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We provide a simple way to obtain the fusion rules associated with elementary quasiholes over quantum

Hall wave functions, in terms of domain walls. The knowledge of the fusion rules is helpful in the

identification of the underlying conformal field theory describing the wave functions. We show that, for a

certain two-parameter family ðk; rÞ of wave functions, the fusion rules are those of suðrÞk. In addition, we

give an explicit conformal field theory construction of these states, based on the Mkðkþ 1; kþ rÞ
‘‘minimal’’ theories. For r ¼ 2, these states reduce to the Read-Rezayi states. The ‘‘Gaffnian’’ wave

function is the prototypical example for r > 2, in which case the conformal field theory is nonunitary.
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Wave functions have played an instrumental role in the
theoretical development of the quantum Hall effect. The
Laughlin wave function [1] predicted excitations with frac-
tional charge, which has been observed experimentally [2].
In the seminal work of Moore and Read [3], the connection
between conformal field theory (CFT) and wave functions
was made, and a state in which the excitations obey so-
called non-Abelian statistics was proposed (by now, many
quantum Hall states are written in terms of CFT correlators
[4–6]). There is ample numerical evidence (see [7] for
recent results) that some states observed in the second
Landau level harbor particles which obey non-Abelian
statistics. The possibility of non-Abelian statistics has
recently spurred a tremendous amount of experimental
effort [8], with encouraging results, although a direct ob-
servation of non-Abelian statistics is lacking so far.

The fundamental property underlying non-Abelian sta-
tistics is fusion, which describes the possible outcomes of
bringing two particles together. We will denote the differ-
ent types of particles (or quasiholes) by a, b, c, etc. The
fusion of a and b is characterized by the non-negative
integers Nabc, which encode which particle types c are
present in the fusion of the particles of type a and b:

a� b ¼ X

c

Nabcc: (1)

Particles for which there can appear more than one particle
after fusion with another particle are called non-Abelian,
because the Hilbert space associated with several such
particles is higher dimensional, opening up the possibility
of non-Abelian braid statistics.

In this Letter, we will focus on a two-parameter family
of (bosonic) states, labeled by integers ðk; rÞ, at filling
fraction � ¼ k=r, which have the property that they do
not vanish when k particles are at the same position but
do vanish with power r when kþ 1 particles coincide. In
particular, we consider the states written in terms of
Jack polynomials in Refs. [9,10]. We note that these clus-
tering conditions (which do not, in general, uniquely spec-
ify states) were first studied in Ref. [11]. The ðk; rÞ states

under consideration reduce to the Read-Rezayi states [4] in
the case r ¼ 2. For r > 2 (the typical example is the
Gaffnian wave function [12]), the CFT is nonunitary,
which indicates, according to the arguments put forward
in Ref. [13], that these wave functions describe a critical
phase rather than a topological state. The new results in this
Letter are twofold. First, we find that the fusion rules
obeyed by the excitations are those of suðrÞk. This result
is obtained without invoking CFT but by examining the
domain wall structure in the thin-torus limit. Building on
this result, we provide an explicit CFT description of the
ðk; rÞ wave functions, based on the ‘‘minimal’’ models
Mkðkþ 1; kþ rÞ.
Orbital occupation numbers.—To obtain the

fusion rules, it is useful to examine the thin-torus
limit [14]. On the torus with dimensions ðLx; LyÞ,
one has a basis of one-particle orbitals c j /P

me
ix½ð2�j=LxÞþmLy��½yþð2�j=LxÞþmLy�2=2, where j ¼

0; 1; . . . ; N� � 1 and N� ¼ LxLy=ð2�Þ; the c j are cen-

tered around the line y ¼ �2�j=Lx. The many-body wave
functions can be written in terms of the orbital occupation
basis states jl0; l1; l2; . . .i. From the structure of the one-
particle orbitals, it follows that in the thin-torus limit
Lx ! 1 (with N� constant), only those components of

the many-body wave function which maximize
P

jl
2
j sur-

vive. Wewill show below that these thin-torus states suffice
to determine the fusion rules of the excitations, following
the results of Ref. [15]. In Refs. [9,10], it was shown that
the full wave functions can be written as Jack polynomials,
which are labeled by a partition �, which is related to the
(thin-limit) orbital occupation numbers of the bosons (see
below), and a parameter � ¼ � kþ1

r�1 (for kþ 1 and r� 1

relative prime). The orbital occupations are characterized
by the rule that each set of r neighboring orbitals contains
exactly k bosons, giving

kþ r� 1
k

� �

different (bulk) patterns or sectors, which also naturally
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arise in the thin-torus limit [14]. To be explicit, we will give
the sectors of the Gaffnian [12] with ðk; rÞ ¼ ð2; 3Þ as an
example (see also [15] for the r ¼ 2 case). In this case we
have six sectors characterized by the following patterns of
orbital occupation numbers jl0; l1; l2; . . .i:

j200 200 . . .i; j020 020 . . .i; j002 002 . . .i;
j110 110 . . .i; j101 101 . . .i; j011 011 . . .i;

i.e., by the unit cells (200) and (110) and their translations.
Excitations and domain walls.—One can consider qua-

siholes by allowing configurations in which r neighboring
orbitals contain less than k bosons. The fundamental quasi-
holes, with the smallest possible charge, correspond to
configurations in which there is only one set of r neighbor-
ing orbitals which contains k� 1 bosons. It follows from
the Su-Schrieffer counting argument [16] that these funda-
mental quasiholes have charge�e=r, where e is the charge
of the constituent bosons. The quasiholes can be viewed as
domain walls between different sectors. The general struc-
ture is explained by using the Gaffnian as an example. In
particular, we will look at the possible fundamental quasi-
holes starting from the (110) sector:

j110 110 101 101i; j110 110 020 020i: (2)

The boldface shows the location of the quasihole. Starting
from the (110) sector, inserting a quasihole corresponds to
a domain wall to either the (020) or the (101) sector. These
sectors are obtained from the (110) sector by allowing one
boson to hop one orbital ‘‘to the right.’’ This is the general
structure: Fundamental quasiholes correspond to domain
walls between two sectors, where the unit cell of the
resulting sector is obtained from the initial one by hopping
one boson one place to the right (assuming periodic
‘‘boundary conditions’’ on the unit cell). In general, the
different sectors are in one-to-one correspondence with the
quasihole types. Starting from one sector, create a
quasihole-particle pair, which will have a new, different
sector in between them. Move, say, the quasihole around
the torus. After annihilating the quasihole-particle pair, the
ground state will be the new sector. Each different type of
quasihole-particle pair will lead to a different ground state
sector.

Fusion rules.—Because the domain walls discussed
above correspond to the lowest charged quasihole, and
the sectors correspond to all possible types of quasiholes,
we can interpret the domain walls in terms of the fusion
rules. Let us denote the lowest charged quasihole as a
particle of type a. If there is one fundamental domain
wall connecting two sectors, say, b and c, we interpret
this by saying that sector c is present in the fusion of bwith
the elementary quasihole a, i.e., Nabc ¼ 1. The possible
fundamental domain walls completely specify the fusion
rules of the particle type a. In the quantum Hall case, we
can obtain all types of particles by repeated fusion of this
fundamental quasihole. This implies that all of the fusion
rules can be obtained from the fusion rules of a by asso-

ciativity. In general, it might not be obvious which sector
corresponds to the fundamental quasihole, but for the ðk; rÞ
wave functions, we can explicitly identify the fusion rules.
Before describing this general result, we first note that,

for ðk; rÞ ¼ ð2; 3Þ, we can identify the six sectors in terms
of the suð3Þ2 representations (see below): ð200Þ ¼ 1,
ð110Þ ¼ 3, ð101Þ ¼ �3, ð020Þ ¼ 6, ð011Þ ¼ 8, and ð002Þ ¼
�6, where the last two numbers in each unit cell correspond
to the suð3Þ Dynkin labels. We interpret the two domain
walls in (2) as the fusion rule 3� 3 ¼ �3þ 6.
Identification with suðrÞk.—To identify the fusion rules

we obtained for the ðk; rÞ states above, we will map the
ground state patterns to the labels of the irreducible repre-
sentations of the affine Lie algebra suðrÞk (see [17] for an
introduction). The irreducible representations of suðrÞk can
be labeled by r non-negative integers (l0; l1; . . . ; lr�1), such
that � ¼ P

r�1
i¼1 li!i is an suðrÞ representation (!i are the

fundamental weights), and l0 is fixed by
P

r�1
i¼0 li ¼ k. If this

results in l0 < 0, � does not correspond to an irreducible
representation of suðrÞk. This establishes a one-to-one
correspondence between the particle types of the ðk; rÞ
states and the representations of suðrÞk.
To obtain the fusion rules, we will make use of the

Littlewood-Richardson (LR) rule [17] for tensor products
of suðrÞ representations, which is stated in terms of the
associated Young diagrams. A Young diagram is a set of
rows of boxes, which are weakly decreasing in length. In
general, the jth row has length

P
r�1
i¼j li. For our purposes, it

will be useful to add a line of length
P

r�1
i¼0 li to the top of

the diagram; see Fig. 1 for an suð4Þ7 example.
We will consider only tensor products of arbitrary rep-

resentations with one of the fundamental weights � ¼ !i,
whose Young diagram is a single column of i boxes. We
can obtain the associated fusion rules of suðrÞk from the
rule that, in the fusion rules, diagrams whose top row
contains kþ 1 boxes are absent, as follows from the
Kac-Walton formula [18] relating tensor and fusion
products.
The LR rule specifies in which ways the boxes of the

Young diagram of (in our case) !i can be added to the
arbitrary representation �, to obtain the representations in
the tensor product. The i boxes of !i have to be added in
such a way that the resulting diagram is a Young diagram
(i.e., the length of the rows does not increase from top to
bottom), and no two boxes can be placed in the same row. It

FIG. 1. Leftmost diagram: The ‘‘Young diagram’’ associated
to the ð2; 2; 0; 3Þ representation of suð4Þ7. Remaining
diagrams: The Young diagrams obtained after fusing ð2; 2; 0; 3Þ
with !1 ¼ ð6; 1; 0; 0Þ. The crosses indicate the positions where
the box of !1 was added and columns of height four are
removed.
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is allowed to place a box under the leftmost column. If this
generates a column of height r, the whole column is to be
removed and l0 adjusted if necessary. To obtain the suðrÞk
fusion rules, we discard all resulting diagrams whose top
row contains kþ 1 boxes.

In Fig. 1, we give the Young diagram corresponding to
� ¼ ð2; 2; 0; 3Þ, as well as the diagrams resulting from
fusion with !1 ¼ ð6; 1; 0; 0Þ. The crosses denote the posi-
tions where the box of!1 was added to the diagram of �. It
is not hard to convince oneself that the LR rules presented
above lead to the picture that fusing an arbitrary repre-
sentation (l0; l1; . . . ; lr�1) with !1 gives maximally r rep-
resentations, characterized by li ! li � 1 and liþ1 !
liþ1 þ 1, for fixed i, such that li > 0 (l0 and lr are identi-
fied). These rules are exactly the ones we found from the
domain wall structure of the ðk; rÞ wave functions, which
shows that the fusion rules associated with the ðk; rÞ wave
functions are the suðrÞk fusion rules. We can go one step
further and identify the fusion with an arbitrary!i in terms
of domain walls. In Fig. 2, we give the four possible fusion
outcomes when one fuses ð2; 2; 0; 3Þ with !2. We find that
one can interpret fusing with !i in terms of the occupation
numbers as follows. The states in the fusion of a general
representation are obtained by hopping i bosons one place
to the right, with the constraint that from each position one
can hop only one boson (which can be the one just hopped
to that position). In terms of the domain walls, this pre-
cisely corresponds to the situation in which there are i
strings of r neighboring orbitals which have a deficit of
one boson. A deficit of more than one boson in a string of r
neighboring orbitals is not allowed, because in the LR rule
this would correspond to placing two boxes in the same
row. We clarify this by using the Gaffnian as an example,
we find the following ‘‘double’’ domain walls starting from
the (110) sector:

j110 100 200 200i; j110 011 011 011i: (3)

In both cases, there are two strings of 3 orbitals which have
a deficit of one boson, as indicated by the boldface. Like
(2), we can interpret (3) in terms of an suð3Þ2 fusion rule,
namely, 3� �3 ¼ 1þ 8.

CFT construction.—Having identified the fusion rules,
we will continue by giving an explicit conformal field
theory description of the ðk; rÞ wave functions. This con-
struction reduces to the known results for the Gaffnian [12]
and corroborates the results obtained from the study of
Jack polynomials [10,19]. We will make use of the knowl-

edge of the fusion rules, as well as constraints coming from
the explicit wave functions. To get started, we will start by
splitting off the uð1Þ-charge part of the theory and consider
the remainder, containing the non-Abelian structure. We
will reinsert the charge part again in the end. We are after a
two-parameter ðk; rÞ family of CFTs which for r ¼ 2 re-
duces to the Zk parafermion CFT, describing the Read-
Rezayi states [4].
As was anticipated in Ref. [19], the CFTs needed are the

minimal series (kþ 1, kþ r) related to the Wk algebra
[20], which for k ¼ 2 is the Virasoro algebra [21]. Here we
will explicitly give the operators creating the particles and
quasiholes and argue that they have the right properties to
generate the ðk; rÞ wave functions. To do this, we write the
minimal models in terms of the coset [22]

suðkÞ1 � suðkÞ���k

suðkÞ1���k

; � ¼ � kþ 1

r� 1
: (4)

We note that, even though � is fractional for r > 2, these
cosets are well defined but nonunitary. These models are
special cases of a more general set of minimal models
Mkðp; p0Þ (where p and p0 are coprime), which reduce
to the Virasoro minimal models for k ¼ 2. In our case, we
have p ¼ kþ 1 and p0 ¼ kþ r, and the central charge is

given by c ¼ rðk�1Þ
kþr ½1� kðr� 2Þ�. For r ¼ 2, the resulting

coset is suðkÞ1 � suðkÞ1=suðkÞ2, which indeed corresponds
to the Zk parafermion CFT.
We will refer to Refs. [22,23] to obtain the field-content

of the Mkðkþ 1; kþ rÞ models. As usual, the coset fields
carry labels of the constituent algebras. In the case at hand,
one can restrict oneself (by making use of field identifica-
tions [22]) to the labels of suðkÞr. Thus, we write the fields
as �l, where l is vector of k� 1 non-negative integers
whose sum does not exceed r. The number of fields in this
theory is given by

kþ r� 1
r

� �
;

and the fusion rules are identical to the fusion rules of
suðkÞr. We will show later that if one includes the charge
sector, one indeed obtains the correct suðrÞk fusion rules
for the full theory, in agreement with the domain wall
picture. The scaling dimensions of the fields �l are given
by [24]

hl ¼ kþ 1

2ðkþ rÞ l � A
�1
k�1 � l�

r� 1

2ðkþ rÞ l � A
�1
k�1 � ð2�Þ; (5)

where ðA�1
k�1Þi;j ¼ minði; jÞ � ij=k are the elements of the

inverse Cartan matrix of suðkÞ and � ¼ ð1; 1; . . . ; 1Þ.
To establish that these models can be used to obtain the

ðk; rÞ states, we will identify a class of fields within these
theories, which can be used as the creation operators for the
bosons and quasiholes. The first set reduces to the Zk para-

fermion fields c i when r ¼ 2. These fields c ðrÞ
i ¼ �r!i

FIG. 2. The four possible fusion outcomes of fusing ð2; 2; 0; 3Þ
with !2. The crosses denote the positions where the boxes were
added. Columns of height four are removed.
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have the same fusion rules as the c i’s, namely, c ðrÞ
i �

c ðrÞ
j ¼ c ðrÞ

iþjmodk. Their scaling dimension is �c i
¼ r

2 �
iðk�iÞ

k . By making use of the same operator product expan-

sion arguments as those presented in Refs. [4,25] (see also
[10]), one can show that the conformal correlator of N

operators c ðrÞ
1 ei�

ffiffiffiffiffiffi
r=k

p
ðzÞ (of dimension r=2), and a suitable

background charge, gives rise to the lowest degree sym-
metric polynomial which does not vanish when k particles
are brought at the same location but vanishes with power r
when kþ 1 particle positions coincide. One can also iden-
tify the generalization of the Zk ‘‘spin-field’’ operators,

namely,�ðrÞ
i ¼ �!i

, which have scaling dimensions��i
¼

iðk�iÞ½1�kðr�2Þ�
2kðkþrÞ . When these fields are combined with the

appropriate vertex operator, they can be thought of as

quasihole operators: VqhðwÞ ¼ �ðrÞ
1 ei�=

ffiffiffiffi
rk

p
ðwÞ. One can

show that these are the quasiholes with the smallest pos-
sible charge, such that the wave functions for the bosons
and quasiholes are analytic in the boson coordinates. It is in
fact these operators which generate, upon fusion, all of the
sectors of the suðrÞk states, which are in one-to-one corre-
spondence to the sectors of the ðk; rÞ states.

We will now argue that if one combines the Mkðkþ
1; kþ rÞ theory with the uð1Þrk chiral boson describing the
charge, one obtains the fusion rules of suðrÞk. This is a
consequence of rank-level duality [26]. In particular, the
modular S matrix of suðrÞk can be written in terms of the
modular Smatrices of suðkÞr and uð1Þrk [17], which relates
the fusion rules of suðkÞr and suðrÞk. We will demonstrate
this by considering the example of the Gaffnian, which is
described by the M2ð3; 5Þ theory [which, using the nota-
tion of [12], contains the fields 1, �, ’, and c , with
dimensions 0, �1=20, 1=5, and 3=4, respectively, and
which obey suð2Þ3 fusion rules]. This theory is to be
combined with the chiral boson uð1Þ6. The six particle
sectors of the full theory describing the Gaffnian are ob-
tained by first constructing the boson creation operator

c e3i�=
ffiffi
6

p
, which belongs to the identity sector, and the

smallest charged quasihole �ei�=
ffiffi
6

p
. By subsequently fus-

ing the quasihole, one obtains the six sectors of the theory,
which indeed satisfy suð3Þ2 fusion rules.

We note that the rank-level duality also occurs in the
Read-Rezayi states. The kþ 1 fields in the full theory obey
suð2Þk fusion rules, but the 1

2 kðkþ 1Þ fields of the associ-

ated Zk parafermion theory obey suðkÞ2 fusion rules.
In conclusion, we presented a simple picture of the

fusion rules of non-Abelian states in terms of the occupa-
tion numbers. Elementary domain walls between regular
patterns correspond to the fusion rules of elementary quasi-
holes. After having identified the fusion rules as those of
suðrÞk, we presented an explicit CFT construction (follow-
ing the conjecture in Ref. [19] and Ref. [10]) of the wave
functions, based on theMkðkþ 1; kþ rÞminimal models,
which are representations of theWk algebra. The described

method to obtain the fusion rules is general and can help
identifying the CFT, for instance, for the wave functions
considered in Ref. [27].
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