} \psi=0
$$

$$
L^{-} \psi=\sum_{i=1}^{N}\left(N_{\Phi} z_{i}-z_{i}^{2} \frac{\partial}{\partial z_{i}}\right) \psi=0
$$

- Highest and Lowest Weight uniquely define ALL good FQH Jacks :

$$
\begin{gathered}
\nu=\frac{k}{r}:\left|\left[k \mathrm{O}^{r-1} k \mathrm{O}^{r-1} k \mathrm{O}^{r-1} \ldots\right]\right\rangle \rightarrow J_{n^{v}(k, r)}^{-\frac{k+1}{r-1}}\left(z_{1}, \ldots, z_{N}\right) \\
n^{v}(k, r)=k \mathrm{O}^{r-1} k \mathrm{O}^{r-1} k \mathrm{O}^{r-1} \ldots \mathrm{O}^{r-1} k
\end{gathered}
$$

Zeroes of the FQH States

Zeroes of the FQH States

Zero energy states of k-body potentials:

$$
V_{0}^{k+1}, V_{2}^{k+1}, \ldots V_{r-1}^{k+1}
$$

Abelian Quasiparticles－Read Moore

Start with Read－Moore state：
Add 3 fluxes：
Add 4 particles at north pole：
｜2020202．．．202〉
｜0002020202．．．202〉
｜4002020202．．．202〉

From Jacks，Generalized Clustering properties satisfied by polynomials：

$$
\begin{gathered}
P\left(z_{1}, z_{1}, z_{1}, z_{1}, z_{1}, z_{2}, z_{3} \ldots\right)=0 \text { as } l=3 \\
P\left(z_{1}, z_{1}, z_{1}, z_{2}, z_{2}, z_{2}, z_{3}, z_{4} \ldots\right)=0 \\
\left(\begin{array}{cccc}
z_{1}^{\star} & z_{2}^{\star} & \ldots & z_{N}^{\star} \\
1 & 1 & \ldots & 1 \\
z_{1} & z_{2} & \ldots & z_{N} \\
z_{1}^{N-2} & z_{2}^{N-2} & \ldots & z_{N}^{N-2}
\end{array}\right) J_{[20202 \ldots 0202]}^{-3}
\end{gathered}
$$

Quasiparticle States Read-Rezayi

$$
\begin{aligned}
& l=\frac{N}{k} ; \quad|k+10 k-11 k-11 \ldots 1 k-11 k-1\rangle ; \\
& l=\frac{N}{k}-1 ; \quad|k+10 k-11 k-11 \ldots 1 k-10 k\rangle ; \\
& l=\frac{N}{k}-2 ; \quad|k+10 k-11 k-11 \ldots 1 k-10 k 0 k\rangle ; \\
& \quad l=2 ; \quad|k+10 k-10 k 0 k \ldots k 0 k 0 k\rangle ;
\end{aligned}
$$

$$
P\left(z_{1}, z_{1}, z_{1} \ldots z_{1}, z_{k+3}, z_{k+3} \ldots\right)=0 \text { as } l=3
$$

$$
P\left(z_{1}, z_{1}, \ldots, z_{1}, z_{k+2}, z_{k+2}, \ldots, z_{k+2}, z_{2 k+3}, z_{2 k+4} \ldots\right)=
$$

