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Equivalent topological invariants for one-dimensional Majorana wires in symmetry class D
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Topological superconductors in one spatial dimension exhibiting a single Majorana bound state at each end are
distinguished from trivial gapped systems by aZ2 topological invariant. Originally, this invariant was calculated by
Kitaev in terms of the Pfaffian of the Majorana representation of the Hamiltonian: The sign of this Pfaffian divides
the set of all gapped quadratic forms of Majorana fermions into two inequivalent classes. In the more familiar
Bogoliubov de Gennes mean-field description of superconductivity, an emergent particle-hole symmetry gives
rise to a quantized Zak-Berry phase, the value of which is also a topological invariant. In this work, we explicitly
show the equivalence of these two formulations by relating both of them to the phase winding of the transformation
matrix that brings the Majorana representation matrix of the Hamiltonian into its Jordan normal form.
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I. INTRODUCTION

The topological superconductor in one spatial dimension
(1DTSC) was discovered and classified in a pioneering 2001
paper by Kitaev.1 This state of matter features a single isolated
Majorana bound state (MBS) at each of its ends. The 1DTSC
is also intriguing from a conceptual point of view since it is
the only known topological phase in one dimension that is not
symmetry protected. Being not symmetry protected means
that a nontrivial 1DTSC cannot be connected to a trivial
state without going through a gap-closing phase transition.
The original proposal considers an effective spinless p-wave
superconductor (SC). More recently, the 1DTSC phase has
also been identified in nanowires that are proximity coupled
to an s-wave SC.2,3 In these systems, the combination of
Rashba spin-orbit coupling and a Zeeman splitting is employed
to dispose of the spin degree of freedom in the effective
low-energy theory. The first experimental signatures of MBS
have been reported by several experimental groups.4–6

In recent years, there has been enormous interest in topolog-
ical states of matter (TSM) that can be understood at the level of
quadratic model Hamiltonians.7–9 A complete classification of
these TSM, one example of which is the 1DTSC in symmetry
class D,10 was achieved by different means in Refs. 11–13.
Here, we focus on fully gapped (proximity-induced) SCs
without any additional symmetries at the mean-field level.
In the language of Ref. 12, such systems are characterized
by a quadratic form of Majorana operators without any
physical symmetries. Note that due to the Majorana algebra,
the representation matrix is automatically antisymmetric. In
this framework, the 1DTSC has been distinguished from
a trivial fully gapped system by the sign of the Pfaffian of
this representation matrix.1 On the other hand, within the
approach of Refs. 11 and 13, the Bogoliubov–de Gennes
(BdG) mean-field Hamiltonian of an SC is treated on the same
footing as the Bloch bands of a noninteracting insulator. The
Nambu spinor structure representing two copies of the actual
excitation spectrum, a particle and a hole copy, is then reflected
in the formal emergence of a particle-hole symmetry (PHS)
C with C2 = +1. This antiunitary PHS implies a quantization
of the Zak-Berry phase14,15 associated with a one-dimensional
(1D) band structure to integer multiples of π .16 Hence, there
are only two distinct values, 0 (mod 2π ) and π (mod 2π ), for

the Zak-Berry phase which defines a Z2 invariant. We refer
to Ref. 17 for a recent overview of the theory of charge
polarization in 1D systems.

In this work, we explicitly demonstrate the equivalence
between these two approaches to the topological Z2 invariant
characterizing the 1DTSC. To this end, we proceed in two
steps. First, we express Kitaev’s Pfaffian invariant as the phase
winding between the two real points of the Fourier transform
of the orthogonal transformation that brings the antisymmetric
Majorana representation matrix of the mean-field Hamiltonian
into its Jordan normal form. Second, we start from the
Berry connection associated with the BdG band structure
and show that the quantized Berry phase can be expressed
as the same phase winding. Interestingly, this equivalence
implies that Kitaev’s Pfaffian invariant can also be used as
a convenient means to calculate the quantized Berry phase for
a normal insulating 1D system with a physical PHS, e.g., an
insulator similar to the model introduced by Su, Schrieffer,
and Heeger.18,19 For a chiral-symmetry-protected 1DTSC in
symmetry class BDI, a complementary analysis has been
presented in Ref. 20 (see also Ref. 21). There, the parity of
the winding number characterizing a chiral 1D system13,22 is
shown to be equal to Kitaev’s Pfaffian invariant. In Ref. 23, the
Z2 invariant characterizing the 1DTSC is calculated in terms
of its single-particle Green’s function using a dimensional
extension to the 2DTSC which extends the domain of the
invariant beyond the set of mean-field Hamiltonians.

The remainder of this article is organized as follows: In
Sec. II, we express Kitaev’s Pfaffian invariant as the phase
winding of a determinant between the real k points 0 and
π . In Sec. III, the quantized Berry phase of a 1D BdG band
structure is shown to be given by the same phase winding, using
the emergent PHS. Section IV is dedicated to a discussion of
nonsuperconducting systems with a physical PHS where the
quantized Berry phase can also be expressed as the sign of
the product of two Pfaffians evaluated at the real k points. In
Sec. V, a concluding discussion is presented.

II. PFAFFIAN INVARIANT WITHOUT PFAFFIANS

The Hamiltonian of an SC at mean-field level on a lattice is
a quadratic form in the field operators ψj , where j labels the
real space position on the lattice and ψj = (ψj,1, . . . ,ψj,n)T is
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a spinor comprising n internal degrees of freedom such as spin
and orbital label. Without loss of generality we always consider
a lattice with unit lattice constant here. Since the mean-field SC
is not particle number conserving, the Hamiltonian is not of the
form ψ

†
i Hijψj but contains terms of the form ψi�ijψj + h.c.

with some pairing matrix �. A convenient formalism to study
the properties of such generalized quadratic Hamiltonians is
to go to a basis of (spinors of) Majorana fermions γj,x =
ψj + ψ

†
j , γj,y = −i(ψj − ψ

†
j ). Here, the labels x,y on the

Majorana operators allude to the real (x) and imaginary (y)
parts of the complex fermion ψj . The real Majorana operators
satisfy the algebra

γ
†
j,a = γj,a, a = x,y

{γi,a,γj,b} = 2δi,j δa,b. (1)

For notational brevity, we suppress the a = x,y index, by
defining the spinors γj = (γj,x,γj,y)T . It then follows that any
mean-field Hamiltonian (SC or not) can be expressed in the
form12

H = i

2

∑
i,j

γ T
i Aij γj , (2)

which is called the Majorana representation. The representa-
tion matrix A is real and antisymmetric. Hence, it has purely
imaginary eigenvalues that occur in complex conjugate pairs
±iελ,ελ > 0. We note that we consider a gapped system with
periodic boundary conditions, in which case there are no zero
modes. By means of a real orthogonal transformation W such
a matrix can be brought into the block-diagonal Jordan form:

AJ = WAWT = diagλ

(
0 ελ

−ελ 0

)
. (3)

The transformation matrix W is here defined up to a global
sign which does not change the determinant of W due to the
even dimension of the real vector space on which W acts. This
is true independent of the system size since there are always
two Majorana fermions per complex degree of freedom.

Kitaev1 introduces the notion of the Majorana
numberM(H ) = ±1 associated with the Hamiltonian H . For
Hamiltonians that exhibit a MBS in the case of open boundary
conditions, M(H ) takes the value −1, which corresponds to
a nontrivial 1DTSC.

Kitaev then relates M(H ) to the fermionic parity of the
ground state of a closed chain of length L, denoted P (H (L)),
in the following way:

P (H (L1 + L2)) = M(H )P (H (L1))P (H (L2)). (4)

For general noninteracting systems, the fermionic parity of the
ground state of a Hamiltonian H can be shown to take the form

P (H ) = sgn{Pf(A)}, (5)

where Pf(A) denotes the Pfaffian of the antisymmetric matrix
A, given in terms of the totally antisymmetric tensor εi1,i2,...,i2n

as

Pf(A) = 1

2nn!
εi1,i2,...,i2n

Ai1,i2Ai3,i4 . . . Ai2n−1,i2n
. (6)

For this reason, M is also referred to as the “Pfaffian” Z2

invariant.

We would now like to bring the Pfaffian Z2 invariant M1

characterizing the 1DTSC into a form which will allow us to
make its equivalence to a quantized Zak-Berry phase manifest.
Generally speaking, in differential topology, one is concerned
with topological invariants associated with smooth manifolds.
For a periodic system in the thermodynamic limit, the k space
is a smooth manifold on which the invariants of all TSM are
defined.9,13 For the invariant defining the 1DTSC, the so called
real k points k = 0,π , where k = −k are of crucial importance.
When doing a numerical calculation, one is sometimes forced
to consider finite system sizes. In this case, the real k point π

only exists if the number of lattice sites is even. In agreement
with Ref. 1, we hence expect that the analytical form of the
invariants in k space can only be extended to finite systems
with an even number of lattice sites, which we assume in the
following.

It is then an immediate consequence of Eqs. (4) and (5) that
the topological invariant M is simply given by

M = sgn{Pf(A)}. (7)

Defining the Fourier transform of the Majorana representation
matrix of a translation invariant system as Ã(k), Eq. (7) can be
expressed as

M = sgn{Pf(Ã(0))Pf(Ã(π ))}, (8)

which is probably the best-known form of the invariant
involving, as already mentioned, the real k points k = 0 and
k = π .

The Pfaffian of the Jordan form AJ [see Eq. (3)] is easy to
evaluate:

Pf(AJ ) =
∏
λ

ελ > 0. (9)

Using the elementary algebraic relation Pf(WAWT ) =
Pf(A)det(W ) along with Eq. (7), we immediately get

M = det(W ) = ±1. (10)

For a translation invariant system, the Fourier transform W̃ (k)
of W is block diagonal and we get

M =
∏
k

det(W̃ (k)) =
∏

k=−k

det(W̃ (k))

= det(W̃ (0))det(W̃ (π )). (11)

The second equality sign here uses the reality of W , which
implies W̃ (k)∗ = W̃ (−k). Since W̃ (k) is unitary for all k, its
determinant can be written as det(W̃ (k)) = eiϕk . The reality
constraint then yields ϕk = −ϕ−k(mod 2π ), implying that ϕk

is quantized to integer multiples of π at the real k points. The
invariant can hence be expressed as

M = (−1)
ϕ0−ϕπ

π . (12)

The determinant of W̃ (k) is a continuous function of k so the
phase change �ϕ = ϕ0 − ϕπ can be written as the following
“winding” integral over half of the Brillouin zone:

�ϕ = i

∫ π

0
[∂k(log det(W̃ (k)))]dk. (13)
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In the next section, we derive the same expression for the
quantized Berry phase associated with the BdG band structure
of a mean-field SC.

III. RELATION BETWEEN QUANTIZED BERRY PHASE
AND PFAFFIAN INVARIANT

Above, we worked with the Majorana representation of SC
mean-field Hamiltonians. We now tie the topological invariant
M obtained in the Majorana representation to the more widely
used BdG picture. In the BdG picture, the Hamiltonians are
represented in the Nambu spinor basis �j = (ψj ,ψ

†
j )T as

follows:

H =
∑
i,j

�
†
i (HBdG)ij�j . (14)

In contrast to the Majorana operators γj,x,γj,y , which span the
same Hilbert space as ψj ,ψ

†
j , the Nambu basis is not real and

neither is the representation matrix HBdG. The interdependence
of ψj and ψ

†
j is then reflected in an “emergent” PHS C = τxK ,

i.e., {HBdG,C} = 0, with C2 = 1. As a consequence, the BdG
band structure in the absence of further symmetries is in
the Altland-Zirnbauer10 symmetry class D. Here, K denotes
the complex conjugation and τx is a Pauli matrix acting
in the Nambu space. The approach of Refs. 11 and 13 to
the topological classification is to treat the Fourier transform
H̃BdG(k) of the BdG Hamiltonian on the same footing as the
Bloch Hamiltonian of an ordinary insulator with a physical
PHS. The corresponding Z2 topological invariant is then the
1D Chern-Simons invariant, i.e., a Zak-Berry phase that is
quantized to integer multiples of π due to the antiunitary PHS.
This symmetry also implies that the bands below and above
the energy gap are not independent but are conjugated by PHS.
We employ this dependence, defining

C|uo
α(−k)〉 = e−iχα (k)|ue

α(k)〉, (15)

where α = 1, . . . ,n labels the independent Bloch bands and
|uo

α〉,(|ue
α〉) denotes the Bloch states associated with the

occupied (empty) bands. Using Eq. (15), one can show that the
Abelian Berry connection Ao(k) = −i

∑
α〈uo

α(k)|∂k|uo
α(k)〉

associated with the occupied bands is related to the similarly
defined Ae(k) by (in Ref. 24, an analogous relation was used
in the context of time-reversal invariant systems),

Ao(−k) = Ae(k) −
∑

α

∂kχα(k); (16)

i.e., the Berry connection of the occupied bands at k is the
Berry connection of the empty bands at −k up to a gauge
transformation. With this constraint the Zak-Berry phase �ZB

can be simplified to an integral over half of the Brillouin zone as

�ZB =
∫ π

−π

Ao(k)dk =
∫ π

0

[
A(k) −

∑
α

∂kχα(k)

]
dk, (17)

where the first equality sign defines the Zak-Berry phase of
the gapped system, and Eq. (16) along with the definition
A(k) = Ao(k) + Ae(k) enters the second equality sign.

To make further progress, we take a look at the relation
between the Majorana representation and the BdG picture.

The Majorana spinor γj = (γj,x,γj,y)T and the Nambu spinor
�j = (ψj ,ψ

†
j )T are related by the unitary transformation U as

γj =
√

2U�j, U = 1√
2

(
1 1
−i i

)
. (18)

Hence, the corresponding representation matrices are related
as iA = UHBdGU †. Since U commutes with the Fourier
transform, there is a similar relation in k space; explicitly,
iÃ(k) = UH̃BdG(k)U †. Going to the Jordan form AJ of the
Majorana representation matrix, we note that U brings us to
the diagonal form of the BdG-Hamiltonian, i.e.,

iU †AJ U = diagλ

(
ελ 0
0 −ελ

)
= τzdiagλ(ελ). (19)

Defining Ŵ (k) = U †W̃ (k)U we hence obtain

Ŵ (k)H̃BdG(k)Ŵ †(k) = τzdiag(ε1(k), . . . ,εn(k)), (20)

with the energy eigenvalues εα(k) > 0,α = 1, . . . ,n of the
empty Bloch bands. This allows us to define a global gauge
for the Bloch states |uσ

α (k)〉,σ = o,e as∣∣uσ
α (k)

〉 =
∑

β

Ŵ ∗
α,β (k)|β,σ 〉, (21)

where |α,σ 〉 = 1√
L

∑
j �

†
j,α,σ |vac〉 is the lattice periodic part

of the canonical basis states 1√
L

∑
j eikj�

†
j,α,σ |vac〉 associated

with the Nambu spinor basis in k space (where σ denotes the
Nambu index).

In this gauge, the phase factors χα appearing in Eq. (15)
vanish. This is because of PHS, which in the Majorana
representation implies KW̃ (k)K = W̃ (k)∗ = W̃ (−k), or, in
the current BdG basis,

CŴ (k)C−1 = Ŵ (−k). (22)

From this equation, it directly follows that the phase factors
χα(k) in Eq. (15) vanish. Using Eq. (17), we can hence write

�ZB = i

∫ π

0
Tr[Ŵ †(k)∂kŴ (k)]dk

= i

∫ π

0
[∂k(log det(W̃ (k)))]dk = �ϕ, (23)

where Eq. (13) has been used for the last equality sign. This
makes the equivalence of expressions (8) and (17) manifest,
which was the main purpose of the present analysis. We
note that due to the π quantization of the Berry phase,
�ϕ = −�ϕ(mod 2π ). This is reflected in Eq. (12) for M,
which does not depend on the overall sign of �ϕ.

IV. PFAFFIAN INVARIANT FOR
NONSUPERCONDUCTING SYSTEMS WITH PHS

In the 1DTSC phase, PHS is not a physical symmetry but
“emerges” from the BdG description of superconductivity.
However, there are also symmetry-protected topological states
in particle-number-conserving 1D systems that have a physical
PHS C with C2 = 1. The most prominent example of this
category is the Su, Schrieffer, and Heeger model.18,19 In this
case, the defining Z2 invariant is associated not with the
presence of a single MBS but with a localized fermionic state
with a fractional charge of e

2 .25 However, a Pfaffian invariant
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can also be defined in this case as we discuss now. Generally,
the operation of PHS can be expressed as C = UCK , with the
unitary part UC . Under a unitary transformation U this unitary
part transforms as UC → UUCU

T due to the complex con-
jugation involved in C. In particular, because C2 = 1 implies
that UC = UT

C , one can always find a unitary U that satisfies
UUCU

T = 1. After this transformation, C = K , implying that
the transformed Hamiltonian is of the form UHU † = iA,
where A is a real antisymmetric matrix. Although the basis
vectors in this representation are not Majorana fermions, it is
formally completely analogous to the Majorana representation
of SC mean-field Hamiltonians. Hence, a Pfaffian invariant can
be defined in terms of the antisymmetric matrix A identical to
Eq. (7) and Eq. (8), respectively. The proof that this invariant is
equal to the quantized Zak-Berry phase, which is well known to
topologically classify PHS-protected topological states in one
dimension, is analogous to that for the superconducting case
presented above. We note that evaluating the Pfaffian invariant
can be much more convenient, as it does not involve an inte-
gration over the Brillouin zone but only contains information
about the Bloch Hamiltonian at the two real k points.

V. CONCLUDING DISCUSSION

We have made the equivalence manifest between the
quantized Zak-Berry phase and the Pfaffian invariant

characterizing a 1DTSC and a PHS-conserving 1D insulator
in symmetry class D, respectively. This has been achieved
by expressing both formulations as the phase winding of the
determinant of a unitary matrix in half of the Brillouin zone.
The other half of the Brillouin zone is redundant due to the
antiunitary constraint of PHS. The equivalence between the
two approaches to the topological invariant is not limited
to superconducting systems but also holds for symmetry-
protected topological states in 1D like the Su, Schrieffer,
and Heeger model. Our construction is related to a similar
analysis24 (see also Ref. 26) of two-dimensional systems in
the symplectic symmetry class AII, where the relevant Z2

invariant could be connected to a so-called time reversal
polarization. In one dimension, the quantized Zak-Berry phase
is well known to correspond to a polarization of the underlying
lattice, and so does the equivalent Pfaffian invariant. However,
for the BdG band structure, this polarization is in general
not a charge polarization that has immediate observable
consequences.
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