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A one-dimensional time-reversal-symmetric topological superconductor (symmetry class DIII) features a
single Kramers pair of Majorana bound states at each of its ends. These holographic quasiparticles are non-Abelian
anyons that obey Ising-type braiding statistics. In the special case where an additional U (1) spin rotation symmetry
is present, this state can be understood as two copies of a Majorana wire in symmetry class D, one copy for
each spin block. We present a manifestly gauge invariant construction of the topological invariant for the generic
case, i.e., in the absence of any additional symmetries like spin rotation symmetry. Furthermore, we show how
the presence of inversion symmetry simplifies the calculation of the topological invariant. The proposed scheme
is suitable for the classification of both interacting and disordered systems and allows for a straightforward
numerical evaluation of the invariant since it does not rely on fixing a continuous phase relation between Bloch
functions. Finally, we apply our method to compute the topological phase diagram of a Rashba wire with
competing s-wave and p-wave superconducting pairing terms.
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I. INTRODUCTION

Triggered by the discovery of the one-dimensional topo-
logical superconductor (1DTSC) by Kitaev in 2001,1 one-
dimensional topologically nontrivial proximity induced su-
perconductors have received enormous attention in recent
years.2–5 The theoretical prediction of the 1DTSC phase in
nanowires coupled to a conventional superconductor6,7 has
paved the way for first experimental signatures of Majorana
bound states (MBS) in condensed matter physics.8–10 The
non-Abelian statistics of these exotic quasiparticles have been
theoretically demonstrated11 with the help of T junctions of
wires.

While nonsymmetry-protected topological superconduc-
tors (TSC)s belong to the symmetry class D (Ref. 12), there are
also time-reversal symmetry (TRS) protected TSCs in symme-
try class DIII in one, two, and three spatial dimensions.13–15

Due to Kramers’ theorem, the TRS preserving 1DTSC features
a Kramers pair of spinful MBS at each of its ends, as depicted
schematically in Fig. 1. Generically, pairs of MBS are topo-
logically equivalent to ordinary fermions. Hence, one might at
first glance expect that these end states obey ordinary fermionic
braiding statistics. However, it has recently been shown16 that
this is not the case for single Kramers pairs of MBS: As
long as TRS is preserved each of the MBS Kramers partners
obeys Ising anyonic statistics independently. Several authors
have recently proposed realizations of the TRS preserving
1DTSC in class DIII17–19 (see also Ref. 20). Given the fact that
Ising anyons like MBS do not allow for universal topological
quantum computing per se,21 the additional Kramers (spin)
degree of freedom might be considered helpful for quantum
information processing architectures based on MBS.

By taking a look into the periodic table of topological states
of matter,14,22,23 we infer that a Z2 invariant can be assigned
to the symmetry class DIII in one dimension. Here, we are
concerned both with the physical meaning and the practical
calculation of the value of this invariant ν = ±1. In the pres-
ence of an additional U (1) spin rotation symmetry that fixes a

global spin quantization axis, the TRS preserving 1DTSC can
be understood as two copies of the nonsymmetry-protected
1DTSC, each copy representing one spin projection. In this
special case, the calculation of ν boils down to the calculation
of Kitaev’s Pfaffian invariant1 for one of the spin blocks. In
the generic case without additional symmetries, the situation
becomes more complicated. The calculation of ν as originally
proposed in Ref. 23 then involves a twofold dimensional
extension to connect the system to its parent state, the three-
dimensional (3D) TSC in class DIII. Such a calculation can
be pretty cumbersome to evaluate, in particular numerically.
For noninteracting systems with fixed boundary conditions, a
scattering matrix approach as reported in Ref. 24 can be used.

II. MAIN RESULTS

In this work, we prove that the topological Z2 invariant ν

defining the 1DTSC in class DIII can be viewed as a Kramers
polarization. In the presence of a fixed spin quantization axis,
this Kramers polarization reduces to the well known Pfaffian
invariant1 for one spin block. Most interestingly, we provide a
manifestly gauge invariant way to directly calculate this bulk
invariant for generic systems in the absence of any additional
symmetries. By manifestly gauge invariant, we mean that no
continuous phase relation between wave functions at different
k points needs to be known, which allows for a straightforward
numerical calculation of ν. As has been shown previously for
topological insulators in the symplectic class AII (Ref. 25), we
find a tremendous simplification regarding the analytical form
of ν in the presence of inversion symmetry. The calculation of
ν then only involves the representation of the parity operator
at the real k points 0 and π , where k = −k. By rephrasing ν

in terms of the single-particle Green’s function and applying
twisted boundary conditions, the definition of the invariant
can readily be extended to interacting and disordered systems,
respectively (see also Refs. 26, 27 for invariants for interacting
systems).
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FIG. 1. (Color online) Schematic representation of a 1DTSC in
class DIII, consisting of two Kramers partners (red and green) of
Kitaev’s Majorana chain in class D. The white dots denote the
Majorana bound states at the ends. The ovals denote the lattice sites
hosting two paired Majorans (connected black dots). The arrows
denote the localization of the occupied quasiparticles illustrating the
polarization of the chain with respect to the oval lattice sites.

III. MANIFESTLY GAUGE INVARIANT CONSTRUCTION
OF THE INVARIANT

We would like to construct a generally valid, manifestly
gauge invariant, and physically intuitive formulation of the
topological invariant ν characterizing the 1DTSC in symmetry
class DIII.12 A Bogoliubov de Gennes (BdG) Hamiltonian H

in this symmetry class is characterized by the presence of
two antiunitary symmetries. A symplectic TRS T satisfying
T 2 = −1 and a particle hole symmetry (PHS) C satisfying
C2 = 1. H commutes with T and anticommutes with C.
Consequently, the combination UCS = T ◦ C is a unitary
operation that anticommutes with the Hamiltonian. UCS is
called a chiral symmetry. For concreteness, we will without
loss of generality use the common convention T = iσyK and
C = τxK , where σy is a Pauli matrix in spin space whereas τx

is a Pauli matrix in Nambu space and K denotes complex
conjugation. We would like to point out that the PHS is
not a physical symmetry, but rather results trivially from the
redundancy of the BdG description of superconductivity which
deals with two copies of the physical spectrum: a particle and
a hole copy.

Let us start with the special case where an additional
U (1)-spin rotation symmetry gives rise to a global spin
quantization axis: We assume that [H,σz] = 0. It follows
immediately that the Hamiltonian can be block diagonalized
into spin blocks as H = diag(h,h∗), where the diagonal matrix
structure is in spin space. The individual blocks are in symme-
try class D and are characterized by the same value M = ±1
of Kitaev’s Pfaffian Z2 invariant.1 For this special case, the
topological invariant of the full system ν we are concerned with
in this work is hence just given by the invariant for one of its
spin blocks. The physical interpretation of this phenomenology
is straightforward. In the nontrivial phase, each of the spin
blocks features a single spin polarized MBS at each end of the
system, i.e., there is a spin-degenerate pair of MBS associated
with each end. In the trivial phase, each spin block has zero
(or at least an even number of) MBS. Equivalently to the
Pfaffian invariant M, the 1DTSC can also be characterized
by a Zak-Berry phase28,29 which is quantized to integer
multiples of π due to the presence of PHS.30 The quantized
Zak-Berry phase can be understood as a half-integer quantized

polarization of the BdG band structure.29 We hence have

ν(H ) = M(h) = exp

(
i

∫ 2π

0
dkAσ

o (k)

)
= ±1, (1)

where Aσ
o (k) = −i

∑
α: occ〈uσ

α (k)|∂k|uσ
α (k)〉 is the Berry

connection of the spin block σ and the sum on α runs over
its occupied bands with Bloch states |uσ

α (k)〉. As already
mentioned, the polarization P σ

o = 1
2π

∫ 2π

0 dkAσ
o (k) does not

depend on the spin index σ modulo integers.
We now turn to generic Hamiltonians in class DIII and

hence drop the assumption of a U (1) spin rotation symmetry.
However, the presence of TRS still implies that the eigenstates
come in pairs. Both members of such a pair have degenerate
energies at the time reversal invariant (i.e., real) momenta
due to Kramers theorem. Instead of a spin index σ = ↑,↓,
the Bloch bands can hence be assigned a Kramers index κ =
I,II . Following the general analysis of Bloch functions in the
presence of a symplectic TRS in Ref. 31 we define∣∣uI

α(−k)〉 = −eiχα(k)T
∣∣uII

α (k)〉,
(2)∣∣uII

α (−k)〉 = eiχα(−k)T
∣∣uI

α(k)〉.
This conjugation property of the Kramers bands leads to the
constraint on the Berry connection of the Kramers blocks31

AI
o(−k) = AII

o (k) −
∑
α: occ

∂kχα(k), (3)

i.e., the Berry connections of opposite Kramers blocks at
opposite momenta are related by a gauge transformation.
Equation (3) implies that the associated Kramers polarizations
P κ

o = 1
2π

∫ 2π

0 dkAκ
o(k) are independent of κ modulo integers.

This generalizes our previous statement that the Kitaev invari-
antM is the same for both spin blocks in the σz conserving case
to the generic case of Kramers blocks. This clearly shows that
the Kitaev invariant for the total TRS preserving Hamiltonian
is always trivial as it consists of two identical contributions
from the Kramers blocks. This is consistent with the fact
that only Kramers pairs of MBS can occur at the ends of a
TRS preserving 1DTSC as opposed to the single MBS in the
nontrivial TRS breaking 1DTSC. Using Eqs. (2) and (3), the
Kramers polarization P I

o can be readily expressed as31

P I
o = 1

2π

[ ∫ π

0
dkAo(k) + i log

(
Pfθo(π )

Pfθo(0)

)]
, (4)

where Ao(k) = AI
o(k) + AII

o (k) and Pf denotes the Pfaffian.
The matrix form of T is denoted by θ (k) which is anti-
symmetric at the real k points k = 0,π ; θo(k) denotes the
restriction of θ (k) to the occupied bands. The authors of
Ref. 31 were concerned with the symplectic symmetry class
AII which only requires TRS. For generic Hamiltonians in
AII, P I

o is not quantized which is reflected in the fact that
there are no topologically nontrivial states in this class in
one dimension.14,22 In symmetry class DIII, however, the
additional presence of the spectrum generating PHS implies
that the polarization is half-integer quantized even for the
individual Kramers blocks. Hence, the value of P I

o (mod1)
defines a Z2 invariant in class DIII.

Several remarks on Eq. (4) are in order. It has already been
pointed out in Ref. 31 that the expression on the right-hand side
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of Eq. (4) is gauge invariant. However, its calculation requires
the fixing of an arbitrary gauge for which a continuous phase
relation between the Bloch functions in half of the Brillouin
zone has to be known. Hence, Eq. (4) does not yet provide a
constructive prescription as to the numerical calculation of the
topological invariant. We will now proceed to construct such
a manifestly gauge invariant recipe. Our construction makes
use of the manifestly gauge invariant formulation of the the
adiabatic theorem due to Kato32 which works with projection
operators rather than wave functions. To this end, we first
exponentiate Eq. (4),

ν = ei2πP I
o = ei

∫ π

0 dkAo(k)

(
Pfθo(0)

Pfθo(π )

)
= ±1. (5)

The Kato connection associated with the occupied bands is
defined as32–34

AK
o (k) = −[(∂kPo(k)),Po(k)], (6)

where Po(k) denotes the basis independent projector onto the
occupied bands. In Ref. 34, it has been demonstrated that
the propagator associated with the full non-Abelian Berry
connection is nothing but the matrix representation of the
Kato propagator UK = T e− ∫

AK
o associated with the Kato

connection AK
o . The Abelian part of this propagator is then

simply given by the determinant of this unitary representation
matrix. Remarkably, the Kato propagator can be calculated
numerically in a straightforward way in contrast to the Berry
connection. Explicitly, for the path 0 → π in k space appearing
in Eq. (5), we get (see Refs. 33, 34 for the general construction)

UK (0,π ) = lim
n→∞ �n

j=0Po(kj ), kj = j
π

n
, (7)

where the product is ordered from the right to the left with
increasing j . The practical calculation of this quantity only
requires the calculation of the gauge-independent projectors
Po(k) onto the occupied bands on a discrete mesh of points
in k space. To proceed with the evaluation of the invariant ν

as defined in Eq. (5), we only have to fix an arbitrary basis
of occupied Bloch functions {|α〉}α at k = 0 and {|α̃〉}α at
k = π . Note that this choice does not require any information
about relative phases of Bloch functions at different points in
k space. Instead we are allowed to pick an arbitrary basis at
each of the points k = 0 and k = π . We define the matrix
representation of the Kato propagator in this basis choice
as ÛK

α,β = 〈α̃|UK (0,π )|β〉. The representation matrices of T
are denoted by (θ̂o(0))αβ = 〈α|T |β〉 and (θ̂o(π ))αβ = 〈α̃|T |β̃〉,
respectively. With these definitions Eq. (5) can be simplified to

ν = (detÛK )
Pfθ̂o(0)

Pfθ̂o(π )
= ±1, (8)

where ν = −1 defines the topologically nontrivial phase.
Equation (8) is the key result of the present work. It allows
an even numerically straightforward prescription to calculate
the topological Z2 invariant of a generic 1DTSC in symmetry
class DIII. In an example below, we show that this invariant
does indeed distinguish between the trivial and nontrivial
1DTSCs in class DIII.

FIG. 2. (Color online) Topological invariant ν as a function αR

and 
s at μ = 0.5,
p = 1. Green denotes the nontrivial phase (ν =
−1), purple denotes the trivial phase (ν = 1). The orange line at

s = 0,αR > 1 indicates a metallic phase and the critical orange
points at the phase boundary are also gapless.

IV. COMPETITION OF s-WAVE AND p-WAVE PAIRING
IN A RASHBA WIRE

To show that our invariant Eq. (8) indeed distinguishes the
topological from the trivial SCs in class DIII, we consider an
example which does not exhibit any additional symmetry. Our
model consists of two time-reversal copies of Kitaev’s p-wave
chain,1 coupled by a Rashba spin-orbit term and augmented
by an ordinary (s-wave) superconducting pairing term that
competes with the p-wave coupling. The BdG Hamiltonian of
this model reads

H (k) = (1 − μ − cos(k))σ0 ⊗ τz + 
p sin(k) σ0 ⊗ τy

+αR sin(k) σx ⊗ τz + 
s σy ⊗ τy (9)

with μ the chemical potential, 
s,
p the SC pairings, αR the
Rashba spin-orbit coupling, where the energy is measured in
units of the kinetic term. Recall that the σ (τ ) Pauli matrices
act in spin (particle-hole) space. For αR = 
s = 0, the system
consists of two identical decoupled Kitaev chains. In Fig. 2, we
show the αR − 
s phase diagram of this model for μ = 0.5,

p = 1.0. The data for Fig. 2 are obtained by direct evaluation
of the topological invariant ν as defined in Eq. (8). We used a
mesh of n = 1000 points for the evaluation of Eq. (7) entering
the definition of ν. For 
s = 0 the gap closes for large spin
orbit coupling αR and a metallic phase emerges.

V. FURTHER SIMPLIFICATION IN THE PRESENCE
OF INVERSION SYMMETRY

Even though we obtained a simple and numerically
tractable form of the Z2 invariant, Eq. (8), one can simplify the
result even further in the presence of additional symmetries.
We consider inversion symmetry, which has been used to sim-
plify invariants in two- and three-dimensional systems in class
AII in.25,35 Inversion symmetry is a symmetry of the model
under x �→ −x, which in momentum space is implemented
by the (momentum independent) unitary operator Pinv, such
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that PinvH (k)Pinv = H (−k), with P 2
inv = 1. We denote the

eigenvalues of Pinv by ξi = ±1. We stress that we allow Pinv

to also act non-trivially in spin and particle-hole space (apart
from sending x �→ −x).

The presence of inversion symmetry can generally be
exploited in the following way.25 In the first step, one
shows that the Berry connection Ao(k) can be related to
the antisymmetric, unitary matrix pt(k), whose entries are
the matrix elements of the operator Pinv ◦ T . In particular,
Ao(k) = −i∂k log

(
Pfpto(k)

)
, where pto(k) is the restriction

of pt(k) to the occupied bands.25 By adjusting the phase
of the Bloch functions, one can set Pfpto(k) = 1, implying
that the Berry connection vanishes, and that the topological
invariant can be obtained with knowledge about the system at
the real momenta k = 0,π only. In the final step, one relates
Pfθo(0) and Pfθo(π ) to the inversion symmetry eigenvalues
ξα(0) = ±1 and ξα(π ) = ±1 of the Kramers pairs. Because
[T ,Pinv] = 0, both members of a Kramers pair have the
same inversion symmetry eigenvalue. The final result is that
Pfθo(k) = ∏′

α: occ ξα(k) for k = 0,π , where the product is over
all occupied Kramers pairs, i.e., only one member of each pair
contributes to the product. It follows that in the presence of
inversion symmetry, one can write the invariant ν, Eq. (8) in
terms of the eigenvalues ξi = ±1 of Pinv at the real momenta as

ν =
∏
α: occ

′
ξα(0)ξα(π ), (10)

where each occupied Kramers pair contributes once to the
product.

As a first application of this result we consider a generic
1DTSC in class D. For these non-TRS superconductors,
Kitaev1 constructed a Pfaffian invariant M = ±1. For trans-
lationally invariant systems, the invariant only involves the
Pfaffian of the Majorana representation of the model at
momenta k = 0,π . We recently showed that this invariant
can be written in terms of the quantized Zak-Berry phase.36

Although there are already several forms of the Z2 invariant
available, it is interesting to note that in the presence of
inversion symmetry, the invariant M can also be related to
the eigenvalues of the operator Pinv. The arguments given
above for systems in class DIII rely on the presence of TRS.
However, both members of each Kramers pair have the same
inversion eigenvalue. It follows that if we “double” a 1D
inversion symmetric superconductor with Hamiltonian h in
class D and construct a TRS model H = diag(h,h∗), the Z2

invariant is given by Eq. (10). The product can be taken over the

occupied bands of the original system h. Hence, the invariant
of inversion symmetric 1DTSC in class D is also given by
Eq. (10), but with the product running over all occupied bands
(which are not Kramers degenerate).

VI. CONCLUDING REMARKS

We constructed a bulk topological invariant for time reversal
symmetric superconductors in one dimension (corresponding
to symmetry class DIII), which detects the presence or absence
of a Kramers pair of Majorana bound states at the ends of the
superconductor. The calculation of this invariant is numerically
straightforward because it does not require fixing of a phase
relation between the Bloch states at different momenta. The
only ingredients needed to calculate the invariant are the
projections onto the occupied states, and the matrix elements
of the TRS operator at the real momenta k = 0,π . We
demonstrated our method by computing the topological phase
diagram of a Rashba wire in the presence of two competing SC
pairing terms, an s-wave and a p-wave pairing. For interacting
systems, the BdG Hamiltonian can be replaced by the Nambu
single particle Green’s function G at zero frequency,37–39

explicitly H (k) → −G−1(ω = 0,k) in all calculations.
In the presence of inversion symmetry, the topological

invariant simplifies. It then only depends on the inversion
symmetry eigenvalue associated with the Kramers pairs
at the real momenta. Because the resulting invariant only
depends on the parity associated with the Kramers pairs
(both members share the same parity), one concludes that the
same invariant can be used for 1D superconductors without
TRS. Indeed, one can simply consider two time-reversal-
conjugated copies of the same model. The same consideration
holds for quantum anomalous Hall systems in 2D with
inversion symmetry. Their Chern number can be calculated
modulo two, by constructing two time-reversal copies, and
calculating the Z2 invariant associated with the resulting
inversion symmetric quantum spin Hall system in class AII.
The latter only depends on the inversion symmetry eigenvalues
associated with the Kramers pairs at the time-reversal-invariant
momenta.25
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