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New Class of Non-Abelian Spin-Singlet Quantum Hall States
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We present a new class of non-Abelian spin-singlet quantum Hall states, generalizing Halperin's
Abelian spin-singlet states and the Read-Rezayi non-Abelian quantum Hall states for spin-polarized
electrons. We label the states by, M) with M odd (even) for fermionic (bosonic) states, and find a
filling fraction v = 2k/(2kM + 3). The states witli/ = 0 are bosonic spin-singlet states characterized
by a SU3), symmetry. We explain how an effective Landau-Ginzburg theory for thg 5 dtate can
be constructed. In general, the quasiparticles over these new quantum Hall states carry spin, fractional
charge and non-Abelian quantum statistics. [S0031-9007(99)09361-8]

PACS numbers: 73.40.Hm, 71.10.—w, 73.20.Dx

The developments that followed the discovery of thetimes a spin factor. The spin factor has an(3y affine
fractional quantum Hall effect in 1982 have challengedKac-Moody symmetry and describes semionic spinons that
two traditional wisdoms on the nature of the quantumare also encountered in other models of spin-charge sepa-
Hall states that are relevant for experimental observationsated electrons i = 1 + 1 dimensions. More general
These two wisdoms concern thepin of the electrons (Abelian) spin-singlet states have been described in the
that participate in a quantum Hall state and th@antum literature [6].
statisticsof the quasiparticle excitations over these states. Concerning the second wisdom, we remark that the

Starting with the first wisdom, it is evident that under thetraditional hierarchical quantum Hall states (Jain series)
conditions of the (fractional) quantum Hall effect, which all share the property that the quantum statistics of their
happens in a strong magnetic field, there is an importarfundamental excitations are fractional but Abelian. While
Zeeman splitting between the energies of spin-up and spirthese states suffice to explain the overwhelming majority
down polarized electrons. One may therefore expect thaif experimental observations, there is the exception of the
the observable quantum Hall states will be in terms of spinwell-established quantum Hall state at= 5/2, which
polarized electrons. However, already in 1983, Halperirdoes not fit into the hierarchical scheme. This observation
[1] pointed out that the energy associated with the Zeemahas prompted the analysis of new quantum Hall states, the
splitting is rather modest as compared to other energylaldane-Rezayi state [7] and the= 2 pfaffian state [4]
scales in the system. Because of this, quantum Hall statéboth atv = 1/2) being the most prominent among them.
which are not spin polarized but instead involve equalThe quasihole excitations over the pfaffian quantum Hall
numbers of spin-up and spin-down electrons (forming astates satisfy what is callegon-Abelian statistic$4,8].
spin single} are feasible. The experimental confirmation By this, one means that the wave function describing a
of this idea came in 1989, when several groups reportedumber of quasiholes at fixed positions has more than
that the ground states at= 4/3 and v = 8/5 are spin  one component, and that the braiding of two quasiholes is
unpolarized [2]. In recent experiments, which employedrepresented by a matrix that acts on this multicomponent
hydrostatic pressure to reduce thdactor, more detailed wave function. Since matrices in general do not commute,
results on quantum Hall spin transitions were obtained [3]such statistics are called non-Abelian. The non-Abelian
In his 1983 paper [1], Halperin proposed the following braid statistics of the quasiholes over the pfaffian quantum

spin-singlet (SS) quantum Hall states: Hall states are reflected in their unusual exclusion statistics,
o i.e., in the appropriate generalization of the Pauli principle
Wes T o wia . wy) = ez — z;)" Y for particles of this type [9].
X T (w; — wj)m+ll—[ij(zi — W), In_a recent paper [1_0], Rea_d and Rezayi proposed and
’ * (1) studied a class of spin-polarized, non-Abelian quantum

Hall states that generalize the pfaffian. Some of these

here - andw. are the coordinates of the Soin- andstates were independently considered by Wen [11]. The
\évpin-dé\l/vn elgvcltrons respectivlely The statepIIEqur()l) ha%mst general non-Abelian (NA) quantum Hall state studied
the filling fractiony = 2/(2m + 1). Here and below we y Read and Rezayi, with labell, M), is of the form

display reduced quantum Hall wave functiokiéx), which \Tf{ifi/[(zl, cozn) =Pz - w(zw))

are related to the actual wave functiofiéx) via V(x) = X T i(z; — z;) /0 2

~ e ) i<j\Zi Zj) ( )
W(x)exp(— > =) With x; = z;,w; and [ = \/lic/eB

the magnetic length. It was emphasized in [4,5] that thevith ¢(z) a so-called ordek parafermion and with
wave function Eq. (1) can be factorized into a charge factothe brackets---) denoting a correlator in the associated
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conformal field theory (CFT). The physical picture behindUsing the defining commutators

these wave functions is that of an instability involvin

a clustering of, at the mosk, particles, generglizing theg [‘”1""/’11;] = Oop: [‘/’2"”;] =1, (6)

notion of “pairing” that underlies the pfaffian states [12]. one shows that the eight operatds of Eq. (4) form an
In this Letter we describe a new class of quantum Hallgjoint representation of the algebra S)J In standard

states, which combine the feature of being a Spin Singlqtnathematical notation, we denote Wa the element

with that of non-Abelian statistics. These new states can bgf the Lie algebra S(3) that corresponds to a roat.

viewed as non-Abelian generalizations of the spin-singletyith simple rootsa; = (v/2,0), @ = (—+/2/2,/6/2),

states Eq. (1), or, alternatively, as spin-singlet analogs aje identify the boson creation operators as
the non-Abelian states Eq. (2). The wave function of

. L. t t
our most general non-Abelian spin-singlet (NASS) state, By = Bq,, Bl = B_,,. (7)
labeled as(k, M) with k > 1, is displayed in Eq. (16)

- ; We conclude that the kinematics of hard-core spin-full
below. It has the filling fraction

bosons are organized by a @Ysymmetry. In its fermi-
2k 3) onic incarnation SK2[1), this symmetry is well known

2kM + 3° from the supersymmetricJ model [15].

The simplest fermionic NASS state (with= 2, M = 1) Alerjted b_y this result, we quickly find that the. 2, 1)

occurs at filling fractions = 4/7. In general, the NASS P0Sonic spin-singlet state [Eq. (1) with = 1] possesses

states are competing with Abelian spin-singlet states theft Su3)_1_global symmetry. One_ way to see this is by

are possible at the same filling fractions Eq. (3). recognizing that the inverse-matrix, given by
In recent studies of the pfaffian and Read-Rezayi non- 1/2 —1

Abelian quantum Hall states [13,14], it has been empha- K= 3 < 1 2 )

sized that the essential mechanism of their non-Abelian

statistics is closely related to the presence of (a deformas equal to the inverse Cartan matrix of Yup to a trivial

tion of) a non-Abelian SQ), affine Kac-Moody symme- change of sign. Working out the $8) structure of the

try with £ > 1. Inthis Letter we shall see that, for the Caseedge CFT for thg2,2, 1) state, one identifies the Cartan

of spin-singlet non-Abelian quantum Hall states, there is &upalgebra generatof and B3 with the spin and charge

vk,M) =

(8)

very similar role for a symmetry SB); with k& > 1. bosons according to
We start our presentation by a discussion of the non- . ; .
Abelian SU3); symmetry of a particular Abelian spin- B =iv6oe., B}=-iV20g,. 9)

singlet quantum Hall state. In a recent paper [14], it WaSyq fndamental quasiparticles reside in the trigleind

emphasized that the bosonic Laughlin statevat 1/2 antitriolet3 : ; :
; . plet3 representations of SB), with spin and charge
possesses a non-Abelian @J symmetry, which can be quantum numbers

viewed as a continuous extension of the particle-hole sym-
metry at half-filling. We shall refer to this symmetry as ¢! :spin 1, qg=—1/3,

SU(2) charge. In an earlier work by Balatsky and Fradkin 2. _

[5], it was stressed that thi&/2, 1/2, —1/2) Halperin state, ¢”:spin |, q=~1/3, (10)
which is a spin-singlet state at= o, i.e., atB = 0, pos- ¢> :spin0, qg=2/3,

sesses S(2); non-Abelian symmetry, which we here call . . .

SU(2) spin. Combining these two observations, one ex—"’moI opposite for the antitriplet. FoII_owmg [16], we can
pects to find a bosonic spin-singlet quantum Hall state agonstruct the cqm_plete edge theory n terms of multipar-
finite v, in which SU2) charge and S(2) spin combine tcle states cor_13|st|ng qfquanta of t.he fielpls i = 1’2’.3'
into a nontrivial extended symmetry. The nature of thisThe systematics of this construction lead to a notion of

extended symmetry can be traced by analyzing the alg “flr?cttlﬁnal e>t<r§:Iu3|otn s}%tlsttlg:ls" c;ft':]hesefquazslpalrtlﬁlet_s.t_ In
braic properties of creation and annihilation operators fo h']’h ;_frl'tnaf emaﬂ:ca etais o d EseHr?dc |onals8a ISHCS,
spin-full hard-core bosons. We define which differ from those proposed by Haldane [18], were

+ + presented. As a direct application of the results of [17],

Bl = i, By = h1s, we may recover the Hall conductaneg; of the (2,2,1)

Bz _ l/fLO’fi,,l/np, B = %TU%U _ 21//2#%’ (4) state by working out the following expression [16]:

2

with o, p =1,] and withlpf[,, 2 and:p;, i, the creation oy = n"™%g? ¢ , (11)
and annihilation operators of spin2 bosonic particles h
and holes. (We remark that in this setup the holesiaio
carry a spin index.) The “hard-core” condition is imple-
mented by the constraint

with n™** equal to the maximal occupation of a given
single quasiparticle state. Substituting the valyes
2/3, n™>* = 3/2 for the positive-charge carriexs’, we

I e + g = 1. (5) recover the valuery, = 2 <.
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An effective Landau-Ginzburg bulk theory for the for the corresponding wave functions, we rely on thé U

(2,2, 1) state can be cast in the following form: parafermions introduced by Gepner in [20]. These parafer-
5 A et o3 mions, written ag/,,, are labeled byoots « of SU(3) and
L = |DBI" + V(B) + Lcs(a) + """ AT [}, have the property thak, = ¢z whena-B is an element

(12)  of k times the root lattice. In terms of thie, and of two

. _ , , auxiliary bosonsp », the affine current®,(z) at levelk
whereB is the SU3) octet Bose fieldDB is the covariant  gre \written as

derivative in the adjoint representatidn(B) is a potential, ]
andaj is a SU3) Chern-Simons (CS) gauge field. The Ba(2) = o explia g/ Vi) (2). (14)
external fieldAS:' couples to thef? component of the Using the identification Eq. (7), we arrive at the following
field tensor of the gauge field//j. The Chern-Simons expression for the NASS state associated with33U
Lagrangian is given by ,

) N e lemx(zoo)6(N VK exfliN [k (a2 — a1) ] (zz)
Les(a) = ype et <aM8,,a,\ + ngBcaMaVa/\) ' X By, (21) By (z5)B—ay(w1)

(13) B, (wn)). (15)

For the justification of the result Eqg. (12) we refer to
[14], where an analogous result for the @Y invariant
v = 1/2 state was presented.

Substituting the form Eq. (14), one observes that the
correlator factorizes as a parafermion correlator times a

: ; factor coming from the vertex operators. The latter is
Having understood the SB), structure of a particular o
Abelian SS state, we can proceed with the constructiof€en 10 combine into _th(al/k)th_poyver of the(2, 2’.1)
of NASS states. Closely following the logic presented inSPin-singlet wave function. Mu_ltlplylng the resu_lt with an
[14] (see also [19]), we first consider a state with symmetr){fvere_‘” L?ugrr:lm faCtOI:I' Awe arrive at the following wave
SU(3),, which we obtain by performing a (dual) coset unction for the(k, M) NASS state:

reduction on two copies of the $8); state. As explained Gk ( ) )

in [14], this reduction procedure leads to a statistical trans- = NASS\Z1> - -+ IN> Wis -, WN

mutation of one of the octet fields and renders the statistics = (Yo, (21) Yo, ) P—a,(W1) -+ P, (WN))

of the triplet quasiparticleg’ non-Abelian. S W22 YIVEPM (o 16
The effective edge CFT for the $8), theory is com- (W™ (s wp) I i wy), (16)

pletely determined by the known structure of the($k) ~oo

. . ~ M .
chiral Wess-Zumino-Witten (WZW) theory. At the same with W3 as in Eq. (1) andVi the standard Laughlin

time, this CFT can be used to generate an explicit ex/ave function with exponent/, with odd (even)M

pression for the ground state wave function in the bulkdiving afermionic (bosonic) state. By combining the final
[see Eq. (16) below], and for the wave functions representt-v‘_’% flact;[olr S in E%’ ]£16)’ on2e ]iecognliez a tw((j)—lqyer state
ing various quasiparticle excitations. The spin and charg&v't abel (M + 2/k,M + 2/k,M + 1/k), and since it

quantum numbers of the fundamental triplet excitations ar the;e fellctgrs. thaL det(alrming thg filléing ;ractionwe
the same as those listed in Eq. (10), but the exclusion sta7'M€ lately derive the value given in Eq. (3). .
For k = 1, the state Eq. (16) reduces to the Abelian

tistics are now non-Abelian. .
Before presenting more general NASS states, we remarg> State EQ. (1) withm = M + 1. "For k > 1, the
that an effective Landau-Ginzburg theory for the (3) para_fermlon correla.tor IS nonvanlshlng i, an integer
multiple of k. The simplest nontrivial example of a wave

NASS state is readily given, by generalizing the construc ' : o <
tion of [14] for the bosonic pfaffian state with symmetry function of the type Eq. (.16) IS _the cage =2M= 0)
for a total of N = 4 bosonic particles. We find

SU(2),. The Landau-Ginzburg theory is obtained by tak-

ing two copies of the SB), theory Eq. (12) and usinga  ~k=2m=0

pairing mechanism that is similar to the electron pairing *NASS (21, 22:w1,w2) = 202122 + wiwa)

in a Bardeen-Cooper-Schrieffer theory. The pairing in- — (21 + z2) (w1 + wy).

duces a symmetry breaking 8); X SU(3); — SUQ3), a7

and hence induces a levkl> 1 non-Abelian symmetry

that is characteristic of non-Abelian statistics. One mayBy inspecting the zeros of this wave function, we can un-

check that the stable vortices in the broken-symmetry thederstand the pairing that underlies this particular quantum

ory correspond to the quasiparticles that are identified ud-lall state (compare with [4,10,12]). We see that upon

ing the edge CFT. sendingz; — z; or w; — z; the wave function Eq. (17)
We now turn to the description of a two-parameter fam-doesnotgo to zero. However, as soon as three or more par-

ily of NASS states. They are obtained by taking a back<icles come together, we do get a zero. [For three particles

bone SU3), theory, dressed with an additional Laughlin of the same spin, i.e., threg or threew;, this cannot be

factor with exponentV. To obtain explicit expressions seen from Eq. (17); it follows, however, from the operator
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The CFT underlying the states Eq. (16) is unitary, and
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