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New Class of Non-Abelian Spin-Singlet Quantum Hall States
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We present a new class of non-Abelian spin-singlet quantum Hall states, generalizing Halp
Abelian spin-singlet states and the Read-Rezayi non-Abelian quantum Hall states for spin-pola
electrons. We label the states bysk, Md with M odd (even) for fermionic (bosonic) states, and find
filling fraction n ­ 2kys2kM 1 3d. The states withM ­ 0 are bosonic spin-singlet states characterize
by a SUs3dk symmetry. We explain how an effective Landau-Ginzburg theory for the SUs3d2 state can
be constructed. In general, the quasiparticles over these new quantum Hall states carry spin, fra
charge and non-Abelian quantum statistics. [S0031-9007(99)09361-8]

PACS numbers: 73.40.Hm, 71.10.–w, 73.20.Dx
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The developments that followed the discovery of th
fractional quantum Hall effect in 1982 have challenge
two traditional wisdoms on the nature of the quantum
Hall states that are relevant for experimental observation
These two wisdoms concern thespin of the electrons
that participate in a quantum Hall state and thequantum
statisticsof the quasiparticle excitations over these state

Starting with the first wisdom, it is evident that under th
conditions of the (fractional) quantum Hall effect, which
happens in a strong magnetic field, there is an importa
Zeeman splitting between the energies of spin-up and sp
down polarized electrons. One may therefore expect th
the observable quantum Hall states will be in terms of spi
polarized electrons. However, already in 1983, Halper
[1] pointed out that the energy associated with the Zeem
splitting is rather modest as compared to other ener
scales in the system. Because of this, quantum Hall sta
which are not spin polarized but instead involve equ
numbers of spin-up and spin-down electrons (forming
spin singlet) are feasible. The experimental confirmation
of this idea came in 1989, when several groups report
that the ground states atn ­ 4y3 and n ­ 8y5 are spin
unpolarized [2]. In recent experiments, which employe
hydrostatic pressure to reduce theg factor, more detailed
results on quantum Hall spin transitions were obtained [3
In his 1983 paper [1], Halperin proposed the following
spin-singlet (SS) quantum Hall states:

eCm11,m11,m
SS sz1, . . ., zN ; w1, . . . , wN d ­ Pi,jszi 2 zjdm11

3 Pi,jswi 2 wjdm11Pi,jszi 2 wjdm,
(1)

where zi and wi are the coordinates of the spin-up an
spin-down electrons, respectively. The state Eq. (1) h
the filling fractionn ­ 2ys2m 1 1d. Here and below we
display reduced quantum Hall wave functionseCsxd, which
are related to the actual wave functionsCsxd via Csxd ­eCsxd exps2

P
i

jxi j
2

4l2 d with xi ­ zi , wi and l ­
p

h̄cyeB
the magnetic length. It was emphasized in [4,5] that th
wave function Eq. (1) can be factorized into a charge fact
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times a spin factor. The spin factor has an SUs2d1 affine
Kac-Moody symmetry and describes semionic spinons t
are also encountered in other models of spin-charge se
rated electrons ind ­ 1 1 1 dimensions. More genera
(Abelian) spin-singlet states have been described in
literature [6].

Concerning the second wisdom, we remark that t
traditional hierarchical quantum Hall states (Jain serie
all share the property that the quantum statistics of th
fundamental excitations are fractional but Abelian. Whi
these states suffice to explain the overwhelming major
of experimental observations, there is the exception of
well-established quantum Hall state atn ­ 5y2, which
does not fit into the hierarchical scheme. This observat
has prompted the analysis of new quantum Hall states,
Haldane-Rezayi state [7] and theq ­ 2 pfaffian state [4]
(both atn ­ 1y2) being the most prominent among them
The quasihole excitations over the pfaffian quantum H
states satisfy what is callednon-Abelian statistics[4,8].
By this, one means that the wave function describing
number of quasiholes at fixed positions has more th
one component, and that the braiding of two quasiholes
represented by a matrix that acts on this multicompon
wave function. Since matrices in general do not commu
such statistics are called non-Abelian. The non-Abeli
braid statistics of the quasiholes over the pfaffian quant
Hall states are reflected in their unusual exclusion statist
i.e., in the appropriate generalization of the Pauli princip
for particles of this type [9].

In a recent paper [10], Read and Rezayi proposed a
studied a class of spin-polarized, non-Abelian quantu
Hall states that generalize the pfaffian. Some of the
states were independently considered by Wen [11]. T
most general non-Abelian (NA) quantum Hall state studi
by Read and Rezayi, with labelssk, Md, is of the formeCk,M

NA sz1, . . . , zN d ­ kcsz1d · · · cszN dl
3 Pi,jszi 2 zjds2ykd1M (2)

with cszd a so-called order-k parafermion and with
the bracketsk· · ·l denoting a correlator in the associate
© 1999 The American Physical Society
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conformal field theory (CFT). The physical picture behin
these wave functions is that of an instability involvin
a clustering of, at the most,k particles, generalizing the
notion of “pairing” that underlies the pfaffian states [12].

In this Letter we describe a new class of quantum Ha
states, which combine the feature of being a spin sing
with that of non-Abelian statistics. These new states can
viewed as non-Abelian generalizations of the spin-sing
states Eq. (1), or, alternatively, as spin-singlet analogs
the non-Abelian states Eq. (2). The wave function
our most general non-Abelian spin-singlet (NASS) sta
labeled assk, Md with k . 1, is displayed in Eq. (16)
below. It has the filling fraction

nsk, Md ­
2k

2kM 1 3
. (3)

The simplest fermionic NASS state (withk ­ 2, M ­ 1)
occurs at filling fractionn ­ 4y7. In general, the NASS
states are competing with Abelian spin-singlet states th
are possible at the same filling fractions Eq. (3).

In recent studies of the pfaffian and Read-Rezayi no
Abelian quantum Hall states [13,14], it has been emph
sized that the essential mechanism of their non-Abeli
statistics is closely related to the presence of (a deform
tion of) a non-Abelian SUs2dk affine Kac-Moody symme-
try with k . 1. In this Letter we shall see that, for the cas
of spin-singlet non-Abelian quantum Hall states, there is
very similar role for a symmetry SUs3dk with k . 1.

We start our presentation by a discussion of the no
Abelian SUs3d1 symmetry of a particular Abelian spin-
singlet quantum Hall state. In a recent paper [14], it w
emphasized that the bosonic Laughlin state atn ­ 1y2
possesses a non-Abelian SUs2d1 symmetry, which can be
viewed as a continuous extension of the particle-hole sy
metry at half-filling. We shall refer to this symmetry a
SUs2d charge. In an earlier work by Balatsky and Fradk
[5], it was stressed that thes1y2, 1y2, 21y2d Halperin state,
which is a spin-singlet state atn ­ `, i.e., atB ­ 0, pos-
sesses SUs2d1 non-Abelian symmetry, which we here cal
SUs2d spin. Combining these two observations, one e
pects to find a bosonic spin-singlet quantum Hall state
finite n, in which SUs2d charge and SUs2d spin combine
into a nontrivial extended symmetry. The nature of th
extended symmetry can be traced by analyzing the al
braic properties of creation and annihilation operators f
spin-full hard-core bosons. We define

By
s ­ c

y
1sc2, Bs ­ c

y
2 c1s ,

B3
a ­ c

y
1ssa

src1r , B3 ­ c
y
1sc1s 2 2c

y
2 c2 ,

(4)

with s, r ­", # and withc
y
1s, c1s andc

y
2 , c2 the creation

and annihilation operators of spin-1y2 bosonic particles
and holes. (We remark that in this setup the holes donot
carry a spin index.) The “hard-core” condition is imple
mented by the constraint

c
y
1sc1s 1 c

y
2 c2 ­ 1 . (5)
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Using the defining commutators

fc1s , c
y
1rg ­ dsr, fc2, c

y
2 g ­ 1 , (6)

one shows that the eight operatorsBA of Eq. (4) form an
adjoint representation of the algebra SUs3d. In standard
mathematical notation, we denote byBa the element
of the Lie algebra SUs3d that corresponds to a roota.
With simple rootsa1 ­ s

p
2, 0d, a2 ­ s2

p
2y2,

p
6y2d,

we identify the boson creation operators as

B
y
" ­ Ba1 , B

y
# ­ B2a2 . (7)

We conclude that the kinematics of hard-core spin-fu
bosons are organized by a SUs3d symmetry. In its fermi-
onic incarnation SUs2j1d, this symmetry is well known
from the supersymmetrict-J model [15].

Alerted by this result, we quickly find that thes2, 2, 1d
bosonic spin-singlet state [Eq. (1) withm ­ 1] possesses
a SUs3d1 global symmetry. One way to see this is b
recognizing that the inverseK-matrix, given by

K21 ­
1
3

µ
2 21

21 2

∂
, (8)

is equal to the inverse Cartan matrix of SUs3d up to a trivial
change of sign. Working out the SUs3d structure of the
edge CFT for thes2, 2, 1d state, one identifies the Carta
subalgebra generatorsB3 andB3

3 with the spin and charge
bosons according to

B3 ­ i
p

6 ≠wc, B3
3 ­ 2i

p
2 ≠ws . (9)

The fundamental quasiparticles reside in the triplet3 and
antitriplet3̄ representations of SUs3d, with spin and charge
quantum numbers

f1 : spin ", q ­ 21y3 ,

f2 : spin #, q ­ 21y3 , (10)

f3 : spin 0, q ­ 2y3 ,

and opposite for the antitriplet. Following [16], we ca
construct the complete edge theory in terms of multipa
ticle states consisting of quanta of the fieldsfi, i ­ 1, 2, 3.
The systematics of this construction lead to a notion
“fractional exclusion statistics” of these quasiparticles.
[17], the mathematical details of these fractional statisti
which differ from those proposed by Haldane [18], we
presented. As a direct application of the results of [17
we may recover the Hall conductancesH of the s2, 2, 1d
state by working out the following expression [16]:

sH ­ nmaxq2 e2

h
, (11)

with nmax equal to the maximal occupation of a give
single quasiparticle state. Substituting the valuesq ­
2y3, nmax ­ 3y2 for the positive-charge carriersf3, we
recover the valuesH ­ 2

3
e2

h .
5097
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An effective Landau-Ginzburg bulk theory for the
s2, 2, 1d state can be cast in the following form:

L ­ jDBj2 1 V sBd 1 LCSsad 1 emnlAext
m f3

nl ,
(12)

whereB is the SUs3d octet Bose field,DB is the covariant
derivative in the adjoint representation,V sBd is a potential,
and aA

m is a SUs3d Chern-Simons (CS) gauge field. Th
external fieldAext

m couples to thef3 component of the
field tensor of the gauge fieldaA

m. The Chern-Simons
Lagrangian is given by

LCSsad ­
1

4p
emnl

µ
aA

m≠naA
l 1

2
3

fABCaA
maB

n aC
l

∂
.

(13)

For the justification of the result Eq. (12) we refer t
[14], where an analogous result for the SUs2d1 invariant
n ­ 1y2 state was presented.

Having understood the SUs3d1 structure of a particular
Abelian SS state, we can proceed with the constructi
of NASS states. Closely following the logic presented
[14] (see also [19]), we first consider a state with symmet
SUs3d2, which we obtain by performing a (dual) cose
reduction on two copies of the SUs3d1 state. As explained
in [14], this reduction procedure leads to a statistical tran
mutation of one of the octet fields and renders the statist
of the triplet quasiparticlesfi non-Abelian.

The effective edge CFT for the SUs3d2 theory is com-
pletely determined by the known structure of the SUs3d2
chiral Wess-Zumino-Witten (WZW) theory. At the sam
time, this CFT can be used to generate an explicit e
pression for the ground state wave function in the bu
[see Eq. (16) below], and for the wave functions represe
ing various quasiparticle excitations. The spin and char
quantum numbers of the fundamental triplet excitations a
the same as those listed in Eq. (10), but the exclusion s
tistics are now non-Abelian.

Before presenting more general NASS states, we rem
that an effective Landau-Ginzburg theory for the SUs3d2
NASS state is readily given, by generalizing the constru
tion of [14] for the bosonic pfaffian state with symmetr
SUs2d2. The Landau-Ginzburg theory is obtained by tak
ing two copies of the SUs3d1 theory Eq. (12) and using a
pairing mechanism that is similar to the electron pairin
in a Bardeen-Cooper-Schrieffer theory. The pairing i
duces a symmetry breaking SUs3d1 3 SUs3d1 ! SUs3d2
and hence induces a levelk . 1 non-Abelian symmetry
that is characteristic of non-Abelian statistics. One m
check that the stable vortices in the broken-symmetry th
ory correspond to the quasiparticles that are identified u
ing the edge CFT.

We now turn to the description of a two-parameter fam
ily of NASS states. They are obtained by taking a bac
bone SUs3dk theory, dressed with an additional Laughli
factor with exponentM. To obtain explicit expressions
5098
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for the corresponding wave functions, we rely on the SUs3d
parafermions introduced by Gepner in [20]. These paraf
mions, written asca, are labeled byrootsa of SUs3d and
have the property thatca ­ cb whena-b is an element
of k times the root lattice. In terms of theca and of two
auxiliary bosonsw1,2, the affine currentsBaszd at levelk
are written as

Baszd ~ ca expsiawy
p

k d szd . (14)

Using the identification Eq. (7), we arrive at the followin
expression for the NASS state associated with SUs3dk:

lim
z`!`

sz`d6sN2dykk expfiNy
p

k sa2 2 a1dwg sz`d
3 Ba1 sz1d · · · Ba1 szN dB2a2 sw1d

· · · B2a2 swN dl . (15)

Substituting the form Eq. (14), one observes that t
correlator factorizes as a parafermion correlator time
factor coming from the vertex operators. The latter
seen to combine into thes1ykdth power of thes2, 2, 1d
spin-singlet wave function. Multiplying the result with a
overall Laughlin factor, we arrive at the following wav
function for thesk, Md NASS state:

eCk,M
NASSsz1, . . . , zN ; w1, . . . , wN d

­ kca1 sz1d · · · ca1 szN dc2a2 sw1d · · · c2a2 swN dl

3 f eC2,2,1
SS szi ; wjdg1yk eCM

L szi; wjd , (16)

with eC2,2,1
SS as in Eq. (1) andeCM

L the standard Laughlin
wave function with exponentM, with odd (even)M
giving a fermionic (bosonic) state. By combining the fin
two factors in Eq. (16), one recognizes a two-layer st
with label sM 1 2yk, M 1 2yk, M 1 1ykd, and since it
is these factors that determine the filling fractionn we
immediately derive the value given in Eq. (3).

For k ­ 1, the state Eq. (16) reduces to the Abelia
SS state Eq. (1) withm ­ M 1 1. For k . 1, the
parafermion correlator is nonvanishing forN , an integer
multiple of k. The simplest nontrivial example of a wav
function of the type Eq. (16) is the casesk ­ 2, M ­ 0d
for a total ofN ­ 4 bosonic particles. We find

eCk­2,M­0
NASS sz1, z2; w1, w2d ­ 2sz1z2 1 w1w2d

2 sz1 1 z2d sw1 1 w2d .
(17)

By inspecting the zeros of this wave function, we can u
derstand the pairing that underlies this particular quant
Hall state (compare with [4,10,12]). We see that up
sendingz2 ! z1 or w1 ! z1 the wave function Eq. (17)
doesnotgo to zero. However, as soon as three or more p
ticles come together, we do get a zero. [For three partic
of the same spin, i.e., threezi or threewi, this cannot be
seen from Eq. (17); it follows, however, from the operat
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product expansion structure of the SUs3d parafermions
ca .] We conclude that the pairing of thek ­ 2 NASS
states is similar to that of the pfaffian states for spi
polarized electrons. By the analogy with the findings
[10], one similarly expects that the instability underlyin
the level-k NASS states fork . 2 will be a “k-particle
clustering.”

The CFT underlying the states Eq. (16) is unitary, an
the bulk-edge correspondence for these states thus av
some of the subtleties that arise for the Haldane-Rez
NASS state. It is therefore straightforward to derive th
spin and charge quantum numbers of the fundamen
quasiparticles over these states, and to determine expon
for quasiparticle and electron edge tunneling process
For M fi 0 the SUs3dk symmetry is broken and SUs3d
quantum numbers are no longer meaningful. The fund
mental flux-1

2k quasiholes carry chargeq ­ 61ys2kM 1

3d and spin-1y2. Their conformal dimension, which is ob-
tained by adding contributions from the parafermion sect
and from the spin and charge sectors, equals

Dqh ­
s5k 2 1dM 1 8

2sk 1 3d s2kM 1 3d
. (18)

The edge electrons have charge21, spin-1y2, and confor-
mal dimensionDel ­ sM 1 2dy2, independent ofk. The
non-Abelian braid and exclusion statistics of the variou
quasiparticles follow by a straightforward generalizatio
of the techniques of [4,8,9,17].

We remark that some of the filling factors for which
fermionic NASS states exist agree with values for whic
spin transitions have been seen in experiments. With
gard to the competition between Abelian and non-Abelia
spin-singlet quantum Hall states with the same filling fra
tion n, we remark the following. Based on explicit numeri
cal work, the authors of [10] have suggested that, in the s
ond Landau level, non-Abelian spin-polarized states te
to be favored over their Abelian counterparts. By ana
ogy, one may expect that the NASS states proposed in
Letter will be favored over Abelian SS states whenn . 2.
On the basis of the reasoning presented in [12], one a
expects that thek ­ 2 NASS states will be particularly
relevant for samples with wide well or double well ge
ometries. We finally remark that, experimentally, one ca
in principle distinguish between Abelian and non-Abelia
quantum Hall states by studying processes where a curr
tunnels through the quantum Hall medium. Such expe
ments probe conformal dimensions such as Eq. (18), a
these in general differ between Abelian and non-Abelia
states with the same filling fraction.
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