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Exact results for a Z3-clock-type model and some close relatives
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In this paper, we generalized the Peschel-Emery line of the interacting transverse field Ising model to a model
based on three-state clock variables. Along this line, the model has exactly degenerate ground states, which can
be written as product states. In addition, we present operators that transform these ground states into each other.
Such operators are also presented for the Peschel-Emery case. We numerically show that the generalized model
is gapped. Furthermore, we study the spin-S generalization of interacting Ising model and show that along a
Peschel-Emery line they also have degenerate ground states. We discuss some examples of excited states that
can be obtained exactly for all these models.
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I. INTRODUCTION

Kitaev’s work on Majorana bound states (MBS) [1] spurred
the current interest in zero modes in general. This resulted
in proposals to detect MBSs in nanowires [2,3], resulting in
several promising experiments [4–6], trying to observe these
zero modes, which if observed, could be used for (topological)
quantum information purposes [7].

From a theoretical point of view, one can divide zero modes
in two types [8]. A zero mode is weak, if it is only associated
with a degeneracy of the ground state, while a strong zero
mode implies that the whole spectrum is degenerate (up to
corrections that are exponentially small in the size of the
system). Zero modes of noninteracting systems are strong,
as for instance the MBSs of the noninteracting Kitaev chain.
Examples of interacting systems with a strong zero mode are
the XYZ chain [9] and the chiral three-state Potts model [10].
The zero-modes of the later model are interesting, because
they are closely related to parafermionic zero-modes, which
are more powerful in comparison to the MBS, and there are
proposals to realize parafermions [8,11,12].

In this paper we are interested in interacting systems, that
can be fine tuned such that they have an exact zero mode
for arbitrary system size, i.e., models which have an exact
degeneracy of the ground state. Generic excited states of these
models are not degenerate.

Famous examples of models with an exact zero mode are
the AKLT [13,14] and Majumdar-Ghosh (MG) spin chains
[15,16], as well as the interacting transverse field Ising model,
along the so-called Peschel-Emery (PE) line [17]. The com-
mon denominator of these models is that their ground states
are frustration free. These ground states minimize the energy
for each term in the Hamiltonian, even though these terms in
the Hamiltonian do not commute with one another. Obviously,
to achieve this, one has to fine tune the model. This is never-
theless a useful exercise, because for these fine tuned models,
one can often prove some results, such as the existence of a
gap, which is typically impossible for generic Hamiltonians.

We show that the PE line can be generalized to a model
build from three-state clock variables, such as the three state

Potts model, as considered by Peschel and Truong[18]. Along
this line, the three ground states are exactly degenerate, and
can be written as product states (which is not possible in
the AKLT and MG cases). In addition, we construct edge
operators, that permutes these ground states, all along this
line. We also construct such an operator for the PE line, which
was not known previously, and present some exact excited
states of these models. We show numerically that the model
has a gap. Finally, we introduce a spin-S generalization of the
PE line.

II. THE PESCHEL-EMERY LINE

The Hamiltonians we consider in this paper are all written
as a sum of two-body terms of a L-site chain,

H =
∑

j

hj,j+1, (1)

where the range of the sum depends on whether we consider
an open or closed chain. For the Ising model in a magnetic
field and pair interactions, Peschel and Emery [17] found that
if one parametrizes hj,j+1(l) as follows,

hPE
j,j+1(l) = −σx

j σ x
j+1 + h(l)

2

(
σ z

j + σ z
j+1

)
+U (l)σ z

j σ z
j+1 + [U (l) + 1], (2)

the model has two exactly degenerate ground states (with
zero energy), which can be written as product states. Here,
the σα are the Pauli matrices and U (l) = 1

2 [cosh(l) − 1],
h(l) = sinh(l) [we note that the sign of h(l) is immaterial]
and l � 0. The model is Z2 symmetric, with the parity given
by P = ∏L

j=1 σ z
j . In the open case, the magnetic field of the

boundary spins is half that of the bulk spins.
A direct way to obtain hPE

j,j+1 was given by Katsura et al.
[19]. For the two-site problem, one first demands that the
energy of the ground states in the even and odd sectors are
equal, fixing the form of h(l) and U (l). Then one combines
the two ground states to write them as product states. This
ensures that the ground states of a chain of arbitrary length L
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are frustration free and can be written as product states. For
both the open and periodic chain, they take the form

|ψ1(l)〉 = (|↑〉 + e
l
2 |↓〉)⊗L, |ψ2(l)〉 = (|↑〉 − e

l
2 |↓〉)⊗L.

We note that the energy per bond is ε(l) = 0, because of
the constant energy shift in Eq. (2). These product states
do not have definite parity, but orthonormal parity states are
constructed as

|E = 0; ±〉 = N±(l)(|ψ1(l)〉 ± |ψ2(l)〉), (3)

N±(l) = [2(1 + el )L ± 2(1 − el )L]−
1
2 . (4)

We label parity eigenstates by both the energy, and the parity
eigenvalue.

A. Completely local edge-modes

The fermionic incarnation of the model Eq. (2), obtained
after performing a Jordan-Wigner transformation [20], is the
Kitaev chain with a nearest-neighbor Hubbard term [19].
Along the PE line, this model is in the topological phase
[19,21], and has exact zero modes in the open case. For U = 0
and arbitrary h the fermionic model is quadratic and can be
solved exactly [22–24]. For |h| < 1 the model is topological
and hosts two, zero energy, Majorana bound states, localized
at the edges [1]. The presence of this zero mode implies
that the full spectrum is degenerate up to exponentially small
corrections in the system size. Generically, upon adding the
interaction term, one loses the degeneracy of the full spectrum
[25] but as long as one is in the topological phase, the ground
state remains degenerate. The system then has a weak zero
mode, that resides on the edges of the system, and maps the
degenerate ground states into each other [26].

We now construct edge operators that are completely
localized on the edges of the system, along the full PE
line, but it is insightful to first consider the free fermion
point l = 0. Using fermion language, such that we associated
to Majorana operators γA,j and γB,j to each site j , the
Majorana edge modes are completely localized on the first
and last sites for l = 0. In the spin language one of these
has a nonlocal string operator owing to the Jordan-Wigner
transformation,

γA,1 = σx
1 , γB,L = −iPσ x

L. (5)

These Majorana operators anticommute with P and in the
ground-state space {|E = 0; +〉, |E = 0; −〉}, they act as σx

and σy , respectively, for l = 0.
We want to generalize these operators to arbitrary l such

that they still permute the parity eigenstates and are normal-
ized (i.e., square to the identity). The edge operators that
satisfy these conditions are

A 1
2
(l) = e− l

2 σ+
1 + e

l
2 σ−

1 , (6)

B 1
2
(l) = −iP

(
e− l

2 σ+
L + e

l
2 σ−

L

)
, (7)

where σ± = 1
2 (σx ± iσ y ). They indeed act on the parity

eigenstates as follows,

A 1
2
|+〉 = N+

N−
|−〉, A 1

2
|−〉 = N−

N+
|+〉, (8)

B 1
2
|+〉 = i

N+
N−

|−〉, B 1
2
|−〉 = −i

N−
N+

|+〉, (9)

where |±〉 stand for |E = 0; ±〉 and we dropped the depen-
dence on l.

We note that despite the fact that A 1
2
(l)2 = B 1

2
(l)2 = 1,

{A 1
2
(l), B 1

2
(l)} = 0, and {A 1

2
(l), P } = {B 1

2
(l), P } = 0, these

are not Majorana operators for finite size systems, because
A

†
1
2
(l) �= A 1

2
(l) and B

†
1
2
(l) �= B 1

2
(l) for l �= 0. Since A

†
1
2
(l) and

B
†
1
2
(l) do not have a simple action on the ground state space,

it does not seem possible to use them to construct Majorana
operators with the desired action on the ground state space for
finite system sizes. Despite this, they do constitute an exact
zero-mode, all along the PE line.

However, in the thermodynamic limit we have

lim
L→∞

N+
N−

= 1, (10)

which means that A 1
2

and B 1
2

acts as σx and σy , respectively,
in the ground-state manifold. Therefore, in this limit, they are
Majorana fermions indeed, provided one uses the fermionic
incarnation of the model. This also shows, as is well known,
that in the fermionic version of the model, the PE line lies
within the topological phase of the model.

We point out that the operators A 1
2

and B 1
2
, which are

defined on site one and site L in Eqs. (6) and (7), respectively,
could have been defined on arbitrary sites, because the ground
states are product states. However, if one uses the Jordan-
Wigner transformation [see Eq. (13) below] to write the model
in its fermionic incarnation, only the operators A 1

2
and B 1

2

of Eqs. (6) and (7) become Majorana fermions, which are
localized at the left and right edge, respectively. The operators
in the bulk would have tails either to the left or to the right.

As it has been pointed out by Alexandradinata et al. [26],
to study topological order in the ground-state manifold weak
zero modes are sufficient. These zero modes capture the
necessary algebra and act on the ground-state manifold as re-
quired. Therefore, when they are present, one can understand
the degeneracy in the ground-state manifold and use them to
perform the calculation which is needed in the practical setups
like T-junctions for braiding.

We should remark that exact Majorana operators can be
constructed along the PE line [19]. They are exponentially
localized at the edges, and take the following form:

�L = 1√∑L−1
j=0 q2j

L∑
j=1

q (j−1)γA,j , (11)

�R = 1√∑L−1
j=0 q2j

L∑
j=1

q (L−j )γB,j , (12)

where q = − tanh(l/2). For completeness, we state the ex-
plicit form of the Majorna operators γA,j and γB,j in terms of
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the spin operators,

γA,j =
⎛
⎝∏

k<j

σ z
k

⎞
⎠σx

j , γB,j =
⎛
⎝∏

k<j

σ z
k

⎞
⎠σ

y

j . (13)

B. Exact excited states

The Majumdar-Ghosh [15,16] and AKLT [13,14] chains,
which have frustration-free ground states, also have excited
states that can be obtained exactly for finite system size; see
Refs. [27] and [28,29], respectively. Along the PE line, one
can also obtain exact excited states, in the case with PBC
and an even number of sites. We start with the eigenstates of
hj,j+1(l),

|g+〉 = | ↑↑〉 + el| ↓↓〉 |g−〉 = el/2(| ↑↓〉 + | ↓↑〉), (14)

|e+〉 = el| ↑↑〉 − | ↓↓〉 |e−〉 = el/2(| ↑↓〉 − | ↓↑〉), (15)

where the ground states g± of both parity sectors have energy
0, while e− and e+ have energy 2 and 2 + U (l), respectively.
For simplicity, we dropped the dependence on l. For a system
with an even number of sites, i.e., L = 2N , the ground states
Eq. (3) can be written as

|E = 0; ±〉 = 2N±
∑

i1···iN=±
gi1gi2 . . . giN−1giN , (16)

where the sum is over all 2N−1 configurations ij = ±, with
fixed overall parity. Both these parity ground states have
momentum K = 0, despite the fact that the expression has
a two-site block structure. Some exact excited states can be
obtained by exchanging a ground state block g by an excited
state block e±, and summing over all positions for this block.
This can be achieved by using the operators

O−
j = σ z

2j−1 − σ z
2j , O+

j = σ+
2j−1σ

+
2j − σ−

2j−1σ
−
2j , (17)

which act as (focussing on the case with two sites)

O−|g−〉 = 2|e−〉 O−|g+〉 = 0, (18)

O+|g+〉 = |e+〉 O+|g−〉 = 0. (19)

Two parity eigenstates with E = 4 can be written as

|E = 4,±〉 =
N∑

j=1

O−
j |E = 0; ±〉

= 4N±
N∑

j=1

∑
i1···iN=±

gi1 · · · gij−1e−gij+1 · · · giN , (20)

where ij = − is fixed in the second sum. These states auto-
matically have momentum K = π . Exchanging the block e−
by e+ gives two excited states with energy E = 4 + 4U (l).
One starts with

|�,±〉 =
N∑

j=1

O+
j |E = 0; ±〉

= 2N±
∑

i1···iN=±
gi1 · · · gij−1e+gij+1 · · · giN ,

and constructs K = π states as follows:

|E = 4 + 4U (l),±〉 = |�,±〉 − T |�,±〉, (21)

where T translates the system by one site. Finally, by intro-
ducing both one e− block and one e+ block results in the states
|� ′,±〉,

|� ′,±〉 =
N∑

j=1

O+
j |E = 4; ±〉.

From these, one obtains two K = 0 states with energy E =
8 + 4U (l),

|E = 8 + 4U (l),±〉 = |� ′,±〉 + T |� ′,±〉. (22)

In Appendix A, we prove that the states |E = 4; ±〉 are indeed
exact excited states of the Hamiltonian. The proof for the other
states works in a similar way.

III. THE THREE-STATE CLOCK MODEL

The construction of the PE line can be generalized to
three-state clock or Potts-type models [18]. The Hamiltonian
of the three-state clock model, which is a generalization of the
transverse field Ising model, is

H = −
L−1∑
j=1

(X†
jXj+1 + H.c.) −

L∑
j=1

(f Z
†
j + H.c.). (23)

To each site, one associates a three-dimensional Hilbert
space, |n〉 with n = 0, 1, 2 taken modulo 3. The clock op-
erators Z and X act as Z|n〉 = ωn|n〉 with ω = exp(i 2π

3 )
and X|n〉 = |n − 1〉. These operators satisfy X3 = Z3 = 1,
X2 = X†, Z2 = Z†, and XZ = ωZX. Although this model
is not solvable, in general, it is known that for |f | < 1 this
model has three degenerate ground states (a weak zero mode
[10]), while for |f | > 1 it shows a paramagnetic behavior; the
behavior of the critical point at f = 1 is described by the Z3

parafermion CFT, see Ref. [30].
The clock model Hamiltonian commutes with the par-

ity operator which is now defined as P = ∏L
j=1 Z, hence

Hamiltonian is Z3 symmetric. Therefore, states can be labeled
with their parity eigenvalue, P = ωQ, in which Q could be
0, 1 or 2 since P 3 = 1. The phase diagram of this model
and in particular its chiral generalization [31] was recently
investigated [10,32]; in particular, the presence and stability
of parafermionic zero modes was studied. There is consensus
that the chiral Potts model hosts a strong Parafermionic zero
mode at θ = π/6, but the nature of the zero mode at generic
angles is under debate [32,33].

Apart from the integrable points of the model [34], the
clock model has not been solved. Recently, Iemini et al. [35]
found a generalization of the model for which the ground
state is exactly three-fold degenerate along a specific line;
moreover, these ground states have a matrix-product form
which becomes simple in terms of Fock parafermions [36].
Here, we consider a generalization of the Potts model with
fine-tuned couplings, such that the ground states can be writ-
ten as a product state, in direct analogy with the PE line for
the spin-1/2 case.
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A. Construction of the generalized Potts model

We use the method [19] that we outlined in the previous
section. One first needs to establish which terms to add
to the Hamiltonian Eq. (23), in analogy to the Hubbard-U
term present in Eq. (2). It turns out that one needs both the
terms ZjZj+1 and ZjZ

†
j+1. With these terms, we consider the

following two-site Hamiltonian in Eq. (1),

h
Z3
j,j+1(r ) = [−X

†
jXj+1 − f (r )(Zj + Zj+1) − g1(r )ZjZj+1

− g2(r )ZjZ
†
j+1 + H.c.] + ε(r ), (24)

where ε(r ) = 2(1 + r + r2)2/(9r2). We find that the the fol-
lowing parameters are required to construct a PE line:

f (r ) = (1 + 2r )(1 − r3)/(9r2), (25)

g1(r ) = −2(1 − r )2(1 + r + r2)/(9r2), (26)

g2(r ) = (1 − r )2(1 − 2r − 2r2)/(9r2), (27)

where r > 0 and r = 1 corresponds to the noninteracting
model, see also Ref. [37]. Note that as for the PE line, the
“magnetic field” term is half as strong on the boundary sites
in comparison to the bulk sites. This model has three exactly
degenerate ground states with zero energy, the latter due to
the explicit energy shift ε(r ). These ground states can, by
construction, be written as product states that take the form

|G0(r )〉 = (|0〉 + r|1〉 + r|2〉)⊗L, (28)

|G1(r )〉 = (|0〉 + rω|1〉 + rω̄|2〉)⊗L, (29)

|G2(r )〉 = (|0〉 + rω̄|1〉 + rω|2〉)⊗L. (30)

These product states can be combined to form orthonormal
parity eigenstates,

|E = 0; 1〉 = N1(|G0(r )〉 + |G1(r )〉 + |G2(r )〉),

|E = 0; ω〉 = Nω(|G0(r )〉 + ω̄|G1(r )〉 + ω|G2(r )〉), (31)

|E = 0; ω̄〉 = Nω̄(|G0(r )〉 + ω|G1(r )〉 + ω̄|G2(r )〉), (32)

where

N1 = [3(1 + 2r2)L + 6(1 − r2)L]−
1
2 , (33)

Nω,ω̄ = [3(1 + 2r2)L − 3(1 − r2)L]−
1
2 . (34)

These states are labeled by their energy and their “parity”
eigenvalue of P .

B. Completely local edge modes

As was the case for the PE line of the spin-1/2 model,
one can explicitly construct edge operators for the open
chain. For r = 1, the couplings f, g1, g2 are zero and we
are left with h

Z3
j,j+1(1) = −XjX

†
j+1 + H.c. To find the zero-

mode operators in this limit, one uses the Fradkin-Kadanoff
transformation [38] to transform the clock degrees of freedom

to parafermions ηA,j and ηB,j ,

ηA,j =
⎛
⎝∏

k<j

Zk

⎞
⎠Xj,ηB,j = ω

⎛
⎝∏

k<j

Zk

⎞
⎠XjZj . (35)

These operators satisfy

η3
A,j = η3

B,j = 1, (36)

η2
x,j = η

†
x,j , (37)

ηx,j ηx ′,j ′ = ωsgn(j ′−j )ηx ′,j ′ηx,j if j �= j ′, (38)

ηA,jηB,j = ωηB,jηAj
, (39)

where x, x ′ are A or B. One finds that the Hamiltonian does
not depend on two of the parafermions [10], namely,

ηA,1 = X1, ηB,L = ω̄PXL. (40)

These operators obey the parafermion algebra, η3
A,1 = η3

B,L =
1 and ηA,1ηB,L = ωηB,LηA,1. To find edge modes for arbitrary
r , we first note that ηA,1 and ηB,L act on the ground-state
space {|E = 0; 1〉, |E = 0; ω〉, |E = 0; ω̄〉} (with r = 1) as X

and ω̄ZX. To generalize these operators to arbitrary r , it is
useful to consider the generalization of the ladder operators
for SU (2) spins, namely,

�0 = X

3
(1 + Z + Z†), (41)

�1 = X

3
(1 + ω̄Z + ωZ†), (42)

�2 = X

3
(1 + ωZ + ω̄Z†). (43)

One checks that �0|0〉 = |2〉, �1|1〉 = |0〉 and �2|2〉 = |1〉,
while all the other matrix elements are zero.

The edge operators that act in the same way as ηA,1 and
ηB,L for arbitrary r can be written in terms of the �α’s as

AZ3 (r ) = 1

r
�1

1 + �2
1 + r�0

1 , (44)

BZ3 (r ) = ω̄P

(
1

r
�1

L + �2
L + r�0

L

)
. (45)

One can check that

AZ3 |1〉 = N1

Nω̄

|ω̄〉, AZ3 |ω〉 = Nω

N1
|1〉, AZ3 |ω̄〉 = |ω〉, (46)

BZ3 |1〉 = ω
N1

Nω̄

|ω̄〉, BZ3 |ω〉 = ω̄
Nω

N1
|1〉, BZ3 |ω̄〉 = |ω〉,

(47)

where |1, ω, ω̄〉 stand for |E = 0; 1, ω, ω̄〉. Although these op-
erators obey the relations (AZ3 )3 = (BZ3 )3 = 1 and AZ3BZ3 =
ωBZ3AZ3 , they are not parafermions, because for instance
A

†
Z3

�= (AZ3 )2, and likewise for BZ3 . The situation we en-
counter here is analogous to the spin-1/2 PE line. If one tries
to construct completely local parafermion operators, one finds
that one of the necessary relations is not satisfied. Despite
that, the operators AZ3 (r ) and BZ3 (r ) are exact zero modes.
However, it is worthwhile to mention that as in the Z2 case,
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in the thermodynamic limit the ratio Nω

N1
approaches 1 and we

obtain weak parafermionic zero modes.
The operators AZ3 (r ) and BZ3 (r ), Eqs. (44) and (45), are

defined on the first and last site, respectively. As was the
case for the spin-1/2 EP-line, these operators could have been
defined on any site, without changing the way they permute
the different ground states. However, if one uses the Fradkin-
Kadanoff transformation [38], Eq. (35), only the operators
Eqs. (44) and (45) become local parafermion operators. In
Sec. III D below, we numerically show that the model Eq. (24)
has a gap between the three-fold degenerate ground states and
the excited states. Together this implies that that model, in its
parafermionic representation, lies within a topological phase
for finite values of the parameter r .

In the spin-1/2 case, it was possible to construct exponen-
tially localized Majorana operators, that do satisfy the correct
algebra for arbitrary finite system size. It is tempting to try to
do the same thing for the current Z3 case. It turns out that
this is hard. Even constructing parafermion operators for a
system with only two sites is much harder than it looks at
first sight. In Appendix B, we construct the most general,
two-site parafermion operator, that satisfies all the required
properties. Given the complexity of the two-site problem, we
do not discuss longer chains.

C. Exact excited states

As was the case for the spin-1/2 PE line, one can construct
exact excited states in case of a system with an even number
of sites L = 2N with periodic boundary conditions. We write
the ground state and two excited states of h

Z3
j,j+1 explicitly,

because they are the building blocks of our construction,

|g1〉 = |00〉 + r2|12〉 + r2|21〉, (48)

|gω〉 = r2|22〉 + r|01〉 + r|10〉, (49)

|gω̄〉 = r2|11〉 + r|02〉 + r|20〉, (50)

|eω〉 = 3r (|01〉 − |10〉), (51)

|eω̄〉 = 3r (|02〉 − |20〉), (52)

where g1,ω,ω̄ have energy 0 and eω,ω̄ have energy 2 + r . The
excited states are obtained by acting with the operator O =
Z1 − Z2 + H.c. on the ground states, namely,

O|g1〉 = 0, O|gω〉 = |eω〉, O|gω̄〉 = |eω̄〉. (53)

We can rewrite the three ground states in terms of these
blocks,

|E = 0; 1, ω, ω̄〉 = 3N1,ω,ω̄

∑
i1···iN=1,ω,ω̄

gi1gi2 . . . giN−1giN ,

(54)

where the sum is over all 3N−1 configurations with ij =
1, ω, ω̄, and fixed overall “parity.” There are three exact
excited state with energy �E = 2(2 + r ) and momentum
K = π along, which can be constructed by acting with the

operator Otot = ∑N
j=1 Z2j−1 − Z2j + H.c.,

|E = 2(r + 2); ω, ω̄〉

=
N∑

j=1

(Z2j−1 − Z2j + H.c.)|E = 0; 1, ω, ω̄〉. (55)

Effectively, the operator replaces one of “gi-blocks” by an “ei-
block” with the same parity ω or ω̄, and summing over the
possible positions of these blocks.

D. Numerical results

In this section we present our numerical study of the model,
in particular we study the energy gap using DMRG [39,40],
making use of the ALPS libraries [41–43]. From this study,
we conclude that the Z3 model, Eq. (24), is gapped, in analogy
to the Z2 case.

Since the first three states are degenerate with zero energy,
we need to determine the energy of the lowest four eigen-
states. Even though this is quite demanding, we were able
to do so using ALPS. We performed DMRG calculations to
find the gap of the Z3 model, Eq. (24), for L = 100 sites
with open (free) boundary conditions. We keep up to χ = 100
states in the Schmidt decomposition provided their Schmidt
eigenvalues are all larger than 10−10 and we perform three
sweeps. To check convergence, we also considered χ = 200
and found that the energies were within the current numerical
errors. Based on our numerical results, the first three states
have energy of the order 10−10, which shows that the energy
for these (exactly) zero energy states is well converged. We
obtained the energy gap �, i.e., the gap to the fourth eigen-
state, with an error of the order of 10−4. The finite size gap for
L = 100 is presented in Fig. 1, for 1.00 � r � 3.00.

To establish the existence of a gap in the thermodynamic
limit, we study the size dependence of the gap. The exact
solution for the (noninteracting) transverse field Ising model
shows that the finite size gap converges to its thermodynamic
value as L−2 in the ordered phase. We checked that for the

FIG. 1. The bulk gap of the model in Eq. (24) as a function of r .
We performed DMRG for L = 100.
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FIG. 2. The bulk gap of the model in Eq. (24) as a function of
r . We performed DMRG for L = 100. We plot data and the curve
�(L) = 3.236L−1.751 + 1.1706. The error for each gap point is 10−4.

PE line the gap saturates to its thermodynamic value as L−α

where α is very close to 2.
We numerically determined the gap along the Z3 line for

different system sizes up to L = 100. We fitted a power-law
function, �(L) = aL−b + �∞ (in analogy with the Z2 case).
The data and the fitted curve for r = 2.0 are presented in
Fig. 2. The gap decays as L−1.75 to its thermodynamic value
�∞ = 1.171. Recent results on the gap of frustration-free
models show that if the gap decays to a finite value faster than
L−3/2, the model is gapped [44], including our model Eq. (24).

As we mentioned above, the error in the energy is of the
order 10−4 in our calculation. The difference between the gap
for L = 90 and L = 100 is 2 × 10−4, which shows that the
energy has basically converged to its final value within our
precision. We also checked that the gap converges to a finite
nonzero value with the same behavior and b ≈ 1.75 in the
range 1.00 < r < 3.00.

We numerically found that the gap decreases as r increases,
in analogy to the PE line. As it was pointed out in the previous
studies [45], in the large l limit of the PE line, where the U and
h couplings dominate the Hamiltonian, the PE line reaches a
multicritical point. At this point the ground-state degeneracy
grows exponentially with the system size. To see this, follow-
ing Ref. [45], we rewrite hPE

j,j+1(l) for large l,

lim
l→∞

hPE
j,j+1(l) = el

4

(
σ z

j + 1
)(

σ z
j+1 + 1

)
. (56)

For this Hamiltonian any state which does not have two
adjacent spins in the +z direction is a ground state, explaining
the exponential degeneracy of the ground state with system
size.

The same thing happens along the Z3 line. In the large r

limit we can rewrite the Hamiltonian as

lim
r→∞ h

Z3
j,j+1(r ) = 2

9
r2(1 + Zj + Z

†
j )(1 + Zj+1 + Z

†
j+1).

(57)

Similar to the PE line in this limit any state which does not
have two adjacent “spins” in the n = 0 state, is a ground state.
Therefore, we conclude that our model has a multicritical
point for r → ∞.

IV. SPIN-S PESCHEL-EMERY LINE

We study the spin-S generalization of the PE line, which
has been investigated previously [45–48]. Here we present the
exact ground states, which again are product states, as well
as exact, local edge modes and two exact excited states. The
Hamiltonian for this model is

hS−PE
j,j+1 = − Sx

j Sx
j+1 + h(l)

2
S
(
Sz

j + Sz
j+1

)
+ U (l)Sz

jS
z
j+1 + S2(U (l) + 1), (58)

in which Sα are spin-S operators of SU (2). The parameters
U (l) = 1

2 [cosh(l) − 1] and h(l) = sinh(l), are the same as the
PE line couplings in Eq. (2). We note that in the S = 1/2
case, the Hamiltonian Eq. (58) is 1

4 times hPE
j,j+1 [see Eq. (2)],

which is written in terms of Pauli operators instead of spin-1/2
operators.

The Hamiltonian Eq. (58) commutes with the “parity” of
the magnetization, PM = ∏L

j=1 eiπ (S−Sz
j ), because the opera-

tors Sx
j Sx

j+1 either change the magnetization by two units, or
leave it unchanged.

The model has two exactly degenerate ground states for
arbitrary l, which can be written as product states, similar to
the Z2 and Z3-clock model cases. These two ground states are

|ψS,1(l)〉 = (eαS− |S〉z)⊗L |ψS,2(l)〉 = (e−αS− |S〉z)⊗L,

(59)

where α = exp( l
2 ) and |S〉z is the Sz = S eigenstate, i.e.,

Sz|S〉z = S|S〉z. The states |ψS,1(l)〉 and |ψS,2(l)〉 are not
parity eigenstates, but these can be constructed as

|E = 0; ±〉 = (|ψS,1(l)〉 ± |ψS,2(l)〉)/2. (60)

As in the previous cases, these states are exact ground states
for both the open and periodic chains, with the energy per
bond given by εS (l) = 0.

Following the Z2 case we can define local edge operators,

AS (l) = 1

2S

(
1

α
S+

1 + αS−
1

)
, (61)

BS (l) = − i

2S
PM

(
1

α
S+

L + αS−
L

)
. (62)

For S = 1/2, these operators reduce to A 1
2
(l) and B 1

2
(l) in

Eq. (7). They act like Sz and −Sy on the ground states
{|ψS,1(l)〉, |ψS,2(l)〉}.

In the case of periodic boundary conditions, it is possible to
write exact excited states of the model Eq. (58). These excited
states are constructed from the ground states of the model with
two sites as before. The ground states |g±〉 with parities PM =
±1 of the two site model are obtained by acting on |S, S〉 as

|g±〉 = [eα(S−
1 +S−

2 ) ± e−α(S−
1 +S−

2 )]|S, S〉. (63)
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There are two parity eigenstates |e±〉 with energy E = S,
which can be obtained from the ground states

|e±〉 = (
Sz

1 − Sz
2

)|g±〉. (64)

We note that we assumed that S > 1/2 here, because for S =
1/2, we have (Sz

1 − Sz
2 )|g+〉 = 0, in agreement with results for

the Z2 case discussed above.
To find the two exact excited states of the system with

length L = 2N , we first rewrite the ground states of the L =
2N site chain in terms of the g±, similar to Eq. (16),

|E = 0; ±〉 =
∑

i1···iN=±
gi1gi2 . . . giN−1giN , (65)

where the sum is again over all 2N−1 configurations ij = ±,
with fixed total parity of the magnetization. These states are
ground states for both the open and periodic cases, with
momentum K = 0. From these K = 0 states, one obtains
K = π , parity eigenstates with energy E = 2S, by replacing
the one of “gi-blocks” by an “ei-block” with the same parity,
and summing over the position, again in analogy with the
spin-1/2 case,

|E = 2S; ±〉 =
N∑

j=1

(
Sz

2j−1 − Sz
2j

)|E = 0; ±〉. (66)

V. DISCUSSION

We considered one-dimensional models for which the
ground states and a few excited states can be obtained analyt-
ically. These models are inspired by the Peschel-Emery line
[17], of the interacting transverse field Ising model (or, in its
fermionic incarnation, Kitaev’s Majorana chain in the pres-
ence of a Hubbard interaction). In particular, we constructed
a direct analog of the PE line, starting from the three-state
clock/Potts model, by introducing two types of additional
interaction terms.

For the resulting one-parameter family of models, the
threefold degenerate ground states can be written in product
form. In addition, we found a triple of excited states that can
be obtained analytically. More importantly, we constructed
completely local operators, that permute the parity ground
states. These operators almost satisfy the parafermion rela-
tions, the only requirement missing is that they are not unitary.
Although we believe it should be possible to construct (expo-
nentially) localized parafermion operators, we only succeeded
in constructing these for the two-site problem, where they
already are quite complicated.

The model studied in this paper behaves in close analogy to
the model considered recently by Iemini et al. [35]. It would
be interesting to see if both models can be obtained from a
more general model. For instance, it is interesting to note [49]
that the construction of the local operators that permute the
ground states can be extended to the model of Ref. [35].

In addition to the results for the three-state clock-type
models, we also considered an arbitrary spin-S version of the
Peschel-Emery line.

There has been a lot of interest in clock/Potts-type models
recently, both the chiral as well as the nonchiral versions. It
was only rather recently that the phase-diagram of the chiral

three-state Potts model has been investigated in detail [31].
The additional “interaction” terms that we needed to consider,
namely ZjZj+1 + H.c. and ZjZ

†
j+1 + H.c. have not attracted

much attention yet, but they were considered before [50,51] in
somewhat different contexts. Investigating the phase diagram
of the more general model,

H =
∑

j

−XjX
†
j+1 + f Zj + gZjZj+1 + g′ZjZ

†
j+1 + H.c.

would be very interesting, both in the chiral as well as the
nonchiral case [52]. Finally, it would be interesting to investi-
gate the relation with parafermionic topological phases, which
have attracted quite some attention during the recent years; see
for instance, Refs. [32,53,54].

The interacting transverse field Ising model, Eq. (2), for
general h and U , is related to the axial next-nearest neighbour
Ising (ANNNI) model, whose phase diagram has been studied
thoroughly [55]. Those studies are related to the large s limit
of the PE line and its dual version. The phase diagram of
ANNNI model is quite rich and has, for instance, an incom-
mensurate phase. As we showed in Sec. III D, the large l limit
of the Z3 line also has a multicritical point. In this light, it
would be interesting to study the phase diagram of Z3 model
and its dual.
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APPENDIX A: EXACT EXCITED STATES
ALONG THE PE-LINE

In this Appendix, we prove that the states Eq. (20), |E =
4,±〉, are indeed exact excited states of the Peschel-Emery
Hamiltonian for the case with periodic boundary conditions
and an even number of sites, L = 2N . We recall that

|E = 4,±〉 = O−
tot|E = 0; ±〉

= 4N±
N∑

j=1

∑
i1···iN=±

gi1 · · · gij−1e−gij+1 · · · giN ,

where we introduced the notation O−
tot = ∑N

j=1 O−
j . We then

have that

H |E = 4,±〉 = HO−
tot|E = 0,±〉

= O−
totH |E = 0,±〉 + [H,O−

tot]|E = 0,±〉
= [H,O−

tot]|E = 0,±〉.
It is straightforward to evaluate the commutator

[H,O−
tot] = − 2i

( + σx
1 σ

y

2 − σ
y

1 σx
2

− σx
2 σ

y

3 + σ
y

2 σx
3

...

− σx
Lσ

y

1 + σ
y

Lσ x
1

)
.
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To find the action of the commutator on the ground state, we
need to know

−2i
(
σx

1 σ
y

2 − σ
y

1 σx
2

)| ↑↑〉 = 0,

−2i
(
σx

1 σ
y

2 − σ
y

1 σx
2

)| ↓↓〉 = 0,

−2i
(
σx

1 σ
y

2 − σ
y

1 σx
2

)| ↑↓〉 = −4| ↓↑〉,
−2i

(
σx

1 σ
y

2 − σ
y

1 σx
2

)| ↓↑〉 = 4| ↑↓〉,
resulting in

−2i
(
σx

1 σ
y

2 − σ
y

1 σx
2

)|g+〉 = 0,

−2i
(
σx

1 σ
y

2 − σ
y

1 σx
2

)|g−〉 = 4|e−〉.
This in turn means that

H |E = 4,±〉 = 8N±(1 − T )

×
N∑

j=1

∑
i1···iN=±

gi1 · · · gij−1e−gij+1 · · · giN ,

where T is the operator that translates the system by one site
and we do not sum over ij . Because

N∑
j=1

∑
i1···iN=±

gi1 · · · gij−1e−gij+1 · · · giN

is a state with momentum K = π , as can be verified directly,
it follows that

H |E = 4,±〉 = 4|E = 4,±〉, (A1)

which we wanted to show. That the other states given in the
main text also are exact excited states can be verified in a
similar manner.

APPENDIX B: TWO-SITE PARAFERMION OPERATOR

In this Appendix, we construct the most general
parafermion operator that permutes the three parity ground
states Eq. (31) of the model Eq. (24), for arbitrary
parameter r > 0. We write this operator in the basis
{|00〉, |01〉, |02〉, |10〉, . . . , |22〉}. The operator O(r ) we are
after should change the sectors as

O(r )|E = 0; 1〉 = |E = 0; ω̄〉,
O(r )|E = 0; ω〉 = |E = 0; 1〉, (B1)

O(r )|E = 0; ω̄〉 = |E = 0; ω〉,
which is how X1 acts in the case r = 1. This means that O(r )
should consist of operators of the form X1, X2, X

†
1X

†
2, Z1X1,

etc. In total, there are 27 such operators. Alternatively, there
are 27 nonzero entries in the matrix representation of O(r ).
We present the operator in terms of the latter. A convenient
labeling turns out to be

O(r ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b2;3 0 b1;3 0 0 0 0 b3;3

0 0 c1;2 0 c3;2 0 c2;2 0 0
a3;1 0 0 0 0 a2;1 0 a1;1 0
0 0 c1;1 0 c3;1 0 c2;1 0 0

a3;3 0 0 0 0 a2;3 0 a1;3 0
0 b2;2 0 b1;2 0 0 0 0 b3;2

a3;2 0 0 0 0 a2;2 0 a1;2 0
0 b2;1 0 b1;1 0 0 0 0 b3;1

0 0 c1;3 0 c3;3 0 c2;3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

Because it is possible in the Z2 case to write the corresponding operator using real parameters, we make the same assumption
here. Apart from the conditions Eq. (B1), the operator O should satisfy O(r )† = O(r ) and O(r )3 = 1. The former condition
means that the parameters ai;j , bi;j and ci;j form three sets of three orthonormal vectors. So if �a1 = (a1;1, a1;2, a1;3)T etc., we
have �aT

i · �aj = δi,j and similar for the other two sets. Each of these three sets is constrained by one of the equations in Eq. (B1).
In particular, the vectors lie on the intersection of a sphere and a plane; for each set of orthonormal vectors, there are two such
planes. The structure of the constraints Eq. (B1) is such that their is a solution. In fact, for each set of orthonormal vectors,
the solution is parametrized by an angle. Explicitly, these solutions take the form (using the parameters c = √

1 + 2r4 and
d = √

2r2 + r4)

a1;1 = 2r3 + (cd + r2) cos(φ1) + (−d + cr2) sin(φ1)

2cd
, a1;2 = 2r3 + (−cd + r2) cos(φ1) + (d + cr2) sin(φ1)

2cd
,

a1;3 = − r[−r3 + cos(φ1) + c sin(φ1)]

cd
, a2;1 = 2r3 + (−cd + r2) cos(φ1) − (d + cr2) sin(φ1)

2cd
,

a2;2 = 2r3 + (cd + r2) cos(φ1) + (d − cr2) sin(φ1)

2cd
, a2;3 = r[r3 − cos(φ1) + c sin(φ1)]

cd
,

a3;1 = r[1 − r3 cos(φ1) + dr sin(φ1)]

cd
, a3;2 = − r[−1 + r3 cos(φ1) + dr sin(φ1)]

cd
,

a3;3 = r2[1 + 2r cos(φ1)]

cd
, b1;1 = 2r3 + (cd + r2) cos(φ2) + (d − cr2) sin(φ2)

2cd
,
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b1;2 = 2r3 + (−cd + r2) cos(φ2) + (d + cr2) sin(φ2)

2cd
, b1;3 = − r[−1 + r3 cos(φ2) + dr sin(φ2)]

cd
,

b2;1 = 2r3 + (−cd + r2) cos(φ2) − (d + cr2) sin(φ2)

2cd
, b2;2 = 2r3 + (cd + r2) cos(φ2) + (−d + cr2) sin(φ2)

2cd
,

b2;3 = r[1 − r3 cos(φ2) + dr sin(φ2)]

cd
, b3;1 = r[r3 − cos(φ2) + c sin(φ2)]

cd
,

b3;2 = − r[−r3 + cos(φ2) + c sin(φ2)]

cd
, b3;3 = r2[1 + 2r cos(φ2)]

cd
,

c1;1 = r2[1 + (1 + r2) cos(φ3)]

d2
, c1;2 = r2[1 − cos(φ3) + d sin(φ3)]

d2
, c1;3 = r[r2 − r2 cos(φ3) − d sin(φ3)]

d2
,

c2;1 = − r2[−1 + cos(φ3) + d sin(φ3)]

d2
, c2;2 = r2[1 + (1 + r2) cos(φ3)]

d2
,

c2;3 = r[r2 − r2 cos(φ3) + d sin(φ3)]

d2
, c3;1 = r[r2 − r2 cos(φ3) + d sin(φ3)]

d2
,

c3;2 = r[r2 − r2 cos(φ3) − d sin(φ3)]

d2
, c3;3 = r2[r2 + 2 cos(φ3)]

d2
.

Finally, the condition O(r )3 = 1 leads to the constraint that φ1 + φ2 + φ3 = 0. This leaves a two-parameter family of
solutions for the operator O(r ). There are three rather special solutions, namely φ1 = φ2 = φ3 = −2π/3, 0, 2π/3. In the limit
r = 1, when the model reduces to h

Z3
j,j+1 = [−XjX

†
j+1 + H.c.] + 2, the operator O(1) becomes X1, X

†
1X

†
2, X2 in these three

cases, respectively. One could hope that the form of O(r ) in the two cases φ1 = φ2 = φ3 = ±2π/3 would give a hint for the
possible form of two parafermion operators that are exponentially localized at the edges in the case of longer chains. However,
the already rather complicated form of this operator in the two-site case makes it hard to guess the general form for larger system
sizes.
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