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In this auxiliary note we describe in full detail the Hilbert space and the explicit form of the Hamiltonian of
the anyonic spin-1 chains discussed in the Letter.

The constituent particles of the anyonic spin chains discussed in the main article are non-Abelian anyons. These can be
described by so-called su(2)k theories, which themselves are ‘quantum deformations’ of SU(2) [1]. The anyons or particles
present in these theories are labeled by a generalized ‘angular momenta’, j = 0, 1/2, 1, · · · , k/2, with the largest allowed
angular momentum characterizing the particular su(2)k theory. In the limit k → ∞ we recover SU(2) and its infinite number
of representations. The analog of combining two ordinary spins, and reducing the tensor product, corresponds to the ‘fusion’ of
two anyons which obey the fusion rules

j1 × j2 = |j1 − j2|+ (|j1 − j2|+ 1) + . . .+ min(j1 + j2, k − j1 − j2) , (1)

where the fusion outcomes on the right hand side are consistent with respect to the ‘cutoff’ k present in the anyonic theories.
For simplicity, we can actually restrict ourselves to the ‘integer spin’ subset of the full theory when k is odd, and hence only
consider integer spins j = 0, 1, 2, . . . , (k − 1)/2. In particular, we note that this subset is a closed set under the fusion rules
Eq. (1).

Since the construction of anyonic spin-1/2 chains has been discussed in great detail in an introductionary paper [2], we will
focus on anyonic spin-1 chains in the following.

THE HILBERT SPACE

The ayonic chains we consider are formed by a set of spin-1 anyons (with generalized angular momentum j = 1). The Hilbert
space of these chains can be described in terms of a ‘fusion chain’ as depicted in Fig. 1. Here the ‘incoming’ particles (depicted

x1 x2x0 xL· · ·
1 1 1 1 1

FIG. 1: The fusion chain of the anyonic spin-1 chains. The Hilbert space is spanned by all admissible labelings |x0, x1, . . . , xL−1〉 of this
fusion chain.

at the top) are the spin-1 anyons constituting the chain. The elements of the Hilbert space describing this chain are then given
by all admissible labelings x0, x1, . . . , xL−1, xL of the fusion chain with a length L. A labeling of the fusion chain is called
admissible when at each trivalent vertex the fusion rules of Eq. (1) are satisfied, e.g. the label xi can be generated in the fusion
of xi−1 and 1. Throughout this note we will consider periodic boundary conditions, xL = x0.

To give an explicit example of such a Hilbert space, we will consider the case of k = 5, where using the integer subset the xi
can take the values 0, 1, 2. The fusion rules will then read

0× 0 = 0 0× 1 = 1 0× 2 = 2
1× 1 = 0 + 1 + 2 1× 2 = 1 + 2

2× 2 = 0 + 1 .

Close inspection of these fusion rules will reveal certain local constraints for the admissible labelings x0, x1, . . . , xL−1, xL = x0.
In this case of k = 5 we note that a 0 in an admissible labeling always has neighbors with label 1 on either side. The presence



2

of such a local constraint is also the underlying reason that there exists no tensor product decomposition of this anyonic Hilbert
space. To provide an explicit example, the Hilbert space of a periodic spin-1 chain of length L = 4 contains 26 states, which can
be listed as

|0, 1, 0, 1〉 |0, 1, 1, 1〉 |0, 1, 2, 1〉 |1, 0, 1, 0〉 |1, 0, 1, 1〉 |1, 0, 1, 2〉
|1, 1, 0, 1〉 |1, 1, 1, 0〉 |1, 1, 1, 1〉 |1, 1, 1, 2〉 |1, 1, 2, 1〉 |1, 1, 2, 2〉
|1, 2, 1, 0〉 |1, 2, 1, 1〉 |1, 2, 1, 2〉 |1, 2, 2, 1〉 |1, 2, 2, 2〉 |2, 1, 0, 1〉
|2, 1, 1, 1〉 |2, 1, 1, 2〉 |2, 1, 2, 1〉 |2, 1, 2, 2〉 |2, 2, 1, 1〉 |2, 2, 1, 2〉
|2, 2, 2, 1〉 |2, 2, 2, 2〉

THE HAMILTONIAN

As we discuss in the main text, the Heisenberg Hamiltonian of the anyonic systems closely resembles that of ordinary spin
systems. Specifically, the Hamiltonian energetically splits the fusion outcomes in Eq. (1). However, in the fusion chain basis
described above, the fusion of two neighboring anyons in the chain (depicted at the top in Fig. 1) is not explicit. In order to make
the fusion of two such neighboring anyons explicit we need to perform a basis transformation, as depicted in Fig. 2. Similar to
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FIG. 2: The basis transformation needed in the construction of the Hamiltonian. The F -symbol carries the labels
`
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a basis transformation for ordinary spins we can describe such a transformation by ‘deformations’ of the ordinary 6j-symbols
for SU(2), which are commonly called F -matrices. For a more detailed introduction and the general computation of these
F -matrices, we again refer to Ref. 2. Having performed such a basis transformation one can assign an energy according to
the fusion outcome b̃, e.g. by applying the corresponding projector, and subsequently transform back to the original basis. For
instance, the matrix elements of a Hamiltonian Π1

i assigning an energy +1 to the fusion channel b̃ = 1 at site i (and an energy 0
to all the other fusion channels b̃) read

〈a′, b′, c′|Π1
i |a, b, c〉 = (F a,1,1c )1b′(F

a,1,1
c )b1δa,a′δc,c′ , (2)

where we use the notation a = xi−1, b = xi, c = xi+1 to describe a consecutive triple of labelings xi−1xixi+1 in the fusion
chain. Similarly, the matrix elements of a Hamiltonian Π2

i assigning an energy +1 to the fusion channel b̃ = 2 at site i (and an
energy 0 to all the other fusion channels b̃) read

〈a′, b′, c′|Π2
i |a, b, c〉 = (F a,1,1c )2b′(F

a,1,1
c )b2δa,a′δc,c′ . (3)

Here we made use of the fact that F = F−1 = F t in these cases.
To give an explicit expression of the two Hamiltonians Π1

i and Π2
i given above we again consider the case of k = 5. The

possible labelings of the triples |a, b, c〉 then become

{|0, 1, 0〉 , |0, 1, 1〉 , |0, 1, 2〉 , |1, 1, 0〉 , |1, 0, 1〉 , |1, 1, 1〉 , |1, 2, 1〉 ,
|1, 1, 2〉 , |1, 2, 2〉 , |2, 1, 0〉 , |2, 1, 1〉 , |2, 2, 1〉 , |2, 1, 2〉 , |2, 2, 2〉} . (4)

Performing the basis transformation depicted in Fig. 2, the labelings of the triples
∣∣∣a, b̃, c〉 are then given by

{|0, 0, 0〉 , |0, 1, 1〉 , |0, 2, 2〉 , |1, 1, 0〉 , |1, 0, 1〉 , |1, 1, 1〉 , |1, 2, 1〉 ,
|1, 1, 2〉 , |1, 2, 2〉 , |2, 2, 0〉 , |2, 1, 1〉 , |2, 2, 1〉 , |2, 0, 2〉 , |2, 1, 2〉} , (5)

where the value of b̃ is again the fusion channel of the two neighboring spin-1 anyons in the chain. Concentrating on the
Hamiltonians first, we will provide the explicit form for the F -matrices for k = 5 in the following section. Using those, we can
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now write down the Hamiltonians Π1
i and Π2

i in the basis of Eq. (4). The Hamiltonians Π1
i projecting onto the spin-1 channel

becomes

Π1
i =
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(6)

in terms of the quantum dimensions d1 = 1 + 2 cos(2π/7) and d2 = 2 cos(π/7).
The Hamiltonians Π2

i projecting onto the spin-2 fusion channel then reads

Π2
i =
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. (7)

Connection to the SU(2) bilinear-biquadratic spin-1 Hamiltonian

Finally, the most general Hamiltonian for the anyonic ‘spin-1’ chain can be written in terms of these projectors as

Hν=1 =
∑
i

cos θΠ2
i − sin θΠ1

i (8)

where an angle θ parameterizes the relative coupling strengths of the two projectors introduced above.
This Hamiltonian is closely related to the bilinear-biquadratic Hamiltonian commonly discussed in the context of ordinary

SU(2) spin-1 chains

Hbil−biq =
∑
i

cos(θb−b)(Si · Si+1) + sin(θb−b)(Si · Si+1)2 . (9)

In particular, we can rewrite this SU(2) spin Hamiltonian in terms of projectors Π1
i and Π2

i , where the projector Π1
i assigns an

energy +1 if two spin-1’s at sites i and i+1 combine (or ‘fuse’) into a total spin 1 and energy 0 otherwise. Similarly, the projector
Π2
i assigns an energy +1 if two spin-1’s at sites i and i+ 1 combine (or ‘fuse’) into a total spin 2 and energy 0 otherwise. Before

we rewrite Hamiltonian (9) in terms of these projectors, we remind ourselves of the following relations

(Si · Si+1) = Π1
i + 3Π2

i − 2 (Si · Si+1)2 = −3Π1
i − 3Π2

i + 4 ,
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and

(Si + Si+1)2 = 2Π1
i + 6Π2

i (Si + Si+1)4 = 4Π1
i + 36Π2

i .

It then follows that we can write the relation between the two angles θ and θb−b as

tan θ =
tan θb−b − 1/3
1− tan θb−b

tan θb−b =
tan θ + 1/3
1 + tan θ

. (10)

F-MATRICES

Finally, we provide the explicit form of the F -matrices needed to perform a basis transformation of the general form

a

b c

d
e

a

c

d

b
f=

∑
f

(
F a,b,c

d

)e

f
.

Before detailing the explicit, albeit rather complex, expression for the F -matrices for arbitrary su(2)k theories [4], which could
be used to construct Hamiltonians Eqs. (2) and (3) for arbitrary values of k, we again concentrate on the case k = 5. In doing so
we will only state the ‘outer labels’ a, b, c, and d of the F -matrices. The ‘inner labels’ e and f follow from the fusion rules, and
will always be ordered from low to high values. The number of allowed values for e (and consequently also f ), then denotes the
‘dimensionality’ of the F -matrix. In the case of k = 5, we have one-, two- and three-dimensional F -matrices as listed below.

There are many symmetry relations, but for simplicity, we will state all matrices here. First, the one dimensional matrices are
all equal to +1 and explicitly given by

F 000
0 = F 001

1 = F 002
2 = F 010

1 = F 011
0 = F 011

1 = F 011
2 = F 012

1 = F 012
2 =

F 020
2 = F 021

1 = F 021
2 = F 022

0 = F 022
1 = F 100

1 = F 101
0 = F 101

1 = F 101
2 =

F 102
1 = F 102

2 = F 110
0 = F 110

1 = F 110
2 = F 111

0 = F 112
0 = F 120

1 = F 120
2 =

F 121
0 = F 122

0 = F 122
2 = F 200

2 = F 201
1 = F 201

2 = F 202
0 = F 202

1 = F 210
1 =

F 210
2 = F 211

0 = F 212
0 = F 212

2 = F 220
0 = F 220

1 = F 221
0 = F 221

2 = F 222
1 = 1 (11)

The two-dimensional matrices are

F 111
2 = F 112

1 = F 121
1 = F 211

1 =
(−d2/d1

√
d2/d1√

d2/d1 d2/d1

)
(12)
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√
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(13)
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1 =
(

1/d1 −√d2/d1

−√d2/d1 −1/d1

)
(14)

F 222
2 =

(
1/d2 −√d1/d2

−√d1/d2 −1/d2

)
. (15)

Finally, we have one three-dimensional F -matrix

F 111
1 =

 1/d1 −1/
√
d1

√
d2/d1

−1/
√
d1 1/d2

1 (d2/d1)3/2√
d2/d1 (d2/d1)3/2 d2/d

2
1

 . (16)

F -matrices for arbitrary su(2)k anyon theories

To be able to write an explicit expression for the F -matrices for arbitrary su(2)k theories, we will first introduce some notation.

With q = exp 2πi
k+2 we define so-called q-numbers as bnc = q

n
2 −q−

n
2

q
1
2−q−

1
2

, and thus one has bnc =
∑n
i=1 q

n+1
2 −i.
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We also define the q-factorials as bnc! = bncbn−1c · · · b1c, for integer n > 0, and b0c! = 1. The labels of the anyons a, b, . . .
take the values 0, 1/2, 1, . . . k/2. The quantum dimensions of the particles are dj = b2j + 1c = sin

( (2j+1)π
k+2

)
/ sin

(
π
k+2

)
=

dk/2−j .
In addition we define, for a ≤ b+ c, b ≤ a+ c, c ≤ a+ b and a+ b+ c = 0 mod 1,

∆(a, b, c) =

√
ba+ b− cc!ba− b+ cc!b−a+ b+ cc!

ba+ b+ c+ 1c! (17)

With these definitions, one way of writing the F -matrices is as follows [3](
F abcd

)e
f

= (−1)a+b+c+d∆(a, b, e)∆(c, d, e)∆(b, c, f)∆(a, d, f)
√
b2e+ 1c

√
b2f + 1c∑′

n

(−1)nbn+ 1c!
ba+ b+ c+ d− nc!ba+ c+ e+ f − nc!bb+ d+ e+ f − nc!

× 1
bn− a− b− ec!bn− c− d− ec!bn− b− c− fc!bn− a− d− fc! ,

(18)

where the sum over n is over (non-negative) integers, such that

max(a+ b+ e, c+ d+ e, b+ c+ f, a+ d+ f) ≤ n ≤ min(a+ b+ c+ d, a+ c+ e+ f, b+ d+ e+ f) ,

which guarantees that the arguments of the q-factorials are non-negative integers.
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