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We construct models of interacting itinerant non-Abelian anyons moving along one-dimensional

chains, focusing, in particular, on itinerant Ising anyon chains, and derive effective anyonic t-J models

for the low-energy sectors. Solving these models by exact diagonalization, we find a fractionalization of

the anyons into charge and (non-Abelian) anyonic degrees of freedom—a generalization of spin-charge

separation of electrons which occurs in Luttinger liquids. A detailed description of the excitation spectrum

by combining spectra for charge and anyonic sectors requires a subtle coupling between charge and

anyonic excitations at the microscopic level (which we also find to be present in Luttinger liquids), despite

the macroscopic fractionalization.

DOI: 10.1103/PhysRevLett.108.207201 PACS numbers: 75.10.Kt, 75.10.Jm, 75.40.Mg

One of the most striking phenomena that can emerge
as a result of confining electrons to a one-dimensional
system is the dissociation of the electrons’ spin and charge
into two independent degrees of freedom. This effect,
called ‘‘spin-charge separation,’’ was first predicted by
Anderson [1]. The theory describing this behavior of
one-dimensional electrons was developed by Tomonaga
[2] and Luttinger [3], and Haldane later introduced the
concept of Luttinger liquids [4].

For two-dimensional systems, fractionalization of the
electron can also occur in topologically ordered phases of
matter [5], in particular, fractional quantum Hall (FQH)
states. The emergent quasiparticle excitations of these
strongly interacting electron liquids are anyons [6] and
may possess fractional electric charge [7] and exotic ex-
change statistics characterized by the braid group [8,9].
The anyonic properties of the quasiparticles may be
encoded in topological quantum numbers, often called
‘‘topological charges.’’ Of particular interest are non-
Abelian anyons [10], which possess a collective topologi-
cal Hilbert space that grows (roughly) exponentially with
the number of quasiparticles and braiding operations,
represented by matrices, that act upon this degenerate state
space in a noncommuting fashion. Such non-Abelian any-
ons, which may occur in quantum Hall systems [11–15],
p-wave superconductors, and solid state heterostructures
[16], could provide topologically fault-tolerant platforms
for quantum information processing [17].

Even though the electrons’ quantum numbers are frac-
tionalized in the quasiparticles of topologically ordered
systems, the (fractional) electric charge carried by a qua-
siparticle is directly correlated with its topological charge.
Thus, a question that immediately comes to mind is the
following: Do itinerant non-Abelian anyons in one dimen-
sion undergo a process analogous to spin-charge separation

of itinerant electrons? In this Letter, we will study this
basic, but important, question by introducing simple mod-
els of interacting itinerant non-Abelian anyons. We con-
clusively show that mobile non-Abelian anyons in one
dimension indeed exhibit a separation of their charge and
anyonic degrees of freedom analogous to spin-charge sepa-
ration of electrons. This finding is particularly relevant to
the study of the (gapless) edge modes of non-Abelian FQH
states, which can be treated as one-dimensional systems of
itinerant anyons. Most experiments on FQH states probe
the system by using their edge modes.
The most direct example of spin-charge separation for

electrons was seen in the t-J model [18], which can be
obtained from the Hubbard model [19] in the limit of
strong on-site repulsion U=t � 1, where t is the nearest-
neighbor hopping. In this low-energy effective model,
where the high-energy doubly occupied local states are
integrated out, there is an antiferromagnetic interaction
J ¼ 4t2=U between two electrons on neighboring sites.
To motivate our choice of models for studying itinerant
anyons, we note that the (subtle) J ¼ 0 limit, correspond-
ing to theU ¼ 1Hubbard model, is already of interest: By
using the Bethe-ansatz form of the ground state wave
function, it was shown [20,21] that its charge degrees of
freedom can be expressed as a Slater determinant of spin-
less fermions with antiperiodic boundary conditions
(equivalent to hard-core bosons), while its spin degrees
of freedom are equivalent to those of a one-dimensional
S ¼ 1=2 Heisenberg model.
The model.—To investigate whether similar phenomena

occur in anyonic systems, we introduce models for itiner-
ant anyons and derive an effective t-J model for the low-
energy excitations. While our construction is general, we
specifically consider Ising-type anyons appearing in the
fractional quantum Hall candidate states likely to occur in
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the second Landau level [11,13–15] (particularly at � ¼
5=2), pþ ip superconductors and heterostructures [16].

To physically motivate our model, we will use the
quantum Hall effect setting, in particular, the quasiparticle
excitations of the � ¼ 1=2 Moore-Read state [11]. These
excitations carry both electric and topological charges. The
electric charges occur in multiples of e=4, while the topo-
logical charges (or anyon types) are those of the Ising
theory, namely, (1, �, c ), which follow the fusion rules

�� � ¼ 1þ c ; �� c ¼ �; c � c ¼ 1;

where fusion is symmetric and fusion with the vacuum 1 is
trivial, 1� x ¼ x, for any x. For details of the anyon model
formalism, see [22,23]. The different types of quasiparticle
excitations that can occur in the Moore-Read state
follow from repeated fusion of the ‘‘fundamental’’ quasi-
hole ð�; e=4Þ and/or quasielectron ð�;�e=4Þ, leading to

ð1; ne2 Þ, ðc ; ne2 Þ, and ð�; ðnþ1=2Þe
2 Þ for n integer [where

ðc ; eÞ is the electron, while ð1; 2eÞ can be identified with
the vacuum]. Of these quasiparticles, we will consider only
those with the smallest electric charges 0 and e=4, as the
other excitations will be penalized by large charging en-
ergies. Thus, the effective model can be described in terms
of ðc ; 0Þ and ð�; e=4Þ quasiparticle types only. With a
suitable electric potential, we can arrange that the neutral
ðc ; 0Þ particle is higher in energy than the charged ð�; e=4Þ
[24], so we do not allow localized ðc ; 0Þ quasiparticles.

We consider a chain of L sites, each of which can be
occupied only by a ‘‘hole,’’ i.e., an empty site labeled by
the ‘‘vacuum’’ ð1; 0Þ, or by a single ð�; e=4Þ anyon. Neutral
ðc ; 0Þ anyon types can tunnel between the sites. We con-
sider a fixed density � of quasiparticles, and, in addition,
we will drop the superfluous charge labels from now on.
This resulting model of anyons may be seen as the simplest
way to study interacting, itinerant anyons and is an effec-
tive model for the associated FQH state’s edge mode. In the
golden chain model [25] and its generalizations, which
correspond to � ¼ 1, the anyons are immobile, because
of a hard-core constraint. For � � 1, basis states of the
anyonic chain (see Fig. 1) are all positions of the N ¼ �L
anyons combined with all admissible labelings of the
fusion tree with xi 2 f1; �; c g that satisfy the constraints
given by the fusion rules. Throughout this Letter, we will
assume periodic boundary conditions xL ¼ x0 and no over-
all topological charge constraint, meaning that the chain of
anyons is in fact imbedded on a torus.

Hopping of � anyons is restricted to nearest-neighbor
sites and given, for the jth anyon, by

where xj and xjþ1 can take the values 1, �, or c (and the

trivial action of this operator on the unshown fusion tree

elements is left implicit). The Hamiltonian includes a sum
over the entire fusion tree of such hopping operators.
When two (charged) � anyons occupy nearest-neighbor

sites, they experience a Coulomb repulsion V and an
exchange interaction J (as occurs in the golden chain
model [25]) that favors the fusion channel of these two �
anyons to be the trivial particle 1 when J > 0 and the
fermion c when J < 0. The exchange interaction term
originates from virtual processes, including all orders and
quasiparticle types (even those we are neglecting for being
at higher energies), that transfer topological charge
between the localized anyons without changing their
localized topological charge values [26]. (In the case of
Ising-type anyons, the only possible nontrivial topological
charge that can be transferred in this manner is the neutral
c charge.) This is similar to a Heisenberg exchange term
arising from a Hubbard interaction when integrating out
double occupied sites in the derivation of the fermionic t-J
model. These two interaction terms can be combined as

where x, y, z, and z0 can take the values 1 or c . As in
Eq. (1), the Hamiltonian includes a sum over the entire
fusion tree of these interaction terms. All other matrix
elements are zero. We refer to the model as the Ising anyon
t-J chain.
Phases of the � ¼ 1 localized anyon chain.—We first

briefly recall the behavior of the pure Ising anyon chain,
when there is exactly one � anyon localized on each site of
the chain. In this case, the local constraints impose an exact
alternation of frozen � bonds with fluctuating 1 or c
bonds. For these later bond variables, the terms in Eq. (2)
are exactly those of the transverse field Ising model at the
critical point, described by the Ising conformal field theory
with central charge c ¼ 1=2 [27].
Spectrum for J ¼ 0.—We next consider the simple case

where J ¼ V ¼ 0. Although the exchange interaction J is
absent, it is important to keep in mind that the particles that
hop along the chain are anyons, whose state is described by

FIG. 1 (color online). A chain with N itinerant anyonic quasi-
particles. The (red) dark dots represent the sigma quasiparticles,
open circles represent empty sites, and the (light) shaded dots
describe the fusion channels of the nonlocal states and can take
the value 1, �, or c , as dictated by the fusion rules.
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the fusion tree labels (x1; . . . ; xN). If we forget about this
labeling, our model with J ¼ 0 is equivalent to that of
itinerant hard-core bosons (HCBs). However, the labeling
makes the anyons effectively distinguishable and introdu-

ces degeneracies. On an open chain, one simply gets 2N=2

copies of the same HCB spectrum. In contrast, around a
torus, hopping an anyon across the ‘‘boundary’’ cyclically
translates the labels of the fusion tree. To recover the same
labeling, in general, all N particles have to be translated
over the boundary. Thus, one anyon hopping over the
boundary has the same effect as a phase shift �k ¼ 2�k

N

(with k an integer) or equivalently an Abelian U(1) flux.
The same effect occurs for electrons with spin but so far
has been discussed only in the special case of a single hole
in a spin background [28]. Hence, the complete J ¼ 0
anyonic spectrum (at zero external flux) is given by the
union of the HCB spectra Echargeðp;�kÞ taken at all dis-

crete values of � ¼ �k (with extra degeneracies as evi-
denced later on), where one can use the mapping to
spinless fermions (with an extra � flux for N even),

Echargeðp;�Þ ¼ �2t
X

jðpÞ
cos

�
2�

L

�
jþ 1

2

�
þ�

L

�
; (3)

and fjðpÞg is a set of N integers characterizing the � ¼ 0
HCB eigenstates (hereafter named ‘‘parent states’’ and
labeled by p) of momenta Kp ¼ 2�

L

P
jðpÞðjþ 1

2Þ. The states
labeled by p and k carry momenta K ¼ Kp þ ��k. From

the above considerations, it is then clear that each parent
state of the HCB spectrum is extended into a discrete set of
exponentially many degenerate levels on a parabola—the
same parabola that one gets by adding flux. We have
verified this numerically (see Fig. 2) by using Lanczos
exact diagonalizations. Interestingly, the dispersion of the
parent states, Echargeðp; 0Þ vs Kp, reveals linear ‘‘charge’’

modes at momenta K ¼ 0 and Kc ¼ 2�ð1� �Þ. Note that
the J ¼ 0 spectrum does not depend on the nature of the
particles (e.g., electrons, Ising anyons, or even more gen-
eral anyons), except in determining the degeneracies of the
states.

When the anyons experience an external flux �ext, it is
added to the ‘‘internal’’ phase shift �k, i.e., � ¼ �ext þ
�k, and the energy spectrum consequently depends con-
tinuously on the ‘‘pseudomomentum’’ ~K ¼ Kp þ �� ¼
K þ ��ext (see Fig. 2) [29].

Analysis of the anyon spectra at J � 0.—We now con-
sider nonzero J and examine the case J > 0 and V ¼ 0, for
simplicity. Typical low-energy spectra of Ising anyon
chains obtained by Lanczos exact diagonalization are
shown in Figs. 3(a) and 3(b). To understand such spectra,
let us first focus on the low-energy region, where a small
finite J lifts the degeneracies of the J ¼ 0 charge excitation
parabola by an energy proportional to JL. When J � t=L2,
the spectra originating from each parabola start to mix up
as shown in Fig. 3(b).

Despite their apparent complexity, we can analyze these
complex spectra in terms of charge and anyonic excita-
tions. We first establish the recipes to construct the ex-
pected (electric) charge and anyonic spectra from simple
considerations. Subsequently, we will show that the exact

FIG. 2 (color online). Low-energy spectrum of a 24-site Ising
anyon chain at J ¼ 0 and density � ¼ 2=3. Shaded (yellow)
circles correspond to the spectrum at �ext ¼ 0 as a function of
momentum K. The (red) crosses correspond to the spectrum at
�ext ¼ �=4 restricting K 2 ½��=3; �=6� (so that ~K 2
½��=6; �=3�). The parent charge excitations are shown by solid
(black) circles.

FIG. 3 (color online). Low-energy spectra of a 24-site Ising
anyon t-J chain at density � ¼ 2=3 (a) for small J=t and (b) for
J ¼ t. The �ext ¼ 0 spectra are shown by shaded (yellow)
circles as a function of momentum K. The parent charge ex-
citations (K ¼ Kp and �ext ¼ 0) are shown by black dots. The

corresponding charge excitation branches (obtained by varying
�ext) are shown by continuous lines of different colors. The þ
and � symbols correspond to the sum of the charge and
(expected) anyonic excitation spectra, respectively (see the
text). The colors of these symbols are the same as their corre-
sponding charge excitation parabola.
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numerical spectra of the anyonic t-J chains can indeed be
seen as a subtle sum of the above two.

The Bethe-ansatz results [20,28] for the J ! 0 elec-
tronic t-J chain suggest that the anyonic excitation spec-
trum EanyonðmÞ of the itinerant chain should be that of N

anyons localized on a squeezed periodic chain of length
N ¼ �L, where integers m label the eigenstates of mo-
menta km ¼ 2�im=N for im 2 Z. Such a spectrum can be
computed by exact diagonalization and agrees very well
with the conformal field theory predictions, even on small
chains (N ¼ 16). In particular, it shows a linear zero
energy mode at K ¼ 0 and at a characteristic momentum
ka ¼ � (for J > 0). The velocity of this spectrum is re-
normalized by a factor �, which is � ’ 0:5 for � ¼ 2=3
and sufficiently small J.

To construct the expected charge excitation spectrum at
finite J, we use our understanding of the J ¼ 0 limit.
Gradually turning on J, one can adiabatically follow the
original parent states at momenta Kp (still labeled for

J � 0 by the same set of integers p). As for J ¼ 0, chang-
ing the momentum of a charge excitation by �K can be
done by introducing an external flux�ext ¼ �K=�. Hence,
by introducing twisted boundary conditions, one can com-
pute the new (almost parabolic) branch of excitations
~Echargeðp;�extÞ [renormalized with respect to Eq. (3)]

associated to each parent excitation.
Inspired by the rules for adding holon and spinon spectra

in the J ! 0 electronic Bethe ansatz, we now propose to
construct the full theoretical excitation spectrum by adding
the two above spectra as

Ep;m ¼ ~Echargeðp; kmÞ þ EanyonðmÞ (4)

and by adding momenta as Kp;m ¼ Kp þ �km. Impor-

tantly, the phase shift experienced by the (charged) ‘‘hol-
ons’’ coincides with the total momentum km of the anyonic
eigenstates defined on the squeezed (undoped) chain. This
generates a subtle coupling between charge and anyonic
excitations that we shall discuss later on.

We now wish to verify that the proper assignments of the
true energy levels according to the form given by Eq. (4)
can indeed be made accurately. One proceeds by sequen-
tially constructing the sets of levels that correspond to
increasing the charge index p. The zero-momentum
ground state of the model (p ¼ 0) leads to the first charge
branch (with Eanyon ¼ 0) when adding a flux �ext to the

system. Two ‘‘secondary’’ parent charge excitations corre-
sponding to exact eigenstates (�ext ¼ 0) of the system with
momenta Kp ¼ �Kc (p ¼ 1; 2) lie on the same p ¼ 0

branch at �ext ¼ �2� as seen in Fig. 3(b). It is then
possible to construct the expected set of combined charge
plus anyonic excitations E0;m adjusting the renormalization

factor � to get the best fit to a subset of the exact energy
levels. Although there is only one free parameter, we
obtain excellent agreement between the two sets of levels,
especially in the small J limit shown in Fig. 3(a), where all

anyonic excitations can be assigned very accurately up to
energies of several J. Also for larger J, low-energy com-
bined charge-anyon excitations Ep;m can be identified up to

p ¼ 11 as shown in Fig. 3(b).
Conclusion and outlook.—Ourmodel of itinerant anyons

on one-dimensional chains can be generalized to other types
of anyons [such as Fibonacci anyons or SUð2Þk anyons, and
even spin-1=2 fermions], and more than just the lowest
energy quasiparticles can be included [30]. Our conclusions
applymore generally to all these examples. In particular, we
have shown that, in one-dimensional chains, itinerant non-
Abelian anyons fractionalize into charge and anyonic de-
grees of freedom, generalizing the spin-charge separation
effect of electronic Luttinger liquids.
However, on a periodic ring, the (charged) holons expe-

rience a phase shift that coincides with the total momentum
of the anyonic eigenstates. This generates a subtle topo-
logical coupling between charge and anyonic excitations at
the microscopic level. Since the energy shift induced by the
twisted boundary condition is of order D=L for the lowest
excitations, where D is the Drude weight, this coupling
vanishes in a macroscopic view of the low-energy limit of
an infinite ring but remains significant at energies of the
order of J. The same phenomenon also appears in elec-
tronic systems. It has, however, not yet been studied for
such systems in detail, presumably because of strong finite
size corrections in the spectra due to marginal operators.
This provides another example of how studying general-
ized anyonic models can also contribute to our understand-
ing of electronic models.
In the context of non-Abelian quantum Hall liquids, the

emergent separation of charge and anyonic degrees of
freedom a posteriori justifies the treatment of quantum
Hall edge modes by product theories like Ising� Uð1Þ4,
with different velocities for the charge and neutral sector,
despite the intrinsic coupling of electric charge e=4
and topological charge � in the fundamental ð�; e=4Þ
quasiparticle.
An interesting feature of the electronic t-J model is its

supersymmetric point which can be solved by Bethe ansatz
[31,32]. It will be interesting to investigate if the anyonic
models exhibit an analogous supersymmetry.
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