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One-dimensional itinerant interacting non-Abelian anyons
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We construct models of interacting itinerant non-Abelian anyons moving along one-dimensional chains.
We focus on itinerant Ising (Majorana) and Fibonacci anyons, which are, respectively, related to SU(2)2 and
SU(2)3 anyons and also, respectively, describe quasiparticles of the Moore-Read and Z3-Read-Rezayi fractional
quantum Hall states. Following the derivation of the electronic large-U effective Hubbard model, we derive
effective anyonic t-J models for the low-energy sectors. Solving these models by exact diagonalization, we
find a fractionalization of the anyons into charge and (neutral) anyonic degrees of freedom—a generalization of
spin-charge separation of electrons which occurs in Luttinger liquids. A detailed description of the excitation
spectrum can be performed by combining spectra for charge and anyonic sectors. The anyonic sector is that
of a squeezed chain of localized interacting anyons and, hence, is described by the same conformal field
theory (CFT), with central charge c = 1/2 for Ising anyons and c = 7/10 or c = 4/5 for Fibonacci anyons
with antiferromagnetic or ferromagnetic coupling, respectively. The charge sector is the spectrum of a chain of
hard-core bosons subject to phase shifts which coincide with the momenta of the combined anyonic eigenstates,
revealing a subtle coupling between charge and anyonic excitations at the microscopic level (which we also
find to be present in Luttinger liquids), despite the macroscopic fractionalization. The combined central charge
extracted from the entanglement entropy between segments of the chain is shown to be 1 + c, where c is the
central charge of the underlying CFT of the localized anyon (squeezed) chain.
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I. INTRODUCTION

One of the most significant pursuits in condensed matter
physics is the search for quasiparticles or excitations that
obey non-Abelian exchange statistics.1–4 The most prominent
candidates (at present) are excitations of non-Abelian quantum
Hall states.5–9 In particular, there is evidence from tunneling10

and interferometry11,12 experiments supporting the existence
of non-Abelian quasiparticle excitations for the ν = 5/2
quantum Hall state.13–15

The leading candidate quantum Hall states to describe the
electronic ground state of the quantum Hall plateau at filling
fraction ν = 5/2 are the Moore-Read (MR) Pfaffian state5 and
its particle-hole conjugate, the “anti-Pfaffian” (aPf) state.7,8

Despite the differences between the MR and the aPf states
(which manifest in the detailed structure of the edge states),
the non-Abelian anyonic structures of their bulk quasiparticles
are simply the complex conjugates of each other. Both can be
described in terms of an Ising-type anyon model.

One of the leading candidates to describe the experimen-
tally observed ν = 12/5 quantum Hall plateau16,17 is the k = 3
Read-Rezayi (RR) state6 (a generalization of the MR state), or,
more precisely, its particle-hole conjugate (RR). Non-Abelian
quasiparticles of the RR and RR states are of the Fibonacci
type, and the ν = 12/5 quantum Hall state is the leading
candidate system hosting such non-Abelian anyons. The other
leading candidate for describing the ν = 12/5 quantum Hall
effect is provided by Bonderson-Slingerland (BS) states9

obtained hierarchically from the MR and aPf ν = 5/2 states
(by condensing Laughlin-type quasiholes). The quasiparticles
of these BS states have an Ising-type non-Abelian structure

similar to that of their MR and aPf parent states. Numerical
studies of the ν = 12/5 quantum Hall state found the RR and
BS candidates to be in close competition.18

Interestingly, a different hierarchical construction over the
MR state (condensing fundamental non-Abelian quasielec-
trons) produces a candidate state for filling ν = 18/7 that
possesses non-Abelian quasiparticles of the Fibonacci type,19

similar to the ones appearing in the non-Abelian spin-singlet
(NASS) state.20 However, a quantum Hall state at ν = 18/7
has, so far, not been experimentally observed.

Another promising class of candidates for realizing non-
Abelian quasiparticles is provided by systems with the so-
called emergent Majorana zero modes, which behave like
Ising-type anyons under exchange. Majorana zero modes were
originally predicted to exist in vortex cores of chiral p-wave
superconductors21,22 or at the ends of one-dimensional (1D)
polarized superconductors.23 More recently, it was shown that
Majorana fermions can form at the interface of a strong topo-
logical insulator and an s-wave superconductor .24 This idea for
realizing Majorana fermion zero modes was further developed
by several groups,25–28 who proposed similar superconducting
heterostructures based on semiconductors exhibiting strong
spin-orbit coupling, rather than topological insulators. For a
review, see Ref. 29. Efforts to physically implement these
latest proposals have been made in recent experiments,30–33

consisting of electrons tunneling into a nanowire (set up to
be in a topological phase supporting edge Majorana modes).
However, neither the exponential localization to the edges
of the observed zero modes nor the non-Abelian exchange
statistics has been probed yet.
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Inspired by these recent developments and possible re-
alizations of quasiparticles with non-Abelian statistics, we
consider the question of what happens if one confines mobile
non-Abelian quasiparticles to 1D systems. The concept of
itinerancy of interacting non-Abelian quasiparticles is of direct
physical significance, and the microscopic models we study
can be viewed, for example, as (crude) effective models
relevant to edge modes of quantum Hall and Majorana fermion
systems. It was established long ago, starting with the work of
Anderson,34 that electrons confined to one dimension undergo
“spin-charge separation,” namely, the electron falls apart into
two pieces—one spinless, carrying the charge, and the other
a spinon without charge, carrying the spin. These ideas were
further developed by several people, Tomonaga,35, Luttinger,36

and Haldane,37 who introduced the concept of the 1D Luttinger
liquid.

In our recent Letter,38 we started to investigate the subject of
itinerant non-Abelian anyons in a 1D system. We established
that non-Abelian anyons (of which the quasiparticles of the
quantum Hall states and the Majorana zero modes discussed
above are prime examples) also undergo a process which
resembles spin-charge separation. Namely, the non-Abelian
anyons fractionalize into charge (or density) and anyonic de-
grees of freedom. The model introduced in Ref. 38 was inspired
by the electronic t-J model,39 which can be viewed as a lim-
iting case of the Hubbard model40–42—namely in the limit of
large on-site repulsion—and for which spin-charge separation
was established analytically at a supersymmetric point43–45 and
numerically.46 In this paper, we continue our study of itinerant
non-Abelian anyons and provide greater detail.

The outline of the paper is as follows: In Sec. II we review
briefly general properties of non-Abelian anyons in SU(2)k
Chern-Simons theories and, more specifically, in non-Abelian
quantum Hall states. In Sec. III, we show that, in close analogy
to the electronic case, it is possible (i) to truncate the Hilbert
space of quasiparticles of non-Abelian quantum Hall states
confined to a 1D geometry (in the case of a strong charging
energy) and (ii) to derive low-energy effective anyonic t-J
models. The charge sectors of the anyonic t-J models are
derived in Sec. IV. In Sec. V, we present a short review of
the properties of dense (localized) non-Abelian anyon chains.
In Sec. VI, we demonstrate that the excitation spectrum of
anyonic t-J models can be accurately described by combining
spectra for charge and anyonic sectors (in a subtle manner) and
provide clear evidence of the fractionalization of anyons into
charge and anyonic degrees of freedom. In Sec. VII, we use
density matrix renormalization-group (DMRG) calculations
to extract the central charge of the Fibonacci t-J chain from
the entanglement entropy between segments of open chains,
providing further evidence of fractionalization. In Appendix A,
we provide detailed descriptions of the related anyon models
of the MR and RR states. In Appendix A, we describe the
details of the quasiparticle spectrum truncation for MR and
RR anyons used in this paper.

II. NONABELIAN ANYONS

A. General considerations and fusion algebra

The non-Abelian anyons we are concerned with in this
paper can formally be described by SU(2)k Chern-Simons

theories or via a certain quantum deformation of SU(2). In
either case, the non-Abelian degrees of freedoms are captured
by the “topological charges” j , which can be thought of as
“generalized angular momenta.” For a given SU(2)k theory,
these are constrained to take the values j = 0, 1

2 , . . . , k
2 , loosely

corresponding to the first k + 1 representations of SU(2).
In the same way that the tensor product of SU(2) spins can

be decomposed into the direct sum of multiplets of definite
values of J 2, one can decompose the product, or “fusion,” of
anyons. This fusion algebra or the “fusion rules” of a general
anyon model take the form

a × b =
∑
c∈C

Nc
abc, (1)

where a, b, and c are topological charge values in the set of
allowed topological charges C, and the fusion coefficients Nc

ab

are non-negative integers indicating the number of ways a and
b can fuse to produce c. The Nc

ab must be such that the algebra
is commutative and associative. There must also be a unique
“vacuum” or “trivial” charge, which we denote I or 0, for
which Nc

a0 = δac.
The fusion rules of SU(2)k anyons resemble their SU(2)

counterparts (but with a finite set of allowed values for j and
a corresponding truncation of the algebra). In particular,

j1 × j2 =
min{j1+j2,k−j1−j2}∑

j3=|j1−j2|
j3, (2)

where the upper limit is such that the fusion rules are
associative and obey the constraint that ji � k

2 .
We are particularly interested in the cases k = 2 and 3,

because they are the experimentally most relevant non-Abelian
anyon models. (The case k = 1 corresponds to Abelian
anyon models, in which case the Hilbert spaces we construct
below are one-dimensional, so one cannot construct nontrivial
models.) These cases are related to the Ising and Fibonacci
anyons models, respectively, which we now consider in more
detail.

The anyon model with k = 2 has three anyon types, which
we label using the Ising TQFT topological charges I , σ , and
ψ as follows: The vacuum or trivial anyon I corresponds to
j = 0. The anyon of type σ corresponds to j = 1

2 . Finally, the
(fermionic) anyon type ψ corresponds to j = 1. In particular,
the fusion rules read47

σ × σ = I + ψ, σ × ψ = σ, ψ × ψ = I, (3)

in addition to the general relations α × β = β × α and I ×
α = α, which hold in all anyon models, for arbitrary α and β.

The Fibonacci anyon model corresponds to the case k = 3,
where we restrict ourselves to the integer-valued j = 0
and 1, which we label vacuum I and Fibonacci anyon τ ,
respectively.48 The Fibonacci fusion rule reads

τ × τ = I + τ. (4)

In the following we consider itinerant anyons moving on
1D chains. Pictorial representations of such anyonic chains are
shown in Figs. 1(b) and 1(c), together with the more familiar
case of strongly correlated electrons shown in Fig. 1(a).

For the case of strongly correlated electrons, each electron
carries a unit charge and spin 1

2 . The spin- 1
2 degrees of freedom
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FIG. 1. (Color online) Anyonic fusion trees for (a) electrons, (b)
Ising σ anyons, and (c) Fibonacci anyons. Sites are denoted by the
(filled or open) circles at the top of the diagrams. Open circles denote
vacant sites, which carry the vacuum or trivial topological charge 0 or
I . The bond labels {xi} encode nonlocal information about the state
and their possible values are specified for each model. We note that,
for Ising anyons, our model excludes ψ anyons on the sites but not
on the links (see the text).

are taken into account in Fig. 1(a) in a slightly unconventional
way, utilizing a “fusion tree” notation, rather than the usual
tensor product of N two-dimensional local Hilbert spaces
(where N is the number of electrons). In this notation, the
labels xi for the links of the fusion tree correspond to the total
spin obtained by combining the spin xi−1 with that of the ith
electron. For an open chain, this simply means that xi is the
total spin of all the electrons to the left of the label. For a
periodic chain (in a system on a torus), the label has a slightly
more abstract interpretation, since the notion of all particles to
the left or right is not well defined. We use this formulation
because it easily generalizes to the case of non-Ablian anyons,
where there are no local degrees of freedom (i.e., they lack
local Hilbert spaces and internal quantum numbers, similar to
sz in the case of spins).

The non-Abelian anyons in Figs. 1(b) and 1(c) may also
carry an electric charge (albeit this typically is a fraction of the
charge of the electron), as well as anyonic degrees of freedom.
The charge degrees of freedom live on the sites, while the bond
variables xi encode the anyonic degrees of freedom along the
fusion tree, in the same way as the labels xi encoded the
spin of the electrons in Fig. 1(a). Abelian anyonic degrees of
freedom may be treated in the same way as electric charge, i.e.,
locally assigned to the sites, since their resulting fusion tree
is uniquely determined by the local degrees of freedom. The
labels xi are not arbitrary but satisfy the constraint that each
trivalent vertex in this fusion tree is permitted by the fusion
rules. This implies that the size of the internal Hilbert space
(for a given configuration of particle/anyon positions) grows as
2N in the case of electrons, (

√
2)N in the case of Ising anyons,

and φN in the case of Fibonacci anyons, where φ = 1+√
5

2 is the
golden ratio. Here, N corresponds to the number of electrons,
Ising σ anyons, or Fibonacci anyons. The actual dimension
for any finite N is, of course, an integer, so these are only

the leading order scaling (as N → ∞) for the non-Abelian
anyons. The sites labeled I correspond to vacancies and carry
no electric charge, spin, or anyonic degrees of freedom.

Before we continue, in Sec. II B, with a description of
the quantum Hall states in which these types of anyons are
realized, we want to make one remark, which is essential
in the subsequent description of the behavior of itinerant
anyons. Despite the fact that we are describing mobile, but
identical, anyons, there will be a notion of “distinguishability”
of the anyons. In particular, the various states in the Hilbert
space are characterized not only by the location of the
occupied sites, but also by the labels xi , which distinguish
the various states, given the location of all the anyons. In some
sense, specifying the precise internal state, corresponding to
all the anyons as a whole, renders the individual anyons
in a particular state distinguishable. We see later that this
seemingly simple observation plays an essential role in the
effective description of the collective behavior of itinerant
anyons.

B. Non-Abelian quantum Hall states

We now concentrate on describing the anyonic structure of
the MR and k = 3 RR states in their fermionic incarnations,
which are relevant in the electronic quantum Hall setting.
Because of the fermionic nature of the states, the anyonic
structure is slightly more complicated than the SU(2)k anyons
described above. To describe this structure, it is best to consider
the non-Abelian part separately, which is described in terms
of Ising anyons for the MR state and Z3 parafermions for the
k = 3 RR state.

In the case of the MR state, the non-Abelian sector is
the Ising theory, whose fields are I , σ , ψ , with the Ising
fusion rules given above. The quasiparticle types can now
be specified by the Ising label, together with the electric
charge. The vacuum is (I,0), while (σ,e/4) is the “fundamental
quasiparticle,” which, in some sense, carries the “smallest”
quantum numbers allowed in the MR state; i.e., it has
the smallest (nonzero) electric charge and repeated fusion
generates the entire spectrum of topological charges. All
other quasiparticles are thus obtained by repeated fusion of
this fundamental quasiparticle, using the fusion rules above
and the additivity of the charge. In addition, one needs the
rule that quasiparticles which differ by fusion of an electron,
given by (ψ,e), are to be identified. The fact that we identify
quasiparticles which “differ by a fermion” (or identify the
electron with the vacuum) leads to some complications, which
are not present for the bosonic versions of these quantum Hall
states,49 but these complications do not concern us here. The
resulting quasiparticle spectrum is given in Fig. 2(b), where we
have six quasiparticle types [shown as filled (green) circles],
because (I,e) and (ψ,0) are identified, and so on.

In the case of the RR state with k = 3, the non-Abelian
structure corresponds to Z3 parafermions, which convention-
ally are labeled I,ψ1, ψ2, σ1, σ2, ε. We, however, use the
notation ψ0 = I , τ0 = ε, τ2 = σ1, and τ1 = σ2. In this way,
the fusion rules take the simple form

ψi × ψj = ψi+j , ψi × τj = τi+j , τi × τj = ψi+j + τi+j ,

(5)
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FIG. 2. (Color online) Charts of the quasiparticle contents of (a)
the electronic Hubbard model, (b) the MR state, and (c) the k = 3 RR
state. The elementary electric charges of the MR quasiparticles are
multiples of e/4, while those of the RR quasiparticles are multiples
of e/5. Dark (green) circles correspond to the different particle types.
Filled black circles represent electrons/holes, which are identified
with the vacuum (I,0) in (b) and the vacuum (ψ0,0) in (c). Gray
circles correspond to particles which are identified with one of the
particles corresponding to a green symbol, as explained in the text.

where the indices are taken modulo 3. This is the direct product
of the Fibonacci fusion algebra with a Z3 fusion algebra. The
quasiparticle types can now be specified by theZ3-parafermion
label, together with the electric charge. The vacuum is (ψ0,0),
while the fundamental quasiparticle’s quantum numbers are

(τ2,e/5). As in the MR state, the other quasiparticles are
obtained by repeated fusion of the fundamental quasiparticle,
using the fusion rules above. Quasiparticles which differ by
fusion of an electron, given by (ψ1,e), are to be identified. This
gives rise to 10 quasiparticle types, displayed as filled (green)
circles in Fig. 2(c), with charges 0, . . . ,4e/5 [where we note
that (τ1,e) is identified with (τ0,0), and so on].

For comparison, we display the relevant quasiparticle types
in the ordinary electron case in Fig. 2(a): the trivial particle
(vacant site) I , the electron e, a double-occupied site d, and
a spin-1 magnon m. In this case, there is no condensate, and
hence none of the particles are to be identified.

In the next section, we describe how we can truncate the
spectrum of particles, in order to come up with a tractable
model of interacting, itinerant anyons in one dimension.

III. ANYONIC t- J MODELS

A. Objectives and procedure

We move now to the construction of low-energy models
for the itinerant anyons in one dimension, modeled by a
discrete chain. This chain might be a lattice discretization
of a 1D continuum system such as the edge of a quantum
Hall liquid or a 1D array of quantum dots. On this chain
we restrict ourselves to short-range [nearest-neighbor (NN)]
interactions and “hopping” terms, which can both be expressed
as “tunneling” processes,50 as sketched in Figs. 3 and 4.
Because the anyons are electrically charged, confinement on
a quantum dot or transverse confinement (e.g., in the case of
edge states) may lead to a high Coulombic charging energy that
strongly discourages multiple occupancy of sites and, hence,
prohibits the formation of quasiparticle excitations of larger
charge values.

As shown in the previous section the physical contents
of non-Abelian quantum Hall states are very rich and we
thus want to derive an effective low-energy model, similar
to the derivation of the t-J model for electrons from the

FIG. 3. (a) All two-anyon processes can be represented as a
general “tunneling” term, where topological (and/or electrical) charge
is transferred from one localized quasiparticle to the other. Special
cases of this include (b) an “interaction” between the two anyons, for
which the localized charges are unchanged, and (c) a “hopping” term,
where a localized anyon moves to a vacant site.
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FIG. 4. Hopping and interaction terms for (a) electrons, (b) Ising
anyons, and (c) Fibonacci anyons, expressed in the notations used
in Fig. 3.

Hubbard model. In order to describe the low-energy spectra, a
well-known strategy consists of building up a simpler model by
(i) discarding the high-energy (quasi)particles and (ii) treating
virtual processes involving the fusion of the low-energy
(quasi)particles to the discarded high-energy (quasi)particles
in second-order perturbation theory.

B. Large-U electronic Hubbard model

To illustrate this procedure, we first take the example of
a generalized Hubbard model of electrons and show how to
derive the corresponding t-J model. We start from electrons,
where the most general SU(2)-symmetric single-band model
with NN interactions can be written in second quantized
notation as

H = −t
∑
i,σ

(c†i,σ ci+1,σ + H.c.)

+ J0

∑
i

(
�Si · �Si+1 − 1

4
nini+1

)

+V
∑

i

nini+1 + U
∑

i

ni,↑ni,↓. (6)

Here c
†
i,σ and ci,σ are the creation an annihilation operators of

an electron with z component of spin σ , ni,σ = c
†
i,σ ci,σ are the

local spin densities, ni = ni,↑ + ni,↓ is the total local density,
and �Si is the spin operator on site i.

The first term (t) in the Hamiltonian Eq. (6) is the hopping
(tunneling) of an electron. The second term (J0) is a spin
exchange term, which can be interpreted as a two-electron
interaction mediated by the tunneling of a spin-1 magnon.
This term can also be written as −JPS=0

i,i+1, with PS=0
i,i+1 being

the projector onto the total singlet state of two neighboring
electrons at sites i and i + 1. The third term (V ) is an NN
repulsion, which can be interpreted as tunneling of a photon,
and finally, the last term (U ) is the local charging energy.

In this Hubbard model of electrons, we consider three types
of “quasiparticles” at the lowest energies: the “trivial particle”
I (i.e. a vacant site), the electron e, and the “doublon” d,
corresponding to a double (electronic) occupancy at a site. In

FIG. 5. (Color online) Schematic energy spectra (arbitrary scale)
in the presence of a parabolic Coulomb charging energy for the case
of (a) electrons, (b) Ising anyons, and (c) Fibonacci anyons. The
Hubbard U energy is shown in (a). Upward arrows show the shifts
corresponding to the topological contribution to the bare energies of
the quasiparticles, e.g., �σ = 1/8 and �ψ = 1 in (b) and �τ0 = 4/5,
�τ1 = �τ2 = 2/15, and �ψ1 = �ψ2 = 4/3 in (c).

Fig. 5(a), we model the energy costs for a given quasiparticle
type using a parabolic Coulombic charging energy of the form

VCoul(q) ∼ (q − Qc)2 , (7)

where q is the quasiparticle’s electric charge value, and Qc

is the minimal energy charge value. Here, each lattice site
is viewed as a “quantum dot” for which Qc is fixed by the
(implicit) chemical potential. The last term in the Hamiltonian
Eq. (6) specifies that U is the energy cost of promoting two
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FIG. 6. (a, b) Second-order exchange processes for two electrons
at nearest-neighbor sites via the virtual creation of a “vacuum”
quasiparticle I (i.e., a vacancy) and a “doublon” d . These two
exchange diagrams can be replaced by the first-order magnon
exchange diagram shown in (c), leading to a renormalization of the
magnon exchange interaction.

electrons into a vacancy and a doublon. When U/t is large,
one can project out doublons and consider a restricted subspace
of electrons and vacancies only. The local U interaction can
then be taken into account in second-order perturbation, as
shown in Fig. 6, renormalizing the coupling constant of the spin
exchange term to J = J0 + 4t2/U , i.e., the magnon-mediated
interaction.

C. Hilbert-space truncation for anyons

For anyons we proceed in the same way as for the electronic
Hubbard model to derive a simpler effective model of the
low-lying states, assuming that the charging energy is the
largest energy scale and can be integrated out. In Figs. 5(b) and
5(c), we model the energy costs for a given quasiparticle type
using a quantum dot, which, again, has a quadratic Coulombic
charging energy VCoul(q), but also has an energy shift,

Vneut(a) ∝ �a, (8)

where �a is the conformal scaling dimension corresponding
to topological charge a, which depends on the (neutral) topo-
logical charge of the quasiparticle51 (see also Refs. 52–55).
We note that the conformal scaling dimension �a is the sum
of the left and right conformal weights �a = ha + h̄a .

For a high charging energy we can restrict ourselves to
a low-energy subspace that contains only two quasiparticle
types, as indicated in Figs. 5(b) and 5(c). In the case of
the Ising anyon chain, we only allow the lowest energy
quasiparticles (I,0) and (σ,e/4) to be localized at a given site.
The quasiparticles (I,e/2) and (ψ,e/2) correspond physically
to double occupancies of the quasiparticle (σ,e/4) and, thus,
involve a prohibitively high Hubbard-like charging energy.
The neutral fermion quasiparticle (ψ,0) is gapped, because of
the energy associated with the ψ mode, but it is present in
our model in the form of virtual tunneling processes. To make
the quasiparticles (I,0) and (σ,e/4) nearly degenerate, one
has to introduce a chemical potential, which, combined with
the charging energy, gives the sought after near-degeneracy.
Similarly, in the case of Fibonacci anyons, we can also allow
only the lowest energy quasiparticles (ψ0,0) and (τ2,e/5) to
be localized at a given site. In this case, the neutral Fibonacci
quasiparticle (τ0,0) is gapped but is present in our model in
the form of virtual tunneling processes. In Appendix A, we

explain in more detail how one can combine the effects of a
gate and of the charging energy in order to obtain a low-energy
sector containing two degenerate states, separated from the
other excitations by a gap.

We note that the fundamental quasiparticles of the MR or
RR quantum Hall states are described as the product of an
Ising or Fib anyon model with an Abelian anyon model (see
Appendix A), which can be associated with the electric charge
and is, therefore, “additive.” Hence, the electric charges of the
quasiparticles of the relevant subspace need not be specified
any more, because each quasiparticle has the same charge.
Also, we can drop the subscripts for the two lowest energy
Fibonacci quasiparticles; i.e., we identify ψ0 → I and τ2 → τ

since only one species of τ anyons is involved in the low-
energy subspace. In other words, we end up with only one type
of σ anyon or τ anyon allowed at the sites, and the sites left
empty are filled with trivial quasiparticles I or vacancies. The
details of the above-mentioned identification are not important
here but are given in Appendix B.

A pictorial representation of such chains is shown in Fig. 1.
The charge degrees of freedom can therefore be thought of
as living at the sites (the localized nontrivial quasiparticles
carry elementary e/4 or e/5 electric charge, in contrast to
the vacancies), while the bond variables xi are encoding the
anyonic (or spin) degrees of freedom. We recall that a × I = a

for any quasiparticle a = I , τ , σ , ψ so that the anyonic “spin”
is conserved along the empty segments of the chain (i.e., with
vacancies at the sites).

D. Interaction between nearest-neighbor anyons

Let us consider putting N anyons of type σ or τ on an L-site
chain with periodic boundary conditions, i.e., on a closed ring
(situated on a torus). When two charged anyons sit at NN sites
they experience an ordinary Coulomb repulsion V . In addition,
they interact via an effective exchange interaction of magnitude
J , which can be derived as in the electronic Hubbard chain.
For this, we use the (unitary) F -symbol transformation shown
in Fig. 7, which is a change of basis between different fusion
tree representations of the states. When we apply the F symbol
of the NN anyons, which have charges a and b, it provides a
change of basis from the fusion chain basis in Fig. 1 (which
we use to encode states) to one in which the fusion channel of
this NN pair of anyons is manifest, as indicated in Fig. 7 by
the charge label w.

By analogy with the electronic Heisenberg interaction, the
exchange interaction between two neighboring anyons is given
by −JPI , which favors the vacuum fusion channel I for
these two anyons. The actions of the corresponding exchange
processes on the local fusion tree basis elements are shown

FIG. 7. Change of basis involving the fusion channel of two
neighboring electrons or anyons and the F symbol.
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FIG. 8. (Color online) Matrix elements describing (exchange)
interactions between nearest neighbors of (a) electrons, (b) Ising
anyons, and (c) Fibonacci anyons. In (b), when x = z = σ , y and y ′

can take the value I or ψ , making hσ,σ,σ
σ a 2 × 2 matrix, while when

neither x nor z equals σ , then y = y ′ = σ , making hx,σ,σ
z a 1 × 1

matrix.

schematically in Figs. 8(a)–8(c). By using the F -symbol
change of basis in Fig. 7, the local Hamiltonian elements
h

xi−1,αi ,αi+1
xi+1 can be derived, depending on (and labeled by) the

variables xi−1 and xi+1 on the two outer bonds connected to the
two NN sites and acting on the local spin xi of the inner bond,
as shown in Figs. 8(a)–8(c). The label αi denotes the type
of anyon localized at site i. Severe local constraints greatly
reduce the number of possible nonzero matrices and matrix
elements, which we give explicitly below.

Let us first start with the case of two NN spin-1/2 (localized)
electrons experiencing an AF exchange interaction, i.e., for
which the fusion outcome in the singlet channel is favored
over the triplet channel. In the usual spin basis, this is just the
Heisenberg term −J (1/4 − Si · Si+1). However, we work in
the fusion chain basis, as shown in Fig. 1(a). Thus, we need to
know the F symbols describing the change of basis as given in
Fig. 7, for the case of SU(2) spin-1/2’s, i.e., αi = αi+1 = 1/2.
The F symbols are closely related to the Wigner 6j symbols
[see, e.g., Ref. 56 or the SU(2)k F symbols with q = 1 (i.e.,
k = ∞) in Appendix A]. The F symbols of interest here are
given by[

F
xi−1,

1
2 , 1

2
xi+1

]
xi ,x̃i

= (−1)xi−1+xi+1+1
√

(2xi + 1)(2x̃i + 1)

×
{
xi−1 1/2 xi

1/2 xi+1 x̃i

}
, (9)

where x̃i = 0,1 is the total spin of the two spin- 1
2 ’s, and

{ j1 j2 j12
j3 j j23

} denote the 6j symbols.
In particular, if xi+1 = xi−1 ± 1, then the values of xi and

x̃i are fixed to be xi = xi−1 ± 1
2 and x̃i = 1, and the resulting

F symbol is just a number, namely,[
F

xi−1,
1
2 , 1

2
xi−1±1

]
xi−1± 1

2 ,1 = 1. (10)

In the case where xi−1 = xi+1 = 0, we must have xi = 1/2
and x̃i = 0. The associated F symbol is again 1:[

F
0, 1

2 , 1
2

0

]
1
2 ,0 = 1. (11)

The only case for which the F symbol has rank 2 is when
xi−1 = xi+1 = s � 1

2 , giving xi = s ± 1
2 and x̃i = 0,1. The F

symbol takes the from

F
s, 1

2 , 1
2

s = 1√
2s + 1

[−√
s

√
1 + s

√
1 + s

√
s

]
, (12)

where the first column corresponds to x̃ = 0, and the second
to x̃ = 1.

With the knowledge of the F symbols, we can construct
the Hamiltonian [see Fig. 8(a)], which symbolically takes the
form [

h
xi−1,

1
2 , 1

2
xi+1

]
xi ,x

′
i

= V δxi ,x
′
i
− J

[
F

xi−1,
1
2 , 1

2
xi+1

]
xi ,0

× [(
F

xi−1,
1
2 , 1

2
xi+1

)−1]
0,x ′

i

, (13)

where we have included the coulomb interaction V , because
the electrons occupy neighboring sites, and we favor the spin-0
channel (implicitly it is only nonzero if the diagram is allowed
by the fusion rules). Explicitly, we find that h

xi−1,1/2,1/2,
xi+1 = V

in the case where xi+1 �= xi−1. For xi−1 = xi+1 = 0, we have
h

0,1/2,1/2
0 = V − J , and for s > 0, we have

hs,1/2,1/2
s =

[
V − J s

2s+1
J
√

s(1+s)
2s+1

J
√

s(1+s)
2s+1 V − J (s+1)

2s+1

]
. (14)

The Hamiltonian in the case of Ising and Fibonacci anyons
[see Figs. 8(b) and 8(c)] is obtained in the same way as
we did above for spin-1/2 electrons. The most important
necessary ingredient is the F symbols, which can be found
in Appendix A.

For Ising anyons, the nonzero matrix elements are limited
to [

h
I,σ,σ
I

]
σ,σ

= [
h

ψ,σ,σ

ψ

]
σ,σ

= V − J, (15)[
h

I,σ,σ
ψ

]
σ,σ

= [
h

ψ,σ,σ

I

]
σ,σ

= V, (16)

and

hσ,σ,σ
σ =

[
V − J/2 −J/2

−J/2 V − J/2

]
, (17)

where the basis used to write the matrix is {I,ψ}.
The nonzero matrix elements of the Fibonacci chain are

given by [
h

I,τ,τ
I

]
τ,τ

= V − J, (18)[
hI,τ,τ

τ

]
τ,τ

= [
h

τ,τ,τ
I

]
τ,τ

= V, (19)

and

hτ,τ,τ
τ =

[
V − J/φ2 −J/φ3/2

−J/φ3/2 V − J/φ

]
, (20)

where φ is the golden ratio and the matrix is written in the
basis {I,τ }.

E. Anyon “hopping”

Finally, we have to consider the possibility of quasiparticles
(including the vacuum I ) moving on the lattice and gaining
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FIG. 9. (Color online) Tunneling process (or “hopping”) of (a) an
electron, (b) an Ising anyon, and (c) a Fibonacci anyon.

kinetic energy. The (effective) physical hopping processes are
shown in Fig. 9. In such a move, the entire quasiparticle,
including the electric charge and spin/topological charge,
is transported from one lattice site to a vacant site that is
adjacent to it. (Generally, hopping may involve transfer of
a quasiparticle to an occupied site, but we do not consider
such processes in our models.) Note that the magnitude of the
hopping t is not affected by the truncation of the Hilbert space
to the reduced space of the low-energy quasiparticles. Note
also that the sign of t is irrelevant, so one can assume t > 0
for simplicity.

When |J | is large in comparison to t and V , the system
phase-separates, i.e., the anyons tend to form large clusters
of higher density, ρ 
 1. In contrast, for a higher kinetic
energy (i.e., t) and/or repulsion between the anyons, the system
remains homogeneous. This is the regime of interest here, and
for ρ = 2/3 and ρ = 1/2, we have found that it is realized for
t = |J |, even when V = 0, or larger t/|J | values. Note that,
for convenience, we assume V = 0 throughout and we have
explored the models for values of J ranging from −t to t .

IV. CHARGE DEGREES OF FREEDOM FOR J = 0

This section is a “warmup” for the real itinerant anyon
models, starting with the simple example of identical bosons,
and describes how making them distinguishable introduces
a twist in the periodic boundary conditions. It therefore
explains the J = 0 part of the spectra, without the non-Abelian
complications.

A. Hard-core bosons

We start with a periodic chain of size L filled with N

bosons. We consider the case where two bosons cannot occupy
the same site, due, e.g., to an infinite on-site repulsion (hard-
core constraint). Such a system of hard-core bosons (HCBs)
can be mapped via a Holstein-Primakoff and Jordan-Wigner
transformation onto a gas of spinless fermions. In 1D, the
effect on the spectrum due to the difference in statistics can
simply be accounted for by adding to the fermions an extra
phase shift of π through the ring (when the particle number

- 0
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-13.2

-12.8

-12.4
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K+ ext 

ext(a) ext
(b)

=2/3
 L=24

Hardcore bosons

Kc Kc=2

FIG. 10. (Color online) Spectra of 16 (hardcore) bosons moving
on a 24-site chain with periodic boundary conditions. (a) Spectrum
for zero magnetic flux through the ring. The linear dispersions vs
momentum K are shown at K = 0 and K = ±Kc. (b) Spectrum vs
external (continuous) magnetic flux φext (multiplied by the density ρ).
Each discrete level [filled (black) circles] leads to a (parabolic) branch
of excitations.

N = ρL is even). Therefore, the HCB many-body spectrum
can be obtained by filling up N states of a (fermionic) cosine
band,

EHCB(p) = −2t
∑
j (p)

cos

[
2π

L

(
j + 1

2

)]
, (21)

where {j (p)} is a set (labeled by p) of an even number
N of different integers and the momenta are all shifted by
π/L. The spectrum (for t = 1) is displayed in Fig. 10(a).
As expected, the HCB spectra exhibit linear quasiparticle
dispersions centered at momenta K = 0 and K = Kc ≡ 2πρ

[or 2π (1 − ρ) for ρ > 1/2].
For later use in the case of anyons, it is of interest to

introduce an external magnetic flux φext or, equivalently,
an Abelian U(1) flux through the ring. The new spectrum
EHCB(p,φext) depends now on both discrete and continuous
variables p and φext,

EHCB(p,φext) = −2t
∑
j (p)

cos

[
2π

L

(
j + 1

2

)
+ φext

L

]
, (22)

plotted in Fig. 10(b) (for t = 1).The state labeled (p,φext) now
carries an arbitrary (continuous) total momentum K̃ = Kp +
ρφext, with Kp = 2π

L

∑
j (p)(j + 1

2 ).

B. Fermions and anyons

We now make the (quasi)particles distinguishable; i.e., we
introduce some internal degrees of freedom, which can be,
e.g., the spin-1/2 components of the electrons or the anyonic
degrees of freedom of the Ising σ or Fibonacci τ anyons.
The resulting model is the same as considering the above t-J
models in the limit where J = 0 (t can be set to 1). This limit,
where the energy scale of the anyonic degrees of freedom is set
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to 0, is of great interest since it provides insight on the nature
of the charge excitations.

In that limit, mobile anyons are expected to still behave as
HCBs. However, the extra internal degrees of freedom (with
a zero energy scale) should provide extra features on top of
the HCB spectrum. Because of the anyonic (or spin) degrees
of freedom linked to them the charged bosons are no longer
indistinguishable particles, and on a torus or a ring, hopping of
a particle across the “boundary” cyclically translates the labels
of the fusion tree. To recover the same labeling, in general, all
N particles must be translated over the boundary. Thus, one
distinguishable particle hopping over the boundary has the
same effect as a phase shift φn = 2π n

N
(with n an integer).

Hence the complete J = 0 electronic/anyonic spectrum (at
zero external flux) is given by the union of all HCB spectra
taken at all discrete values of φn:

E
p,n

charge = EHCB(p,φn). (23)

A momentum shift is induced by the U(1) flux, given by ρφn,
i.e., 2π n

L
, an integer multiple of 2π

L
. The states then carry

(discrete) total momenta,

Kp,n = Kp + 2π
n

L
, (24)

where Kp are the momenta of the HCB eigenstates at φext = 0.
For convenience, one can distribute the phase shift equally on
the bonds to preserve translational invariance, and one gets

E
p,n

charge = −2t
∑
j (p)

cos

[
2π

L

(
j + 1

2
+ n

N

)]
. (25)

Spectra for Ising and Fibonacci anyons obtained by exact
diagonalization (ED) for J = 0 are shown in Figs. 11, 12(a),
and 12(b). As expected, Eq. (25) matches exactly the numerical
ED results. From the above considerations, it is then clear
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FIG. 11. (Color online) Low-energy spectrum of a 24-site t-J
chain at J = 0 and density ρ = 2/3, obtained numerically using
Ising anyons. Yellow circles correspond to the spectrum at φext = 0
as a function of momentum K . The “parent” charge excitations (HCB
at φext = 0) are shown by filled (black) circles. Adding an external
flux φext through the ring is equivalent to shifting K by ρφext: the
(red) crosses correspond to the spectrum at φext = π/4 restricting
K ∈ [−π/3,π/6] (so that K̃ ∈ [−π/6,π/3]).
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FIG. 12. (Color online) Low-energy spectra vs momentum K of
an 18-site t-J chain with J = 0 at anyon densities of (a) ρ = 1/2 and
(b) ρ = 2/3. The notations here are the same as in Fig. 11, but these
results were obtained numerically using Fibonacci anyons. The low-
energy spectra of the 18-site HCB chain at the same densities (parent
excitations) are shown by filled (black) circles. Data for an external
flux φext = π/5 are shown in (b). The minimum of the spectrum
occurs at momentum K = 0 or K = π , depending on the parity of
the number N = ρL of quasiparticles.

that the eigenenergies lie exactly on top of the parabolas
corresponding to the “optical” excitations of the HCB. In
other words, each state in the HCB spectrum is extended
into a discrete set of levels on a parabola—the same parabola
that one gets by adding flux (an Abelian phase), as checked
numerically.

It is important to note that the J = 0 spectrum does
not depend on the internal degrees of freedom or, hence,
on the nature of the quasiparticles, i.e., whether they are
electrons, Ising anyons, Fibonacci anyons, or distinguishable
bosons. However, the respective Hilbert spaces are very
different, which means that the corresponding eigenfunctions
and degeneracies differ completely. In addition, the way the
very large degeneracy of each level is lifted by any finite
exchange interaction (see Fig. 14 discussed later) depends
crucially on the type of particles.

C. External magnetic flux

When the anyons experience an arbitrary external flux
φext, the above formula can be generalized to E

p,n

charge(φext) =
EHCB(p,φn + φext). It then becomes apparent that the J = 0
energy spectrum does not depend on the momentum Kp,n

and external flux φext separately but, rather, only on the
“pseudomomentum” combination K̃ = Kp,n + ρφext. Hence,
one can define a spectrum depending on both discrete and
continuous variables:

Echarge(p,�) = EHCB(p,�). (26)

The curvature of the ground-state energy ∂2Echarge(0,�)/∂�2

is directly proportional to the optical (Drude) weight quanti-
fying the potential of this system to conduct.
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V. DENSE ANYON MODELS

To complete the warmup to describe the full anyonic t-J
model, we briefly discuss dense anyon models at ρ = 1.
These models have precisely one anyon per site, which are,
hence, immobile due to the hard-core constraint. Every anyon
interacts with its two neighbors, and only the sign of the
interaction strength J is relevant. These models, introduced
in Ref. 57, are the anyonic versions of the Heisenberg spin
chains. We consider only the spin-1/2 versions in this paper.

In the case where only an NN two-body interaction is
present, the spin-1/2 anyonic chains are all critical, and their
energy spectra are described by well-known conformal field
theories (CFTs). Starting with the Ising anyons, we note that,
due to the fusion rules, the degrees of freedom on the fusion
chain are forced to form a pattern of alternating frozen σ bonds
and bonds fluctuating between I and ψ . For these later bond
variables, the interactions of Fig. 7(c) are exactly those of a
critical Ising model in transverse field, whose corresponding
CFT has central charge c = 1/2. This is irrespective of the
overall sign of the interaction, although the momenta at which
the various states occur differ depending on the sign of J .

In the case of Fibonacci anyons, changing the sign of
J does alter the critical behavior of the chain. In the case
of antiferromagnetic interactions (favoring the trivial fusion
channel of two neighboring Fibonacci anyons), the critical
behavior is described in terms of the c = 7/10 tricritical Ising
model, with low-lying, linearly dispersing modes occurring at
momenta K = 0 and K = π . For ferromagnetic interactions,
the critical behavior is instead described by the c = 4/5
three-state Potts model, which exhibits low-lying modes at
K = 0, 2π/3, 4π/3.

The behavior described above can be obtained by mapping
the models onto exactly solvable two-dimensional height
models, introduced by Andrews, Baxter, and Forrester.58 The
result for spin-1/2 anyons associated with SU(2)k is that, in the
case of antiferromagnetic interactions, the critical behavior of
the chain is given in terms of the k-critical Ising model, while
ferromagnetic interactions give rise to the critical behavior of
the Zk parafermions.

We would like to stress that, although one can analytically
obtain the critical behavior of the dense anyonic chains, it is not
possible to obtain the energy spectra in full detail for finite-size
systems for k � 3. To obtain these, one must employ numerical
techniques, such as ED (see, e.g., Fig. 13, for the k = 2 Ising
case, which can also be obtained exactly). In describing the full
spectra of anyonic t-J models, we make use of the spectra of
the dense anyonic models described here, as obtained from ED.

We denote the length of the dense anyon chains La . The
energies of the dense anyon chains are denoted Eanyon(m),
where the integer m labels the eigenstates, which have
momenta km that are integer multiples of 2π/La . Next,
considering chains of length L and at anyon densities ρ < 1,
we define the corresponding “squeezed chains” of dense
anyons of length La = ρL = N , in which the vacancies (or
trivial quasiparticles) have been removed.

VI. MANY-BODY SPECTRA OF ANYONIC t- J MODELS

Having described the spectra of the HCB system, in the
presence of external flux, as well as the spectra of dense anyon
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FIG. 13. (Color online) Energy spectrum of a dense Ising-anyon
chain (ρ = 1) of length La = 16. The ground-state energy has been
subtracted.

models, we are now ready to describe the spectra of the full,
itinerant anyon models. We label the various energies Ep,m,
where the labels p and m refer to the (renormalized) HCB
spectrum and the dense anyon chain, respectively. We also
explain the subtle coupling of the momenta.

A. Separation of charge and anyonic degrees of freedom

We now consider the full J > 0 spectra of the itinerant
models. We solve the effective anyonic models on small
periodic rings using exact diagonalization. For Ising anyons,
a 24-site chain is studied at density ρ = 2/3 (N = 16
quasiparticles). For Fibonacci anyons (which have a larger
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FIG. 14. (Color online) A zoom-in on the low-energy spectra vs
K of a 24-site Ising anyon t-J chains at density ρ = 2/3 for (a) J = 0
and (b) the small value of J/t = tan (π/50) 
 0.06. The Lanczos
algorithm with 800 iterations is used so that, in the energy window
shown, most of the eigenenergies have converged to within a relative
error of 10−16 (a few not fully converged levels are not shown). The
(red) crosses correspond to the sum of the (computed) lowest charge
branch [solid (red) line] with all the expected anyonic excitations.
See text for more details.
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FIG. 15. (Color online) Low-energy spectra vs K of a 24-site
Ising t-J chain at density ρ = 2/3 for (a) J = 0 and (b) J = t =
1/

√
2. Data at φext = 0 are shown by shaded (yellow) circles. Parent

charge excitations are shown by filled (black) circles (φext = 0) and,
as a function of pseudomomentum K̃ = K + φextρ (varying φext),
by solid lines of different colors. The cross and X symbols added
for comparison correspond to the sum of the charge and expected
anyonic excitation spectra. (See text for more details.) The colors of
these symbols are the same as their parent charge excitation parabolas.

Hilbert space) we consider an 18-site chain at density ρ = 1/2
(N = 9 quasiparticles) and ρ = 2/3 (N = 12 quasiparticles).
We choose |J | � t , for which the system remains uniform
and does not phase separate (which occurs for larger J ).
Note that the sign of J is irrelevant for the energy lev-
els in the case of Ising anyons, though the momenta at
which the various states occur differ depending on the sign
of J .

The low-energy spectra (|J | = t = 1/
√

2) of the itin-
erant Ising and Fibonacci anyonic chains are shown in
Figs. 15(b), 16(a), and 16(b), respectively. These seem very
different from the J = 0 limit studied above [and shown again
in Fig. 15(a) for comparison]. To understand such spectra,
let us first consider a zoom-in on the low-energy region and
compare the spectra at J = 0 and at a small value of J , as
shown in Figs. 14(a) and 14(b). This reveals that the highly
degenerate J = 0 charge excitation parabola is being split
by the magnetic interaction into a complex spectrum with a
spread in energy proportional to JL. When J ∼ t/L2, the
spectra originating from each parabola start to overlap as
expected in Figs. 15(b), 16(a), and 16(b). Despite the apparent
complexity of the J �= 0 spectrum, we shall be able to express
all excitations as the sum of an anyonic excitation and a charge
excitation, extending the concept of spin-charge separation
familiar for 1D correlated electrons to the case of a 1D
anyonic interacting system. To complete this task, we first
establish from simple considerations the “recipes” to construct
separately the expected charge and anyonic spectra. In the
second step, we show how the numerical spectra of the t-J
anyonic chains can be seen as a subtle combination of the
above two spectra.
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FIG. 16. (Color online) Low-energy spectra vs K of an 18-site
Fibonacci t-J chain at density ρ = 2/3 and |J | = t = 1/

√
2 for

both (a) J < 0 and (b) J > 0. Data at φext = 0 are shown by
shaded (yellow) circles. Parent charge excitations are shown by filled
(black) circles (φext = 0) and, as a function of pseudomomentum
K̃ = K + ρφext (varying φext), by solid lines of different colors. The
cross and X symbols added for comparison correspond to the sum of
the charge and (expected) anyonic excitation spectra (see text). The
color of these symbols is the same as their parent charge excitation
parabolas.

The Bethe ansatz results59–61 for the J → 0 electronic t-J
chain suggest that the anyonic contributions, Eanyon(m), to
the excitation spectrum of the itinerant anyon chain are those
of the squeezed periodic chain of localized anyons produced
by removing all vacant sites, which has the resulting length
La = N = ρL. Here, the integer m labels the eigenstates of
momenta km, which are multiples of 2π/La . Such a spectrum
can be computed separately by ED and agrees very well
with the CFT predictions, even on small chains (La = 12,16).
In particular, it shows a (linear) zero-energy mode at zero
momentum and at a characteristic momentum ka , where
ka = π for Ising and J > 0 Fibonacci chains and ka = 2π/3
for J < 0 Fibonacci chains. The coupling constant providing
the scale of the anyon spectrum is expected to be weakly
renormalized from J to γ J in the doped system, where γ

is a factor of order 1 that is to be adjusted as we describe
below.

To construct the expected charge excitation spectrum at
finite J , we use our understanding of the charge excitations
in the J = 0 limit. Starting from J = 0 and turning on J

gradually, one can a priori adiabatically follow the original
(� = 0) HCB excitations evolving in, what we call, the parent
charge excitations at J �= 0 (labeled by the same integers p

and at the same momenta Kp). As for J = 0, changing the
momentum K of a charge excitation amounts to introducing
a total phase shift (or flux) � = K/ρ. Hence, by introducing
“twisted boundary conditions” one can compute numerically
the (almost-parabolic) branch of excitations Ẽcharge(p,�) as-
sociated with each parent excitation (labeled p). Note that each
branch is “renormalized” by J so that, strictly speaking, the
charge spectrum is no longer associated with noninteracting
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spinless fermions (i.e., with HCBs) and, hence, is no longer
given by a simple analytic expression as in Eq. (26). However,
if different parent states lie on the same branch, they are
still exactly spaced apart by integer multiples of �� = 2π ,
i.e., Ẽcharge(p,�) = Ẽcharge(p′,� + 2kπ ), where Kp′ − Kp =
2kρπ , for some integer k.

We now explain how to construct the full excitation
spectrum by simply considering that (i) the charge degrees of
freedom are subject to a phase shift in the boundary conditions
and (ii) the anyonic degrees of freedom are the ones of the
squeezed periodic anyonic chain. According to the above
arguments, the energy excitation spectrum should be given
by adding the two contributions,

Ep,m = Ẽcharge(p,km) + Eanyon(m) . (27)

A natural prescription is to simply add the momenta: K =
Kp + ρkm. In other words, we assume that the phase shift
experienced by the charged “holons” coincides with the
total momentum km = 2πnm

La
(where nm is an integer) of

the anyonic eigenstates defined on the squeezed (undoped)
chain. These rules for adding charge and anyonic mo-
menta are therefore assumed to be similar to the J → 0
Bethe ansatz.

We now wish to verify that proper assignments of the
true energy levels according to the form given by Eq. (27)
can indeed be made accurately. First, we consider adding a
very small exchange coupling J , which lifts the very large
degeneracy of the low-energy parabola of the HCBs (see
Fig. 14). For finite J the first charge branch (with Eanyon = 0)
originating from the zero-momentum ground state of the model
(which we assign p = 0) can be computed by adding an
Abelian flux to the system. It is then possible to construct
the expected set of combined charge plus anyon excitations
E0,m by adjusting the renormalization factor γ to get the best
fit to the exact low-energy levels. Although there is only one
free parameter, it is remarkable that all anyon excitations above
the lowest charge parabola can be assigned very accurately as
shown in Fig. 14(b).

When |J | ∼ t , charge and anyonic excitations have the
same energy scale and one must proceed step by step,
sequentially constructing the sets of levels corresponding to
increasing charge index p. The two “secondary” parent charge
excitations, corresponding to exact eigenstates of the system
with momenta Kp = ±Kc (p = 1,2), lie on the same p = 0
branch, as shown in Figs. 15(b), 16(a), and 16(b). These
states lead to the secondary level of combined excitations
E1,m and E2,m, with no further adjustable parameter. Recall
that Kc = 2πρ for ρ � 1/2 and Kc = 2π (1 − ρ) for ρ > 1/2.
Next, in the second step, we identify the lowest not yet assigned
excitations at momenta Kp = ±2π/L as the subsequent pure
charge excitations (and assign them the labels p = 3,4).
Following these levels adiabatically under the addition of
a flux enables us to construct the corresponding charge
branches and locate the secondary pure charge excitation
at momenta Kp = ±(2π/L + Kc) (called p = 5,6). Then,
as before, the combined excitations Ep,m, p = 3, . . . ,6, can
be constructed. One can repeat this procedure (going up in
energy) until the level density and the number of charge branch

tang
-1

(|t|/J)

0.5

0.55 Fibonacci
Ising

(J=0)

(J=t)(J=-t)

FIG. 17. (Color online) Renormalization parameter γ of the
energy scale of the anyonic degrees of freedom for Ising and
Fibonacci anyons at ρ = 2/3, computed on L = 24 and L = 18
chains, respectively.

crossings becomes too large to make precise assignments.
In practice, we have identified up to p = 11 pure charge
excitations and their corresponding low-energy combined
anyonic-charge excitations for the Ising chain, as shown
in Fig. 15(b). For Fibonacci chains, we have identified up
to p = 9 pure charge excitations and their corresponding
low-energy combined anyonic-charge excitations, as shown in
Figs. 16(a) and 16(b).

Our results show that the anyonic energy spectrum is
basically given by the same type of Bethe ansatz as for the
electronic t-J model (in the J/t → 0 limit)59,60 and, in par-
ticular, (i) the J = 0 charge excitation spectrum is exactly the
same, (ii) the spin excitations also correspond to the squeezed
localized chain, and (iii) the rules for adding charge (holon) and
spin/anyon momenta are identical. In addition, the numerical
spectra agree very well with the sum of the spin (provided
some renormalization γ of the energy scale, as shown in
Fig. 17) and charge spectra (constructed independently) with
the above-mentioned rule for momentum conservation. We
believe the small deviations can be attributed to finite-size ef-
fects (which vanish when J/t → 0). Interestingly, the J → 0
limit of the renormalization parameter γ , γ (0) 
 0.5515 for
ρ = 2/3, is independent of the anyon type (as the J = 0
charge excitation spectrum). In fact, in this limit, it should
only depend on the probability of having two neighboring
anyons.

B. Anyonic and charge collective excitations

Due to the above decoupling, the collective anyonic and
charge excitations can be deduced easily from the above
excitation spectra, by just applying selection rules. Charge
excitations occur between different charge branches at constant
m with energy transfer

Ep′,p;m = Ẽcharge(p′,km) − Ẽcharge(p,km) (28)
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and momentum transfer K = Kp′ − Kp. Anyonic excitations
are characterized by �p = 0 and are then given by

Ep;m′,m = Eanyon(m′) − Eanyon(m)

+ Ẽcharge(p,km′) − Ẽcharge(p,km), (29)

with momentum transfer K = ρ(km′ − km). Note that the last
two terms in Eq. (29) give a finite-size correction in the
energy of order 1/L2. In the thermodynamic limit, zero-
energy anyonic excitations occur at momentum Ka = ρka (and
2Ka if different), where ka is the characteristic momentum
(introduced above) of the zero-energy mode of the pure chain.
The locations of both charge and anyonic zero-energy modes
are indicated in Fig. 15(b) for Ising anyons and in Figs. 16(a)
and 16(b) for Fibonacci anyons.

C. Form of the eigenstates

We now discuss briefly the structure of the eigenfunctions.
Equation (2.14) in Ref. 59 established that the ground state
of the J → 0 limit of the electronic t-J chain can be written
exactly as the product of a charge HCB wave function times
a spin wave function identical to the ground state of the 1D
S = 1/2 Heisenberg model. Our results suggest that a similar
product structure might in fact also hold in the case of all
low-energy eigenstates of 1D non-Abelian anyons at J �= 0, up
to finite-size corrections. We speculate that the eigenfunctions
can be approximately written as

�p,m(y1, . . . ,yN ; x1, . . . ,xN )


 �̃
p

charge(y1, . . . ,yN )χm
anyon(x1, . . . ,xN ) , (30)

where yj are the position of the (site) anyons on the L-site chain
and xi are the bond variables associated with them (see Fig. 1).
Here, �̃

p

charge are the eigenstates (labeled p) of an interacting
L-site HCB chain in the presence of a twist (i.e., flux) km in
the boundary conditions and χm

anyon are the eigenstates (labeled
m) with momentum km of the interacting (undoped) anyonic
chain of La = ρL sites.

VII. DMRG STUDY OF THE MODEL

We can use DMRG to compute the resulting CFT central
charge from the analysis of the von Neumann entanglement en-
tropy of an open chain (of length L) cut into two subsystems.62

We focus here on the case of a diluted Fibonacci t-J chain with
ρ = 2/3 and J > 0, for which we expect the anyonic part to
be described by a c = 7/10 tricritical Ising CFT. In Fig. 18,
we plot the ground state’s entanglement entropy

SA = SB = −Tr[ρA log ρA] (31)

between subsystem A and subsystem B, which are two
connected segments of the open chain, as a function of the
position of the cut along the chain. The calculation is somewhat
nonstandard (compared to usual spin systems) because the
anyonic fusion tree bond variable xj labeling the j th link,
which connects the two subsystems, i.e., the link across which
one “cuts” the system in two, is shared by both subsystems of
the chain. This shared link variable characterizes the overall
topological charge of each subsystem. The reduced density
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FIG. 18. (Color online) Entanglement entropy obtained using
DMRG for an open chain of length L = 72, with N = 48 Fibonacci
anyons and J/t = 0.3. The entanglement entropy predicted for a CFT
with central charge c = 1.7 is plotted and the agreement is seen to be
excellent.

matrices

ρA = TrBρ, ρB = TrAρ (32)

of subsystems A and B are block diagonal with respect to this
variable; i.e.,

ρA =
⊕
xj

pxj
ρA,xj

, (33)

where pxj
= Tr[�xj

ρ] is the probability that the state will
have topological charge xj on the j th link, and ρA,xj

=
1

pxj

TrA[�xj
ρ] is the reduced density matrix for subsystem A

after projecting the j th link’s variable onto the value xj .
In order to verify that this Fibonacci t-J chain results in a

CFT with central charge c = 1.7, we fit to the formula62–67

S(j ) = a + b pxj =τ + c

6
log

[
L sin

(
πj

L

)]
, (34)

where a and b are fitting parameters. The first term is a
nonuniversal constant, which can include universal contri-
butions, such as a boundary entropy. The second term is a
phenomenologically motivated correction that is proportional
to a local kinetic energy, i.e., pxj =τ = 〈nlink(j )〉, where nlink(j )
is the density (occupation) operator of the j th link, and can
include a contribution due to the boundary between the two
subsystems. The third term is derived from CFT. We find
the best fit for the parameter values a = 0.31185 and b =
−0.35547. As shown in Fig. 18, the agreement between the
numerical results and the values provided by this expression
is excellent.

VIII. CONCLUSION AND OUTLOOK

Motivated by the possible realization of non-Abelian Ising
and Fibonacci quasiparticles in quantum Hall states and
Majorana heterostructures and the importance of understand-
ing their edge modes, we have investigated what happens
if itinerant and interacting (charged) non-Abelian anyons
are confined on a 1D chain, subject to a strong charging
energy. Following a standard procedure for strongly correlated
electronic systems, we have constructed simple low-energy
effective models by truncating the Hilbert space to the relevant
low-energy particles. Integrating out the high-energy virtual
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processes yields an “exchange” interaction between anyons,
which physically favors a particular fusion channel. The
effective model generically takes the form of an anyonic
t-J model, containing the exchange interaction (J ) and the
rate (t) of anyon “hopping” between nearest-neighbor sites.
The central result of our work is that anyons fractionalize
into their charge and (neutral) anyonic degrees of freedom.
This phenomenon closely resembles and generalizes the
well-known spin-charge separation in electronic Luttinger
liquids. Incidentally, the numerically verification based on
the identification of the many-body levels turned out to
be more transparent for anyons, due to the absence of
marginally irrelevant operators in the field theory description.
The anyon fractionalization justifies a posteriori the treat-
ment of the edge theories of these topological phases as a
direct product of the charge and neutral non-Abelian modes,
even though the electric charge is not localized in current
setups.

We note that the 1D electronic t-J model exhibits an exact
supersymmetric point43,44 at which the full excitation spectrum
can be obtained using the Bethe ansatz.45 It is left for future
studies to investigate whether such an integrable point also
exists in 1D anyonic t-J models.

Our simple description of interacting itinerant anyons now
enables the investigation of realistic setups for manipulating
and/or braiding anyons for future quantum computation. It
is also easy to extend this study to quasi-1D systems with
more than a single conduction channel: anyonic t-J “ladders”
could mimic such a case, following the procedure for localized
non-Abelian anyons.68 Whether fractionalization survives in
two spatial dimensions is another important issue. Localized
anyons were shown to nucleate into a novel gapped quantum
liquid69–72 in two dimensions and a similar scenario might take
place for itinerant anyons, with, e.g., the anyonic degrees of
freedom becoming gapped.
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APPENDIX A: EXAMPLES OF ANYON MODELS

In this Appendix, we give detailed descriptions of the Ising,
Fibonacci, and SU(2)k anyon models and explain where they
occur in non-Abelian quantum Hall states.

1. Ising anyons

The Ising anyon model is derived from the CFT, which
describes the Ising model at criticality.73 It is related to
SU(2)2, as its CFT can be obtained using the coset construction

SU(2)2/U(1)4. It has topological charges C = {I,σ,ψ} [which,
respectively, correspond to vacuum, spin, and Majorana
fermions in the CFT and are sometimes denoted 0, 1

2 , and
1, because of the relation with SU(2)2]. The anyon model is
described by (listing only the nontrivial F symbols and R

symbols, i.e., those not listed are equal to 1 if their vertices are
permitted by fusion and equal to 0 if they are not permitted)

C = {I,σ,ψ}, I × a = a, σ × σ = I + ψ,

σ × ψ = σ, ψ × ψ = I

[
Fσσσ

σ

]
ef =

[ 1√
2

1√
2

1√
2

−1√
2

]
ef[

F
σψσ

ψ

]
σσ

= [
Fψσψ

σ

]
σσ

= −1

Rσσ
I = e−i π

8 , Rσσ
ψ = ei 3π

8 ,

Rσψ
σ = Rψσ

σ = e−i π
2 , R

ψψ

I = −1

dI = dψ = 1, dσ = √
2, D = 2

θI = 1, θσ = ei π
8 , θψ = −1

where e,f ∈ {I,ψ}.

2. Fibonacci anyons

The Fibonacci anyon model [also known as SO(3)3, since it
may be obtained from the SU(2)3 anyon model by restricting
to integer spins j = 0,1, though SO(3)k is only allowed for
k = 0mod4; as a Chern-Simons or WZW theory, it may, more
properly, be equated with (G2)1] is known to be universal
for topological quantum computation.74 It has two topological
charges, C = {I,τ } [sometimes denoted 0 and 1, respectively,
because of the relation with SU(2)3] and is described by
(listing only the nontrivial F symbols and R symbols)

C = {I,τ } , I × I = I, I × τ = τ, τ × τ = I + τ

[
F τττ

τ

]
ef =

[
φ−1 φ−1/2

φ−1/2 −φ−1

]
ef

Rττ
I = e−i4π/5, Rττ

τ = ei3π/5

dI = 1, dτ = φ, D = √
φ + 2 θI = 1, θτ = ei 4π

5

where φ = 1+√
5

2 is the golden ratio.

3. SU(2)k

The SU(2)k anyon models (for k an integer) are “q-
deformed” versions of the usual SU(2) for q = ei 2π

k+2 , which,
roughly speaking, means that integers n are replaced by [n]q ≡
qn/2−q−n/2

q1/2−q−1/2 . These describe SU(2)k Chern-Simons theories,75

and WZW CFTs76,77 and give rise to the Jones polynomials
of knot theory.78 Their braiding statistics are known to be
universal for TQC79 all k, except k = 1, 2, and 4. They are
described by
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C = {
0, 1

2 , . . . , k
2

}
, j1 × j2 =

min{j1+j2,k−j1−j2}∑
j=|j1−j2|

j

[
F

j1,j2,j3
j

]
j12,j23

= (−1)j1+j2+j3+j
√

[2j12 + 1]q [2j23 + 1]q

{
j1 j2 j12

j3 j j23

}
q

,{
j1 j2 j12

j3 j j23

}
q

= � (j1,j2,j12) � (j12,j3,j ) � (j2,j3,j23) � (j1,j23,j )

×
∑

z

{
(−1)z [z + 1]q!

[z − j1 − j2 − j12]q! [z − j12 − j3 − j ]q! [z − j2 − j3 − j23]q! [z − j1 − j23 − j ]q!

× 1

[j1 + j2 + j3 + j − z]q! [j1 + j12 + j3 + j23 − z]q! [j2 + j12 + j + j23 − z]q!

}
,

� (j1,j2,j3) =
√

[−j1 + j2 + j3]q! [j1 − j2 + j3]q! [j1 + j2 − j3]q!

[j1 + j2 + j3 + 1]q!
, [n]q! ≡

n∏
m=1

[m]q

R
j1,j2
j = (−1)j−j1−j2 q

1
2 (j (j+1)−j1(j1+1)−j2(j2+1))

dj = [2j + 1]q = sin
(

(2j+1)π
k+2

)
sin( π

k+2 ) , D =
√

k+2
2

sin( π
k+2 ) θj = ei2π

j (j+1)
k+2

where { }q is a “q-deformed” version of the usual SU(2)
6j symbols (which correspond to q = 1), and have
been calculated in Ref. 80 (see also Ref. 81, for an
introduction on how to calculate the F symbols and an
implementation in Mathematica). The sum in the definition of
the q-deformed 6j symbol is over all integers in the range max
{j1 + j2 + j12; j12 + j3 + j ; j2 + j3 + j23; j1 + j23 + j} � z

� min {j1 + j2 + j3 + j ; j1 + j12 + j3 + j23; j2 + j12 + j +
j23}.

4. Moore-Read, anti-Pfaffian, and Bonderson-Slingerland
hierarchy states

The ν = 1/m MR states5 are described by a spectrum
restriction of the product of the Ising CFT with an Abelian
U(1). Specifically, the anyon model is

MR = Ising × U (1)m|C , (A1)

where the restriction to the anyonic charge spectrum C is such
that I and ψ Ising charges are paired with integer U(1) fluxes,
while σ Ising charges are paired with half-integer U(1) fluxes.
The fundamental quasihole of the MR state has electric charge
e/2m (where the particle carries charge −e) and carries Ising
topological charge σ . The ν = 1/2 MR state is a leading
candidate for the experimentally observed ν = 5/2 and 7/2
quantum Hall plateaus.

Taking the particle-hole conjugate of the MR state yields the
aPf state,7,8 which is another leading candidate for the ν = 5/2
and 7/2 quantum Hall plateaus. The anyon model for the aPf
state is simply obtained by taking the complex conjugate of
the MR state’s anyon model.

BS hierarchical states9 may be obtained from the MR
and aPf states by applying a hierarchical (or, equivalently, a

composite fermion) construction to the U (1) sector. The states
built on MR may be written as

BSK = Ising × U (1)K |C , (A2)

where the K matrix is determined by the details of the hier-
archical construction over MR, and the spectrum restriction
is similar to that before. This produces Ising-type candidate
states for all other observed second Landau level fractional
quantum Hall filling fractions (including those observed at
ν = 7/3, 12/5, 8/3, and 14/5). The quasiparticle excitation
spectra of the BS states include excitations that carry the σ

Ising topological charge, but these are generally not the unique
quasiparticle carrying the minimal electric charge.

5. k = 3 Read-Rezayi and NASS

The particle-hole conjugate of the k = 3, M = 1 RR state6

is a candidate for ν = 12/5, which is constructed from the
Z3-parafermion (Pf3) CFT and an Abelian U(1). The braiding
statistics of this state is described by the direct product of
anyon models,

RRk=3,M=1 = Pf3 × U (1) = Fib × Z(3)
10 , (A3)

where the overline indicates complex conjugation and Z(3)
10

is an Abelian anyon model (using the notation of Refs. 82
and 83). The fundamental quasiholes of this state have electric
charge e/5 and Fibonacci topological charge τ .

The k = 2, M = 1 NASS state,20 based on SU (3)k
parafermions, is a candidate for ν = 4/7. Its braiding statistics
is described by

NASSk=2,M=1 = Fib × D′ (Z2) × U (1) × U (1) , (A4)
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where D′ (Z2) is an Abelian theory similar to D (Z2), the
quantum double of Z2 (a.k.a. the toric code). The two U(1)
factors describe the charge and spin of the particles. Its data
are listed in Ref. 82 and, also, as ν = 8 in Table 2 in Ref. 84.
The fundamental quasiholes of this state carry a Fibonacci
topological charge τ and an electric charge of either e/7 or
2e/7.

As these theories are the direct product of a Fibonacci theory
with Abelian sectors, the braiding statistics of quasiparticle
excitations carrying a nontrivial Fibonacci charge are compu-
tationally universal.

APPENDIX B: LIMITING THE NUMBER OF PARTICLES

In this Appendix, we provide some details on how we can
restrict the quasiparticle spectrum to just two quasiparticles,
namely, the trivial “vacuum” quasiparticle I and a “funda-
mental” or “elementary” excitation. This excitation has the
smallest possible electric charge and is fundamental in the
sense that all other excitations can be obtained from it by
repeated fusion. The reason for this truncation is to come up
with a model which is tractable, because the Hilbert space
grows exponentially in the number of quasiparticle types.
Apart from the truncation of the spectrum to two quasiparticle
types only, we also need for the energy associated with these
particles to be the same. To achieve both goals, one has two
tools, in principle. In particular, one can either consider using
a gate which couples linearly to the charge or consider the
charging energy associated with localizing the anyons on
quantum dots. As we show below, by using a gate alone,
one can arrange the system to have degenerate levels for the
quasiparticles, but it turns out that this leads to a degeneracy
larger than 2. To split this degeneracy, quantum dot charging is
essential.

After we explain how we can restrict the number of
quasiparticles to these two types, we explain how we can map
the obtained model to the anyonic models introduced in Ref. 57
(in the case ρ = 1). We do not consider the MR and k = 3 RR
cases separately, but directly consider the general case of the
fermionic RR states for arbitrary k (which includes MR at
k = 2). In addition, we only focus on those aspects which we
need for our purposes in this paper.

We start by decomposing the operators creating the different
types of particles into two pieces, one associated with the
non-Abelian statistics and the other with the electric charge
of the quasiparticles. The operator describing the fundamental

quasiparticles, which have charge e/(k + 2), is of the form
�1

1e
iϕ/(

√
k(k+2)), where �1

1 is a parafermion field, corresponding
to σ and σ1 for k = 2 and k = 3, respectively, using the
notation in Sec. II B. The vertex operator eiϕ/(

√
k(k+2)), where

ϕ is a chiral bosonic scalar field, gives the charge of the
quasiparticle.

The energies of the quasiparticles in a finite geometry (such
as the quantum dots used to localize the quasiparticles) are
proportional to the scaling dimensions of the fields creating the
particles. For each possible charge of the quasiparticles, m e

k+2 ,
with m = 0,1, . . . ,k, we only consider the particles with the
lowest scaling dimension. These are given by �m

meimϕ/(
√

k(k+2)).
There are two contributions to the scaling dimension: the
parafermion field �m

m contributes ��m
m

= m(k−m)
k(k+2) and the

charge sector contributes �φ(m) = m2

k(k+2) , giving a total
scaling dimension �j = m

(k+2) , which is therefore proportional
to the charge of the excitations.

We would like to create a situation in which we have one
nontrivial quasiparticle that is degenerate with the vacuum
and an appreciable gap to the other types of quasiparticle
excitations. The first thing we could try to do is to lower the
energy of the charge e/(k + 2) fundamental quasiparticle by
means of an added potential, such that it becomes degenerate
with the vacuum. However, we just saw that adding such a
potential will actually create a set of k + 1 degenerate states.
To circumvent this problem, we assume that, in addition to
such a potential, there is also a charging energy proportional
to q2, where q is the charge of the excitation. Effectively, this
modifies the amplitude of the quadratic contribution to the
scaling dimension, coming from the charge part.51 Thus, by
adding the charging energy and the energy associated with
a suitable potential, we indeed can create the situation of
two degenerate lowest lying states (one being the vacuum),
separated from the others by a gap.

We have just argued that we can consider a chain of itinerant
anyons, consisting of vacancies with quantum numbers (I,0)
and fundamental quasiaparticle excitations with quantum
numbers [�1

1,e/(k + 2)]. Under fusion, the electric charge
is merely additive, and we therefore concentrate on the
non-Abelian sector only. In the original anyonic chain models,
the constituent anyons belong to the pure SU(2)k theory. The
anyonic systems we study can be mapped to these by noting
that the �1

1 parafermionic field carries spin j = 1/2 SU(2)k
topological charge, together with some Abelian topological
charges.
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17A. Kumar, G. A. Csáthy, M. J. Manfra, L. N. Pfeiffer, and K. W.
West, Phys. Rev. Lett. 105, 246808 (2010).

18P. Bonderson, A. E. Feiguin, G. Moller, and J. K. Slingerland, Phys.
Rev. Lett. 108, 036806 (2012).

19M. Hermanns, Phys. Rev. Lett. 104, 056803 (2010).
20E. Ardonne and K. Schoutens, Phys. Rev. Lett. 82, 5096 (1999).
21G. E. Volovik, Sov. J. Exp. Theor. Phys. Lett. 70, 792 (1999).
22N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
23A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
24L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
25J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Sarma, Phys. Rev. Lett.

104, 040502 (2010).
26J. Alicea, Phys. Rev. B 81, 125318 (2010).
27R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105,

077001 (2010).
28Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002

(2010).
29J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
30V. Mourik, K. Zuo, S. Frolov, S. Plissard, E. Bakkers, and

L. Kouwenhoven, Science 336, 1003 (2012).
31L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795 (2012).
32M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, and H. Xu, Nano

Lett. 12, 6414 (2012).
33A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman,

Nat. Phys. 8, 887 (2012).
34P. W. Anderson, Phys. Rev. 164, 352 (1967).
35S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
36J. M. Luttinger, J. Math. Phys. 15, 609 (1963).
37F. D. M. Haldane, J. Phys. C 14, 2585 (1981).
38D. Poilblanc, M. Troyer, E. Ardonne, and P. Bonderson, Phys. Rev.

Lett. 108, 207201 (2012).
39F.-C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
40J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963).
41M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
42J. Kanamori, Prog. Theor. Phys. (Kyoto) 30, 275 (1963).
43P. A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990).
44N. Kawakami and S.-K. Yang, Phys. Rev. Lett. 65, 2309 (1990).
45P.-A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130

(1991).
46M. Ogata, M. U. Luchini, S. Sorella, and F. F. Assaad, Phys. Rev.

Lett. 66, 2388 (1991).
47The Ising topological quantum field theory has the same fusion

algebra as SU(2)2, but the σ and j = 1
2 anyons have different scaling

dimensions (hσ = 1/16 and h 1
2

= 3/16, respectively; the scaling
dimensions of the ψ and j = 1 anyons are identical, hψ = h1 =
1/2).

48 For k odd, the restriction to the integer-valued topological charge
(generalized angular momentum) can be made by using the map
obtained by fusing with the topological charge j = k

2 , namely, j ×
k

2 = k

2 − j , which for k = 3 maps 1
2 ↔ 1 and 3

2 ↔ 0. For more
details, we refer the reader to Refs. 82 and 85.

49For bosonic states, the particle identified with the vacuum is a boson.
In the fermionic case, one cannot simply identify the electron with
the vacuum, because it is a fermion, which obviously has different
braiding statistics than the vacuum (which is a boson). Considering
fusion and braiding, one could instead simply identify pairs of
electrons with vacuum. However, the resulting theory will not be
modular, meaning the S matrix is degenerate. This poses a problem
when one wishes to define the theory on arbitrary surfaces, including
the torus. A solution is to put each charge into a Z2 doublet, e.g., the
vacuum and electron form the vacuum doublet, and every charge
together with the charge obtained by fusion with an electron forms
a doublet. Then theS matrix of doublets is modular. In practice, one
can take the fusion rules assuming identification of electrons with
vacuum.

50P. Bonderson, Phys. Rev. Lett. 103, 110403 (2009).
51P. Bonderson, C. Nayak, and K. Shtengel, Phys. Rev. B 81, 165308

(2010).
52A. Stern and B. I. Halperin, Phys. Rev. Lett. 96, 016802 (2006).
53R. Ilan, E. Grosfeld, and A. Stern, Phys. Rev. Lett. 100, 086803

(2008).
54R. Ilan, E. Grosfeld, K. Schoutens, and A. Stern, Phys. Rev. B 79,

245305 (2009).
55A. Stern, B. Rosenow, R. Ilan, and B. I. Halperin, Phys. Rev. B 82,

085321 (2010).
56A. Messiah, Quantum Mechanics (North-Holland, Amsterdam,

1962).
57A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev,

Z. Wang, and M. H. Freedman, Phys. Rev. Lett. 98, 160409
(2007).

58G. Andrews, R. Baxter, and P. Forrester, J. Stat. Phys. 35, 193
(1984).

59M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990).
60H. Shiba and M. Ogata, Int. J. Mod. Phys. B 5, 31 (1991).
61A. Parola and S. Sorella, Phys. Rev. B 45, 13156 (1992).
62J. Cardy and P. Calabrese, J. Stat. Mech. (2010) P04023 .
63I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 67, 161 (1991).
64P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
65N. Laflorencie, E. S. Sorensen, M.-S. Chang, and I. Affleck, Phys.

Rev. Lett. 96, 100603 (2006).
66G. Roux, S. Capponi, P. Lecheminant, and P. Azaria, Eur. Phys. J.

B 68, 293 (2009).
67I. Affleck, N. Laflorencie, and E. S. Sorensen, J. Phys. A: Math.

Theor. 42, 504009 (2009).
68D. Poilblanc, A. W. W. Ludwig, S. Trebst, and M. Troyer, Phys.

Rev. B 83, 134439 (2011), arXiv:1101.1186.
69N. Read and A. W. W. Ludwig, Phys. Rev. B 63, 024404 (2000).
70E. Grosfeld and A. Stern, Phys. Rev. B 73, 201303(R) (2006).
71E. Grosfeld and K. Schoutens, Phys. Rev. Lett. 103, 076803

(2009).
72A. W. Ludwig, D. Poilblanc, S. Trebst, and M. Troyer, New. J. Phys.

13, 045014 (2011).
73G. Moore and N. Seiberg, Commun. Math. Phys. 123, 177

(1989).
74M. H. Freedman, M. J. Larsen, and Z. Wang, Commun. Math. Phys.

228, 177 (2002).
75E. Witten, Commun. Math. Phys. 121, 351 (1989).
76J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971).
77E. Witten, Nucl. Phys. B 223, 422 (1983).
78V. F. R. Jones, Bull. Am. Math. Soc. 12, 103 (1985).

085106-17

http://dx.doi.org/10.1103/PhysRevLett.83.3530
http://dx.doi.org/10.1103/PhysRevLett.83.3530
http://dx.doi.org/10.1103/PhysRevLett.88.076801
http://dx.doi.org/10.1103/PhysRevLett.88.076801
http://dx.doi.org/10.1103/PhysRevLett.93.176809
http://dx.doi.org/10.1103/PhysRevLett.105.246808
http://dx.doi.org/10.1103/PhysRevLett.108.036806
http://dx.doi.org/10.1103/PhysRevLett.108.036806
http://dx.doi.org/10.1103/PhysRevLett.104.056803
http://dx.doi.org/10.1103/PhysRevLett.82.5096
http://dx.doi.org/10.1134/1.568231
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1103/PhysRev.164.352
http://dx.doi.org/10.1143/PTP.5.544
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1103/PhysRevLett.108.207201
http://dx.doi.org/10.1103/PhysRevLett.108.207201
http://dx.doi.org/10.1103/PhysRevB.37.3759
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1103/PhysRevLett.64.2567
http://dx.doi.org/10.1103/PhysRevLett.65.2309
http://dx.doi.org/10.1103/PhysRevB.44.130
http://dx.doi.org/10.1103/PhysRevB.44.130
http://dx.doi.org/10.1103/PhysRevLett.66.2388
http://dx.doi.org/10.1103/PhysRevLett.66.2388
http://dx.doi.org/10.1103/PhysRevLett.103.110403
http://dx.doi.org/10.1103/PhysRevB.81.165308
http://dx.doi.org/10.1103/PhysRevB.81.165308
http://dx.doi.org/10.1103/PhysRevLett.96.016802
http://dx.doi.org/10.1103/PhysRevLett.100.086803
http://dx.doi.org/10.1103/PhysRevLett.100.086803
http://dx.doi.org/10.1103/PhysRevB.79.245305
http://dx.doi.org/10.1103/PhysRevB.79.245305
http://dx.doi.org/10.1103/PhysRevB.82.085321
http://dx.doi.org/10.1103/PhysRevB.82.085321
http://dx.doi.org/10.1103/PhysRevLett.98.160409
http://dx.doi.org/10.1103/PhysRevLett.98.160409
http://dx.doi.org/10.1007/BF01014383
http://dx.doi.org/10.1007/BF01014383
http://dx.doi.org/10.1103/PhysRevB.41.2326
http://dx.doi.org/10.1142/S0217979291000031
http://dx.doi.org/10.1103/PhysRevB.45.13156
http://dx.doi.org/10.1088/1742-5468/2010/04/P04023
http://dx.doi.org/10.1103/PhysRevLett.67.161
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1103/PhysRevLett.96.100603
http://dx.doi.org/10.1103/PhysRevLett.96.100603
http://dx.doi.org/10.1140/epjb/e2008-00374-7
http://dx.doi.org/10.1140/epjb/e2008-00374-7
http://dx.doi.org/10.1088/1751-8113/42/50/504009
http://dx.doi.org/10.1088/1751-8113/42/50/504009
http://arXiv.org/abs/1101.1186
http://dx.doi.org/10.1103/PhysRevB.83.134439
http://dx.doi.org/10.1103/PhysRevB.63.024404
http://dx.doi.org/10.1103/PhysRevB.73.201303
http://dx.doi.org/10.1103/PhysRevLett.103.076803
http://dx.doi.org/10.1103/PhysRevLett.103.076803
http://dx.doi.org/10.1088/1367-2630/13/4/045014
http://dx.doi.org/10.1088/1367-2630/13/4/045014
http://dx.doi.org/10.1007/BF01238857
http://dx.doi.org/10.1007/BF01238857
http://dx.doi.org/10.1007/s002200200636
http://dx.doi.org/10.1007/s002200200636
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1016/0370-2693(71)90582-X
http://dx.doi.org/10.1016/0550-3213(83)90063-9
http://dx.doi.org/10.1090/S0273-0979-1985-15304-2


POILBLANC, FEIGUIN, TROYER, ARDONNE, AND BONDERSON PHYSICAL REVIEW B 87, 085106 (2013)

79M. H. Freedman, M. J. Larsen, and Z. Wang, Commun. Math. Phys.
227, 605 (2002).

80A. Kirillov and N. Reshetikhin, in Infinite Dimensional Lie Algebras
and Groups, edited by V. G. Kac (World Scientific, Singapore,
1988), p. 285.

81E. Ardonne and J. Slingerland, J. Phys. A 43, 395205
(2010).

82P. H. Bonderson, Ph.D. thesis, California Institute of Technology
(2007).

83P. Bonderson, K. Shtengel, and J. K. Slingerland, Ann. Phys. 323,
2709 (2008).

84A. Kitaev, Ann. Phys. 321, 2 (2006).
85S. Trebst, M. Troyer, Z. Wang, and A. W. W. Ludwig, Prog. Theor.

Phys. Supp. 176, 384 (2008).

085106-18

http://dx.doi.org/10.1007/s002200200645
http://dx.doi.org/10.1007/s002200200645
http://dx.doi.org/10.1088/1751-8113/43/39/395205
http://dx.doi.org/10.1088/1751-8113/43/39/395205
http://dx.doi.org/10.1016/j.aop.2008.01.012
http://dx.doi.org/10.1016/j.aop.2008.01.012
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1143/PTPS.176.384
http://dx.doi.org/10.1143/PTPS.176.384



