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We introduce a set of one-dimensional quantum lattice models which we refer to as the quantum torus
chain. These models have discrete global symmetry and projective on-site representations. They possess an
integer-valued parameter which controls the presence or absence of frustration. Depending on whether this
parameter is even or odd, these models exhibit either gapped symmetry-breaking phases with isolated critical
points or gapped symmetry-breaking phases separated by gapless phases. We discuss the property of these phases
and phase transitions for two special values of the parameter and point out many open problems.
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I. INTRODUCTION

Over the years, many interesting lattice models have
been introduced to capture the essence of important physical
concepts and make them open for more quantitative studies.
In modern language, quantum lattice models can capture
short-range entangled states such as symmetry-breaking or
symmetry-protected topological states.1 They also can capture
long-range entangled states such as the quantum critical and
“intrinsic topological ordered” states.

The importance of symmetry is well known in classical
and quantum physics. Recently, it was realized that a strong
tie exists between quantum entanglement and symmetry.1

For example, in one space dimension, Chen et al.1 showed
that short-range, entangled, fully symmetric quantum states
are classified by the projective representation of the internal
symmetry group. In addition, if the site representation of the
symmetry group is projective, then short-range entanglement
is impossible without symmetry breaking. Because in one
dimension a gapped system is necessarily short-range entan-
gled, this implies that projective on-site representation cannot
have an energy gap without breaking some symmetry. This
result is a generalization of Haldane’s work on the SO(3)
spin chain.2 There, half-integer spin chains need to break a
symmetry to open an energy gap, while integer spin chains
do not.

In this paper, we introduce a family of one-dimensional
quantum lattice models whose global symmetry groups are
discrete and the on-site representation is projective. Indeed,
these models are either gapless or exhibit spontaneous
symmetry breaking. In addition, they possess an integer-
valued parameter which controls the presence or absence of
frustration. Depending on whether this parameter is even or
odd, qualitatively different phase diagrams are observed. By
applying the density matrix renormalization group (DMRG)3,4

and Matrix product state (MPS)5 methods, we find for the even
parameter that these models are generically gapped and show
spontaneous symmetry breaking. Fine tuning is required to

close the energy gap. On the other hand, for the odd parameter,
both the gapped symmetry-breaking phase and the gapless
symmetric phase are generic. The results are all consistent
with the conclusions drawn by Chen et al.1

The results reported in this paper show that the class of
models that we introduced in this paper has a rich set of
interesting phases. We hope that the study of this class
of models will enhance our understanding of symmetry-
protected topological phases in one-dimensional systems and
of topological phases in a more general setting.

II. THE QUANTUM TORUS CHAIN

The family of models, which we refer to as the quantum
torus chain, is motivated from the following view of the
quantum spin chain.

The dimension D of the single-site Hilbert space of a
SU(2) spin-S chain is 2S + 1. The basis states can be viewed
as the one-particle states of a unit-charged particle running
on a sphere enclosing a magnetic monopole which produces
2S magnetic-flux quanta through the sphere.6 The nonzero
total Gaussian curvature of the sphere leads to a term in the
Hamiltonian which has the same form as the term describing
the flux. Thus, the curvature effectively increases the flux, and
there are D = 2S + 1 rather than 2S one-particle states (see
also Ref. 7). The spin operators Sx,y,z are the generators of the
magnetic translation.

In the XYZ model, the nearest-neighboring spin operators
are coupled as

HXYZ =
∑

i

(
JxS

x
i Sx

i+1 + JyS
y

i S
y

i+1 + JzS
z
i S

z
i+1

)
. (1)

This is depicted in Fig. 1(a).
In this work, we consider the “torus chain” [Fig. 1(b)],

where the spheres of Fig. 1(a) are replaced by the torus.
Because the total Gaussian curvature of a torus is zero, the
lowest Landau-level degeneracy is equal to the number of flux
quanta through each torus.7 Unlike the sphere, the magnetic
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FIG. 1. (Color online) (a) Each site of a quantum spin-S chain
can be viewed as the lowest Landau level of a unit-charged particle
moving on a sphere under the magnetic field of a Dirac monopole.
The total magnetic flux produced by the monopole is 2S. (b) The
Torus chain is a modification of the spin chain where each sphere is
replaced by a torus.

translation group of a torus, i.e., the Heisenberg-Weyl group,
is discrete rather than continuous.8 The commutation relation
between the operators Ux,Uy , which generate the magnetic
translations in two orthogonal directions, is

UxUy = ei2π/mUyUx, (2)

where (Ux)m = (Uy)m = I . Here, m is the number of flux
quanta through each torus and is the integer-valued parameter
we referred to earlier. In the following, we shall encounter two
different bases, |q〉 and |q̃〉, for the site-Hilbert space. Both q

and q̃ are defined modulo m. In the |q〉 basis, Ux and Uy are
given by

Ux =
m−1∑
q=0

ei2πq/m|q〉〈q|,
(3)

Uy =
m−1∑
q=0

|q + 1〉〈q|.

The dual basis |q̃〉 is the Fourier transform of |q〉, i.e.,

|q̃〉 = 1√
m

m−1∑
q=0

e2πiqq̃/m|q〉.

In this basis,

Ux =
m−1∑
q̃=0

|q̃ + 1〉〈q̃|,
(4)

Uy =
m−1∑
q̃=0

e−2πiq̃/m|q̃〉〈q̃|.

Analogously to the XYZ model, we couple the generators
of the magnetic translation group of the torus to form the
following Hamiltonian:

H =
∑

i

(
cos θUx

i U
x†
i+1 + sin θU

y

i U
y†
i+1 + H.c.

)
. (5)

Here, the parameter θ is introduced to control the relative
strength (and sign) between two terms,

∑
i U

x
i U

x†
i+1 + H.c.

and
∑

i U
y

i U
y†
i+1 + H.c., in the Hamiltonian. In the following,

we assume the number of sites L to be an integer multiple
of m. With this restriction, the two unitary operators Ux =∏L

i=1 Ux
i and Uy = ∏L

i=1 U
y

i commute with each other and
with the Hamiltonian (5). The Hamiltonian (5) is one of the
simplest models which preserves the full group of magnetic

translations (the group generated byUx andUy), i.e., an analog
of an SU(2) symmetric spin chain. It is possible to consider a
further generalization of the model, with the same symmetry,
by adding different complex phase factors for the two terms.
However, for simplicity, we shall restrict ourselves to the case
where the coupling ratio is real. We also note the similarity of
our model to the m-state Potts model (although the symmetries
are a bit different). For more descriptions of related/similar
models, see, e.g., Refs. 9–12.

We will denote the conserved quantum numbers associated
with Ux and Uy by (e2πiQ/m,e−2πiQ̃/m) or, more compactly, as
(Q,Q̃). In terms of qi and q̃i , we have

Q =
∑

i

qi mod m, Q̃ =
∑

i

q̃i mod m.

In addition to Ux and Uy , there are other symmetry operators
that leave the Hamiltonian (5) invariant. First of all, there is
the q inversion, R = ∏L

i=1 Ri , where

Ri |qi〉 = | − qi〉 mod m, Ri |q̃i〉 = |−q̃ i〉 mod m.

Second, there are the anti-unitary operations, K and K̃ = RK ,
which cause complex conjugation in the q and q̃ basis,
respectively. We note that K2 = K̃2 = I . The operators Ux ,
Uy , R, and K generate the internal symmetry group G. As one
can readily check, the group multiplications of G are identical
to those of the symmetry group of a rectangular, periodic lattice
on a torus, with Ux and Uy as the lattice translations, R as the
rotation of angle π , and K and K̃ as the two reflections. We
note that as usual, the translation generators of the space group
commute. This is because we have restricted L to an integer
multiple of m. It is also interesting to note that unlike the
usual cases, some of the space-group elements are represented
anti-unitarily here. The internal symmetry group G extended
with the translations and inversion of the one-dimensional (1D)
chain defines the full symmetry group of the Hamiltonian. In
addition, the Hamiltonian (5) has a “duality” symmetry upon
θ ↔ π/2 − θ (mod 2π ) and Ux ↔ Uy .

The irreducible representations of the group of internal
symmetries determine the (minimal) degeneracies of the
energy levels. For example, for m = 3, which we shall discuss
at great length, the multiplets take the following form in terms
of the (Q,Q̃):

(Q,Q̃) = (0,0),

(Q,Q̃) = (1,0); (2,0),

(Q,Q̃) = (0,1); (0,2),

(Q,Q̃) = (1,1); (1,2); (2,1); (2,2).

At the “self-dual” point tan θ = 1, the two terms in the
Hamiltonian (5) have the same coefficient. There, the
symmetry group is larger, which causes the two doublets in
the above set of equations to become degenerate and form a
quadruplet.

III. SOME PROPERTIES FOR GENERAL m

Having introduced the model and its symmetries, we start
our analysis by first considering the dependence of the model
on the parameter m. It turns out that even and odd m have
qualitatively different phase diagrams.
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For later discussions, it is useful to consider the subgroup
G generated by the subset of generators that are unitary:
{I,Ux,Uy,R}. This group is isomorphic to the symmetry group
of an m × m oblique lattice on a torus. It is important to note,
however, for each site of the 1D chain, this symmetry group
is represented by a projective representation. The nontrivial
U(1) phases are due to the presence of the factor ei2π/m in
UxUy = ei2π/mUyUx . Applying the results of Chen et al., we
therefore conclude that Eq. (5) should either exhibit a gapped
spectrum with a symmetry-breaking ground state or a gapless
spectrum with a symmetric ground state.

To see how this is realized, we first consider the simplest
case, with m = 2. In this case, we can rewrite Eq. (5) in terms
of a spin-1/2 Hamiltonian. This is achieved by identifying q =
0,1, with spin up and down, and expressing Ux,y in terms of the
Pauli matrices, Ux → σ z,Uy → σx. Under this identification,
Eq. (5) becomes

H → 2 cos θ
∑

i

σ z
i σ z

i+1 + 2 sin θ
∑

i

σ x
i σ x

i+1.

This is the anisotropic XZ model, which is gapped for all θ ,
except θ = ±π/4 and ±5π/4 where it is quantum critical.
The phase diagram, which is symmetric under θ → π/2 − θ

due to duality, is shown in Fig. 2(a). In the gapped phases,
the Ux/Uy and/or the translation symmetry is spontaneously
broken, leading to twofold ground-state degeneracy. At the
points θ = ±π/4 and θ = ±5π/4, the ground state respects
all symmetries but the energy spectrum is gapless.

To get a qualitative understanding of how this phase
diagram generalizes to other values of m, it is instruc-
tive to consider four special points. First, for θ = π , the
Hamiltonian becomes classical because there are no noncom-
muting operators. In that case, the ground state is given by∏L

i=1 |q〉 and is m-fold degenerate for any given m. Clearly the
Uy symmetry is spontaneously broken and there is an energy
gap. The gap persists for small θ − π , which shows that this
is an extended gapped phase. For m = 2, it extends to the full
interval 3π/4 < θ < 5π/4, with an equivalent, dual phase in
the interval 5π/4 < θ < 7π/4.

Provided m is even, the situation is similar at the point
θ = 0. In that case, the ground state is also m-fold degenerate,

Gapped
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FIG. 2. (Color online) The phase diagrams of Eq. (5) for (a) m =
2 and (b) m = 3. The black and red dots mark first-order transitions
and critical points, respectively. At points marked by crosses, the
model is classical and hence exactly solvable.

now with a ground state of the form
∏L

i=1 |(−1)i q〉. Also
around the point θ = 0, there is a gapped phase, with a ground
state that in the L → ∞ limit, spontaneously breaks both Uy

and translational symmetry. For m = 2, this phase also extends
to the full interval −π/4 < θ < π/4, with the equivalent, dual
phase in the interval π/4 < θ < 3π/4.

However, if m is odd, the situation is quite different. For
θ = 0, all states with

qi − qi+1 = (m ± 1)/2(mod m)

yield the same energy. As a result, the ground state is
extensively degenerate. For example, in an open chain, the
degeneracy is 2L−1 m. When θ deviates from zero, these
degenerate configurations are mixed by the sin θ term, and
hence the degeneracy is lifted. This is very similar to
the effects of quantum fluctuations in frustrated magnets.
Due to the duality of the Hamiltonian, the same discus-
sions hold for θ = π/2, except the roles of q and q̃ are
interchanged.

IV. THE CASE m = 3

In the previous section, we used symmetry considerations
to gain knowledge about the behavior of the model at some
special points, and some general properties of the phase
diagram. In this section, we will focus on the case m = 3.
We start by giving a quick overview of the phase diagram in
Sec. IV A, followed by a more detailed description of the
various phases and phase transitions in the subsequent sections.

A. Overview of the m = 3 phase diagram

We first show the exact diagonalization results of a small
system (namely, L = 12 sites). In Fig. 3, the ground-state
energy per site is shown in the upper panel, while the first
derivative is given in the lower panel.

The figures give a clear indication of a first-order transition,
due to a level crossing, at θ = 0. This is signaled by a sharp
kink in the ground-state energy. As already discussed, there is
at this point also an extensive ground-state degeneracy, which
grows exponentially with the system size. Due to the “duality
symmetry,” there is an analogous first-order transition at
θ = π/2.

This first-order transition connects two gapless phases. In
fact, we will later show that throughout the whole region
0 < θ < π/2, the system is critical and characterized by a
central charge c = 2. This region contains the special point
θ = π/4, where the Hamiltonian is self-dual. Moreover, we
will show in the next section that the critical behavior for
θ � 0 can be related to that for θ � 0 (and similarly the
behavior for θ � π/2 is related to that of θ � π/2). The
critical region for θ > π/2 gives way to a gapped phase at
around θ ≈ 0.6π , which is signaled by a sudden drop in the
first derivative of the ground-state energy; see Fig. 3. A much
more detailed study of this phase transition will be given in
Sec. IV D.

Beyond θ ≈ 0.6π , and in fact in the whole region 0.6π �
θ < 5π/4, the system is gapped, with a threefold degenerate
ground state in the thermodynamic limit. In this gapped phase,
theUy symmetry is spontaneously broken. The property of this

134430-3



QIN, LEINAAS, RYU, ARDONNE, XIANG, AND LEE PHYSICAL REVIEW B 86, 134430 (2012)

FIG. 3. Upper panel: Ground-state energy per site of the m = 3
model for L = 12 sites, as a function of the angle θ . Lower panel:
First derivative of the ground-state energy per site of the m = 3 model
for L = 12 sites, as a function of the angle θ .

phase can be understood by considering the special point θ =
π , where the Hamiltonian has no noncommuting operators and
can trivially be solved.

The gapped phase in the region 0.6π � θ < 5π/4 has its
dual analog in the region 5π/4 < θ � 1.9π , where the Ux

symmetry is spontaneously broken, giving rise to a threefold
degenerate ground state. In addition to the above, the two
panels in Fig. 3 also give hints of a phase transition between
the two gapped phases at θ = 5π/4. Section IV F is devoted
to a more detailed discussion of this phase transition.

B. The behavior near θ = 0

Next, let us focus on θ ≈ 0, and for simplicity
let us concentrate on m = 3. The arguments given be-
low can be applied for arbitrary odd m. As discussed
above, the ground states of the cos θ term of the
Hamiltonian consist of |{qi}〉 configurations where no nearest
neighbors have the same q. We shall refer to the subspace
spanned by these configurations as the projected space. For
small θ , the sin θ term of the Hamiltonian mixes different
configurations within the projected space and also mixes states
in the projected space with those outside. However, since there

is an energy gap separating the projected space from the rest
of the Hilbert space, the effective low-energy Hamiltonian,
derived in degenerate perturbation theory to lowest order in
sin θ , is identical to the projection of H on the projective
space. The Hamiltonian, with the ground-state energy at θ = 0
subtracted, can be written as

H = sin θP
∑

i

Pi,i+1P, (6)

whereP projects states into the projected space, Pi,j exchanges
qi and qj , and the factor sin θ defines simply an overall energy
scale.

The projected Hamiltonian is symmetric under the same
discrete group as the full Hamiltonian. However, it has two
additional continuous U(1) symmetries. These symmetries are
generated by the conserved charges Nq , which measure the
number of sites with the given value of q. Due to the constraint∑2

q=0 Nq = L, only two of the charges are independent.
The spectrum of Eq. (6) is invariant upon a global sign

reversal of the Hamiltonian. The way to show this is to consider
a division of the projected space into invariant subspaces,
where each of these is spanned by tensor products of q-basis
vectors, all having the same numbers N0,1,2. The states within
such a subspace can all be mapped into each other by a
permutation of the set of q values. A further subdivision
is achieved by collecting all states that are connected by
even permutations in one group. This defines two smaller
subspaces, with basis vectors that are interconnected by odd
permutations. One can define a unitary operator �z that
takes the value 1 in one of the subspaces and −1 in the
other. Since the Hamiltonian (6) is the sum of transposition
operators, it only has nonvanishing matrix elements between
states with different values for �z. This means that H

anticommutes with �z, hence, the eigenspectrum of H is
symmetric about E = 0. Upon θ → −θ , the Hamiltonian in
Eq. (6) reverses sign. However, the eigenspectrum remains
unchanged.

Now let us come back to the full Hamiltonian. Near θ = 0,
the low-lying energy spectrum changes linearly with sin θ .
Therefore, there is a massive crossing of energy levels, with
no level repulsion, at θ = 0. In particular, the ground state
changes abruptly, consistent with a first-order transition at
θ = 0 in the thermodynamic limit (L → ∞).

The above discussion is in reality not restricted to m = 3,
but applies to all odd integer m. Thus, to lowest order in
the deviation from θ = 0, the low-energy Hamiltonian, for
m = 2n + 1, can be written as a projected Hamiltonian of the
same form as Eq. (6). Similarly, one can show that there are
now m − 1 conserved quantities, specified by the numbers
N0, . . . ,Nm−1. The spectrum is inverted in the same way when
θ → −θ , and consequently, for odd integer m, there is at θ = 0
a first-order phase transition. Due to the duality symmetry,
there is precisely the same type of phase transition at point
θ = π/2.

C. The critical region 0 < θ < π/2

We now provide evidence for the two phases, one in the
interval 0 < θ < π/2 and the other in the interval −0.1π �
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FIG. 4. (Color online) (a) The entanglement entropy associated
with tan θ = 1/5 as a function of ln L under the open boundary
condition. Different curves are distinguished by the different number
of kept states D in the DMRG calculation. The fitting curves are
constructed using c = 2. (b) A comparison of the entanglement
entropy for tan θ = 1,1/4,1/5,1/10 calculated with D = 1000.

θ < 0 (π/2 < θ � 0.6 π ), which are connected by the first-
order phase transition at θ = 0 (π/2), to be gapless.

To determine the properties of the model in the region
0 < θ < π/2, we have calculated the entanglement entropy
by DMRG.3,4 In Fig. 4, we present a plot of the entanglement
entropy SA for a subsystem (subregion) A of length � = L/2
for various different values of θ in the interval 0 � θ � π/2.
In Fig. 4(a), θ is fixed (tan θ = 1/5), while the number D of
states kept during the DMRG calculation is varied. The plots
show that for L = 400, the value obtained for D = 1000 has
almost converged. In Fig. 4(b), we compare the results for
various angles θ , keeping D = 1000 states in each case.

The scaling of the entanglement entropy with system size,
shown in Fig. 4, is linear in ln L, which indicates that for these
values of θ , the model is described by a conformal field theory
(CFT). For (1 + 1)-dimensional CFTs, with open boundary
condition, the entanglement entropy SA of a subsystem (sub-
region) A of length � is SA = (c/6) log[(2L/πa) sin(π�/L)] +
g + c0,13–15 where c is the central charge associated with the
critical behavior, a is a length scale, g is the boundary entropy,
and c0 is a nonuniversal constant. In our calculation, we fix �

to L/2, so that SA 	 (c/6) log(L) for large L.
From the numerical results, we conclude that for all values

of θ studied, the system exhibits conformal invariance (and
hence is gapless) with a central charge c = 2. This value
of the central charge can be understood by noting that for
small θ , there are two conserved charges, each generating an
emerging U(1) symmetry. For a similar gapless phase with
c = 2, realized in interacting boson systems on the three-leg
ladder at one-third filling, see Refs. 16 and 17.

Entanglement entropy plots for the region −0.1π � θ < 0
and π/2 < θ � 0.6π show the same picture, and, here too,

FIG. 5. (Color online) Same as Fig. 4, here with values of θ in
the interval π/2 < θ � 0.6π .

we obtain c ≈ 2, indicating gaplessness (see Fig. 5). The fact
that the central charge is the same for these two θ regimes can
be understood as a result of the invariance of the spectrum of
Eq. (6) upon reversing the sign of the projected Hamiltonian.

To give further evidence that the system is critical, we also
calculate the entanglement spectrum by means of DMRG.
In particular, we consider the eigenvalues {λi} of the density
matrix. It was shown in Ref. 18 that the mean number of
eigenvalues larger than a given λ, denoted by n(λ), can be
calculated from CFT, with the result

n(λ) = I0[2
√

b ln(λmax/λ)], (7)

where Ik(x) is the modified Bessel function of the first kind,
b = − ln(λmax), and λmax is the largest eigenvalue of the
reduced density matrix.

In Fig. 6, we plot the distribution of the λi for two points
in the gapless region. Concretely, we plot the value of the ith
eigenvalue, following Ref. 18. The data agrees with the CFT
result asymptotically, which confirms that the gapless phase
can be described by CFT. In principle, it should be possible
to extract more information about which CFT describes our
system from the distribution of the small eigenvalues of the
reduced density matrix, but this is a difficult task, which we
leave for future investigations.

Numerical studies of energy gaps between low-lying levels
confirm the picture of gapless phases in the intervals referred
to above. The DMRG evaluations of the gaps show a clear 1/L

scaling behavior, consistent with a conformal field theory limit
when L → ∞. As we already have pointed out, the numerical
plots of the θ dependence of the ground-state energy show a
discontinuity in the derivative at the points θ = 0 and θ = π/2,
consistent with a first-order phase transition at these points.

The space of c = 2 conformal field theories is rather
extensive; see Ref. 19 for an overview of possible theories.
In the past, in order to identify the low-energy conformal field
theories of lattice models, it has been very instructive to study

134430-5



QIN, LEINAAS, RYU, ARDONNE, XIANG, AND LEE PHYSICAL REVIEW B 86, 134430 (2012)

FIG. 6. (Color online) The distribution of the eigenvalues of the
density matrix λ. The length of the chain is 102 and the number
of states kept in the DMRG is 1000. The blue solid line is the
prediction of CFT. The step structure in the calculated data is due
to the degeneracies of the eigenvalue of the reduced density matrix.

the models under periodic boundary conditions and to calculate
the energy spectra as functions of the various momenta. This
can give crucial information in identifying the type of critical
behavior. For the torus model, we give in Fig. 7 the energy
spectra, resolved with respect to momentum, for θ = π/4 and
for system sizes L = 12 and L = 18.

From conformal field theory, it follows that if a system is
critical, then the energies of the low-lying states are given by

E = E0L + 2πv

L

(
hL + hR − c

12

)
. (8)
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FIG. 7. (Color online) The momentum-resolved spectrum at θ =
π/4, for L = 18. The blue plusses correspond to the singlets (Q,Q̃) =
(0,0); the red crosses correspond to the quadruplets (Q,Q̃) =
(1,1); (1,2); (2,1); (2,2); and the blue cross, red plus combinations
correspond to (Q,Q̃) = (0,1); (0,2); (1,0); (2,0).

In this equation, E0 is a constant energy per site, v is a
characteristic velocity, c is the central charge, and hL, hR are
the left and right scaling dimensions of the associated field
in the CFT. In our case, we know from the DMRG results
that c = 2. Furthermore, from studies of the L dependence of
the ground-state energy, which has hL = hR = 0, the velocity
parameter v has been determined. In Fig. 7, the energies are
shifted such that the ground state has zero energy, and the
energies are rescaled in units such that 2πv/L = 1.

Scaling operators in CFT are grouped in terms of primary
fields, with total scaling dimension hL + hR = �p, and their
descendants, with hL + hR = �p + n, where n is a positive
integer. When the low-energy spectrum is presented in the form
shown in Fig. 7, one should, in principle, be able to identify
the CFT through the position �p of the primary fields, with
their associated towers of descendent state. However, in our
case, we have not been able to make such an identification.
In part that is due to the wide range of possibilities for
c = 2, as discussed in Ref. 19, but also due to finite size
effects for the systems for which we are able to perform exact
diagonalization. Thus, the low-energy spectra show several
characteristics of a critical system, but we have not been able
to conclusively identify which c = 2 conformal field theory
describes the critical behavior.

D. The phase transitions at θ ≈ 0.6π and θ ≈ −0.1π

The numerics indicate that a phase transition to a gapped
phase, with a threefold degenerate ground state, takes place
at θ ≈ −0.1π , with a similar transition at θ ≈ 0.6π . These
two gapped phases, which are connected by the duality
transformation, seem to cover the parameter range 0.6π �
θ � 1.9π . We will come back to these gapped phases in the
next section.

Figure 8(a) shows the numerical estimate of the location
of the critical point between the gapless phase and gapped
phase in the vicinity of θ ≈ 0.6π . In the plot, the critical point
is marked by the crossing between two excitation energies
for different values of L. The curve labeled “gap in Q = 0
sector” is the energy difference between the ground state and
the lowest excited state in the Q = 0 sector, while the curve
labeled “Eg(Q = 1) − Eg(Q = 0)” gives the gap between the
lowest-energy state in the Q = 1 sector and the ground state.
In the gapped phase, the excited Q = 0 state will merge with
the ground state in the limit L → ∞, but in the gapless phase,
it lies above the lowest-energy state in the Q = 1 sector. Thus
a crossing between the two excited states takes place at a point
which moves towards the phase-transition point as L → ∞.
The plot shows a convergence of the crossing towards a point
slightly below θ = 0.61π . A plot of the second derivative
of the ground-state energy through this point, as shown in
Fig. 8(b), indicates that a continuous phase transition is taking
place. It is worthy to note that the continuous phase transitions
in question link a gapless phase and a gapped phase. This
is different from usual quantum phase transitions where
the phases on both sides are gapped. It is similar to the
Kosterlitz-Thouless phase transition, except the central charge
is different.
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FIG. 8. (Color online) (a) The crossing between the ground state
in Q = 1 and the first excited state in the Q = 0 sector. Different
color indicates different lattice size. (b) The second derivative of
ground-state energy with respect to θ .

E. The gapped phases

We now focus our attention on the gapped phases of the
m = 3 quantum torus model. A first gapped phase extends
from the phase transition near θ ≈ 0.6π to θ = 5π/4. The
second gapped phase is dual to the first one, and ranges from
θ = 5π/4 to θ ≈ 1.9π . We will discuss the phase transition
between these two gapped phases in the following section.

To understand the symmetry breaking in the gapped phase,
it is useful to consider the special points θ = π and θ = 3π/2.
For these values of θ , the Hamiltonian becomes classical
(i.e., there are no noncommuting operators), where the ground
state is exactly threefold degenerate even for finite L. Away
from these points, there is finite-size lifting of the ground-
state degeneracy. However, the latter decreases exponentially
with increasing L. In Fig. 9(a), the presence of a gap is
demonstrated via the saturation of the entanglement entropy
as a function of ln L. The exponential decay of the finite-size
gap between the states, which evolve into the ground state, is
shown in Fig. 9(b).

At the special points θ = π , the threefold degenerate
ground state is spanned by the product states

∏L
i=1 |q〉, m =

1,2,3. As a consequence, the correlation function 〈Ux†
i Ux

j 〉
is simply a constant, while the corresponding Uy correlation
function vanishes for i 
= j . Even if this is a very special
situation, a similar behavior of the correlations functions is
seen in the full gapped phase, up to θ = 5π/4. Thus, the Ux

correlation function is long range, while the Uy correlation
function decays exponentially with the distance between the
two points i and j . This is shown for a particular value θ =
1.265π in Fig. 10 for a system of length L = 102. At the point
θ = 5π/4, there is an interchange between the correlations
of Ux and Uy , as follows from the duality symmetry. The
curve corresponding to θ = 5π/4 in Fig. 10 shows identical

FIG. 9. (Color online) (a) The entanglement entropy for two
different θ in the gapped region. The entropy saturates as ln L.
(b) The energy difference of the first excited state and the ground
state in the Q = 0 sector. The finite-size gap decays exponentially to
0 with increasing L.

long-range correlations for Ux and Uy . This can be understood
as due to the fact that the ground state for any finite L is a
50/50 superposition of two states, with correlations that are
symmetric under the interchange x ↔ y.

F. The phase transition at θ = 5π/4

As a final point, we have examined the phase transition at
the point θ = 5π/4, at which the two gapped phases meet.
In the vicinity of θ = 5π/4, there are six energy eigenstates

FIG. 10. (Color online) Logarithmic plot of the Ux and Uy

correlations at θ = 5π/4 and θ = 1.265π . For θ = 5π/4, the two
curves fall on the top of each other. d is the distance between the two
points for which the correlation is calculated. The system size used
in the calculation is L = 102.
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FIG. 11. (Color online) The exponential decay of the energy
difference between the two lowest levels and the ground state at
θ = 5π/4. �1 is the energy difference between the first excitation
level (a quadruplet; see the main text) and the ground state (a
singlet), and �2 is the energy difference between the second excitation
level (also a singlet) and the ground state. They both decay to zero
exponentially with system size L.

that are important: two (Q,Q̃) = (0,0) singlets, a (Q,Q̃) =
(0,1); (0,2) doublet, and another (Q,Q̃) = (1,0); (2,0) doublet.
All of the numerical evidences are consistent with the fol-
lowing picture in the thermodynamic limit. For θ < 5π/4, the
ground state is triply degenerate. The triplet involves one of the
(Q,Q̃) = (0,0) singlets and the (Q,Q̃) = (0,1); (0,2) doublet.
For θ > 5π/4, the ground state is also triply degenerate.
This time the triplet involves the other (Q,Q̃) = (0,0) singlet
and the (Q,Q̃) = (1,0); (2,0) doublet. At θ = 5π/4, the
two triplets cross, resulting in a sixfold degenerate ground
state. For finite L, the doublet (Q,Q̃) = (0,1); (0,2) precisely
degenerates with (Q,Q̃) = (1,0); (2,0). This is because they
form the four-dimensional irreducible representation of the
enlarged symmetry group at the self-dual point. In contrast, the
two (Q,Q̃) = (0,0) singlets are slightly split due to avoided
crossing caused by the finite system size. The above picture
suggests a first-order phase transition at the self-dual point in
the thermodynamic limit. This is caused by the crossing of
energy levels. The two phases are distinguished by different
long-range correlations for either Ux or Uy , as previously
discussed.

The character of the phase transition is further illustrated
by the plots in Figs. 11, 12, and 13. In Fig. 11, we display
the behavior of the gap at the transition point θ = 5π/4.
The ground state is a (Q,Q̃) = (0,0) singlet, and �1 denotes
the energy difference with the first excited “level,” which
is the (Q,Q̃) = (0,1); (0,2); (1,0); (1,0) quadruplet (see the
discussion above). �2 denotes the energy difference between
the ground state and the second excited level, which is again a
(Q,Q̃) = (0,0) singlet. The energy differences �1 and �2 are
given in Fig. 11 for various values of D, with the number of
states kept in the DMRG, clearly showing that the results have

FIG. 12. (Color online) (a) The energy difference between the
first excited state and the ground state in the Q = 1 sector at
θ = 5π/4. We use a quadratic fitting of the gap with 1/L using the
D = 1500 data. As L goes to infinity, there is a small gap (∼0.04).
(b) The first derivative of the ground-state energy with respect to
θ . The circle results are derived by the numerical differential of the
ground-state energy, while the square data are derived directly by
using the Feynman-Hellman theorem.

converged as a function of D. Both the energies of the first
and second excited levels decay exponentially with system
size, which implies a sixfold degenerate ground state, because
other levels have a finite gap to these six degenerate states in
the thermodynamic limit; see also Fig. 12.

Figure 12(a) shows the behavior of the energy difference
between the two lowest-lying levels in the Q = 1 sector. The

FIG. 13. (Color online) The entanglement entropy, close to the
point θ = 5π/4, as obtained from DMRG and the MPS method.
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latter does not merge with the degenerate ground state in the
thermodynamic limit. The plot shows that a small energy gap
remains as L → ∞.

In Fig. 12(b), the first derivative of the ground-state energy
is plotted as a function of θ . It shows a sharp drop at θ = 5π/4,
which is expected to become infinitely sharp in the limit L →
∞ because the transition happens at an isolated point between
two gapped phases. The sharp change in the derivative of the
ground-state energy is consistent with the picture of the phase
transition as caused by the crossing of the two lowest-energy
levels.

In Fig. 13, we show the results of a detailed study of
the behavior of the entanglement entropy, near the point
θ = 5π/4. The plot shows that for system size up to about
L = 256, the entanglement entropy behaves as expected for
a critical point, and is consistent with c = 2. For larger
system sizes, the entanglement entropy flattens off, and finally
crosses over to the (lower) value obtained via the MPS
method. This last crossing over happens at larger system
size, if the number of states kept in the DMRG calculation is
increased, although for D = 2000, the numerics seems to have
converged.

The drop in the entanglement entropy for large L, at
θ ∼ 5π/4, can be understood in terms of the level-crossing
picture as follows: There are two states with (Q,Q̃) = (0,0)
participating in the crossing; let us denote them |ψ−〉 and |ψ+〉,
where |ψ−〉 (|ψ+〉) is a ground state for θ < 5π/4 (θ > 5π/4).
They are not orthogonal, but the overlap is exponentially
suppressed for large L. For finite L, the true ground state
is a mixture of |ψ−〉 and |ψ+〉, which at θ = 5π/4 is an equal
superposition thereof. Away from this point, the ground state
rapidly rotates into either |ψ−〉 or |ψ+〉, depending on whether
θ is reduced or increased from θ = 5π/4. This rotation is more
rapid the larger L is, so that for L → ∞, the crossing between
|ψ−〉 and |ψ+〉 becomes sharp. Assume we choose θ slightly
smaller than 5π/4. For small L, the ground state is essentially
the 50% mixed state, but when L increases at some point, it
rapidly changes to |ψ−〉. The entanglement entropy of each of
the two states, |ψ+〉 and |ψ−〉, clearly is smaller than that of
the superposition of the two. Due to the symmetry between
|ψ−〉 and |ψ+〉 at θ = 5π/4, and the rapid decay of the overlap
between them as L → ∞, we can in fact estimate the drop
in entanglement entropy. Since each of the two states in the
superposition gives equal contributions to the entanglement
entropy, the drop should be close to ln 2. The numerical value
found for the curves plotted in Fig. 13 is in fact very close
to ln 2.

We have conclusively shown that the gap at the transition
point at θ = 5π/4 does not close, and that that system exhibits
long-range order. It is intriguing to observe that the scaling
of the entanglement entropy shows behavior consistent with
c = 2 critical behavior up to fairly large system sizes of at least
L = 200 (due to the rather large correlation length). Combined
with exact diagonalization results (which we performed up to
L = 18; not shown), one could incorrectly be led to believe
that the system is critical. It would be interesting to investigate
if the system can be (fine) tuned to become critical by
perturbing away from the gapped θ = 5π/4 point. One could,
for instance, allow complex amplitudes in the Hamiltonian (5)
or mixed terms such as Ux

i U
y

i+1.

V. CONCLUSIONS

To summarize, we have presented a class of one-
dimensional lattice models, called the quantum torus chain.
These models depend on an integer-valued parameter m (the
number of magnetic flux quanta piercing through each torus),
which controls the presence or absence of frustration. In
addition, there is a continuous parameter θ which controls
the ratio of the noncommuting terms in the Hamiltonian. The
models show a variety of gapless and gapped phases. In all
cases, the gapped phases break symmetries of the Hamiltonian.
We characterize these gapped phases based on the properties
of specific points in parameter space, where the Hamiltonian is
exactly solvable. For the gapless phases, we have used DMRG
and matrix product state methods to evaluate the entanglement
entropy and hence deduce the central charge.

Based on these analyses, we have concluded that for
even m, the system is generically gapped with isolated
quantum critical points separating different gapped phases.
For odd m, there exist extended regions in the parameter θ

where the system is gapless. The above general conclusion
is motivated by the mapping of the m = 2 model on the
spin-1/2 XZ model, and the detailed numerical studies of the
m = 3 model. For the latter, the quantum phase transitions
between two gapless or two gapped phases are first order,
while the transitions between the gapless and gapped phases
are continuous. Consistent with these conclusions, we have
numerical evidence from studies of the m = 4 model that this
is also gapped in the first quadrant 0 < θ < π/2.

Our study raises a series of open questions. At the moment,
we have not been able to pin down the conformal field theory
for the c = 2 gapless phases of the m = 3 model. Of course,
gapless phases have precedents in one dimension (e.g., the
Luttinger liquid).20 However, gapless phases in more than one
dimension are very unusual. Our model, of course, can be
defined in any spatial dimension.

Without going into much detail, we can say that for
m even, there is no frustration, and at the special angles
θ = 0,π/2,π,3π/2, the ground states are direct product states,
with a finite degeneracy. Thus, at least near these points, we
expect the system to be gapped. Whether or not these gapped
phases extend over the full parameter space, leaving only
critical points, as is the case in our 1D model, needs further
investigation. For odd m, there is also quantum frustration in
higher dimensions. It is interesting to ask whether the gapless
phase still exists in higher dimensions.

There are several ways to extend our model. One could try
to include terms which mimic a magnetic field in ordinary
spin chains. In our model, the closest analog of a magnetic
field would be a one-site term, which breaks the symmetry of
the model, by favoring (say) one of the possible states. More
phase transitions should be expected in this enlarged parameter
space because a strong symmetry-breaking term will simply
“polarize the degrees of freedom,” leading to ordered phases.

The general properties that we find in this work are
consistent with the results discussed by Chen et al.1 for
systems where the internal symmetry group is represented
locally on each site by a projective representation. It will
be interesting to consider generalizations of the torus model
where the symmetry is represented linearly locally. In this
case, symmetry-protected topological states become possible.
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Finally, it is interesting to ask whether it is possible to describe
the gapless phase in terms of a discrete nonlinear σ model
with a topological term. We will leave these and other related
questions as interesting projects for future investigation.
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