symmetry MBPY

Article

Classification of Metaplectic Fusion Categories

Eddy Ardonne *{, Peter E. Finch 2 and Matthew Titsworth 3

check for

updates
Citation: Ardonne, E.; Finch, PE.;
Titsworth, M. Classification of
Metaplectic Fusion Categories.
Symmetry 2021, 13, 2102. https://
doi.org/10.3390/sym13112102

Academic Editor: Alexander Seidel

Received: 6 September 2021
Accepted: 1 November 2021
Published: 5 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Department of Physics, Albanova University Center, Stockholm University, SE-106 91 Stockholm, Sweden

Institut fiir Theoretische Physik, Leibniz Universitit Hannover, Appelstrafie 2, 30167 Hannover, Germany;

pfinch.mathphys@gmail.com

3 Department of Physics, University of Texas at Dallas, Richardson, TX 75080, USA;
matthew.titsworth@gmail.com or matthew.titsworth@utdallas.edu

*  Correspondence: ardonne@fysik.su.se

Abstract: In this paper, we study a family of fusion and modular systems realizing fusion categories
Grothendieck equivalent to the representation category for so(2p + 1),. These categories describe
non-abelian anyons dubbed ‘metaplectic anyons’. We obtain explicit expressions for all the F- and
R-symbols. Based on these, we conjecture a classification for their monoidal equivalence classes from
an analysis of their gauge invariants and define a function which gives us the number of classes.
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1. Introduction

Landau [1] showed that most phases of matter can be classified by investigating in
which way the underlying symmetry of the system can be broken. There are, however,
also phases of matter that defy this classification—in particular, topologically ordered
phases [2], with the most famous example being the fractional quantum Hall systems [3,4].

It is thus natural to try to classify topologically ordered phases, which can be described
using the theory of modular tensor categories. Classifying all modular tensor categories is
extremely difficult, with only partial results available; see, for instance, [5].

In this paper, we study a family of fusion and modular systems that go under the name
of ‘metaplectic anyons’. Metaplectic anyon systems can be viewed as a generalization of the
‘Ising anyon’ system, and were studied, for instance, in [6,7]. Thus, we fix the fusion rules,
and given these fusion rules, we try to find all possible, inequivalent physical solutions.
In the process, we obtain explicit expressions for the F- and R-symbols, which is useful,
for instance, when one uses these metaplectic anyons to construct spin-chain like models
as in [8]. Because we use quite a bit of tensor category machinery, we are forced to take a
mathematical point of view on the problem.

Fusion categories over a field k generalize categories of finite group representations;
they are tensor categories with finitely many classes of simple objects, all having duals.
They arise in representation theory [9], operator algebras [10], topological quantum field
theories [11], and quantum invariants of 3-manifolds [12]. They also play an important role
physically in the study of topological quantum computing [13] and topological phases of
matter [14].

As such, a classification of fusion categories up to various notions of equivalence is
desirable. One such notion of equivalence is Grothendieck equivalence, wherein categories
have isomorphic decategorifications, which is a based ring in the sense of [15]. Another
notion of equivalence is monoidal equivalence, wherein categories are related via an invertible
monoidal functor.

A natural line of inquiry is then: Given a based ring, does it admit categorification?
If so, given its Grothendieck class of fusion categories, how many monoidal classes are
there and how can they be distinguished? This is an incredibly difficult question to
answer in general, especially at the level of fusion categories, with no further assumptions.
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Most results along these lines are either obtained for small examples which can be easily
computed [16-18], but there are some families [19,20] for which classifications are known.

In this paper, we obtain an answer to these questions for a family of categories we
will call metaplectic fusion categories. These are fusion categories underlying metaplectic
modular categories. Recall that a metaplectic modular category [6,7] is a modular category
Grothendieck equivalent to so(2p + 1)p, the category of affine so(2p + 1) representations
with highest integer weight 2 [21]. Other common constructions for such categories come
from C(By,2(2p +1),q) [22] for g some 2(2p + 1) root of unity, or from Z, equivariantiza-
tions of TY(Zn, x, T) [23] where N = 2p + 1. In ([24] [Theorem 3.2]), it was shown that all
metaplectic modular categories arise from gauging the particle-hole symmetry in Z, 11
modular categories.

Our main result is obtained by classifying solutions to the pentagon equations and
hexagon equations coming from the so(2p + 1), based ring. We stop short of demonstrating
that these are all of the categories as this is a much harder problem. However, the modular
data for so(2p + 1), categories is known and the modular data computed for our solutions
coincides. As such, we refine the classification of [24] one step further.

For fixed p, our categories are parameterized by pairs (7, ), where k = £1 and r a
positive odd integer less than and co-prime to 2p + 1. Let R be the set of these r. Define
Gypi1 = Lo, 1/ (1, —1) with g : Z3 .1 — G5, ; the quotient map. Elements of Z,, | can
be represented as positive integers less than and co-prime to 2p + 1. Likewise, elements

of GZXP 41 can be represented as positive integers less than or equal to p and co-prime to

X
2p+

Rviaz-R = {rz2 mod (2p + 1)|r € R} makes sense. Similarly, the evaluation g(r)|r € R
makes sense. Our main result can then be stated as follows

2p + 1. Particularly, each r € R represents an element of szp 41 and the action of G;,,, ; on

Theorem 1. For fixed p, the following are true:

1. The monoidal classes of fusion categories constructed from (r,«), xk = £1 and r € R are the
fusion categories underlying metaplectic modular categories.

2. Let (r,x) and (v',«") parameterize two different solutions to the pentagon equations. Then
the fusion categories constructed from these solutions are monoidally equivalent if and only if
k = «’ and there exists z € G;p-i-l such that g(r') = ¢(rz?).

3. For2p+1=pi... p?’, there are exactly 21 monoidally inequivalent metaplectic modular

categories if 3b € szp 1|b* = =1, otherwise there are exactly 2'.

As a sanity check on this, following ([24] [Theorem 3.2]), we note that the number of
metaplectic fusion categories admitting the structure of a modular category is always less
than or equal to the number of metaplectic modular categories. We note that there could,
in principle, be fusion categories which do not admit a modular structure.

The structure of this paper is as follows. In Section 2 we review the basic information
for fusion and modular categories and their arithmetic descriptions, fusion and modular
systems. In Section 3 we review the gauge invariants of [25] which allow us to extend
deductions about our fusion systems to entire gauge and monoidal classes of fusion
categories. In Section 4 we present our solutions to the pentagon and hexagon equations,
and construct the modular data. In Section 5 we determine the monoidal equivalence
classes of the fusion categories. In Section 6 we explicitly compute the equivalence classes
and modular structures for several examples. Appendix A demonstrates that the explicit F-
and R-symbols we present are indeed solutions to the pentagon and hexagon equations.

2. Preliminaries

In this section we review relevant facts about fusion/modular categories and their arith-
metic descriptions. We do not provide proofs, but most can be found in one of [11,15,26,27], or
now [28]. In the sequel we will always work over k = C for simplicity.
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2.1. Fusion Categories and Modular Categories

Definition 1 ([15] [Definitions 2.1 and 2.2]). A unital based ring (R, B) isa Z™ - ring R together
with a set B C R and identity 1g € B such that

(Structure constants) There exist non-negative integers N%, for X,Y, Z € B such that

XY =Y N§/Z
ZeB

®  (Duality) A bijection * : B — B such that 13 = 1g which extends to an anti-involution on
(R,B),ie., (XY)* = X*Y*,VX,Y € B.

By associativity, the structure constants must satisfy

Y NYyNUz = ) NYZNRy @
UeB VeB
forallU,V,W,X,Y,Z € B.
The structure constants define a map N : B*3 — Z*+ which we can extend recursively to
arbitrary n +1 > 3 via
Y z Y
le‘..xn = Z NX1.‘.X,1_1NZX,,
ZeB
forall Xq,...,Xn, Y € B. Those structure constants which are non-zero will play an important

role and so we define
I(R,B) = {(X,Y,Z) € B*|N% # 0}

with %, the notation for (X,Y, Z). We will say that (R, B) is multiplicity free if N(I'(R, B)) =
{1}.
For based rings (R, B) and (R, B'), every bijection p : B — B’ satisfying
z

g 7X,Y,Z €B )

defines a unique based ring isomorphism p’ : (R, B) — (R, B') and vice versa. Let Aut(R, B) to be
the group of based ring automorphisms of (R, B).

Remark 1. Since all based rings in this paper are all multiplicity free, unless otherwise noted, all
future statements will be made under this assumption.

Definition 2. Let (R, B) be a based ring and define Nx be the matrix with entry (Nx)yz = N%,.
The Frobenius—Perron dimension FP(X) of X is the largest positive real eigenvalue of Nx. The
Frobenius—Perron dimension of (R, B) is FP((R,B)) = Yxep FP(X)?.

We now define fusion categories.

Definition 3. A fusion category C over C is a monoidal semi-simple Abelian category with
identity 1 such that (we will denote the monoidal bifunctor of a fusion category C by ® and direct
sum of objects by @)

1. (C-linearity) C is enriched over Vecp;,(C). This is to say that C(a, b) is a finite dimensional
vector space over k for all objects a,b € Cy.

2. (Finiteness) There are finitely many isomorphism classes of simple objects in Cy and C(a, a)
C for all simple objects a € Cy.

3. (Rigidity) For every object a € Cy, there is an object a* € Cq and evaluation and co-evaluation
maps

~

ev,a®a* =1 coev,:1—=a"Qa
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such that

Ago(evg ® Idg) 0wy g+ g0 (Ids & coev,) o p;l = Id, and 3)

Pas © (Idg ® evg+) o "‘Ea,a* o (coevy ® Idy+) o /\1;1 = Id,. 4)

We denote by Ky(C) the Grothendieck ring of C. This is a based ring as defined in
Definition 1 with basis elements corresponding to equivalence classes of simple objects
a,b,... € Cyand multiplication induced from ® via Ng]...an =dim(C(a1 ®...®ay,b)). We
say that C is multiplicity free if Ky(C) is multiplicity free. Given two fusion categories C
and D, we say that they are Grothendieck equivalent if and only if Co(C) = KCo(D). We say
that a based ring (R, B) admits categorification if there exists a fusion category C such that

(R, B) = Ko(C).

Definition 4. Let C be a fusion category and € be a natural isomorphism € : xx — Id of the
double dual and identity functors. For all equivalence classes of simple objects a of C, this gives us a
morphism €, : a** — a. From this, we can define the left and right quantum trace of a morphism
fona,

tri(f) = evgo (f ® Idy) o ((ea) "1 @ Idy+) o coevys )
tr(f) = evg o (Idg @ €q) o (Idgx @ f) 0 coev, (6)

where ev_and coev_ are the evaluation and coevaluation maps. A natural isomorphism € such that
€axb = € @ €y is called a pivotal isomorphism. A pivotal fusion category is a fusion category
equipped with a pivotal isomorphism.

For every isomorphism class of simple objects a in a pivotal fusion category C, one
defines the left quantum dimension ¢;(a) and the right quantum dimension ¢, (a) as the
quantum traces of the identity morphism on a. A spherical fusion category is a pivotal fusion
category such that the left and right quantum dimensions of all objects coincide. In this
case, we refer simply to the quantum dimension of an object a as g,.

For a spherical fusion category C, we define the matrix D to be the diagonal matrix
with entries g, for all equivalence classes a. We also define the categorical quantum dimension
q(C) = ¥Y,(q4)?. A spherical fusion category is called pseudo-unitary iff (C) = FP(Ko(C))
and there exists a canonical choice of spherical structure such that g, = FP(a) for all a.

There is also the stronger notion of a unitary fusion category.

Definition 5. A conjugation on a fusion category is a family of conjugate linear maps C(x,y) —
C(y,x), f — f satisfying

f=f Ffeg=fog adfog=gof
A fusion category is unitary if f = 0 whenever f o f = 0 [29]. In this case then, all of the

C(a ® b, c) spaces are Hilbert spaces [30]. Unitary implies q(a) = FP(a) and so then pseudo-
unitary and spherical.

Definition 6. Let C be a fusion category. A braiding on C is a family of natural isomorphisms
Cxy i Y ®x — x QY satisfying the hexagon equations as in [11]. A braided fusion category is a
fusion category equipped with a braiding.

For braided fusion categories, there is a canonical natural isomorphism

Pg = pg++ 0 (Idg+ ® ev,) o uca:l/u,a* 0 (Caae+ @ Idy) 0 g ges g+ © (Idq @ coevy+) o p,,_l. ?)
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A balanced fusion category is a braided pivotal fusion category with balancing 6, =
€4 0 1P,. The trace of this morphism, by abuse of notation, will also be denoted 6, and the
diagonal matrix with entries 8, will be called the T-matrix. A ribbon fusion category is a
balanced fusion category that is also spherical.

There also exist a family of invariants S,; corresponding to the evaluations of Hopf
links colored by each pair of equivalence classes (a,b). The matrix with entries S, is
called the S-Matrix and a modular category is a ribbon fusion category with non-degenerate

S-matrix. In the case that C is modular, then all C, are roots of unity. The matrices ﬁs

and T = diag(6,) give a representation of the modular group SL(2,Z). It was believed
that the pair (S, T) uniquely determine the modular category and typically what one does
in classifying modular categories (e.g., [5,31]) is enumerate the admissible pairs (S, T).
However, it has since then become clear that (S, T) do not suffice to uniquely determine
the modular category [32].

2.2. Fusion and Modular Systems

An important question is how one goes about constructing fusion categories. One
way to do so [26] is through a collection of numbers called a fusion system.

Definition 7. A Fusion System (L, N, F)(C) over k consists of

1. Asetof labels L containing an element called 1.
2. Aninvolution x : L — L such that 1* = 1.
3. Asetmap N:Lx L xL— {0,1} (written NS, for N(a, b, c)) satisfying

80 = Nby = N{, = N} = N, ®)

a

Ny = ¥ NgN& = ;stNél ©)
e
We will define T (L, N) = {+%,|N(a,b,c) = 1}.

4. For every quadruple a,b,c,d € L, an invertible Nfb o X N;lb o matrix F;’b . With entries satisfy-

ing
ab
Fb = Nab (10)
Fgagz #0 11)
hifg re;hi piigj _ pehj peifi
;Fabc thglebcd - chd Fabj (12)

The entries of matrix F% are referred to as 6]-symbols. Define Aut(N) to be the group of

abc

permutations on L such that for all v in Aut(N)

¢ _ pgv(©)
ab — Nv(a)v(b)'

This then extends to an action on F via

FV(d)?V(E v f) (13)

(Fl '

Central to our analysis is the ability to interpolate between fusion categories over
C and fusion systems over C. Given a fusion system (L, N, F) over C, one can construct
a fusion category C(L, N, F). Given a fusion category C over C, a fusion system over C,
denoted (L, N, F)(C), can be extracted such that C((L, N, F)(C)) = C as fusion categories.
For our construction, this is proven in [26] as Proposition 3.7. A similar theorem also
appears in [20].
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It is by analyzing a family of fusion systems for so(2p + 1), Grothendieck rings that
we develop our classification. To do this, we will utilize the following;:

Proposition 1. Two fusion categories C and D are Grothendieck equivalent if and only if given
any two fusion systems (L, N,F) and (L', N, F") extracted from them there exists a bijection
f L — L' such that for all v € Aut(N) there exists v/ € Aut(N") such that f ov =1v"o f.

Proof. If Ky(C) = Ko(D) there exists a based ring isomorphism in the sense of [15] 2.1.iv,
and this is determined by its action on basis elements. [

This allows us to specify a common basis for Ky(C) from which to work.
There also exists arithmetic data for pivotal structures.

Proposition 2. Let (L, N, F) be a fusion system extracted from a fusion category C and define the
set {€, }acr. Pivotal structures on C are in 1-1 correspondence with solutions to
€ ‘eacy = F, ;bia F ;ca:;b* Fl Zbc (14)

This is proven in ([26] [Proposition 3.12]).

Given a fusion category C with pivotal structure ¢, if it is a spherical structure then
there exists a fusion system (L, N, F)(C) such that all ¢, = +1. By skeletalizing the rigidity
conditions and using the choice of basis as in ([26] [Lemma 3.4]), the quantum dimensions
can be computed from F and € as

qi(a) = ea(Fp.jt) " and gr(a) = (eaFpiy) ™" (15)

If C admits the structure of a unitary fusion category, then there exists a fusion system
(L,N,F)(C) such that all ngc matrices are unitary. Conversely (see [20], Section 4), if
given (L, N) there exists a solution to (10)—(12) such that all F ab . matrices are unitary, then
C(L, N, F) admits a unitary structure.

Definition 8. A Modular System (L, N, F, R, €) is a fusion system (L, N, F) such that N =
N, V96, € T(L,N), € = {€s}acr is a solution to (14), and {R¢, 7S, € T(L,N)} isa collectzon
of numbers satisfying

g pdigf f g pd pdief

R Facb R ZFcab R abc (16)

ecL

g \—1pdsf f d;ge d —1pdief

(RaC) Fucb R Z Fcub R Fubc (17)

eeL

such that the matrix with entries
Sab = Z Fr?bil ab* aF;h}‘C (18)
ceL

is invertible.
Similar to (13), we can define the action of v € Aut(N) on R via

— pv(o)
(Rp)" = Ry (19)

The matrix $ is related to the matrix S via S = DSD. Additionally, we can compute

the twists as
0) Y qeRE, (20)
ceL
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obtained by taking the trace of the morphism (7) above [30]. Finally, we give a formula for
the topological central charge ctop (see [33]). We introduce

pe =Y 0xq, (21)

ael

from which one obtains the topological central charge, defined modulo eight,

ech/S _ L Ctop = € mod 8. (22)

Va2

Note that through teasing out definitions, all of the information above can be written
in terms of F, R, and €. Since, in our case, we have all of the F’s, R’s, and €’s, so we can
simply compute (S, T) for the given the arithmetic data.

3. Monoidal Equivalence and Gauge Invariants

Given two fusion (modular) categories C and D, a central question is one of whether or
not they are equivalent in some suitable sense. The strongest of these is monoidal equivalence.

Definition 9. C and D are said to be monoidally equivalent iff there exists a pair of monoidal
functors (see [9]) F : C = Dand G : C — D such that F o G and G o F are naturally monoidal
isomorphic to the identity functors on C and D, respectively. If C and D are braided monoidal, then
they are braided monoidally equivalent if F and G are braided monoidal functors.

A family of categories Cj, . . ., C;, which are monoidally equivalent are automatically
Grothendieck equivalent. A difficult and important question goes the other direction:
Given a Grothendieck equivalence class of categories, how many monoidal equivalence
classes are there? That there are finitely many is known as Ocneanu rigidity [27].

Given that we can describe fusion categories arithmetically, there is the natural ques-
tion of whether or not an equivalence between them can be described arithmetically. The
action Aut(N) on a fusion system (L, N, F, R, €) is given by (13) and it was shown in [26]
that this gives an object permuting monoidal functor. We say that two fusion systems
F,F' are permutation equivalent if there exists v € Aut(N) such that F/ = FY. The other
operation one can perform on (L, N, F) to obtain equivalent categories is given by a gauge
transformation. This corresponds to a change of basis on the C(a ® b, ¢) homspaces and can
be represented arithmetically as follows:

Define G to be the set of functions g : T'(L, N) — k* fixing the notation g¢, := ¢(a,b,c)
and g% := (g(a,b,c))~1. Then given a solution F to (10)=(12) and ¢ € G, one obtains
another solution F$ via the equations

(F)% = (g5,) (8% ERd (g5 () (23)

and two solutions F and F’ are gauge equivalent if and only if there exists g € G such that
F’ = g. (23) can be used to construct an object fixing monoidal functor. Given C, it is clear
from the definition that any two fusion systems extracted from C are gauge equivalent.
Monoidal equivalence of fusion categories C and D is then determined by the existence of
a permutation equivalence together with a gauge equivalence.

Remark 2. The above extends readily to braided monoidal equivalence between modular categories.
Given R and R', permutation equivalence requires the imposition of the extra condition R = R" as
defined in (19). Gauge equivalence requires the imposition that R" = RS as given by

(R8) := (g5,) RS, (82%). (24)

Given a set of fusion(modular) systems, determining their monoidal equivalence is
not an easy task in general. However, in [25], a construction is given for invariants which
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can distinguish gauge classes of fusion categories (with or without multiplicity). The
key to this is noting that for a given (L, N) solutions to the Equations (10)—(12) define an
algebraic scheme X(L, N) in variables ®(L, N). F can then be interpreted as an algebra
homomorphism F : C[®(L, N)] — C with F:éif = F(CIJZzeC ) for CIDZ;ECf € @. From here, on
an open subset U of X(L, N), it is straightforward to extend F to Ox(U), the ring of regular
functions on X defined at U.

Gauge equivalence classes correspond to G-orbits in X(L, N) and monoidal equiva-
lence classes correspond to Aut(N) x G-orbits in X(L, N). Given this, one can leverage the
geometric invariant theory of [34] to obtain the following result:

Theorem 2. Fix (L,N). Let .4 be the number of gauge equivalence classes of fusion categories
and ./ be the number monoidal equivalence classes of fusion categories. Then there exist P < (g/ )
G-invariant rational monomials with

mi = (¢;1)kn ... (‘Pi,j)ki’j, with ¢ € ®(L,N) and keZ (25)
such that for fusion systems F and F', F and F are gauge equivalent if and only if
F(m;) = F'(m;), i=1,...P. (26)

Similarly, there exist Q < (/2//) Aut(N)-linear combinations 1y, . . ., l; of G-invariant mono-
mials as in (25) such that F and F" are monoidally equivalent if and only if

F(lj) = F'(I}), i=1...0 27)

Aut(N)-linear combinations of G-invariants will be called Aut(N) x G-invariants for obvi-
o1is reasons.

This is Theorem 1.2 of [25]. It is straightforward to extend this construction to clas-
sifying modular systems (L, N, F, R, €). One goes through the same arguments of using
the scheme defined from (10)—(12),(14)-(17), and noting that they have the same essential
properties (G is reductive, orbits are closed).

In the fusion case, the choice of Aut(N) x G-invariants is not necessarily apparent a
priori. However, as we will show in Section 5, there is an easy choice which works for our
s0(2p + 1), categories.

For modular categories there are invariants which immediately present themselves.
Even though we previously mentioned that the pair (S, T) is not strong enough for classi-
fication [32], S and T prove to be useful. The quantum dimensions as defined in (15) are
categorical invariants sufficient to distinguish between spherical structures, but the first
row and column of the matrix S are essentially these numbers. It has also been previously
mentioned that the ¢4’s, §’s, and T’s can all be written using F’s, R’s, and €’s. Thus they all
define G-invariant regular functions on X.

4. s0(2p + 1), Fusion Systems

In the following, we present arithmetic data for the F and R matrices which makes
much of the structure for our categories apparent. We also provide explicit computations
of the relevant categorical quantities.

There are several contexts in which the Grothendieck rings for our categories naturally
arise, though two primary sources both come from the study of Lie algebras. As should
be apparent from our notation, one of these is as Grothendieck rings for the categories of

representations of the (untwisted) affine Kac-Moody algebras B ;1) (i.e., s0(2p + 1)) with
highest integral weight 2. As determined by [35], these are equivalent (as modular cate-
gories) to the semi-simplification (a la [36]) of the representation category for U, (B,) with
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q= e?'1. The affine Kac-Moody and quantum group constructions for the Grothendieck
rings can be found in [21,22], respectively.

Another source for our fusion rules comes from Tambara—Yamagami categories as fol-
lows. Let p a positive integer, x a symmetric bicharacter on Z, 11 and v = +. In [23], it was
shown that Z-de-equivariantizations of the Tambara—-Yamagami category 7 V(Zp1, X, V)
gives rise to an s0(2p + 1), category.

4.1. Fusion Rules for so(2p + 1), Categories

For some s0(2p + 1), category C, we label the basis elements of Ky (C) (i.e., equivalence
classes of simple objects) by elements of the set L = {1,¢,¢;, + } withi =1,... p. These
have Frobenius-Perron dimensions {1,1,2, \/2p + 1}, respectively. Ko(C) is commutative
with non-trivial products given by:

p
ewex1 90 P =10 ed Py pr @y =1P ¢
j=1
p
€@ P = ¢y Pi @ B = Pyi) D By(in)) P @ ¢r =D
j=1
€R s = P $i P = Pr O Py

where ¢ : Zpp 1 — Gopy1 with Gop 1 = {0,... p} is given by

Proposition 3. Let Ky(C) be the Grothendieck ring of a so(2p + 1) category. Then
1. The automorphisms which permute the ¢; are given by szp 1= szp /(L -1),

2. The automorphisms which permute the 1 are given by Z,, and
3. The automorphism group of Ko(C) is szp 11 X Zo.

Proof. That the fusion rules are invariant under exchange of i is straight forward.

The automorphisms which permute the ¢; follow restricting g to szp 41 and promoting
it to a group homomorphism. szp 41 has even order and can be represented by integers in
+1,...,+p. (Specifically the order has to be ¢(2p + 1) where ¢ is Euler’s totient function.
For power k of prime r ¢(rk) = r*~1)(r — 1), which is even. That the evaluation of ¢ is
even for every 2p + 1 follows from prime factorization and the multiplicative property of ¢.)

Ifiisin szp 41 501s —i, thus the quotient ZZXp +1/(1,—1) is well defined. g is precisely
this quotient map. (There is not an element of szp “
which has order six rather than eight, since three has no multiplicative inverse in Zo.)
GZXp 41 acts on ¢; in the obvious way and since g is a group homomorphism, this preserves
the fusion rules. There are no automorphisms on pointed objects or between objects of
different Frobenius-perron dimension, and so the automorphism group of Ky(C) must be

the direct product. This gives a separate proof from that in [21]. O

for all &i. To see this consider Zg,

4.2. F-Matrices

Our solutions to (10)—(12) are indexed by pairs (r, k) where r is an odd integer between
1and 2p + 1, such that gcd(r,2p +1) = 1 and ¥ = +1.

4.2.1. Notation

o
Fix g = e?*1. To write the general F-symbols, we first introduce the following matrices.

1 (s1 s 0 1 (1 V2
A(Sl/SZ/ 53154) = ﬁ (sl 52> B = (1 0> C= E -1 1 \/E
3 4 \ﬁ \/§ 0
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i _ (s1Re(q"")  saIm(q")
D(V, t,51,52,33,54) - (S?,Im(qrt) S4Re(qrt> (28)
. _ (s1Im(q"") saRe(q")
E(r/ t,51,52,53,54) — (S3Re(qrt) S4Im(qrt) (29)
where the s; take values £1 and satisfy 51525354 = —1 such that the associated F-matrices

are orthogonal.
In addition, we define the matrices G(r,x), H(r,x) and H'(r,x) from the

following function:
Zg(irj);(

J(@i, j;r,x) = \/ﬁ(q

) (30)
where {(i,j) = m.
G(r,x) is a p X p matrix with entries

G(r,x)ij = (=)D Im (1 (G, j;r, ) (31)

whose indices run over {1,...,p}. H(r,x) and H'(r,«x) are (p+ 1) x (p + 1) matrices
with entries

H(r,x)ij = (=1)7Re(J (i, ji1,x)) (32)

H'(r,x);; = (—1)%0 %0 H(r, x);

o]
whose indices run over {0, ..., p}. We note that the matrices G(r) and H)(r) are orthogo-
nal provided that r is an odd integer relatively prime to 2p + 1.

4.2.2. Arithmetic Data

Before we give the specific 6] symbols, we make a few general remarks. First, the
order of the entries in the F-matrices respects the order we specified above: (1,€,¢;, P+ ),
wherei = 1,...,p. Second, we will actually not give the values F:éif individually, but
instead give the F-matrices be o

In the basis we use to give the F-matrices, we have the following property

T
Fbﬂcd = (Faﬂlbc) . (33)

In addition, it is implicitly assumed that the label d of Flfb . is in the tensor decompo-
sition of 2 ® b ® c. This allows us to only specify a reduced set of F-matrices, while the
others can be deduced by using this relation. We note that often, but not not always, the
F-matrices are symmetric. In addition, all the F-symbols are real in our basis.

We first observe that from [37] that for fixed p the fusion rules for {1, ¢, ¢;} give the
tensor structure for Rep(Dzp1). Ko(C) is then a Z-extension of Ko(Rep(Dzp 1)) We will
proceed by building subcategories Grothendieck equivalent to Z, and Rep(D2p1) before
finally specifying F-matrices which correspond to the |/2p + 1 objects.

First, if one or more of the labels a,b, ¢, d equals 1, ng . = (1). Next, we have {1,€}
equivalent to Z; and the action of € on the objects ¢; is determined by

Foe= (1) Fl o= (1) El, = (-1) (34)
Flpg = (-1/m00%) (j<i) (35)

epipj —
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Flr, = (-1med2) (> ink=g(i+)) (36)
Fla g, = (—1071med2) (j>ink=g(i—j)) (37)
The rest of the F-matrices for the category Rep(Dzp1) are given by:
i

Fogig, = C (38)

j .,
Epuayg, = B (j#1) (39)
Fij@tpj A(l, 1, _1(j*i+l) mod 2’ _1(]'71‘) mod 2) (] £ i) (40)
Fil% o= (O.W)) (41)

Proposition 4. There are no other solutions to the pentagon equations for Rep(Dap 1) which
extend to solutions for so(2p + 1),.

Proof. By [38], all fusion categories C for Rep(Dy,41) are group theoretical and thus
Morita equivalent to a pointed fusion category D of the form (D;p1,w) where w €
H3(D2F,+1,(CX ), the group of 2p + 1 roots of unity. By [15] we know that (left) module
categories over D, 1 are parameterized by (H,{) where H < G such that w|g = 1 and
{ € H*(H,C*).

In our case, we have that since the universal grading of so(2p + 1) is Z,, we have that
{¢+, ¢} are indecomposable Z, module categories over Rep(Dap+1). We can count which
Rep(Dyp41) categories have Z; module categories by looking at which Dy, 1 categories
have Z; module categories. Since H3(D2p+1,(CX) = Znpy1 the only w which fixes the
Zy subgroup of Dyp1 is w = 1 and its cohomology is Z,. Thus, only Rep(Dyp1) has
indecomposable Zy module categories and there are two of them. [

We now specify the F-matrices that are labeled by 1+ and start with the F-matrices
whose labels consist of only 9.

Fpep. = HOw) (42)
Ly = —H(0) (43)
Fylpop. = H (%) (44)
Fl% g, = £G(r%) (45)

There are three classes of F-matrices involving two labels that are . The first class
of this type is

Fq‘fl_fpi% = 7 (=1)ID(r;ij; =1, =10+, —10H) 1) (46)
Pqﬁ,ﬂ,j = —(=1)VE(r;ij; =10+, 1,1, —1(+/+1) (47)

where 7, j may or may not be equal. The second class of F-matrices with two labels equal to
P+ and i # jis

Ye o
F¢z¢1¢i o 1 1 1 )
F;f[;;jwi = A(+1,+1,1,-1) (i—j)mod2=0

4’:%#& (i—j)mod2=1
1, -1, (~1)}, (~1)(*D)
(-1 )(J+1) (-1 )(i+l),(_1)j,(_1)(i+1)) i<

A(
A(

FY A(1,—1,+1,+1)
Frape = A=
A(

Lp,
Fogi.
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iy = A1), (=1), (=1)), (-1)0*D) i<j
Ffgp. = A((=1), (=1),(~1)), =10+ i>]
F;ﬁgﬂl]— — A((_l)(i+1),(_1)(j+l),(_1)i,_1(]'+1)) i>j

Finally, the third class of F-matrices with two labels equal to ¢4 or y_ is

L Y i _ i _
Feppe = Fegrpe = Fepugy = Fepups = Fepryp, = (1)

) _ry _ ¥ _
Fet[?;q),- - Fe;pi - Fetpiie - (_1)
With these symbols, and the general rules described above, we have exhausted all the
F-matrices.

4.3. R-Matrices

Given our solutions to the pentagon equations, one would anticipate it is not too
complicated to construct solutions to the hexagon equations as well.

Given a solution to the hexagon equations, one always has a second solution given
by inverses. This simply corresponds to a choice of R and R~! in (16) and (17). We may
also obtain another solution by replacing all R-symbols R{;, such that 2 and b are both
one of Y1 by —R{,. However, this is monoidally equivalent to our original solution via
the automorphism ¢+ — ¢+. This gives us that for any p, solutions to the pentagon
and hexagon equations can be uniquely identified by the tuple (p,r,x,A), where A = £1
indicates whether or not one is referring to the R-symbols given below or their inverses.
We then provide only one such solution.

We specify the R-symbols using a form inspired by conformal field theory. Namely,
for each simple object type, we introduce the scaling dimensions &, which determine the
R-symbols up to a sign

RS, = (1) (02)5 (—1) e o,

where (07)¢, = +1 and (02)¢, = 1. Below, we specify the scaling dimensions #, for all
the simple objects, as well as the signs (7)€, and (¢2)¢,.
The scaling dimensions are given by

h1 =0
he =1
b ri(2p4+1—1)
% T 2(2p+1)
r(p+xsp — (2p+1jr) +2)
h1l’+ = 8
hy — r(p+xs,—(2p+1jr)+6)

where

sp=—(—1)"2 = —(22p+1).

The notation (j|n) denotes the Jacobi symbol, which is defined for j an integer, and n
a positive, odd integer.

To completely specify the R-symbols, we still need to specify the signs (c7)¢, and
(02) -
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We start with (¢1)¢,, and note that for the R-symbols presented here we have the
property (o1)f. = (01)5,, which implies that we only need to specify a limited set of these
symbols. The non-trivial symbols come in two classes. The first class is

-1 ((imod4)=(1V2))A(pmod2)=1
(1), = ()45, =41 ((imod4) = (2V3)) A (pmod 2) =0
+1 otherwise.

The second class of symbols is

botiv)) _ o 4\(if)
(0'1)¢i<pj = (=D (48)
The symbols (c7)¢, that are not specified by the rules above, are all equal to +1.
Finally, the signs (0)¢, also satisfy the property (02);. = (02)¢, and there is only one
class of non-trivial signs of type, namely

r—1
()b, = (@b, = (-1 .
The symbols (07)¢, that are not specified by the rules above, are all equal to +1.

With this, we have completely specified one of the solutions of the hexagon equations,
from which the other one follows by taking the inverse.

Remark 3. We close by commenting briefly on the appearance of the Jacobi symbols in the expression
for the R-symbols. One can think of the list of hexagon equations as labeled by the different F-
symbols, namely the one appearing on the left hand side of the symbolic form RFR = Y_ FRF. To

derive the form of hy, above, consider the hexagon equation associated to FY+1  The sum on the
right hand side gives rise to a quadratic Gauss sum (because one needs to sum over all ¢; (as well
as the identity)), which are closely related to the Jacobi symbols. This leads to their presence in the
scaling dimensions hy, . See Appendix A for more details.

As stated above, the Jacobi symbols (j|n) are defined for positive odd integers n and arbitrary
integers j. Interestingly, we observed that the these Jacobi symbols can be written in terms of the
matrices H(r,x) and G(r, x) (whose sizes depend on p). In particular, one can show

(r|2p +1) = det(H(2r +2p + 1)) det(G(2r +2p + 1)).

This gives an analytic function of r, that goes through all the Jacobi symbols, defined for r integer.

We note that Eisenstein also constructed such a function, (q|p) = H,(f;ll)/z %; see, for

instance [39]. The difference with the function that we found, is that the values £1 are the extrema
of the function while this is certainly not the case for Eisenstein’s function.

Modular Data for so(2p + 1), Modular Systems

All of our F-Matrices are manifestly unitary, thus all of our categories admit at least
one spherical structure. Since they are also braided, they must be ribbon and so we can
use the formula (20). Our formula (18) is defined for any braided category; however, one
can obtain the more common form by taking DSD. We present the latter to more easily
demonstrate that we obtain the same modular result as [23]. However, we also provide an
explicit classification at the fusion level.

Pivotal structures on modular categories are in bijective correspondence with the group
of invertible objects and spherical structures with the maximal Abelian 2-subgroup ([31]
[Lemma 2.4]). Since the group of invertible objects is Z,, there are exactly two pivotal
structures for each category, both of which are spherical. It is straightforward to compute
that for 1, €, and ¢;, all pivotal coefficients must be 1. We also have ey, = €y = +1, the
choice of which switches the sign of gy, .
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Below, we present the modular data for solutions with positive quantum dimensions.
It is worth noting that for all p and r the pivotal coefficients which yield positive quantum

dimensions for x = 1 are not those that yield positive quantum dimensions for x = —1.
This can be seen from noting the effect of x on (15). In particular, gy, > 0 if we take
€y, = K.

We then have that, for modular categories corresponding to the solution indexed by
(P15, A),

Sn=1 See =1 Spig; = 4cos<2zpﬂ1r1> (49)
S1e =1 Sep =2 Spups =0 (50)
Sip = 2 Sep. = —qys Spips = —K(2[2p +1)qy. (51)
S1yp = Gy Spoyps = K(22p +1)gy. (52)

For the twists we have

Ari2

0 =1 Op, = (—1) e 2T (53)

1

0y, = F(—1)% T (@pr1)+r2p+1)—p) (54)

For completeness, we also calculate the topological central charge from Equations (21)
and (22). We first note that the contributions from ¢ in the sum to obtain p cancel. Using
similar arguments as given in Appendix A, one finds that the remaining terms constitute a
quadratic Gauss sum, resulting in py /\/Y, 42 = €2p41(2A7[2p + 1), where €, 1 = 1 for p
even, and €3, 1 = 1 for p odd. Using standard manipulations of the Jacobi symbol, one can
finally write

Ctop = 2p(A +2p) —2+42(r|2p +1) mod 8. (55)

5. Monoidal Equivalence of s0(2p + 1) Fusion Systems

In this section, we introduce those gauge invariants which we will use to classify
monoidally inequivalent solutions for a given p using the method of Section 3. At the
level of gauge equivalence it is easy to see that two solutions (r, k) and (+/,«’) are gauge
equivalent if and only if r = ¥ and ¥ = /. Our goal then is to find a set {I4,...,1,} of
Aut(N)-invariant linear combination of G-invariant monomials as defined in Theorem 2
which determine the monoidal classes. We then determine the number of monoidal
equivalence classes for a given p. For all pairs (, ) as defined in Section 4.2, let F, ) be
the evaluation map as defined for Theorem 2.

5.1. Determining Equivalence
We first note that the adjoint category is basically useless to us.

Proposition 5. The monoidal classes of solutions specified in Section 4.2.2 cannot be distinguished
by Aut(N) x G-invariants coming from Rep(Dap 1) subcategories.

Proof. For fixed p, the only F-matrix entries which differ are those in which r arises, i.e.,
those specified by the D, E, H(), and G matrices. These come from F-matrices involving at
least one i+ and so do not come from the Rep (D5 41) subcategory. So if / is an Aut(N) x
G-invariant which comes from Rep(Dyp41), i.e., only involves the objects 1, €, and ¢,
i=1,...pthen

F iy (1) = Fipr gy (1)

O
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From here, we can narrow our search even further. From (42) to (47), the entries of

P+ Y= Y= I3
Eopeir Eppogy Bplpryprr A By Ly g,

can all be written in some fixed way as scalar multiples of entries in F:ﬁ fzp Ly, OF Fftlp g

These relationships are preserved under permutation. The entries of Flﬁw Ly, and F:Elﬁ g
are given by the matrices H(r,x) and £G(r, k), respectively.

Proposition 6. Let P(,,K),F(’r, x) be solutions to (10)=(12) parameterized by (r,x) and (v',«’).
Then (r,x) = (r',«") if and only if H(r,x) = H(*',«’).
Proof. The direction (r,x) = (¥/,x") = H(r,x) = H(',«’) is obvious, so assume H(r, k) =

H(r',k"). H(r, k) determines G(r, k) up to a sign and

P e
(F(r,k) )qyi IR (F(T’fk’) )lPi P and

P
(F (k) )lpilpilﬁi

¥
i(F(r//k/))lPiwilPi'

This corresponds to a choice 4, which is irrelevant to (7, x), so this implies (7, x) =
(r,«"). O

Corollary 1. (r,x) = (v/,«’) if and only if
Diag(H(r,x)) = Diag(H(¥',«)).

Proof. H(r,x)oo determines x and H(r,x)11 & Re(q") narrows r to one of two choices.
Taken modulo 2p + 1 only one of r and —r is odd, and so H(r, «)1 1 determines H(r,x). O

By inspection, we see that

(F(r,k))lpi;wpi (Fpjo )70 = H(r k),

Yrprips PP+
so define
N /2p+1 i Py
Xp(rw i) = e L ((F (k) ypy; (F ("zk))‘/’j‘Piwj)

je{+—}
2

iZ i1’7‘[
=(-1) COS(2p+1).

and the (p + 1)-tuple

Xp(r,x) = (Xp(r,x,i)[i=0,...,p).

Corollary 2. X,(r,«) uniquely determines the values for all G-invariant monomials and thus all
Aut(N) x G-invariant monomials.

Corollary 3. The permutation Y — P_ acts as a gauge transformation.

There is a natural action of z € G5, ; on X(r,«) given by

2p+1

z-Xp(r,x) = (z- Xp(r,x,i)|i =0,...p)
= (Xp(r,x,8(z*10))[i=0,...,p)
= (Xp(rzz,x,i)|i =0,...p)
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= Xp(rZZ,K).

Theorem 3. Fix p and let (r,x) and (v, k) be solutions as defined in Section 4.2. The following
are equivalent:

1. (r,x)and (v, k) are monoidally equivalent,
2. thereexists z € GZXP_H such that X, (r', k) = X, (rz?,«), and

3. thereexistsz € GZXerl such that g(r') = g(rz?).

Proof. First assume that (7,x) and (#/, k) are monoidally equivalent via some z € szp 412

acts on Ff/fiilp . DY

Pripip; L VLPe(zi)Pez) 2
2 Fy iy, = Fyopry. © = H(z5x)

SO
Xp(r' ) = Xp(rzz, K).

This implies ' and rz? are congruent modulo 2p + 1 and so g(r') = g(rz?).

Assume 3z € G, . ; such that g(r') = ¢(rz?). Then, modulo 2p + 1, ¥ = rz?

orr =

—rz?, but regardless X, (r',x) = X,(rz% «). By Corollary 2, for any Aut x G-invariant [,

F(r’,K) ()= F(r,;c) ().
Thus, (', x) and (7, k) are monoidally equivalent. [

5.2. Calculating the Number of Monoidal Equivalence Classes

It is not an easy task to calculate how many monoidally inequivalent sets of F-moves
there are. Nevertheless, we can construct a framework in which the question is seemingly
simple. From the previous section we showed that the F-moves labeled by (r,x) and (¥, k")
are monoidally equivalent if and only if x = «’ and there exists a z € szp 41 such that
v’ = rz2. Thus, we define

2
Or = {rf|lz€Gy, 1} CGypiy
Each set contains elements such that the F-moves labeled by (r, «) and (#’, k) are monoidally
equivalent. Furthermore, (7, «) and (#/, ) are monoidally equivalent if and only if O, = O,
We realize that O; is a normal subgroup and that O, = rO; are conjugacy classes. Thus,

the number of monoidally inequivalent F-moves must be twice (due to x) |G2Xp +11/101].

Souq — O1 defined

2p+
by f(z) = z. This map is clearly onto, i.e., the image of f is O1. As we are dealing with the
finite group,s we can use the first isomorphism theorem and deduce that |G, ,|/]|0;1| =

2p+1
|ker(f)| where ker(f) is the kernel of f and is the subgroup

It is possible to simplify this further by considering the map f : G

ker(f) = A{re ((}2Xp+1|r2 =1}

Thus, the number of monoidally inequivalent F-moves is twice the number of elements
of szp .1 that square to the identity (because of k). We know that |ker(f)| = 2™ for some
m € N.

Ifr szp 1 satisfies 2 =1or —1, thenr € szp 1 satisfies r2 = 1. We can then
deduce that

(Hr € 235,417 = 1} + [{r € 23,41 = ~1}]).

N =

ker(f)l =
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Firstly, consider the prime decomposition 2p + 1 = pj’ ...p;” where the p; are prime
and a; > 0. We define sets

By = {rEZzp+1|r =1},
B, = {I’GZ2P+1|F :—1}.

We note that as By is also a group and that its order is precisely 2!. Next, suppose that
r,v" € By it follows that r’ € By, similarly if r € B, and v’ € By then rt’ € B,. Thus, we
have that the cardinality of B, is zero or |By| = |B;| = 2'. For |B,| to be non-zero, we must
have that there exists b; such that b7 = —1mod p;’ for all i.

From this, we can deduce the number of monoidal classes

241 if Fb st b2 = —1 mod (2p + 1),

2! otherwise, (56)

#monoidal classes = {

where [ is the number of primes that divide (2p + 1). Here we have used that ZZX(ZP by =
Z X

2p+1°

We note that for the cases in which there are 2! monoidal classes, we obtain 2/*1
modular categories, because of the R-symbols (A = +1) and their inverses (A = —1), which
are not equivalent. However, in the cases in which there are 2!+1 monoidal classes, the
modular categories obtained by the R-symbols on the one hand and their inverses on the
other, are pairwise equivalent. This means that also in this case, we obtain 2/*1 modular
categories, in accordance with ([24] [Theorem 3.2]).

6. Examples

In this section, we explicitly compute the classifying invariants for a number of “small”
categories. The case of 50(3) is known to be Grothendieck equivalent to su(2)4 and both
the fusion and modular structures are fully classified (see [19]). Beyond this, there are
several guideposts:

e The classification of weakly integral modular categories of dimension 4m is given
in [40]. This contains those s0(2p + 1), of our family for which 2p + 1 is square free.

e The classification of integral modular categories of dimension 44 is given in [41]
where g is prime.

e Explicit formulae for the modular data of Z-equivariantizations of Tambara—Yamagami
categories is given in [23] to which our categories are Grothendieck equivalent.

6.1. 50(3)7

For 50(3)2, G5 = {1}. Thus, we have only one two dimensional simple object for
which the automorphism group is trivial. We have two solutions and two fusion categories.
Up to permutation, there are four modular categories, one for each of the four possible
T-matrices coming from (54):

diag(1,1,—(—1)1/3, —(=1)1/4 (—1)1/4)
diag(1,1,(=1)*"°,(=1)**, = (=1)*%)
diag(1,1,—(-1)'/3, (- 1)3/4, (=1)*%)
diag(1,1, (=1)2/3, —(=1)/4 (—1)1/4)

corresponding to solutions (1,1,1,1), (1,1,1,-1), (1,1,—1,1) and (1,1, —1, —1), respec-
tively. This is in agreement with [23]. In this case, the two braidings for each fusion category
are inequivalent.
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6.2. 50(5);

There are two two-dimensional objects and G = Z. Both elements square to the
identity and so there are four fusion categories from (56). This can be seen from the sets

Xa(1,1) = {1, 411 (-1- \/5),%(—1 ~5) } and

X2(3,1) = {1,_41(1 - \/5),%1(1 ~5) }

From [23], there are also four modular categories, corresponding to solutions (2,1,1,1),
(2,1,-1,1),(2,3,1,1),and (2,3, —1,1) with T-matrices

diag(1,1, —(—=1)Y5,(=1)*/3,-1,1),
diag(1,1, —(=1)'%, (=1)*/%,1,—1),
diag(1,1,—(=1)%/5,(=1)%/5,—1,1), and
diag(1,1,—(=1)%/5,(-1)%/5,1,-1).

In this case, the braidings corresponding to A = +£1 are equivalent.

6.3. 50(7)2

There are three two-dimensional objects and G* =2 Z3. We have that

000 = {1=con(§) ~sn(fp) ()}
S IEE e
X5(5,1) = {1,sin<alq)r_cos<77r) Sm(ﬁ;)}

These are all clearly related via permutation. Computing the modular data for our
solutions, we find that there are four modular categories distinguished by their T-matrices

diag(1,1, —(=)"7, (=1)*7,(=1)*7, = (=)"*, (-1)/*)
diag(1,1, (—1)°/7, —(=1)3/7,—(—1)5/7, (=1)3/*, —(=1)>/4)
diag(1,1, —(—1)/7, (=17, (=1)2/7, —(=1)3/*,(=1)*/4), and
diag(1,1,(=1)%7, =(=1)>77, = (=1)>7, (=))/%, - (-1)/*),

corresponding to solutions (3,1,1,1), (3,1,1,-1), (3,1,—1,1),and (3,1, —1, —1), respec-
tively.

6.4. 50(9),

For s0(9)y, there are four two dimensional objects, but we have that Gg = Z3 since
there are three odd integers less than and coprime to 9, 1, 5, and 7. These correspond to the
S4 subgroup generated by the cycle (124).

The sets X4(r,1) are then:
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From this, it is easy to see that (124) sends X4(5,1) to X4(1,1) and (142) sends X4(7,1)
to X4(1,1). Thus, there is only one equivalence class. Finally, as before, there are four
modular structures distinguished by their T-matrices:

diag(1,1, —(—1)Y?, (=1)*°,1,—(-1)7/%,-1,1),
diag(1,1,(=1)%°, —(-1)°"°, ( 1)*%,-1,1),
diag(1,1, — (-1 )t 9,( 1)4 —(- 1)7/9 —1,1), and
diag(1,1,(~1)%7, —(-1)°", ( 19,1, -1),

corresponding to solutions (4,1,1,1), (4,1,1,-1), (4,1,—1,1),and (4,1, -1, —1), respec-
tively.
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Appendix A. Proof of Solution to Pentagon Equations

In this appendix, we briefly explain how we obtained the F- and R-symbols that we
present in the main text, and how we verified that they indeed are solutions to the pentagon
and hexagon equations, for arbitrary tuples (p,r,x, A) with p a positive integer, r an odd
integer such that 1 <r <2p+1and ged(r,2p+1) =1,k = +land A = 1.

We obtained the F-symbols, by numerically calculating them from the quantum group
based on s0(2p + 1) at the appropriate roots of unity for small p. From this data, we were
able to extract the general pattern, presented in Section 4.2.

The main difficulty in verifying that the F- and R-symbols we obtained do indeed
satisfy the pentagon and hexagon equations lies not so much in the actual verification of
the equations, but rather in convincing oneself that all the pentagon and hexagon equations
one needs to verify are indeed covered. The reason for this is the structure of the fusion
rules of the dimension two objects, which are such that one has to consider many cases
separately. This pertains both to all the possible labelings of the equations, as well as to the
sum present in these equations.

In order to complete this task, we used the algebraic manipulation program Mathemat-
ica. We first carefully constructed all the pentagon equations that can occur algebraically,
that is, for arbitrary tuples (p,r,«x). After having convinced ourselves that we indeed
covered all the possible cases, we then verified this, for low, explicit values of p, by using
the algebraic result to explicitly construct the labels of all the pentagon equations for these
explicit values of p. For explicit p, one can also generate all possible cases directly. As
expected, we indeed covered all the cases.

After we generated all the cases of the pentagon equations for the tuples (p,1, x), we
did the actual verification. In all but one class of equations, the equations are straightfor-
wardly verified, and again, we used Mathematica for this. The most complicated cases
occur when the sum over & in (10) runs over all dimension two objects (and possibly 1
or €). To check that the F-symbols satisfy these equations, one rewrites the (maximally
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triple) products of sines and cosines that occur as a sum of sines and cosines, and one uses
Lagrange equations to perform the sum. One can actually use the same procedure to verify
that the matrices G and H(") (31), (32) are orthogonal.

To verify that the solutions of the F- and R-symbols presented also satisfy the hexagon
Equations (16) and (17) we used the same strategy as we used to verify the pentagon
Equation (10). That is, we explicitly constructed all different cases of the hexagon equations
using Mathematica, which we also used to do the actual checking of the equations, except
for one class of equations, that is non-trivial, and was checked by hand.

The class of equations that we explicitly verified has all the labels 4, b, c, d of (16) and (17)
equal to ¥4. The sum over e runs over all dimension two objects, and possibly 1 or €. This
class of equations falls apart into four distinct cases, of which we discuss the simplest
case for ease of presentation. The other three cases can be shown to hold using similar
arguments.

We first give the four classes of equations (without simplification) explicitly. The first
class is

\/Kie’zm(Z—m”(””)-i—p—(Zp-&-lY))_
2p+1

K2 K2 i /m ] (=1)P+r— 2p+1) (A1)
2p+1

The second class is

2
V2k e%(il(ilf(fl)l")frilnL%Jrr(271(17"(1*7’)+p7(2p+1\r)) _

Vv2p+1 .
V2i2 2 2K2 i i o riljr[ )ej% (j—(—l)ur—z’%).
2p + 1 2p+1 = 2p +1
The third class of equations reads
2k (—1)7i2 cos(HL2T)
zp — 2p+1 % (A3)
ri2 ri2
2 (i (i (- l)”)7ri1+2pﬁ+i2(izf(71)P)7ri2+ﬁ+r(27K1P(1+p>+p7(2p+l|r)> _
2x2 "
2p+1
42 L (i rijt ripfTt | I (j(~ 1)p+r_7)
(_1)](11+12) cos( ) cos( )ez VU 1
2p+1]; 2p+1 2p+1
Finally, the fourth class of equations takes the form
ZK(fl)(il_l)(iZ_l) Sin( 7i1i27—[)
2p+1 (A4)

V2p+1

7R .2
2 (i (i —(— l)/")7711+2pﬁ+12(127(71)/")ﬂ’lfrﬁﬁ’(271(11”(1“’>+p7(2p+1|r)> _

B 4ik2(—1)(-1—12)

2p+1
i(—l)j(i1+i2_2) sin(z 1—]I—T[l) i (zrlzinl)ej%(j_( D= 2n+1)
p p

j=1
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These equations hold if p is a positive integer, 7 is an odd integer 1 < r < 2p + 1 with
ged(r,2p+1) =1,k = £1 and iy, i are integer. In the actual hexagon equations one has
i1,ip =1,2,...,p.

We note that (A2) (and (A1)) is obtained from (A3) by setting i = 0 (and i; = 0). We
also note that in the right hand side of (A4) is a sum of only p terms, in comparison to (A1),
(A2) and (A3), for which the right hand side is a sum of p + 1 terms.

To verify the validity of (A1), we consider the RHS of this equation first. Replacing j
by 2p + 1 — j in the summand leaves the summand the same (if 1 < j < p), which means
we can extend the sum fromj=1,...,ptoj=1,...,2p at the cost of a factor of two. The
sum can then be split in two pieces, namely in the even j's j = 2], with[ =1,2,...,pand
oddj's,j=2l—(2p+1),withl =p+1,p+2,...,2p. Inboth cases, one checks that the

_ 2murl?
summand takes the form ¢ 2*1, for both p even and odd. Hence, the RHS becomes a

quadratic Gauss sum (see, for instance, [42])

2p 2
1 _ 2murl” €2p+1
— ) e ¥ = ————(—-r]2p+1),
TP TR A
where €3,11 = 1for2p+1=1mod 4 (i.e., p even) and €31 = 1 for 2p+1 = 3 mod 4
(i.e., p odd), and we used that ged(r,2p +1) = 1.
Standard manipulations of the Jacobi symbol give

(—rl2p+1) = (—1)W (2p +1|r), so that the RHS takes the form

(r+1)
€2p+1(—1) E _ (2p+1]r) 1 p =0mod 2
S (2p+1r) = ———= x i1 .

2p+1 V2p+1 1(=1)27 p=1mod?2

We can now compare this result for the RHS of (Al) with the LHS, by explicitly
checking the LHS for the four different cases of p modulo 4. One finds that the LHS is
indeed independent of ¥ = %1, and that the LHS equals the RHS, as we wanted to show.
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