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We show that condensate-induced transitions between two-dimensional topological phases provide a general
framework to relate one-dimensional spin models at their critical points. We demonstrate this using two examples.
First, we show that two well-known spin chains, namely, the XY chain and the transverse field Ising chain with
only next-nearest-neighbor interactions, differ at their critical points only by a nonlocal boundary term and can
be related via an exact mapping. The boundary term constrains the set of possible boundary conditions of the
transverse field Ising chain, reducing the number of primary fields in the conformal field theory that describes
its critical behavior. We argue that the reduction of the field content is equivalent to the confinement of a set of
primary fields, in precise analogy to the confinement of quasiparticles resulting from a condensation of a boson
in a topological phase. As the second example we show that when a similar confining boundary term is applied
to the XY chain with only next-nearest-neighbor interactions, the resulting system can be mapped to a local spin
chain with the u(1)2 × u(1)2 critical behavior predicted by the condensation framework.
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An essential characteristic of topologically ordered phases
is the absence of local order parameters.1 While this property
ensures a degree of stability, which is of potential benefit in
quantum information technologies, it also makes it necessary
to develop new approaches for the study of phase transitions
in these systems. As the low-energy degrees of freedom
are anyonic quasiparticles specific to a particular topolog-
ical phase, it should be possible to understand transitions
between the phases in terms of their collective behavior.
One such successful framework is that of condensate-induced
transitions,2 where the condensation of a bosonic particle
induces confinement of a set of quasiparticles, thereby causing
a transition to a new phase. Topological phase transitions in
various systems, including the quantum Hall hierarchies,3–7

interacting anyons,8–10 and Levin-Wen models,11,12 can be
related to this mechanism. It is well known that (2 + 1)-
dimensional topological phases are intimately related to
two-dimensional conformal field theories (CFTs):13,14 The
topological charges carried by the gapped bulk quasiparticles
are in one-to-one correspondence with the primary fields of
a CFT describing the gapless edges. It is then natural to ask
whether the condensate-induced transitions have a counterpart
in critical one-dimensional systems that are also described
by CFT’s.

In this Rapid Communication we answer this question
positively and show that the framework of condensate-induced
transitions relates also critical one-dimensional spin chains.
We demonstrate this using two examples. First we revisit the
relation between the XY chain15 and two copies of the trans-
verse field Ising (TFI) chain.16,17 The criticality of these chains
is described by the u(1)4 and the Ising × Ising CFTs, respec-
tively, which are related by the condensation framework2 when
viewed as low-energy theories of topological phases. Going
beyond the previous works that considered open boundary
conditions,18–20 we show that for closed boundary conditions
the two spin chains differ at their critical points only by a term

that constrains the set of possible boundary conditions for the
TFI chains. We argue that these constraints, in effect, realize
the counterpart of the confinement of those CFT primary
fields that correspond to those bulk quasiparticles confined
following a bulk condensation. To demonstrate the generality
of this picture, we apply a similar confining boundary term
to two copies of the XY chain and derive a microscopic spin
chain with the predicted critical u(1)2 × u(1)2 behavior. Our
main result is that condensate-induced transitions2 provide a
powerful general framework for both relating different critical
spin chains as well as deriving different ones with a given CFT
description. Due to connections between the ground states of
critical spin chains and gapped topological phases,21 critical
spin chains may thus offer a simple setting to study complex
topological phase transitions.

The transverse field Ising model. The critical transverse
field Ising chains that we consider are given by the Hamiltonian

Hn
TFI =

L−1∑
i=0

σ z
i + σx

i σ x
i+n, (1)

where we assume periodic boundary conditions σα
L = σα

0 .
The critical nearest-neighbor chain (n = 1) can be solved
via a Jordan-Wigner transformation, which transforms the
Pauli operators σα

i into fermionic operators c
†
i and ci .

16,17

The operators c
†
i involve strings of Pauli operators, which we

choose to start at site zero and end at site i. The resulting
Hamiltonian,

H 1
TFI =

L−1∑
i=0

(2c
†
i ci − 1) +

L−2∑
i=0

(ci − c
†
i )(ci+1 + c

†
i+1)

− P(cL−1 − c
†
L−1)(c0 + c

†
0), (2)

conserves fermionic parity, which is described by the symme-
try operator P = ∏L−1

i=0 σ z
i = exp(iπ

∑
i c

†
i ci). The boundary
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conditions for the fermions are thus in one-to-one correspon-
dence with parity sectors: For odd parity (P = −1) one has
cL ≡ c0, while for even parity (P = 1), one has cL ≡ −c0.
In momentum space the Hamiltonian takes the form (after a
Bogoliubov transformation)

H 1
TFI = −4

∑
k

∣∣∣∣sin

(
πk

L

)∣∣∣∣
(

c
†
kck − 1

2

)
, (3)

where the c
†
k create fermions with momentum k. Due to

the parity-dependent boundary conditions, these momenta
take integer values for P = −1 and half-integer values for
P = 1.

The Ising CFT (with central charge c = 1/2) describes the
criticality of the TFI chain. This CFT has three primary fields,
1, σ , and ψ , with scaling dimensions h1 = 0, hσ = 1/16, and
hψ = 1/2. Every state in the energy spectrum of the TFI chain
is labeled by one of these fields. In particular, those in the even
parity sector (P = 1, antiperiodic boundary conditions) are
labeled by either 1 or ψ , while all the states in the odd parity
sector (P = −1, periodic boundary conditions) are labeled by
σ . We refer to Ref. 22 for more details on CFT.

Here we are interested in the TFI chain with only next-
nearest-neighbor interactions (n = 2). The Hamiltonian H 2

TFI
decouples into two TFI chains on the even (e) and the odd
(o) sites, each of which can be solved in the same way as the
nearest-neighbor TFI chain above. The fermion parity is now
conserved independently for the even and odd sites, with the
corresponding symmetry operators given by Pe = ∏

j σ z
2j and

Po = ∏
j σ z

2j+1. The CFT describing the critical behavior is

the direct product of two Ising CFTs (denoted as Ising2), with
total central charge c = 1. The correspondence between the
symmetry sectors of H 2

TFI and the primary fields of the Ising2

CFT is shown in Table I.
The XY spin chain. The second spin chain we consider is

the critical XY chain with periodic boundary conditions. Its
Hamiltonian is given by

Hn
XY =

L−1∑
i=0

τ x
i τ x

i+n + τ
y

i τ
y

i+n, (4)

where τα
i are Pauli matrices and, as above, n = 1 (n = 2)

corresponds to a model with only nearest-neighbor (next-
nearest-neighbor) interactions. Also the XY chain can be
diagonalized with a Jordan-Wigner transformation,15 with the

TABLE I. Left: The correspondence between the symmetry
sectors, that are in one-to-one correspondence with the boundary
conditions (BCe,BCo) = (Pe,Po) of H 2

TFI, and the nine primary
fields of the Ising2 CFT that label the states in them. Right: The
correspondence between the symmetry sectors of H 1

XY and the four
primary fields of the u(1)4 CFT.

Sectors of H 2
TFI Sectors of H 1

XY

(BCe,BCo) Ising2 fields T z u(1)4 fields

(1,1) (1,1), (1,ψ), (ψ,1), (ψ,ψ) 1 1̃, ψ̃

(1,−1) (1,σ ), (ψ,σ ) −1 λ, λ̄

(−1,1) (σ,1), (σ,ψ)
(−1,−1) (σ,σ )

fermion parity now corresponding to the symmetry operator
T z = ∏

i τ
z. As in (2), it will again determine the boundary

conditions for the fermions, and thus the allowed momenta in
the momentum space where H 1

XY is diagonal:

H 1
XY = 4

∑
k

cos

(
2πk

L

)(
c
†
kck − 1

2

)
. (5)

We assume that L is even for which case the XY chain has
a further structure: The operators T x = ∏L−1

i=0 τ x
i and T y =∏L−1

i=0 τ
y

i commute with Eq. (4), with each other and with T z.
The sectors T z = ±1 each thus split into two sectors, which
are degenerate in the case T z = −1.

The XY chain at the critical point can be described in
terms of the u(1)4 CFT of a chiral boson.22 This CFT has
a central charge c = 1 and contains four primary fields 1̃, λ, λ̄,
and ψ̃ with scaling dimensions h1̃ = 0, hλ = hλ̃ = 1/8, and
hψ̃ = 1/2. The labeling of the states follows again from the
boundary conditions in each parity sector. As illustrated in
Table I, states in the even parity sector (T z = 1, antiperiodic
boundary conditions) are associated with the vacuum 1̃ or the
fermion ψ̃ primary fields, while the degenerate states in the
odd parity sector (T z = −1, periodic boundary conditions) are
associated with the pair of primary fields λ and λ̄.

We will show below that when a boundary term HB
TFI is

introduced, H 2
TFI + HB

TFI can be mapped exactly to H 1
XY . To

assign a physical meaning to the boundary term, we set the
spin chains briefly aside and review the notion of condensate-
induced transitions between gapped topological phases.2

The condensation framework – In a two-dimensional (2D)
topologically ordered phase the different types of quasiparti-
cles are in one-to-one correspondence with the primary fields
of the CFT describing the one-dimensional (1D) edge. In the
case of the Ising theory, the primary field labels 1, ψ , and σ

should be understood as topological quantum numbers of the
quasiparticle excitations with the following “tensor product,”
or fusion rules:

ψ × σ = σ, ψ × ψ = 1, σ × σ = 1 + ψ. (6)

Fusion is symmetric (a × b = b × a), distributive [(a + b) ×
c = a × c + b × c], associative [a × (b × c) = (a × b) × c],
and all particles fuse trivially with the vacuum label (a × 1 =
a). The fusion rules of the Ising2 theory follow directly from the
fusion rules of each Ising theory through (a1,a2) × (b1,b2) =
(a1 × b1,a2 × b2).

We will now outline in the context of the Ising2 theory
how the condensation of a bosonic quasiparticle modifies the
bulk quasiparticle spectrum shown in Table I. The first step of
condensation is to identify the boson (ψ,ψ) with the vacuum
label (1,1). By definition, the vacuum should have trivial fusion
and statistics with all the other particles. Thus, in order that
(ψ,ψ) behaves as the vacuum, the first step is to identify all
particles a and b that are related by fusion with it. That is, if
a × (ψ,ψ) = b, then we set a = b. We arrive at a new set of
particle types 1̃ = (1,1) = (ψ,ψ), ψ̃ = (1,ψ) = (ψ,1), σ̃1 =
(σ,1) = (σ,ψ), and σ̃2 = (1,σ ) = (ψ,σ ), while the particle
(σ,σ ) remains unaffected at this step. In the second step, one
demands that all particles should have trivial statistics with the
new vacuum. This is equivalent to demanding that identified
particles with unequal conformal weights are confined. Since
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h(σ,1) = 1/16, but h(σ,ψ) = 9/16, the particles σ̃1 and σ̃2 are
eliminated from the particle content of the condensed phase.
At the third and final step, one verifies that the remaining
particles have consistent fusion rules, i.e., the new vacuum is
unique and the fusion algebra closes. We find this not to be
the case, because (σ,σ ) × (σ,σ ) = (1,1) + (1,ψ) + (ψ,1) +
(ψ,ψ) = 2 · 1̃ + 2 · ψ̃, which means that (σ,σ ) must branch
into new particle types. The uniqueness of the vacuum can be
satisfied if one replaces (σ,σ ) by λ + λ̄ and demands that these
particles satisfy the new fusion rules

ψ̃ × λ = λ̄, ψ̃ × λ̄ = λ, ψ̃ × ψ̃ = 1̃,
(7)

λ × λ̄ = 1̃, λ × λ = λ̄ × λ̄ = ψ̃.

These are the fusion rules of the u(1)4 theory, which is the
theory obtained from the Ising2 theory via a condensation
transition.2

Condensation and critical spin chains. The condensation
mechanism suggests a relation between the critical H 2

TFI and
H 1

XY chains that are described by the Ising2 and u(1)4 CFTs,
respectively. To induce in H 2

TFI the counterpart of condensing
the (ψ,ψ) field, we constrain the boundary conditions such
that the states labeled by the confined particles σ̃1 and σ̃2

are removed from the spectrum. This can be achieved via the
boundary term

HB
TFI = (Po − 1)σx

L−2σ
x
0 + (Pe − 1)σx

L−1σ
x
1 (8)

that couples the chains on the even and odd sites in a global
manner. Namely, the odd parity sector of one chain changes
the boundary conditions in the other [compare to the boundary
term in Eq. (2)]. As shown in Table II, the boundary conditions
in both even and odd site chains are forced to be simultaneously
either periodic or antiperiodic, which means states labeled by
the confined primary fields σ̃1 and σ̃2 are no longer part of
the spectrum. It is straightforward to verify that nonlocal and
site-dependent transformation,

σ z
2j = τ

y

2j τ
y

2j+1, σ z
2j+1 = τ x

2j τ
x
2j+1,

(9)
σx

2j =
∏
i�2j

τ x
i , σ x

2j+1 =
∏

i�2j+1

τ
y

i ,

inspired by the duality mappings used in Refs. 18–20 for open
chains, gives the explicit microscopic relation between the two

TABLE II. When the boundary term HB
TFI is added to H 2

TFI, the
boundary conditions on each chain depend on the parity sectors of
both chains. The allowed boundary conditions of H 2

TFI + HB
TFI are

thus given by (BCe,BCo) = (PePo,PoPe), i.e., both chains have
to simultaneously have either periodic or antiperiodic boundary.
Because (Pe,Po) = (T x,T y), the four sectors of H 2

TFI with modified
boundary conditions map onto the two sectors of H 1

XY labeled by
T z = T xT y .

Condensed phase H 2
TFI + HB

TFI = H 1
XY

(BCe,BCo) Ising2 fields T z u(1)4 fields

(1,1) (1,1), (1,ψ), (ψ,1), (ψ,ψ) 1 1,ψ̃

(−1,−1) (σ,σ ) −1 λ,λ̄

(−1,−1) (σ,σ ) −1 λ,λ̄

(1,1) (1,1), (1,ψ), (ψ,1), (ψ,ψ) 1 1,ψ̃

0 /2
Momentum K

0

0.5

1

1.5

2

R
es

ca
le

d 
En

er
gy

 E

(1, ψ); ψ̃

(1, 1); 1̃

(1, 1); 1̃ (1, 1); 1̃

1̃

(1, σ)

(ψ, σ)

(1, ψ); ψ̃

(ψ, 1); ψ̃

(ψ, 1); ψ̃

(ψ,ψ); 1̃

(σ, σ); λ, λ̄ (σ, σ); λ, λ̄

(σ, σ); λ, λ̄

FIG. 1. (Color online) The low part of the rescaled energy spectra
of the n = 2 TFI chain (crosses) and the n = 1 XY chain (squares)
for L = 20. The spectra are symmetric under K → −K . The brown
crosses correspond to H 2

TFI states labeled by the confined primary
fields, whereas the blue, red, and black crosses correspond to the
states labeled by the (1,1), (ψ,1), and (σ,σ ) fields, respectively. The
blue, red, and black squares correspond to H 1

XY states labeled by the 1̃,
ψ̃ , and λ/λ̄ fields. Whenever the states from H 2

TFI and H 1
XY coincide,

the primary field labeling agrees with the condensation mechanism
(Ref. 25). The dashed lines illustrate the energies predicted by CFT,
namely, E = 2h + m, where h are the scaling dimensions of the
primary fields and m is an integer (Ref. 22).

TFI chains and the XY chain:23

H 2
TFI + HB

TFI = H 1
XY . (10)

To justify that HB
TFI indeed induces an analog of a conden-

sation transition, we show that the spectrum encodes also the
two other defining features of the mechanism: the identification
and the splitting of particles (in addition to the confinement of
the σ̃1 and σ̃2 particles). To show this, we realize that (9) gives
Pe = T y and Po = T x , i.e., the sectors of H 2

TFI with modified
boundary conditions map into the sectors of H 1

XY , as shown in
Table II. Figure 1 shows that when the spectra of these models
are plotted on top of each other and the individual states are
labeled according to the CFT predictions, the condensation
picture is confirmed: All (ψ,ψ) states coincide with the new
vacuum 1̃ states, while all states descending from (1,ψ) and
(ψ,1) coincide with the new fermion ψ̃ states. The branching
(σ,σ ) → λ + λ̄ manifests itself as (σ,σ ) states being replaced
by two degenerate states labeled by λ and λ̄.

Deriving critical spin models – The condensation mecha-
nism underlying the mapping between the n = 2 TFI and n =
1 XY chains suggests that similar mappings should also hold
between other critical spin chains whose CFT descriptions can
be related by the condensation picture. We employ this insight
to derive a critical spin chain described by the u(1)2 × u(1)2

CFT.
We start with the critical n = 2 XY chain, which is

described by the u(1)4 × u(1)4 CFT, containing 16 primary
fields (compare to the n = 2 TFI chain). Without going through
the details of the condensation picture, we note that this CFT
contains a bosonic field, (ψ̃,ψ̃). Condensation of this boson
leads to a pairwise identification of the 16 fields. Four of the
eight resulting pairs turn out to be confined, while none of the
fields have to be split. In the end, one is left with a theory with
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four fields, whose scaling dimensions and fusion rules match
those of the u(1)2 × u(1)2 CFT.

To induce the counterpart of this transition in H 2
XY , we

again constrain the boundary conditions by introducing the
boundary term

HB
XY = (

T z
o − 1

)(
τ x
L−2τ

x
0 + τ

y

L−2τ
y

0

)
+ (

T z
e − 1

)(
τ x
L−1τ

x
1 + τ

y

L−1τ
y

1

)
, (11)

which removes the states labeled by the confined primary
fields. Using the nonlocal transformation

τ z
2j = ρ

y

2j ρ
y

2j+1, τ z
2j+1 = ρx

2j ρ
x
2j+1,

τ x
2j =

⎛
⎝∏

i<2j

ρx
i

⎞
⎠ ρz

2j ρ
y

2j+1, τ x
2j+1 =

∏
i�2j+1

ρ
y

i , (12)

τ
y

2j =
∏
i�2j

ρx
i , τ

y

2j+1 = ρx
2j ρ

z
2j+1

⎛
⎝ ∏

i>2j+1

ρ
y

i

⎞
⎠ ,

where the label j takes the values j = 0,1, . . . ,L/2 − 1 and ρα

are new Pauli matrices, we arrive at the local and translationally
invariant Hamiltonian H 2

XY + HB
XY = Ĥ , where Ĥ is given by

Ĥ =
L/2−1∑
j=0

(
ρx

2j ρ
z
2j+1ρ

z
2j+2ρ

x
2j+3 + ρx

2j+1ρ
x
2j+2

+ ρ
y

2j ρ
z
2j+1ρ

z
2j+2ρ

y

2j+3 + ρ
y

2j+1ρ
y

2j+2

)
. (13)

The resulting chain Ĥ can be solved by means of a Jordan-
Wigner transformation, and we have verified that the critical
behavior is indeed described by the u(1)2 × u(1)2 CFT, as
predicted by the condensation framework.27 Although both
the starting and resulting CFTs both have a direct product
structure, the condensation mixes the two u(1)4 factors
describing the critical behavior of the n = 2 XY chain. We

provide more details on the condensation transition of the
n = 2 XY chain in a forthcoming publication.26

Conclusions. Our main result is that condensate-induced
transitions between gapped topological phases2 provide a
general framework for relating different critical spin chains.
When the boundary conditions of a spin chain are suitably
constrained, some primary fields of the CFT describing the
critical behavior are no longer part of the spectrum, which
we interpreted as a precise CFT level counterpart of the
confinement of quasiparticles induced by condensation of a
boson in a 2D topological phase. The constraining of boundary
conditions could be in general achieved through a nonlocal
boundary term. In the presence of such a term, we showed that
two copies of the critical transverse field Ising chain could be
exactly mapped to the critical XY chain, in agreement with the
condensation framework. Moreover, we were able to derive a
different local spin chain, with the predicted critical u(1)2 ×
u(1)2 CFT description, from two copies of the critical XY chain.

We expect that the applicability of this framework extends
beyond our examples. An exciting prospect is to derive further
critical spin chains, with particular interest on ones whose
CFT descriptions coincide with the trial wave functions for
fractional quantum Hall states. As the entanglement spectra
of critical spin chains and topological phases with the same
boundary CFT description contain intriguing similarities,21

critical spin chains may thus offer a simple microscopic
platform to study complex topological phase transitions. In
this respect it would be interesting to study whether the
boundary term could be understood more generally in terms of
a perturbation in a boundary CFT,28 and what is the counterpart
of topological domain walls (see Refs. 8, 29, and 30) in critical
spin chains.
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