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We characterize in detail a wave function conceivable in fractional quantum Hall systems where a spin or
equivalent degree of freedom is present. This wave function combines the properties of two previously proposed
quantum Hall wave functions, namely the non-Abelian spin-singlet state and the nonunitary Gaffnian wave
function. This is a spin-singlet generalization of the spin-polarized Gaffnian, which we call the “spin-singlet
Gaffnian” (SSG). In this paper we present evidence demonstrating that the SSG corresponds to the ground
state of a certain local Hamiltonian, which we explicitly construct, and, further, we provide a relatively simple
analytic expression for the unique ground-state wave functions, which we define as the zero energy eigenstates
of that local Hamiltonian. In addition, we have determined a certain nonunitary, rational conformal field theory
which provides an underlying description of the SSG and we thus conclude that the SSG is ungapped in the
thermodynamic limit. In order to verify our construction, we implement two recently proposed techniques for
the analysis of fractional quantum Hall trial states: The “spin dressed squeezing algorithm,” and the “generalized
Pauli principle.”
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I. INTRODUCTION

The study of the fractional quantum Hall effect (FQHE)
of electrons in semiconductor materials1 and, potentially, of
bosons in rotating Bose gasses2 or in artificial gauge fields3

has been a fertile ground for the conception of topological
phases of matter, which exhibit exotic and exciting theoretical
properties.4 In this paper we shall discuss the construction
of a FQHE wave function exhibiting a “multicomponent”
degree of freedom such as a spin,5 valley,6,7 isospin,8 layer,9

or subband.10,11 The wave function describes the low-energy
behavior of a system possessing a vanishing energy gap
to quasihole excitations in the thermodynamic limit, and is
thus not itself a candidate to describe a topological phase.
Nevertheless the study of this wave function is an interesting
exploration that enhances the understanding of the construc-
tion of multicomponent FQHE wave functions in general.

An ideal theoretical description of a FQHE state comprises
at least the following three ingredients: A local Hamiltonian
which describes the ground state and excitation spectrum of
the Hilbert space; relatively simple analytic wave functions
which are the highest density zero energy states corresponding
to the Hilbert space of that Hamiltonian; and a (rational)
two-dimensional (2D) conformal field theory (CFT) which
generates these wave functions. If a plasma analogy is
available, then a gapped state is associated with the analogous
plasma being in a screening phase.12 In general, the quantum
Hall Hilbert space is built from a basis of monomials in
the complex particle coordinates zi . In certain instances—the
Laughlin series, the Read–Rezayi series, the Gaffnian and
Haffnian wave functions, the Halperin wave functions, and
the non-Abelian spin-singlet (NASS) states12–19—it has been
possible to (i) determine simple analytical expressions for
the polynomial wave functions, and (ii) construct a local
Hamiltonian whose zero-energy eigenstates are in one-to-one

correspondence with those polynomial wave functions. A key
feature in each of these special cases is that the wave functions
are uniquely defined by their vanishing properties.

Changing wave functions describing a FQHE state in a
seemingly innocuous way may in fact have severe conse-
quences. The wave function of the Moore–Read state for
spinless bosons vanishes quadratically when three of the
constituent bosons are coincident. The Gaffnian wave function
is obtained by changing this behavior, such that the wave
function vanishes as a third power, when three constituent
particles are coincident.14 This simple change, however, results
in a nonunitary, compressible wave function, which does not
describe a topological phase. Nevertheless nonunitary wave
functions such as the Gaffnian are still of interest as they
are thought to correspond to critical points between other
unitary, incompressible topological phases. This scenario is
well understood in the case of the Haldane–Rezayi20 wave
function, which describes the phase transition between a
d-wave spin-singlet phase and a strongly paired state.15,21

Similar scenarios have been suggested for the Gaffnian.14

It is noteworthy that the Gaffnian wave function has large
overlap with an incompressible composite fermion state thus
suggesting that the Gaffnian is a critical point between the
composite fermion phase and some other phase.14,22–24

In this paper, we present evidence for a quantum Hall
wave function, which inherits properties from both the NASS
state—a unitary, spin-singlet quantum Hall state—and the
nonunitary Gaffnian. Such a wave function has also been
considered in Ref. 25. Most notably, we argue that the wave
function can be written as a special polynomial and that it also
corresponds to the highest density zero energy state of a certain
local Hamiltonian. We christen it the “spin-singlet Gaffnian”
(SSG). (Throughout this work, we shall describe how the wave
function corresponds to a “spin” degree of freedom, however,
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note that all of what follows applies equally well to any other
type of multicomponent degree of freedom such as valley or
layer index.)

A. Statement of results

Our first key result is a model local Hamiltonian describing
the SSG wave function. In Sec. II A we shall explain
how it can be written in terms of generalized Haldane
pseudopotentials.26–28 In Secs. II B and II C, we give an
overview of how both the squeezing algorithm29,30 and the
generalized Pauli principle for spinful states25 apply to the SSG
wave function. In Sec. III we shall present the results of numer-
ical exact diagonalization of the SSG Hamiltonian. We have
determined that the counting of zero energy eigenstates in the
quasihole spectrum and also the entanglement spectrum31,32

matches the counting predicted by the squeezing algorithm.
The counting of zero energy eigenstates is also found to be
identical to the result generated by the spinful version of the
generalized Pauli principle.

Our second key result is an analytic form for the ground-
state wave function. The SSG wave functions are constructed
from conformal blocks in a CFT associated with the semidi-
rect product of nonunitary minimal models expressible as
M(3,5) � M(5,7) (see also Ref. 25). We shall discuss the
CFT in Sec. IV. In a bosonic incarnation, the SSG ground
state occurs at filling factor ν = 4/5 (and on the sphere, it
has a shift δ = 3). The proposed analytic construction for the
SSG is consistent with the vanishing properties required by
the CFT and the ground state of the Hilbert space generated by
squeezing. We have determined that our proposed ground-state
wave function is the unique, highest density zero energy
ground state of our model Hamiltonian at ν = 4/5 and δ = 3.
We shall discuss an explicit form of the ground-state wave
function in Sec. V.

II. MODEL HAMILTONIAN AND THE
CHARACTERIZATION OF ITS ZERO MODES

In this section we shall describe in detail three independent
methods by which we are able to study the SSG wave function.
The cornerstone of our argument lies with the proposal of
a model local Hamiltonian. First, we shall explain how this
local Hamiltonian is constructed and then we shall present
two alternative methods to count the number of zero-energy
modes of the proposed Hamiltonian. The first method employs
the spin-dressed squeezing algorithm (which can also be
used to obtain the wave functions) and the second method
employs the generalized Pauli principle. In Sec. III we shall
present numerical evidence demonstrating that the zero modes
generated by diagonalizing the local Hamiltonian presented
here are in precise agreement with the zero modes generated
by the squeezing algorithm and the counting obtained from
the generalized Pauli principle.

A. Pseudopotential construction of Hamiltonian

In prior investigations, most notably for the Laughlin and
Moore–Read wave functions, it has been determined that
trial quantum Hall wave functions correspond to unique, zero
energy ground states of certain model Hamiltonians.26,33

Often, these model Hamiltonians are most simply ex-
pressible in terms of Haldane pseudopotentials26 and their
generalizations.27,28 Given a system with a certain M-body
interaction potential V (z1, . . . ,zM ), the action of a pseu-
dopotential is to project out a particular component of that
interaction. Those components are labeled by a convenient set
of quantum numbers, which describe all possible few-particle
interactions. The vector space of few-particle interactions is
spanned by specifying both the relative angular momentum
L and, if we consider a spin degree of freedom as well,
the spin quantum number S also. (Note that in general it is
necessary to further distinguish between distinct interaction
components with the same L,S. In other words, there exists
in general a subvector space of dimension dL,S for each L

and S sector.28,34 In this paper, however, we shall only be
concerned with subspaces of dimension dL,S = 1 or 0, and so,
for clarity, we omit any additional notation.) Pseudopotentials
specify projection operators in the Hamiltonian and are
thus labeled by two distinct sets of such quantum numbers.
The pseudopotential V M

L,S;L′S ′ is expressed in terms of the
vector space |L,S〉 and the M-body interaction potential
V (z1, . . . ,zM ) as

V M
L,S;L′S ′ = 〈L,S| V (z1, . . . ,zM )|L′,S ′〉. (1)

The general form of the Hamiltonian is then given by

H =
∑

L,S,L′S ′
|L,S〉 V M

L,S;L′S ′ 〈L′,S ′|. (2)

Such a basis of pseudopotentials is particularly convenient
when the interaction potential is rotationally and/or spin
rotationally invariant, since in that case the pseudopotentials
are diagonal in L, S, or both.

At our convenience, we can pick certain special many-body
interactions (such as δ-function-type interactions) for which
only a small set of pseudopotentials remain nonzero. The
impact of specifying a positive value of a given pseudopotential
in a model Hamiltonian is to assign energy to the corresponding
component of the interaction, therefore, if such a component is
present in a given trial wave function, then that wave function
will not be a zero energy state of our Hamiltonian. Conversely,
if a component is not present in a given trial wave function,
then we can include the corresponding pseudopotential in the
Hamiltonian without introducing an extra energy cost. In this
way we can tailor the Hamiltonian to correspond to the desired
properties of a given trial ground-state wave function (these
properties might come, for instance, from a CFT description
of the state; see Sec. IV).

To give an example, briefly, it is known that the Moore–
Read wave function for bosons at ν = 1 is the unique, highest
density zero energy ground state of a spin-polarized three-
body contact interaction.33 The space of pseudopotentials for
spin-polarized three-body interactions is spanned by a relative
angular momentum L. S takes only its maximal value for
a three-body interaction, S = 3/2.27 (Note a slight abuse of
notation here: We are denoting bosons as if they are spin-1/2
objects, e.g., three bosons can have S = 3/2 and S = 1/2
interaction channels. In actual fact we are describing systems
such as cold atomic gasses for which bosons can be engineered
to have internal two-state degrees of freedom, and we have
simply mapped that two-state degree of freedom onto a spin
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degree of freedom.) In the language of pseudopotentials, the
Moore–Read state corresponds to V 3

0,3/2;0,3/2 being positive
and all other pseudopotentials being zero and, in addition, the
corresponding Hilbert space is restricted to only spin-polarized
sectors. Along similar lines, the spin-polarized Gaffnian wave
function for bosons corresponds to V 3

0,3/2;0,3/2 and V 3
2,3/2;2,3/2

being positive and all other pseudopotentials being zero, and
again the Hilbert space is restricted to spin-polarized sectors
(note that for L = 1, S = 3/2, and M = 3, we have a 0-
dimensional vector space of wave functions, so no correspond-
ing L = 1, S = 3/2, and M = 3 pseudopotential can occur).
In these examples we observe that the pseudopotentials are in
fact diagonal in the L,S sectors. This is a direct consequence
of the interaction being, respectively, rotationally and spin-
rotationally invariant. This feature will remain present in our
application of pseudopotentials to the SSG wave function, and
so at this point we shall drop the repeated indices and denote
diagonal pseudopotentials by V M

L,S ≡ V M
L,S;LS .

The bosonic NASS state, like the Moore–Read state,
corresponds to a spin-polarized three-body contact interaction,
however the Hilbert space now includes additional spin
sectors (not just the spin-polarized sector). In the language
of pseudopotentials, the bosonic NASS state is the highest
density zero energy ground state of a Hamiltonian with the
positive, diagonal pseudopotential V 3

0,3/2. Motivated by the
generalization of the Moore–Read Hamiltonian to the Gaffnian
Hamiltonian, our proposal for the SSG Hamiltonian is to keep
V 3

0,3/2, V 3
2,3/2, and V 3

0,1/2 positive. The proposed Hamiltonian
for the SSG wave function is thus expressed as

HSSG = |0,3/2〉 V 3
0,3/2 〈0,3/2| + |2,3/2〉 V 3

2,3/2 〈2,3/2|
+ |0,1/2〉 V 3

0,1/2 〈0,1/2| . (3)

From this pseudopotential Hamiltonian, we can already
infer some properties of its zero energy eigenstates. Because
the three-body interaction in the S = 3/2 channel is identical to
the Hamiltonian generating the (polarized) Gaffnian, the zero
energy eigenstates will vanish as at least a third power when
three particles with the same spin are brought to the same point.
In addition, when three particles have overall spin S = 1/2, the
wave functions vanish at least quadratically. These are indeed
the vanishing properties consistent with the CFT description
of the SSG, as we shall describe in Sec. IV. It is worth stating
here that the SSG wave function likely also corresponds to the
ground state of other, more complicated, local Hamiltonians
involving M-body terms with M > 3, following the line of
reasoning discussed in Ref. 27.

B. Spin-dressed squeezing algorithm

There is another way to characterize the spin-singlet
Gaffnian, apart from by means of the Hamiltonian we
introduced above. This method is the so-called “squeezing
method.” The idea underlying the method is that for many
model states, the wave functions have a large number of zero
coefficients if expressed in terms of the space of all possible
monomials. These zeros are closely related to the vanishing
properties of the wave functions. The method was pioneered
in Ref. 29. The spinful case, which we will employ here, was
described in great detail in Ref. 30.

We consider quantum Hall states on the sphere,26 in the
presence of N� flux quanta. In the lowest Landau level, this
construction gives rise to N� + 1 orbitals, whose occupation
numbers will be denoted by (n0,n1, . . . ,nN�

). These orbitals
have angular momentum (N�/2,N�/2 − 1, . . . ,−N�/2). We
will use the orbital occupation numbers to label the states in
the Hilbert space. Because total angular momentum is a good
quantum number, we can split the Hilbert space into sectors
with different values of total Lz, and we will always consider
the number of particles N to be fixed. For spinless fermions,
the Pauli principle specifies that the occupation of any orbital
ni can be 0 or 1, while for bosons, there is no constraint.

To obtain all states in a particular Lz sector, we divide the
N particles over the orbitals, such that one obtains the correct
value of total Lz, and such that the particles are “desqueezed”
as much as possible. This means that for an even number
of bosons in the Lz = 0 sector, one considers the occupation
(N/2,0, . . . ,0,N/2). To obtain the other states in this sector,
one generates all possible pairwise rearrangements of particles
occupying orbitals, keeping the total Lz fixed. In the general
case, this entails (. . . ,ni,ni+1, . . . ,nj−1,nj , . . .) transforming
into (. . . ,ni − 1,ni+1 + 1, . . . ,nj−1 + 1,nj − 1, . . .), where
all the other occupation numbers remain unchanged. In this
way, one obtains the full Hilbert space in each total Lz sector.

As we alluded to above, the wave functions of many
model states have a large number of zero components, if
expressed in the Hilbert space described above. For instance,
if one considers the ν = 1/2 bosonic Laughlin state, it
suffices to construct a reduced Hilbert space, by starting
to squeeze from the following so-called root configuration,
(1,0,1,0, . . . ,0,1,0,1), instead of the completely desqueezed
configuration (N/2,0, . . . ,0,N/2). All states in the full Hilbert
space which do not appear in the reduced Hilbert space have
zero coefficient in the Laughlin state. Moreover, it turns out
that there is only one L = 0 state one can construct in the
reduced Hilbert space. Thus, to obtain the Laughlin state for a
certain number of particles, one constructs the reduced Hilbert
space from the root configuration (1,0,1,0, . . . ,0,1,0,1), and
demands that L+ on a general state in this reduced Hilbert
space gives zero. This procedure gives a set of equations
for the coefficients, whose solution gives the Laughlin state,
expressed in the monomial basis on the sphere. In a similar
way, many other model states can be obtained. For instance, to
obtain the level-k Read–Rezayi states,13 one only has to change
the root configuration to (k,0,k, . . . ,k,0,k). Interestingly, the
root configurations correspond to the “thin-torus” limit of the
states.35–37

To describe spinful wave functions, the squeezing method
was augmented in Ref. 30. The idea is to start with a
root configuration, for which one at first ignores the spin
degrees of freedom. To construct the reduced Hilbert space,
one creates a set of orbital occupations, by squeezing in all
possible ways. Finally, one assigns spin to all the particles,
in all possible ways. We will be interested in spin-singlet
states, for which total S is a good quantum number. So
to construct the ground state, we work in the total Sz = 0
sector. After distributing the spin in all possible ways for
each configuration, we have constructed the reduced Hilbert
space. The spinful orbital occupations are now denoted by
(n0,↑,n0,↓,n1,↑,n1,↓, . . . ,nN�,↑,nN�,↓).
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We still have to specify how to obtain the correct wave
function in the reduced Hilbert space. In general, we will
be interested in ground-state wave functions which have
L = S = 0, so to obtain those, we work in the Lz = Sz = 0
subsectors, and demand that the action of L+ and S+ on the
state gives zero. It turns out that this is in general not enough
to completely specify the wave functions. In addition, one has
to demand that certain states in the reduced Hilbert space have
zero coefficient. The SSG is an example where this happens,
as we shall presently describe.

Let us now discuss how the squeezing algorithm applies to
the construction of the SSG Hilbert space. We have already
seen, in the construction of the Hamiltonian in Eq. (3),
that the zero energy eigenstates of the SSG wave function
vanish as at least a third power when three particles with the
same spin are brought to the same point and, in addition,
when three particles have overall spin S = 1/2, the wave
functions vanish at least quadratically. These observations
motivate the use of the root configurations based on the
pattern (2,0,2,0,0,2,0,2,0,0, . . . ,0,0,2,0,2), because like the
Moore–Read state, the resulting wave function will vanish
at least quadratically when three particles are at the same
location. These root configurations have the property that
two neighboring orbitals can maximally be occupied by two
particles, while five consecutive orbitals can be occupied by
at most four particles. We note in advance that these root
configurations satisfy the spinful generalized Pauli principle,
which we discuss in the next subsection.

To construct the ground-state wave function, we start with
the root configuration described above, and then construct
the reduced Hilbert space. To obtain the ground state, we
then demand that both L+ and S+ act to give zero on all
states in the reduced Hilbert. This construction, however,
only guarantees that the obtained wave function vanishes as
a second power when three particles of the same spin are
coincident; but we really wanted the wave function to vanish
as a third power in that case. We therefore enforce an additional
constraint: That all basis states in the reduced Hilbert space
have zero coefficient, on the condition that either one has
for spin-up particles n0,↑ = 2 and n2,↑ > 0, or similarly, for
spin-down particles, one has n0,↓ = 2 and n2,↓ > 0. With that
additional constraint, the wave function now vanishes as a
third power when three particles are coincident with total
S = 3/2.

C. Spinful generalized Pauli principle

A further method to characterize the zero energy space of
the SSG Hamiltonian is to use the generalized Pauli principle
for quantum Hall wave functions.38 The generalized Pauli
principle is most readily expressed in terms of partitions (or
occupied orbitals). A partition λ is defined to be an ordered set
of N integers, {λ1, . . . ,λN }, where λi � λi+1.

To describe the Hilbert space of spinless particles in flux
N�, we restrict the integers to the set λi ∈ {0,1, . . . ,N�}.
We then have the following relation between the orbital
occupation numbers n0,n1, . . . ,nN�

, which were introduced
in the previous subsection, and the λi forming the partition λ:
Namely, nN�

is the number of i such that λi = Nφ , etc. Thus
in general, nj is the number of i such that λi = j .

To characterize the quasiholes of the (k,r) clustered states39

we introduce the notion of (k,r)-admissible partitions, which
are partitions obeying the following condition for all i:

λi − λi+k � r. (4)

For given fixed values of N and N�, one identifies the number
of admissible partitions with the number of quasihole states
in the corresponding spectrum. For instance, the r = 2 series
corresponds to the level-k Read–Rezayi states, the Laughlin
state (k = 1), and the Moore–Read state (k = 2) being the
simplest cases. The Gaffnian wave function is associated with
the (k = 2,r = 3) generalized Pauli principle.

In order to generalize this method to the spinful case, we
follow the argument presented in Ref. 25. First, the partition
is replaced by a spinful partition that mixes momentum and
spin. A spinful partition (λ,σ ) is specified by N integers,
{λ1, . . . ,λN }, and now in addition, a set of spin indices
{σ1, . . . ,σN }, where σi ∈ {−1,1}. If either the condition λi >

λi+1 or λi = λi+1 and σi � σi+1 holds, we say that (λ,σ )
constitutes a spinful partition.

The spinful generalization of the (k,r) admissible partitions
is given by the following conditions, which have to hold for
all i:

λi − λi+k � r,

or λi − λi+k = r − 1 and σi < σi+k. (5)

In Ref. 25 it is shown that the densest bosonic state that leads
to a spinful (k,r) admissible possible corresponds to a filling
factor ν = 2k/(2r − 1) and a shift δ = r . Note that on the
sphere, the relation between the filling factor ν and shift δ is

ν = N

N� + δ
.

It has been proposed25 that nonsymmetric Jack polynomials
can represent spin-singlet states that are the spin generalization
of the spinless clustered states. In that case, the root partition is
chosen to be a spinful (k,r) admissible partition. The number
of quasihole states can be obtained in a similar way as the
spinless case, counting the number of admissible partitions.
Indeed, these properties have been checked for the Halperin
spin-singlet states (k = 1,r) and the NASS state (k = 2,

r = 2). In our application of the spinful generalized Pauli
principle to the SSG, we employ the (k = 2,r = 3) Pauli
principle (as for the spin-polarized Gaffnian), but now using
the spinful partitions.

III. NUMERICAL RESULTS

In this section we shall present numerical evidence demon-
strating that the zero-energy states of the local Hamiltonian
presented in Sec. II, Eq. (3), are correctly reproduced by
both the squeezing algorithm and by the generalized Pauli
principle which were also described in Sec. II. We shall present
evidence derived from both the quasihole spectrum and particle
entanglement spectrum.

A. Quasihole spectrum

The quasihole spectrum is determined by numerical exact
diagonalization of the Hamiltonian for finite-sized systems in
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FIG. 1. (Color online) The S = 0 sector of the quasihole spectrum
of the Hamiltonian HSSG, defined in Eq. (3), for N = 8 and N� = 7,
obtained by numerical exact diagonalization in the sphere geometry.
The inset zooms in on the bottom-left corner of the spectrum and
shows the unique zero energy state located in the L = 0, S = 0 sector.

the sphere geometry. This is done for a variety of system sizes,
N , and for a variety of fluxes N�. Eigenstates are labeled by
the quantum numbers Lz and Sz and fall into (L,S) multiplets.
(Note that these quantum numbers are completely separate
from the L and S describing the pseudopotentials unless one
has only M particles with an M-body interaction.) Given
constraints on the dimension of the spinful Hilbert space, we
were able to study systems of up to N = 12 and N� = 12. An
example of such a spectrum is plotted in Fig. 1.

For comparison, we generated the same Hilbert space via
the spin-dressed squeezing and generalized Pauli algorithms.
For the spin-dressed squeezing algorithm we started from a
root partition (2,0,2,0,0), e.g., (2,0,2,0,0,2,0,2,0,0,2,0,2) for
N = 12, and we applied the procedure described in Sec. II B to
generate the Hilbert space. The ground-state wave functions,
corresponding to the densest root configurations with Lz = 0,
occur at filling ν = 4/5 and shift δ = 3. For the generalized
Pauli algorithm, we specified a spinful admissible partition
(k = 2,r = 3).

Our key observations are as follows: First, in the spectrum
of the Hamiltonian there is a unique zero energy state occurring
only in the L = 0, S = 0 sector for N = 4 at N� = 2, for N =
8 at N� = 7 (see Fig. 1) and for N = 12 at N� = 12, which
all correspond to ν = 4/5 and δ = 3, consistent with both the
squeezing and generalized Pauli approaches; second, for the
quasihole spectrum generated for N between 3 and 12 and for
N� up to 20, we have checked that the counting of zero energy
states in each Lz and Sz sector precisely matches the counting
predicted by both the spin-dressed squeezing algorithm and
the generalized Pauli principle.

We have further determined for N = 4 and N = 8 that
the ground-state monomial expansion of the Hilbert space
generated by exact diagonalization of Eq. (3) precisely
matches the ground-state monomial expansion generated by
the squeezing algorithm as described in Sec. II B. In addition
we have found that the ground-state monomial expansion
also precisely matches that of the proposed analytic form
of the ground-state SSG wave function (we shall discuss the
analytical form of the ground-state wave function in Sec. V).

B. Particle entanglement spectrum

The so-called particle entanglement spectrum (PES) is
determined from the reduced density matrix of a subsystem
that results from the partition of the whole system into two (or
more) parts A and B.31,32 During this partitioning we also keep
the overall geometry unchanged. The reduced density matrix
ρA is given in terms of the full density matrix ρ = ∑ |ψ〉 〈ψ |
by tracing out the NB particles in the B partition: ρA = TrB(ρ).
The PES arises from diagonalizing ρA and then classifying
the resulting eigenstates according to the symmetries of the
problem, in our case by LA and SA.

For model states for topological phases such as the Laughlin
and Moore–Read states, it has been observed that there is a
characteristic PES: The number of nonzero eigenvalues for
ρA is identical to the number of quasihole states for a system
with identical geometry but only NA particles.31,32 The number
is usually exponentially lower than the dimension of ρA, or
equivalently, there is an infinite so-called “entanglement gap”
to the remaining eigenvalues.31,40–42

For the SSG wave function, our key observations are as
follows: We find evidence of an infinite entanglement gap for
N = 4 at N� = 2, for N = 8 at N� = 7 and for N = 12 at
N� = 12 (see Fig. 2), which we associate with our model
ground-state wave function for the SSG; and we find that the
counting predicted for the quasihole excitations up to N = 12,
obtained by considering the PES for all possible partitions of
the system into A and B subsystems, precisely matches the
counting predicted by the generalized Pauli principle in each
S and L sector.

With the evidence presented in this section in mind, we
conclude that the proposed SSG Hamiltonian in Eq. (3)
generates the correct zero energy Hilbert space for the SSG
wave function, at least for system sizes up to N = 12. Based
on this evidence, we also expect our conclusion to hold for
any other system size. Thus we have a Hamiltonian which
describes the ground state and excitation spectrum of the
Hilbert space.

FIG. 2. (Color online) The particle entanglement spectrum (PES)
for N = 12, N� = 12, and NA = 6, obtained by numerical exact
diagonalization in the sphere geometry. The negative log of the
eigenvalues, ξ , of the reduced density matrix ρA (defined in the text)
are plotted.
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An important question, left unanswered by our numerical
calculations here, is what is the size of the gap for quasiparticle
excitations in the thermodynamic limit? For finite-sized
systems, looking at Fig. 1, the gap is clearly finite (as it is
in the Gaffnian case). There is good reason, however, to argue
that the gap will in fact vanish in the thermodynamic limit, and
hence the SSG will be gapless and the wave function therefore
compressible (see Ref. 43). That argument is based on the fact
that the CFT corresponding to the SSG is nonunitary, as we
shall presently discuss.

IV. CONFORMAL FIELD THEORY

Let us now discuss the guiding principles of the derivation
of the CFT for the SSG wave function (see also related
considerations in Ref. 25). We shall expand further on the
discussion in the Appendix. For an introduction on CFT, we
refer to the book, Ref. 44, and the seminal paper by Belavin,
Polyakov, and Zamolodchikov (BPZ), Ref. 45.

A. Coset constructions for minimal models

The minimal models introduced by Belavin, Polyakov, and
Zamolodchikov can be written in terms of coset models of the
su(2)k WZW model.46 In the unitary case, one has

M(k + 1,k + 2) = su(2)1 × su(2)k−1

su(2)k
. (6)

For k = 2, this gives the Ising CFT, M(3,4). For integer k, the
coset theories are unitary, a property which is inherited from
the su(2)k WZW model, which is unitary for k integer.

General minimal models are labeled M(p′,p) for arbitrary
(non-negative) co-prime integers (p′,p). The minimal model
is unitary only if |p − p′| = 1, otherwise it is nonunitary.
Nevertheless, there exists a coset description of nonunitary
minimal models in terms of fractional level WZW models.47,48

In particular, the parameter k is given by k = 3p′−2p

p−p′ . The
nonunitary minimal model M(3,5), featuring in the CFT
description of the Gaffnian wave function, corresponds to
k = −1/2, while the Yang-Lee model M(2,5) has k = −4/3.

The central charge of the minimal models is given by
c(p′,p) = 1 − 6(p′−p)2

pp′ . The primary fields of the minimal
models are labeled by integers (r,s), which take the values
1 � r < p′ and 1 � s < p. The labels (r,s) and (p′ − r,p − s)
correspond to the same primary field. Finally, the conformal
dimensions of the fields are given by

h(r,s) = (rp − sp′)2 − (p′ − p)2

4pp′ . (7)

B. Gepner parafermions in terms of minimal models

The non-Abelian part of the CFT describing the NASS
state was originally written in terms of Gepner parafermions,49

which can be expressed in terms of the coset,

GPf[su(3)k] = su(3)k
u(1)2ku(1)6k

.

For our present purposes, we shall focus on k = 2, in which
case the above coset is equivalently written as

GPf[su(3)2] = su(2)1 × su(2)1 × su(2)1

su(2)3
(8)

[for arbitrary su(3)k parafermions, su(2) has to be replaced
with su(k) in the above]. If one multiplies the numerator and
denominator of the coset above by su(2)2, one can factorize
the coset into the (semidirect) product of the minimal models
M(3,4) and M(4,5),

GPf[su(3)2] ≈ su(2)1 × su(2)1 × su(2)1 × su(2)2

su(2)2 × su(2)3

≈ M(3,4) � M(4,5). (9)

Let us be more precise about this correspondence. The
direct product M(3,4) × M(4,5) does not correspond to the
su(3)2 Gepner parafermions. Instead, one has to consider a
so-called different modular invariant,50,51 constructed from the
fields present in the direct product. To do that, we will follow
the logic presented in Refs. 52–54. This amounts to identifying
a boson in the CFT, which is then said to be “condensed” (or
added to the chiral algebra). To identify a suitable boson, we
give the fields of the models M(3,4) and M(4,5) in Table I.
(Fusion rules for the minimal models are given in Refs. 44
and 45.)

We will label the fields in the product theory in terms
of the conformal dimensions (or conformal weights) of
the contributing fields of the original CFTs. We find that
there is indeed a bosonic field (i.e., a field with integer
scaling dimension) in the product, namely (1/2,3/2). The
condensation picture amounts to the following procedure:52

Particles which can be obtained from one another by fusion of
the boson, are “identified” (in the same way as the boson itself
is identified with the vacuum, or trivial particle); in addition,
particles which are not mutually local with the boson, are
“confined”; a particle which is mutual local with the boson
does not generate a phase factor when transported around the
boson; finally, it can happen that particles “split.” We will see
an example of splitting below. In this section, we will be rather
brief; more details on how one constructs the correct theory
can be found in the Appendix.

TABLE I. Kac table of conformal weights for the unitary minimal models M(3,4) and M(4,5).

M(3,4) M(4,5)

h(r,s) s = 1 2 3 h(r,s) s = 1 2 3 4

r = 1 0 1/16 1/2 r = 1 0 1/10 3/5 3/2
2 7/16 3/80 3/80 7/16
3 3/2 3/5 1/10 0
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TABLE II. Kac table of conformal weights for the unitary minimal models M(3,5) and M(5,7).

M(3,5) M(5,7)

h(r,s) s = 1 2 3 4 h(r,s) s = 1 2 3 4 5 6

r = 1 0 −1/20 1/5 3/4 r = 1 0 1/28 3/7 33/28 16/7 15/4
2 3/4 1/5 −1/20 0 2 11/20 3/35 −3/140 8/35 117/140 9/5

3 9/5 117/140 8/35 −3/140 3/35 11/20
4 15/4 16/7 33/28 3/7 1/28 0

To get started, we list the particles in the product theory
which are mutually local with this boson, namely

e = (0,0) = (1/2,3/2),

(1/10)a = (1/16,3/80),

(1/10)b = (0,1/10) = (1/2,3/5),

(1/2)a = (1/16,7/16),

(1/2)b = (0,3/2) = (1/2,0),

3/5 = (0,3/5) = (1/2,1/10).

The equalities within one line signify that the particles
corresponding to the two fields are identified. As an example,
one obtains (1/2,3/5) from (0,1/10) by fusion with the boson,
namely (0,1/10) × (1/2,3/2) = (1/2,3/5). We also note that
the particles ( 1

2 )a and ( 1
10 )a have to split into two particles,

thereby giving the full Z3 symmetry present in the su(3)2

parafermion theory. That this splitting is necessary can be
seen by taking, for instance, the fusion product ( 1

2 )a × ( 1
2 )a =

(0,0) + (1/2,0) + (0,3/2) + (1/2,3/2). Because both (0,0)
and (1/2,3/2) correspond to the identity, splitting of the field
( 1

2 )a is necessary. A similar argument applies for ( 1
10 )a , and

one can convince oneself that in the end, one indeed obtains
the correct fusion rules of the su(3)2 parafermion theory.
We conclude this section by mentioning that the example
of the equivalence GPf[su(3)2] ≈ M(3,4) � M(4,5) featured
prominently in a paper relating the Moore–Read and NASS
states.55

C. CFT for the spin-singlet Gaffnian

The spin-singlet Gaffnian that we aim to construct should
have the same vanishing properties as the Gaffnian when
considered as a function of only one spin species of particles.
Motivated by the product of minimal models describing the
su(3)2 Gepner parafermions, we take as a starting point the
coset

su(2)1 × su(2)1 × su(2)k
su(2)k+2

,

with k some fraction. Multiplying numerator and denominator
by su(2)k+1, we can write

su(2)1 × su(2)k
su(2)k+1

× su(2)1 × su(2)k+1

su(2)k+2
.

The CFT describing the Gaffnian is the nonunitary minimal
model M(3,5). To retain M(3,5) in the above construction,
we will choose k = −1/2. With this choice, our coset takes
the form M(3,5) × M(5,7). In analogy with the Gepner
parafermion case above, we look for a field with integer scaling
dimension in the product theory, and condense it. The field

content of the models is given in Table II. (Fusion rules for the
minimal models are given in Refs. 44 and 45.)

It turns out that the only boson that we can condense (or add
to the chiral algebra), is the field (9/5,1/5), which curiously
has nontrivial fusion rules. The only fields that survive this
condensation are found to correspond to product of fields of
the first column of the Kac table for M(3,5) and the fields of
the first row of the Kac table for M(5,7). In addition, none
of these product fields are split. It follows that the resulting
theory can be thought of as the product of a nonunitary semion
theory (two fields with Z2 fusion rules and dimensions 0
and 3/4) and a theory of six fields, satisfying su(2)5 fusion
rules. This second theory is also nonunitary, and the scaling
dimensions are again simply read off from the Kac table,
(0,1/28,3/7,33/28,16/7,15/4). We note that this theory is
modular (inherited via the coset construction). Here, we were
rather brief in our description of the construction of the theory
M(3,5) � M(5,7). In Sec. 2 of the Appendix, we will give
the details of the construction.

Before we start with the construction of the electron and
quasihole operators, in Table III we give the Kac table of the
fields present in the CFT we constructed, M(3,5) � M(5,7),
which will constitute the non-Abelian part of the CFT
describing the SSG. The full CFT also contains the u(1) vertex
operators (see, for instance, Ref. 56). It is important to note that
one has to be careful in determining the scaling dimensions
of the fields in the product theory. The dimensions obtained
by simply adding the scaling dimensions of the constituent
fields can in fact correspond to the scaling dimensions of
descendant fields, differing from the scaling dimensions of the
primaries by integers. In particular, the field (15/4,0) is iden-
tified with (9/5,1/5) × (15/4,0) = (11/20,1/5), which has
scaling dimension 3/4. Similarly, (9/5,1/5) × (15/4,3/4) =
(11/20,−1/20), which has scaling dimension 1/2.

The fields occupying the corners of the Kac table, namely
(0,0),(0,3/4),(15/4,0),(15/4,3/4), are special, because they
are simple currents. A simple current is a field, which when
fused with any other field, always gives a single field as
the result. Therefore, the particles corresponding to simple
currents are Abelian. To construct the “electron” operator,

TABLE III. Kac table of conformal weights of the CFT describ-
ing the non-Abelian part of the spin Gaffnian.

M(3,5) � M(5,7)
h(i,j ) j = 0 1 2 3 4 5

i = 0 0 1/28 3/7 5/28 2/7 3/4
1 3/4 11/14 5/28 −1/14 1/28 1/2
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one is therefore only allowed to use one of these four fields.
Before we get started, we note that the Abelian sector of the
theory at hand has less symmetry than the one describing the
NASS state, which has three primary fields all with the same
conformal weight.

We will now work with the assumption that we do have
a Z2 symmetry between the fields (15/4,0) and (0,3/4), [i.e.,
the fields with labels (i,j ) = (0,5),(1,0)] which we need, if the
correlator is to describe a spin-singlet state (in the Appendix,
we will give evidence supporting this statement). In addition,
we want the wave function to look like a Gaffnian when viewed
as a wave function for either spin-up or spin-down particles
alone. We will introduce the following notation for the fields:

1 = (0,0), ψ↑ = (0,3/4),

ψ↓ = (15/4,0), ψ↑↓ = (15/4,3/4). (10)

The fusion rules of these fields read ψ↑ × ψ↑ = ψ↓ × ψ↓ =
ψ↑↓ × ψ↑↓ = 1 and ψ↑ × ψ↓ = ψ↑↓.

We will continue with adding the appropriate vertex
operators, giving charge and spin to the constituent particles,
which is the usual procedure (see, for instance, Ref. 56). The
guiding principle will be to construct electron operators, which
give rise to the vanishing properties we want. The ansatz for
the operators is

V↑(z↑) = ψ↑(z↑)eiαφc+iβφs (z↑),
(11)

V↓(z↓) = ψ↓(z↓)eiαφc−iβφs (z↓),

where α and β are constants to be determined. The fields
φc and φs are u(1) compactified bosons. As we already
pointed out, when we bring several up-particles together, we
demand that the wave function behaves in the same way as
the Gaffnian wave function. The electron operator in the CFT

description of the Gaffnian reads V (z) = ψ(z)ei
√

3
2 φ(z), with

ψ(z) a field with conformal dimension 3/4. Equivalences with
this polarized case gives us the constraint α2 + β2 = 3/2.

Moreover, bringing a spin-up and a spin-down particle
together should not lead to a divergence. Using the fusion rule
V↑ × V↓ = ψ↑↓e2iαφc gives rise to a factor (z↑ − z↓)−1+α2−β2

in the operator product expansion. To avoid a pole, one obtains
the constraint α2 − β2 = p, with p an integer greater than or
equal to 1. Picking the minimal choice p = 1, one finds that
α = √

5/4 and β = 1/2. This value for β is in fact equal to
the value this parameter takes in the case of the NASS state.

With the electron operators V↑ = ψ↑ei
√

5/4φc+1/2iφs and

V↓ = ψ↓ei
√

5/4φc−1/2iφs in place, we conclude that the corre-
sponding wave function does not vanish when any two particles
come together. It vanishes as three powers when three up (or
three down) particles come together. In addition, when two
up and one down particle come together, the wave function
generically vanishes quadratically. We then assume that one
can use logic similar to the NASS case, and thus, exploiting the
SU(2) symmetry,18 one finds that the wave function vanishes
as three powers when three particles in the S = 3/2 channel
are coincident, and quadratically when three particles in the
S = 1/2 channel are coincident.

The filling fraction of the wave function is given by
ν = 4/5. The scaling dimension he = 3/4 + 3/4 = 3/2 gives
rise to a shift δ = 3, the same as for the Gaffnian. We will defer

the construction of the quasihole operators to the Appendix, but
mention here that they are constrained by the fact that the wave
functions for the electrons should not have poles, even in the
presence of quasiholes. For N particles the ground-state SSG
wave function can be written as a conformal block containing
equal numbers of spin-up and spin-down electron fields:

SSG = 〈ψ↑(z↑
1 ) · · · ψ↑

(
z
↑
N
2

)
ψ↓

(
z
↓
N
2 +1

) · · · ψ↑(z↓
N )〉.

Finally, we would like to mention that if we would
have assumed that the field ψ↑,↓ would have had conformal
dimension 3/2 instead of 1/2 (which is not consistent, because
of the field identification above), one would have found α =
β = √

3/4. The resulting wave function would then factorize
as Gaffnian(up) × Gaffnian(down). The CFT description for
such a wave function should be M(3,5) × M(3,5), which is
at odds with the CFT description we have used here.

V. GROUND-STATE WAVE FUNCTION

In this section we shall present an explicit construction
for the ground-state SSG wave function for the bosonic case.
Our construction is conjectured with the view to satisfying the
vanishing properties as well as the constraints of filling factor
ν = 4/5 and shift δ = 3, arising from the CFT considerations
put forward in Sec. IV. In addition, the wave function must
describe a spin-singlet state. That condition specifies the
requirement to satisfy the Fock cyclic symmetry conditions
(see Ref. 57).

Before we describe how to construct the SSG, it will be
useful to motivate our methodology by briefly reviewing the
construction of the spin-polarized Gaffnian wave function.14

For the Gaffnian, the CFT requirements imposed on the
vanishing properties are that for any three particles coincident
the wave function must vanish as three powers and that the
wave function must not vanish for any two particles coincident
[the CFT describing the Gaffnian is the nonunitary minimal
model M(3,5)]. Further, it was determined that in its bosonic
form, the Gaffnian occurs at filling 2/3 and δ = 3.

To give the expression of the Gaffnian wave function that
can be generalized to the SSG, we divide the particles into two
groups A and B of equal size. The Gaffnian wave function can
then be written as

Gaffnian = Ŝ

⎡
⎣ ∏

i<j∈A

(
zA
i − zA

j

)2 ∏
i<j∈B

(
zB
i − zB

j

)2

×
∏

i∈A,j∈B

(
zA
i − zB

j

)
Per

[
1

zA
i − zB

j

]⎤
⎦,

where Ŝ represents a symmetrization operation over all N

particle coordinates, and Per[Mij ] denotes the “permanent”
of a matrix M whose elements are in this case given
by Mij = (zA

i − zB
j )−1. On its own, this permanent factor

contains a certain pattern of poles. When placed within
the full construction, these poles conspire to ensure that
the overall wave function does not vanish as two particles
become coincident. Thus the polynomial vanishes only when
three particles are coincident. The vanishing power can be
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tuned by adjusting the exponents of each Jastrow-type factor
in the construction. For example,

∏
i<j∈A(zA

i − zA
j )2 could

be adjusted to, say,
∏

i<j∈A(zA
i − zA

j )4 (and similar for the
particles in group B) to alter the vanishing power from 3 to
5 in this example. An entirely nontrivial step is to determine
whether or not these vanishing properties are retained once
the overall symmetrization operation has been completed. For
the Gaffnian, it was found that the vanishing properties are
retained.

Now let us turn to the construction of the ground-state wave
function for the SSG. We have determined that the following
construction, given in Eq. (12), gives a wave function at filling
factor ν = 4/5 and δ = 3 and it satisfies the CFT vanishing
constraints for N = 4,8,12. We have reason to believe that it
will work for all other values of N (i.e., 16, 20, etc.), although
an explicit check is not possible. Thus, we conclude that it
must be proportional to the conformal block giving the SSG
ground state. In the construction, we have used a clustering
principle: The particle coordinates are first divided into equal
sets of spin up and spin down, and then each of these sets is
further subdivided into two equal subsets labeled by either A

or B, giving four sets in total (A ↑, A ↓, B ↑, B ↓). With the
label A or B on its own, we refer to the two subsets with either
spin direction,

SSG = ŶS=0

⎡
⎣ ∏

a=A,B

⎧⎨
⎩

∏
i<j∈a↑

(
z
a↑
i − z

a↑
j

)2

×
∏

i<j∈a↓

(
z
a↓
i − z

a↓
j

)2 ∏
i∈a↑,j∈a↓

(
z
a↑
i − z

a↓
j

)
⎫⎬
⎭

×
∏

i∈A,j∈B

(
zA
i − zB

j

)
Per

[
1

zA
i − zB

j

]⎤
⎦, (12)

where, as above, Per[Mij ] denotes the permanent of a matrix
M whose elements are in this case given by Mij = (zA

i − zB
j )−1

and where ŶS=0 is the Young operator for a spin-singlet
representation of the symmetric group—this operation is
required in order to guarantee that the wave function satisfies
the correct Fock cyclic symmetry conditions for a spin-singlet
state,57

ŶS=0 = Ŝ
z
↑
1 ...z

↑
N/2

Ŝ
z
↓
1 ...z

↓
N/2

Â
z
↑
1 z

↓
1
. . . Â

z
↑
N/2z

↓
N/2

,

that is, the Young operator for a spin-singlet representation
corresponds to the operation of antisymmetrizing over ordered
pairs of spin-up and spin-down coordinates, followed by
symmetrizating over all spin-down and then all spin-up
coordinates. Crucially, it is important to note that the wave
function does not completely vanish when ŶS=0 is applied!

In Sec. III we provided strong evidence showing that the
spectrum of the Hamiltonian for the SSG contains a unique
zero energy state with L = 0 and S = 0, for precisely the
values of particle number and flux corresponding to filling ν =
4/5 and δ = 3. Therefore we conclude that this trial ground-
state wave function is unique, and further, it is precisely the
highest density ground state of the SSG Hamiltonian proposed
in Eq. (3).

VI. DISCUSSION

To summarize our findings, we have presented evidence
to demonstrate that the proposed SSG wave function satisfies
many of the “ingredients of an ideal theory of a FQHE state”:
A local Hamiltonian, a relatively simple analytic expression
for the wave function, at least for the ground state, and a
correspondence of that wave function to a 2D rational CFT. We
have verified the quasihole spectrum of the SSG Hamiltonian,
checking against both the spin dressed squeezing algorithm
and the spinful version of the generalized Pauli principle.
Indeed, this study is an interesting test case for the application
of such techniques.

Concerning quasiholes, although we have made progress
on the CFT description of the quasihole operators (see the
Appendix), we have not yet determined simple, analytic
expressions for the corresponding quasihole wave functions.
For the spin-polarized Gaffnian, the quasihole wave functions
have been constructed;14 the main stumbling block here is the
additional complexity due to the spin degree of freedom.

In Sec. II we described how to generate the SSG wave
functions by means of a local Hamiltonian written in terms of
spin-dependent pseudopotentials. An interesting question left
unaddressed is whether other states could be constructed with
faster vanishing properties than the SSG. For instance, in the
spin-polarized case, adding the next highest L pseudopotential
to the Gaffnian Hamiltonian is known to produce the Haffnian
Hamiltonian.15 Might we be able to generate a “spin-Haffnian”
state with a Hamiltonian containing positive V 3

0,3/2, V 3
2,3/2,,

V 3
0,1/2 and now, in addition, V 3

3,3/2 (and possibly V 3
1,1/2)?

Wave functions of this type were also considered in Ref. 25.
Presently we lack a corresponding CFT description with which
to conduct the same checks as for the SSG. It is also unclear at
the present time whether that Hilbert space could identically
be constructed by a squeezing algorithm or generalized Pauli
principle approach.

Concerning CFT coset constructions, it is noteworthy
that we were able to derive a self-consistent CFT from the
product of two nonunitary minimal models by constructing
a nondiagonal modular invariant. Specifically, the nonunitary
models in the product can be thought of as cosets of fractional
level affine Lie algebras. The resulting CFT corresponds to
the nonunitary coset su(2)1 × su(2)1 × su(2)k−2/su(2)k , with
k fractional. In Sec. 2 of the Appendix, we deal with a more
general case.

In general, for any unitary coset construction with simple
current extensions there is a proven procedure to generate
the CFT.53,54 For nonunitary cosets, no such general procedure
exists, and each CFT must be constructed on a case-by-case
basis.44 In the CFT construction presented in this work,
we have provided a further example of a case where the
construction of nondiagonal modular invariants for nonunitary
CFTs is possible.

Another powerful tool for the analysis of the quantum Hall
wave functions has been the concept of Jack polynomials.25,29

The Jack polynomials provide a convenient basis in which
to describe polynomial wave functions with precisely defined
vanishing properties. Based on this new insight, it has been
determined that states such as that of Moore and Read—where
there exists a corresponding local Hamiltonian, a relatively
simple analytic form for the wave function, and a CFT
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description of the state—are in fact simply special cases within
a much broader classification of FQHE states in terms of these
Jack polynomials. It has been further realized that such states
are rather atypical: Out of all the Jacks, there exist only a
handful of special cases for which all three of these ideal
ingredients of a theory of a FQHE state are present. In this
paper we have presented a further example, albeit that the CFT
corresponding to the SSG is nonunitary implying a gapless,
compressible wave function.
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APPENDIX: MORE DETAILS ABOUT THE CFT

1. Quasihole operators

In this Appendix, we will construct the operators corre-
sponding to the quasiholes with the smallest quantum numbers.
From them, we construct the set of all quasihole operators,
whose number gives the torus degeneracy.

We start with the field in the CFT M(3,5) � M(5,7), and
add the u(1) factors (as we did in the construction of the
electron operators), in such a way that the quantum numbers
are minimized. The fields in the M(3,5) � M(5,7) theory are
denoted by φi,j , with i = 0,1 and j = 0,1,2,3,4,5. The label
i adds modulo 2 under fusion, while the label j obeys su(2)5

fusion rules. For general k, the su(2)k fusion rules read

j1 × j2 =
min(j1+j2,k−j1−j2)∑

j3=|j1−j2|
j3.

The two fields with the smallest scaling dimension are φ0,1 and
φ1,4, so we start by writing the ansatz for the smallest quasihole
operator as Vqh(w) = φ0,1e

iaφc+ibφs . Fusing this quasihole with
an electron should give a wave function which is still analytic
in the electron coordinates. This leads to the constraints
a
√

5/4 + b/2 − 1/2 = p and a
√

5/4 − b/2 = q, where p

and q are non-negative integers. Upon picking the minimal
choice p = q = 0, one finds a = 1/(2

√
5) and b = 1/2, which

corresponds to a quasihole with charge 1/5 and spin sz = 1/2.
The operator reads Vqh,↑ = φ0,1e

i(1/(2
√

5))φc+i/2φs .
Constructing the other minimal quasihole, based on φ1,4,

one obtains Vqh,↓ = φ1,4e
i(1/(2

√
5))φc−i/2φs , with charge 1/5 and

sz = −1/2. Starting from these “fundamental” quasiholes, one
obtains all the quasihole species by successive fusion.

When we construct the other quasiholes, we will do this
“modulo the electron operators,” because two particles which
can be obtained from each other by fusion of an “electron”
correspond to the same species of particle. Thus, we will

first determine the operators which one can obtain by fusing
(possibly different species of) electrons.

We first introduce some notation for the labels of the
different fields (or species of particles). The fields will
be denoted by their three “quantum numbers,” namely the
field of the non-Abelian CFT, the charge, and the spin. As
an example, the electron operators are given by (φ0,5,1, 1

2 )
and (φ1,0,1,− 1

2 ). The “composite” of these two operators is
(φ1,5,2,0). It will be useful to consider the “dual” opera-
tors, which read (φ0,5,−1,− 1

2 ), (φ1,0,−1, 1
2 ), and (φ1,5,−2,0).

From these operators, we can construct particles without
charge, for instance (φ0,5,1, 1

2 ) × (φ1,0,−1, 1
2 ) = (φ1,5,0,1) and

(φ1,0,1,− 1
2 ) × (φ0,5,−1,− 1

2 ) = (φ1,5,0,−1). Since fusing a
quasihole with any of the operators above does not give us a
new species of quasihole, it follows that the set of independent
quasiholes can be labeled such that the charge and spin take
the values 0 � q < 1 and sz = 0,1/2, respectively.

The quasihole operators we constructed above can be
written as (φ0,1,

1
5 , 1

2 ) and (φ1,4,
1
5 ,− 1

2 ). These two fields are
in fact to be identified, because (φ1,4,

1
5 ,− 1

2 ) × (φ1,5,0,1) =
(φ0,1,

1
5 , 1

2 ). Thus, to construct all the different topological
sectors, it suffices to repeatedly fuse the quasihole (φ0,1,

1
5 , 1

2 ),
and record the different sectors, modulo the electron operators.

This procedure leads to the following topological sectors:
(
φ0,5,

1
5 , 1

2

) (
φ1,0,

3
5 , 1

2

)
(φ0,4,0,0)

(
φ1,1,

2
5 ,0

) (
φ0,4,

4
5 ,0

)
(
φ0,3,

1
5 , 1

2

) (
φ1,2,

3
5 , 1

2

)
(φ0,2,0,0)

(
φ1,3,

2
5 ,0

) (
φ0,2,

4
5 ,0

)
(
φ0,1,

1
5 , 1

2

) (
φ1,4,

3
5 , 1

2

)
(φ0,0,0,0)

(
φ1,5,

2
5 ,0

) (
φ0,0,

4
5 ,0

)
The fields which would appear in the next column, with charge
1, can be identified to the fields in the first column, with charge
0. We thus find that the number of different topological sectors
is 15, which is the degeneracy on the torus.

It is interesting to note that these sectors can also be
understood from the so-called “thin-torus limit,”35–37 the
generalized Pauli principle,25 or the squeezing patterns we
discussed in Sec. II B.

First, the pattern which we used to define the spin-singlet
Gaffnian via squeezing, is (2,0,2,0,0), i.e., two neighboring
orbitals can host maximally two particles, and three through
five consecutive orbitals can be occupied by maximally four
particles. This gives rise to the sectors (2,0,2,0,0,2,0,2,0,0)
(five times on a torus), (2,0,1,1,0,2,0,1,1,0) (five times on a
torus), and (1,1,1,1,0,1,1,1,1,0) (five times on a torus). Each
of the fields (φ0,0,0,0), etc., corresponds to one pattern. In the
first column, we find (φ0,0,0,0) ≡ (2,0,2,0,0), (φ0,2,0,0) ≡
(1,0,1,1,1) and (φ0,4,0,0) ≡ (0,2,0,1,1). The other fields can
be obtained by fusing with (φ0,1,

1
5 , 1

2 ), which brings one from
one column to the adjacent one on the right. On the level
of the patterns, one has to to “hop” one particle one step to
the right, assuming periodic boundary conditions. Thus, one
finds (2,0,2,0,0) → (2,0,1,1,0), while in the other two cases,
there are two options, (1,0,1,1,1) → (2,0,1,1,0); (0,1,1,1,1)
and (0,2,0,1,1) → (0,1,1,1,1); (0,2,0,0,2). Here, we have
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the identification (φ0,1,
1
5 , 1

2 ) ≡ (2,0,1,1,0), (φ0,3,
1
5 , 1

2 ) ≡
(0,1,1,1,1) and (φ0,5,

1
5 , 1

2 ) ≡ (0,2,0,0,2). The remaining
columns follow in the same way.

2. Field content and the modular invariant of the product CFT

To completely specify the conformal field theory describing
the spin-singlet Gaffnian, we need to give the field content
of the product CFT we use. In Sec. IV above, we used the
condensation picture to argue which fields are present in
the final CFT we used. We did not in fact go through the
condensation picture in full detail: In particular, we glossed
over the fact that the boson itself has to split (because the fusion
of the boson with itself has multiple fusion channels, including
the vacuum and the boson itself). So, in the construction of the
SSG CFT it is only one part of the boson which condenses, and
going through the whole condensation procedure can become
cumbersome.

In this Appendix, we will construct a modular invariant
partition function of the product theory, using the boson
condensation as a guiding principle. The first step of the
procedure is to find a boson which can be condensed and
to find the fields local with respect to that boson. Such fields
will be present in the final CFT. Upon acting with the boson
on these fields, we obtain the fields (in the original product
theory) which are identified with those fields which are local
with respect to the boson. In this way, we can construct the
modular invariant partition functions. We refer to Refs. 50–52
for more details.

We start with those CFTs corresponding to wave functions
with n = 2 components, i.e., the generalizations of the NASS
state, where the condensate particles have spin 1/2. The CFT
describing these states consists of a product of two minimal
models, which, for r > 2, are nonunitary (the case r = 2 is the
NASS state).

We already argued that for r = 3, the starting point is the
product theory M(3,5) × M(5,7). For general r , we instead
find that we need M(3,r + 2) × M(r + 2,2r + 1) as the
starting product theory. We note that for the minimal model
theory M(p′,p) to be well defined, p′ and p have to be
co-prime, which means that r mod 3 �= 1. We will assume
that this relation is satisfied from now on.

The fields of the product theory will be labeled by
(r1,s1; r2,s2), with the usual field identifications, coming from
the field identifications present in the minimal modelM(p′,p).
In the product theory, the field b = (3,1; 1,3) always has
scaling dimension hb = 2, and hence is a boson. For r =
2, we find b × b = (1,1; 1,1), the identity. For r = 3, we
have b × b = (1,1; 1,1) + (1,1; 1,3) + (3,1; 1,1) + (3,1; 1,3).
For r � 5 (but r mod 3 �= 1), we find the general result
b × b = (1,1; 1,1) + (1,1; 1,3) + (1,1; 1,5) + (3,1; 1,1) +
(3,1; 1,3) + (3,1; 1,5) + (5,1; 1,1) + (5,1; 1,3) + (5,1; 1,5).

We now describe the field content of the CFTs we employ
in this paper, by specifying the relevant modular invariant
partition functions. In general, these are given in terms
of the characters of the holomorphic and antiholomoriphic
part of the CFT. We will denote these characters by χr

and χr ′ , respectively, where both r are r ′ are labels of the
fields in the product CFT. The putative partition functions
take the form Z(τ ) = ∑

r,r ′ Mr,r ′χr (τ )χr ′(τ ), where the Mr,r ′

are non-negative integers denoting the multiplicities of the
holomorphic-antiholomorphic combination χr (τ )χr ′ (τ ). The
identity field should be present and nondegenerate, M1,1 = 1.
In order that the partition function is modular invariant, the
matrix M should commute with both S and T , the generators
of modular transformations. The commutation condition can
be seen to enforce that the only combinations χχ which can
occur have h − h mod 1 = 0.

The so-called diagonal invariant, Mr,r ′ = δr,r ′ always exists,
but this is not the invariant we are interested in here. We are
interested in the invariant, which contains 4r fields, which
are composed out of several fields, which are identified via
the condensation of the boson present in the original product
theory. To specify the invariants, we have to distinguish two
cases separately. We start with r odd. In this case, the fields
in the final theory can be labeled by (1,s1; r2,1), for s1 = 1,2,
and r2 = 1, . . . ,2r , for a total of 4r fields. These fields are
identified with the fields (q,s1,r2,q), with q = 1,3, . . . ,r , i.e.,
all possible odd values of the labels r1 and s2. In particular, the
modular invariant partition function takes the form

Z(τ ) =
2r∑

r2=1

∣∣χ(1,1;r2,1) + χ(3,1;r2,3) + · · · + χ(r,1;r2,r)

∣∣2

+
2r∑

r2=1

∣∣χ(1,2;r2,1)+χ(3,2;r2,3) + · · · + χ(r,2;r2,r)

∣∣2
. (A1)

In the case that r is even, the new theory still contains the
fields which are labeled by (1,1; r2,1), but the fields with labels
(1,2; r2,1) are absent. Instead, the fields with labels (2,2; r2,2)
are now present. These are identified with the fields (q,2; r2,q),
where q = 2,4, . . . ,r is even. The partition function reads

Z(τ ) =
2r∑

r2=1

∣∣χ(1,1;r2,1) + χ(3,1;r2,3) + · · · + χ(r+1,1;r2,r+1)

∣∣2

+
2r∑

r2=1

∣∣χ(2,2;r2,2) + χ(4,2;r2,4) + · · · + χ(r,2;r2,r)

∣∣2
.

(A2)

We will now consider the case where the particles have
n internal states rather than 2 internal states as they do for
spin 1/2. Let us focus on the case n = 3, which would
correspond to three-component states, such as the spin-1 states
considered in Refs. 58 and 59. The generalization to higher
n will be clear after that. For n = 3, the starting product
theory is M(3,r + 2) × M(r + 2,2r + 1) × M(2r + 1,3r).
The bosonic field which one can take as the field which
condenses is b = (3,1; 3,3; 1,3), which has scaling dimension
hb = 2. As was the case for n = 2, we need that r mod 3 �= 1,
such that the factors in the product theory are well defined.

Starting with r odd again, we can label the fields of the
new (block-diagonal) modular invariant as follows. There are
a few different groups, namely (1,i; 1,1; j,1), with i = 1,2
and j = 1,2, . . . ,3r − 1, in addition to (1,i; 2,1; j,2), also
with i = 1,2 and j = 1,2, . . . ,3r − 1. The fields appearing
in the blocks labeled by (1,i; 1,1; j,1) are (q1,i; q2,q1; j,q2),
where q1,q2 mod 2 = 1. In the case of the blocks labeled
by (1,i; 2,1; j,2), the fields appearing in these blocks are
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(q1,i; q2,q1; j,q2), but now with q1 mod 2 = 1 and q2 mod
2 = 0.

In the case that r is even, the labels of the blocks are
slightly different, in the same way as was the case for r = 2.
There are for different types of labels, namely (1,1; 1,1; j,1),
(1,1; 2,1; j,2), (2,2; 1,2; j,1), and (2,2; 2,2; j,2), all with j =
1,2, . . . ,3r − 1. The fields appearing in these blocks are of
the form (q1,i; q2,q1; j,q2), where q1 and q2 are either even or
odd, depending on the type of block they belong to. In either
case r even or odd, the number of fields in the block-diagonal
modular invariant is given by 4(3r − 1).

A few remarks about the case of general n. The product
theory one starts with is M(3,r + 2) × M(r + 2,2r + 1) ×
· · · × M(3 + (n − 1)(r − 1),3 + n(r − 1)), where r mod 3 �=
1. The boson with scaling dimension hb = 2 has the la-
bels (3,1; 3,3; . . . ; 3,3; 1,3). The number of different blocks,
i.e., the number of fields in the new modular invariant, is

2n−1[2 + n(r − 1)]. The precise form of the labels of these
blocks, and the fields appearing in them, depends on r being
even or odd, in a way which should be clear from the case n = 3
above. The general form of the fields in the blocks is given
by (q1,i; q2,q1; q3,q2; . . . ; qn−1,qn−2; j,qn−1), where i = 1,2,
j = 1,2, . . . ,[2 + n(r − 1)], and q2,q3, . . . ,qn−1 can either be
even or odd. For r odd, q1 is always odd, while for r even we
find that i and q1 have the same parity, (i + q1) mod 2 = 0.

The invariants we discussed above are relevant for paired
states with k = 2, based on particles with spin (n − 1)/2, with
the property that the wave function vanishes as r powers
when three particles with the same sz come together. It is
possible to generalize this construction to arbitrary clustered
states with k > 2, but these will be based on cosets of the
type su(k)1 × su(k)1/su(k)2, etc., making the structure of the
modular invariants somewhat more involved. We will not deal
with the case k > 2 here.
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