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Recently, properties of collective states of interacting non-Abelian anyons have attracted considerable attention.
We study an extension of the “golden chain model,” where two- and three-body interactions are competing. Upon
fine tuning the interaction, the model is integrable. This provides an additional integrable point of the model,
on top of the integrable point, when the three-body interaction is absent. To solve the model, we construct
a new, integrable height model, in the spirit of the restricted solid-on-solid model solved by Andrews et al.
[J. Stat. Phys. 35, 193 (1984)]. The heights in our model live on both the sites and links of the square lattice.
The model is solved by means of the corner transfer matrix method. We find a connection between local height
probabilities and characters of a conformal field theory governing the critical properties at the integrable point.
In the antiferromagnetic regime, the criticality is described by the Z; parafermion conformal field theory, while
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I. INTRODUCTION

The last half decade has seen a big increase in the interest
of topological phases of matter. In this paper, we study a
model which is inspired by the prototype of a topological
phase, namely the (fractional) quantum Hall effect. It has
been conjectured that there exist fractional quantum Hall
states with excitations which exhibit non-Abelian statistics.!
One of the key properties of this type of excitation, called
non-Abelian anyons, is that a topological state with a number
of non-Abelian anyons present is degenerate. The number of
degenerate states is exponential, while the energy splitting in
real systems decays exponentially with the average distance
between the non-Abelian anyons.

An important question which arises concerns what happens
if the anyons are close to one another, such that they start
interacting. To this end, a one-dimensional (1D) model of
interacting anyons was constructed in Ref. 2, called the
“golden chain,” because it was based on Fibonacci anyons. The
philosophy behind this model was to stay as closely as possible
to a Heisenberg model of interacting spins. In fact, the golden
chain is precisely that, a Heisenberg model with two-body
nearest-neighbor interactions, but for anyons instead of spins.
The phase diagram of such anyonic Heisenberg models turns
out to be rich, even richer than the phase diagrams of the
ordinary spin case. We do not embark on a long discussion of
the phase diagrams of these models here, but focus in the
next section on one particular example of interest for the
current paper, an extension of the golden chain model with
competing two- and three-body interactions.> We would like
to point out that studying the effects of interacting anyons
in 1D gives insight into the fate of interacting anyons in
two-dimensional (2D) systems. The interactions between the
anyons can nucleate a new topological liquid, and the collective
behavior of the 1D chain describes the boundary between the
original and nucleated topological phases (see Refs. 4-7 for
related work).

An interesting property of the anyonic chain models is
that they exhibit (fine-tuned) points, at which it is possible
to solve the model exactly. Obviously, having access to an
exact solution, even though such a solution is only available
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at special points, greatly enhances the understanding of the
model. The golden chain (with a two-body interaction) and its
cousins, which are obtained by replacing the Fibonacci anyons
by anyons based on su(2), can be mapped onto a 2D classical
statistical mechanics model, namely the restricted solid-on-
solid (RSOS) model, introduced and solved by Andrews,
Baxter, and Forrester (ABF).® This RSOS model consists of
heights living on the sites of the square lattice. Plaquettes are
weighted depending on the heights of the sites forming the
plaquettes. To solve the model, ABF employed the so-called
corner transfer matrix (CTM) method.? It was found that the
model exhibits various ordered phases, separated by critical
points. The connection between the critical exponents and
conformal field theory (CFT) was made by Huse.'” The
anyonic chains correspond to the RSOS model at the critical
point and are therefore critical themselves and governed by
the same CFT.?

The CTM method allows one to calculate, in the limit of
infinite lattice size, the probability for a site in the bulk to
have a particular height. Interestingly, it has been observed
that off-critical local height probabilities of integrable models
are intimately related to partition functions of the associated
critical theories in a finite box with appropriate boundary
conditions.!! Moreover, close to critical points, these height
probabilities are given in terms of characters of a CFT, which
describes the critical behavior of the model.'? The characters
stemming from the height probabilities in the RSOS model
are, for instance, given in Ref. 13. These characters can be
interpreted in terms of fractional exclusion statistics!* or, more
specifically, a non-Abelian version thereof.'>! In light of the
current paper, we would like to point out that the height
probabilities one obtains for a finite system correspond to
finitized characters. Interestingly, the opposite “ends” of these
finitized characters correspond to the full characters of two
different conformal field theories, in the large size limit. These
two different conformal field theories describe the critical
properties of different critical points of the (RSOS) model. In
terms of the anyonic chains, these two critical points are related
to each other by changing the overall sign of the interaction.

In this paper, we examine an integrable point of anyonic
chains with competing two- and three-body interaction terms.
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To solve the model, we introduce a new statistical mechanics
model, which builds on the RSOS model, which has six
different types of plaquettes. In our new model, we combine
four plaquettes of the RSOS model and shift two of the
plaquette weights to obtain a nontrivial generalization. Via
this procedure, one obtains a model with 66 different types
of plaquettes. This composite height model gives rise to
the anyonic chain Hamiltonians of interest via the usual
“anisotropic limit.” To solve the model, we follow the work
of ABF and employ the CTM method to calculate the height
probabilities.

A very closely related loop model has been studied in
the literature.'”'8 In fact, the R matrix, used to construct the
row-to-row transfer matrix, has the same underlying algebraic
structure, namely that of the Temperley-Lieb algebra, and
the construction of our 2D model is inspired by the work in
Refs. 17 and 18. However, the quantum chain of that work is
defined on a completely different Hilbert space, in comparison
to the anyonic chains. In our case, the Hilbert space does not
have a tensor product decomposition, which hinders solving
the model by means of the Bethe Ansatz, which is the method
used in Refs. 17 and 18 (in their representation, the Hilbert
space does have a tensor product decomposition). The Hilbert
spaces of the anyonic chains exhibit a nonlocal, topological
symmetry, giving rise to a topological quantum number, which
can be used to label the eigenstates of Hamiltonians respecting
this symmetry (see, for instance, Refs. 2 and 19). In gapped
phases where the ground state breaks this symmetry, one finds
additional degeneracies. This additional structure, which is
intimately tied to the non-Abelian nature of the anyons, seems
to be absent in the work of Refs. 17 and 18.

The outline of the paper is as follows. In Sec. II, we
briefly introduce the anyonic chain Hamiltonians, starting
with the original golden chain, and its generalization by
introducing the three-body interaction. We also briefly discuss
the anyonic chains based on su(2); anyons. In Sec. III, we
discuss the connection of the golden chain with the RSOS
model. Section IV contains the definition of our composite
height model, which builds on the RSOS model. The CTM
method is described in Sec. V, which leads to the expressions
for the height probabilities. These are used in the Sec. VI to
obtain information about the various phases of the model. In
Sec. VII, we calculate off-critical local height probabilities
in different phases and show that they are given in terms
of characters of the CFTs, which govern the corresponding
critical points. We conclude in Sec. VIII. In Appendix A,
we explicitly give the different types of plaquettes of the
composite height model. Appendix B contains various limits of
the CTMs, which are used in the main text. Appendix C deals
with a certain limit of the plaquettes. Finally, in Appendix D,
we give the details of the connection of the various height
probabilities with CFT characters.

II. ANYON CHAINS WITH COMPETING INTERACTIONS
A. The golden chain

The first model of interacting anyons, introduced in Ref. 2,
was dubbed the golden chain. In this model, so-called
Fibonacci anyons interact in basically the same way as
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FIG. 1. The fusion chain consisting of Fibonacci anyons. Consis-
tent labelings (x¢,x1, . ..,x.) form the Hilbert space of the anyonic
chain.

spins in the Heisenberg spin chain; namely, an energy is
assigned depending on the overall spin state of two interacting
particles. In the S = 1/2 Heisenberg chain the § = 0 state
of two neighboring spins is favored for antiferromagnetic
interactions, while for ferromagnetic interactions the S = 1
channel for neighboring spins is favored.

To explain the interaction of the golden chain, we first
briefly introduce the notion of (Fibonacci) anyons. A rather
extensive introduction to this topic can be found in Ref. 20.
The Fibonacci anyon model consists of two types of particles:
the “trivial” or vacuum particle 1 and the Fibonacci particle t.
As with ordinary spins, one can combine or fuse these particles
and decompose the product. This fusion product is the direct
analog of taking tensor products of spins. Contrary to su(2)
spin, there is only a finite number of types of particles. In
addition, there is no internal quantum number, such as s.. The
reason for this will become clear shortly.

The rules for combining the anyons in the Fibonacci model
areasfollows: 1 x1=1,1xt=r7,andt Xt =1+ 17, the
latter being the only nontrivial fusion rule.

Let us take a chain of L 7 anyons. To describe the Hilbert
space of this system, it is easiest to think in terms of a so-called
fusion chain, as depicted in Fig. 1.

This fusion chain consists of labeled lines, L incoming lines
labeled t, which represent the Fibonacci anyons that form
the chain. The lines connecting these incoming 7 anyons are
labeled xg, x1, etc. These labels, which can take the values 1 and
7, are the “degrees of freedom.” The set of consistent labelings
(x0,x1, . ..,x) forms the Hilbert space of the chain. For a
labeling to be consistent, the fusion rules have to be satisfied
at every vertex. This means that x;;; has to be in the fusion
of x; x 7. This means that one cannot have x; = x;4; =1,
because this would violate the fusion rule 1 x v = 7. Apart
from the constraint that no two neighboring labels can both
take the value 1, the labelings are arbitrary. Because of the
constraint, the size of the Hilbert space grows as d’, where
d < 2. It is not so hard to convince oneself that, in fact, d
is the golden ratio, d = ¢ = (1 + V/5)/2. In the remainder
of the description, we assume periodic boundary conditions,
xo = xr. In this case, the size of the Hilbert space is given by
dimH; = Fib(L + 1) + Fib(L — 1), where Fib(n) is the nth
Fibonacci number, defined by Fib(n) = Fib(n — 1) + Fib(n —
2) and the initial conditions Fib(0) =0 and Fib(1) = 1.
Loosely speaking, one can say that each Fibonacci anyon has a
fractional number of degrees of freedom, namely d, explaining
the absence of an internal quantum number. More importantly,
one cannot assign a local Hilbert space to each anyon. This is
the reason we had to resort to the fusion chain to describe
the Hilbert space, which cannot be described as a tensor
product of local Hilbert spaces, as is the case for ordinary spin
chains.
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We would like to point out that in the description of the
Hilbert space, we did not make use of the braid properties
of the Fibonacci anyons. Often the braid properties are used
to define the concept of non-Abelian statistics. What we
have done here instead is to use the fusion properties of
the Fibonacci anyons, which make non-Abelian statistics
possible. In particular, in order for non-Abelian statistics to
be possible, one needs a Hilbert space whose dimension is
at least two. This in turn is possible if one considers particles
(anyons) which have multiple fusion channels upon fusion with
another particle, such as ¢ x t = 1+ 7. In the construction
of interacting anyonic chains, it is the presence of multiple
fusion channels which is the key property of non-Abelian
statistics which is utilized. One can consider models in which
the explicit, non-Abelian braid properties are used to define
the Hamiltonian (see for instance Ref. 20), but that is not the
route we take in the present paper.

We turn our attention to the description of the Hamiltonian.
We first concentrate on the Hamiltonian of the original
golden chain model. The interaction between two anyons
depends on their overall fusion channel. Favoring the overall
fusion channel of two neighboring anyons to be 1 is called
antiferromagnetic, while favoring the 7 channel is called
ferromagnetic interaction.

In our description of the Hilbert space in terms of a fusion
chain, the fusion channel of two neighboring anyons is not
explicit, because the lines associated with these two anyons
do not meet in one vertex. One can, however, perform a local
basis transformation, which makes this fusion channel explicit.
The matrix describing this basis transformation is called the
F matrix, which is the direct analog of the 6j symbols in the
case of su(2) spin. These describe the change of basis between
the following two possible ways of describing the Hilbert
space of three spins: (S} ® $2) ® S3 and §; ® (52 ® S3). In
Fig. 2, we depict the F matrix in terms of the fusion-chain
pictures.

After performing this local basis transformation, the fusion
channel of the two neighboring anyons is explicit and is given
by x/. Based on the value of this label (which can be 1 or 7),
we can now assign the energy by projecting onto the 1 or ©
channel. All that is left to do is to perform one more basis
transformation to go back to the original basis.

To make the model completely explicit, we have to give
the values of the F-matrix elements. For the anyon models
based on su(2), there exist explicit formulas for the F' matrices
(see for instance Ref. 21). We do not go into the details here,
but simply give the results for the F' symbols we need. Note
that there is some degree of freedom in the F' symbols; the
explicit form we give fixes this. The F symbols we need are
specified by specifying the values of (x;_j,x;,x;+1), which
can take the values {(1,7,1),(1,7,7),(7,7,1),(7,1,7),(7,7,7)}.
In addition, we have to specify the degrees of freedom after
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FIG. 2. The F-matrix elements as a local basis transformation.
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the basis transformation (x;_;,x/,x;1), which can take the
values {(1,1,1);(1,7,7);(7,7,1);(7,1,7),(7,7,7)}. Using this
ordering of the states, the F' matrix takes the form (highlighting
the block structure)

d-r —d!

The inverse transformation is given by the same matrix,
because F = F~', as is easily checked by using d’? =
1+d. We can now easily form the local projection op-
erators Pz(_fgody aqd P.2(_1b)0dy, which project onto the 7 and
1 channels, that is, give energy to these channels. Hence,

P2(—Tb)ody corresponds to the antiferromagnetic interaction. Ex-
plicitly, these projection matrices take the form Pz(j))ody =
F - diag(0,1,1,0,1) - F and p;}gody = F - diag(1,0,0,1,0) - F.
The components of these matrices read (Fa O (RO
and (Fy""5)y (Fe ")t respectively. Explicitly written
out, this becomes

1
0
1
PZ(—gody = 0 R ’
d=? d:
d=: d-!
2
0
1
Q)
P2-b0dy = 1 s
A —d—3
—d—> d?

One can easily check that P2(—1b)ody + PZ(»tb)o by = 1, where 1 is the
identity matrix.
We can now write down the golden chain Hamilto-

nian as the sum of the projection operators Pz(_fb)ody,i, H=

LYk, Pz(_fgody, ;» Where the projector PZ(-rb)ody, , assigns a
positive energy if the anyons i and i+ 1 are in the 7
channel. In the original golden chain paper,” it was shown
numerically that this model is critical for either sign of the
interaction. Moreover, the central charge was determined via
the entanglement entropy, resulting in ¢ = 7/10 and ¢ = 4/5
for antiferromagnetic (J, = 1) and ferromagnetic (J, = —1)
interactions, respectively. Exact diagonalization of the model
showed that for antiferromagnetic interactions, the low-lying
part of the spectrum can be described in terms of the minimal
model My s, describing the tricritical Ising model. The critical
model describing the ferromagnetic system is that of the Z3
parafermions.

It was subsequently realized that the golden chain Hamilto-
nian can, in fact, be obtained from an exactly solvable model, a
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FIG. 3. The F transformations needed for the three-body inter-
action.

particular version of the RSOS models.® These models exhibit
various ordered phases, separated by critical points. It is to
these critical points that the golden chain can be mapped. As a
result, one can obtain information about the critical theory of
the golden chain by studying the critical behavior of the RSOS
models. We discuss these RSOS models and their connection
to the anyonic chain Hamiltonians in more detail in the next
section.

B. Competing interactions

Having introduced the golden chain Hamiltonian, in which
the anyons interact via a two-body nearest-neighbor interac-
tion, we now consider the effect of introducing a three-body
interaction, which was first considered in Ref. 3.

It is well known that if one adds a three-body term
(with large-enough coupling) to the S = 1/2 Heisenberg
antiferromagnet, a gap opens, and one enters the Majumdar-
Ghosh (MG) phase.?>?} The phase diagram of the Heisenberg
chain with competing nearest-neighbor two- and three-body
interactions is rather rich. Similarly, it was expected that the
phase diagram of the golden chain with competing two- and
three-body interactions is rich as well. This model was studied
in Ref. 3, indeed finding an interesting phase diagram (see
Fig. 4), which we briefly review below, after introducing the
details of the three-body interaction.

In order to find the fusion channel of three neighboring
anyons, we first have to perform two F transformations, after
which this fusion channel is explicit. One can then project onto
the desired channel and go back to the original basis. This was
explained in detail in Ref. 20. The schematics of the basis
transformation is given in Fig. 3.

The three-body interaction depends on
four labels (Xi—1,Xi s Xi 41, Xi42)- To give the
interaction matrix, we use the following basis:
{1,z,7,1);1,7,1,7),1,7,7,7); (z,1,7,1),(7,7,7,1); (7,1,7,7),
(t,7,1,7),(7,7,7,7)}. In this basis, the three-body projectors
take the following form:

0 0
0 0
0 0
PS(-Igodyz 00 )
a2 d7?* —d—>
a2 d?* —d—>
—d=3 —d—3> d73
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(7)
P3—b0dy = 0 1 NE))

In terms of these projectors, the most general interaction we
can write down takes the form

L
Hy ), = Z cos QPZ(_Tgody,i + sin@Péfgody’i. 4)
i=1

In this equation, the three-body projectors act on the quadru-
ples (x;_1,x;,X;+1,Xi+2), while the two-body projectors act on
triples (x;_1,x;,x;+1). Moreover, we assume periodic boundary
conditions, x;+; = x;, and we introduced the couplings J, =
cos @ and J; = sinf.

C. Phase diagram of the J, — J; model

We now briefly describe the phase diagram of the J, — J3
model as a function of the angle 8. For more details, we refer
to Refs. 3 and 24. The phase diagram of this model is shown
in Fig. 4.

The angle 6 = 0 corresponds to the original two-body
golden chain model, which is critical and described by the
tricritical Ising model. For a finite range of both positive
and negative angles, this behavior persists, so we have an
extended range of critical behavior. At the angle given by
tan6 = 1/¢, with both the two- and three-body interactions
antiferromagnetic, there is a phase transition to a gapped phase.
In this gapped phase, the ground state is twofold degenerate,
with all the ground states occurring at zero momentum. It turns
out that at the transition point, which is described by the Z;
parafermion theory, a nonlocal symmetry, dubbed topological
symmetry, is broken.

% Ground states known

e Integrable tan 6 = /2

3-state Potts

3-state Potts (c=4/5)

tri-critical Ising
(e =17/10)

0= 3n/2 tetra-critical Ising

(c=4/5)

FIG. 4. (Color online) Phase diagram of the J, — J; model; J, =
cosd, J; =sin6.

115116-4



INTEGRABILITY IN ANYONIC QUANTUM SPIN CHAINS ...

The critical phase around 6 = 0 also gives way for a gapped
phase if 0 is decreased, namely around 6 ~ —0.472x. In
the resulting gapped phase, both the spatial and topological
symmetries are broken, giving rise to four (dimerized) ground
states. This phase is the anyonic equivalent of the MG phase in
spin—% chains with a purely three-body interaction. The phase
transition from the tricritical Ising region to the MG-like phase
is described by the tetracritical Ising model.

The critical behavior at & = m, the original golden chain
with ferromagnetic interactions, is described in terms of the
Z5 parafermions (the critical behavior of the three-state Potts
model). This point is part of an extended critical region, which
extends all the way to the gapped phase in the region when
both couplings are antiferromagnetic. This end point of that
gapped phase is around 6 ~ 0.3167.

The other end point of the extended critical region contain-
ing the point 6 = m is marked by a first-order transition located
at @ ~ 1.0757x to a sliver of an incommensurate region, which
quickly gives way to an extended critical region. This region
has low-lying states at momenta K =0, 7 /2, m, 37w /2 and
was therefore dubbed the Z4 phase. This phase has a transition
to the MG phase around 6 ~ 1.38x.

We close this quick walk through the phase diagram by
noting that there are two special points which lie in the
gapped phases, namely attanf = ¢/2 and § = 37 /2. Atthese
special points, the ground states of the gapped phases are
exactly degenerate (as opposed to exponentially degenerate
with system size), and moreover, one can obtain these ground
states explicitly. For more details about the phase diagram and
its peculiarities, we refer to Refs. 3 and 24.

In this paper, we mainly concentrate on a special angle,
given by tanf = 1/¢, which corresponds to (on the one
hand) the transition between the extended critical region at
antiferromagnetic two-body interactions and the gapped phase
obtained by introducing the antiferromagnetic three-body
interaction. Upon changing the sign of the Hamiltonian, one
ends up in the extended Z, critical region. We show in the
next section that, by making use of the integrable structure at
6 = 0, one can show that the J, — J3 model is also integrable at
tan6 = 1/¢. We confirm that the critical point at tan6 = 1/¢
(with both couplings positive) is indeed described by the Z3
parafermions. In addition, we show that for both couplings
negative, the critical theory describing the model is that of the
Gepner parafermions related to su(3),.>> This latter integrable
point lies in an extended critical region. Because there are no
relevant operators in the same symmetry sector as the ground
state, this whole critical region is described by the same critical
theory as the one we found at the integrable point.

D. Anyonic chains of su(2), anyons

In this section, we describe the generalization of the golden
chain, where the Fibonacci anyons are replaced by more
general types of anyons. These more general anyons are of the
type which is dubbed su(2);, where k is a positive integer. For
arbitrary k, this anyon theory has k 4 1 types of anyons, which
can be labeled in terms of an “angular momentum” /, which
takes the values [ = 0, %, . ,’%. For our present purposes, we
are mainly interested in the fusion rules of these anyons and
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the associated F' symbols, which are necessary to construct
the Hamiltonians of interacting anyons of this type.

The fusion rules of the su(2); anyons are derived from the
tensor products of spin representations of SU(2). These have to
be modified to take into account that in the anyon model there
is a highest angular momentum. This generalization reads as
follows. The fusion of two anyons of type j; and j, is

min(ji+j2.k—j1—j2)
axph= > )
B=li—pl

where the sum is either over the integers or half integers.
The only difference between the tensor product rules for
SU(2) spins is the upper bound. In particular, the case of the
Fibonacci anyons corresponds to k = 3. In general, this theory
has four anyons, / = 0, 1/2, 1, 3/2, but because k = 3 is odd,
one can restrict oneself to the integer subset (see Ref. 20 for
details). This integer subset was written as {1, 7} in the previous
sections.

The model one now considers is the model where the
constituent anyons are the / = % anyons of su(2),. The Hilbert
space consists of all labelings of the fusion tree in Fig. 1, but
with the t particles replaced by the [ = % anyons, and at the
vertices the fusion rules in Eq. (5) have to be satisfied. The
construction of the interaction matrices, for both the two-body
and three-body interactions, is identical to the construction in
the Fibonacci case. The only thing which has to be changed
is the F-matrix elements. Symbolically, we can write the
elements of the resulting projection matrices in the same way:

= 11 = - 11
(Pz(_lg()dy,i)xifl,x,',xwl — (in—l,j,g)x,’ (Fli—l,g,g)l (6)

Xi Xi )
Xi—1,Xi s Xit1 i+l 1 i+1 Xi

S = 11 = nl =
(P(I/Z) )x,',l,xi,xl’ﬂ,x,'ﬂ _ (in—l,gqg)x, (in—hX[ ,g)x,’ﬂ
] / - ¥ " Xi
3-body.i /x; 1 ,x; Xiq1,%i42 Z Xitl X i+2 1/2
X, X

l—

y (FX,’—IJC!/’%)I/Z (F;i:ll,%, )2

Yit2 it
N

Here, we wrote the projectors onto the spin-1 and spin-%
channels for the two- and three-body interactions, respectively.
The F matrices themselves can be obtained from the explicit
expressions, which were derived in Ref. 21. The Hamiltonian
for general k now reads

1 . 1/2
Hy_j = Z cos GPZ(-gody,i + sin 0P3(_b/m;y.i, (8)

1

where the k dependence is hidden in the detailed form of the
projectors and, of course, in the Hilbert space itself.

The phase diagram of the general k model has the same
structure as the phase diagram for k = 3 in Fig. 4. The extended
critical region around 6 = 0 is described by the minimal model
M 11 k42, the k-critical Ising model. The critical phase around
0 = m is described by the Z; parafermions (we refer to Ref. 26
for a description of this CFT). At angles & = 0,7, this follows
from the integrability of the RSOS model.”

We introduce the notation d; = 2cos[w/(k + 2)] for the
quantum dimension of the spin-% anyon of the su(2); anyon
model. Below, we show that the angles given by tan§ = (d} —
1)/d} are special because we can obtain the critical behavior
by mapping the model to a new integrable generalization of the
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RSOS model. For the resulting 6 in the range 0 < 0 < 7/2,
this integrable point is the transition from the extended
critical region to a gapped phase. From numerics, it was
already obtained that this critical behavior is described by
the Z; parafermion theory.3 Below, we show that this indeed
follows by exactly solving the model. The opposite point lies
within the so-called Z, critical region, with low-lying states at
the momenta K = 0, 7 /2, w, 3w /2. For this critical region,
the numerical results were less clear, but our analysis of the
integrable 2D classical statistical mechanics model, which
we introduce in this paper, shows that the CFT description
of this phase is in terms of a diagonal coset model, namely
W For k = 3, this model reduces to the su(3),
parafermion CFT. Bordering this extended critical phase is the
analog of the MG phase around 6 = 37 /2, which also borders
the extended critical phase around 8 = 0. The phase transition
between the latter two is described by the k + 1-critical Ising
model.

III. CONNECTION WITH 2D STATISTICAL
MECHANICS MODELS

A. Integrability of the golden chain model

In the original paper,” it was pointed out that the golden
chain Hamiltonian can be solved exactly by mapping it onto
the RSOS model, which was exactly solved by ABF® by means
of the CTM method.’ In particular, the two-body terms Pz(_lgody. ;
in the Hamiltonian at 0 = 0, Hj,—1 j—0 = Y ", Pz(_lgody’i, can
be related to generators of the Temperley-Lieb algebra e(i),
namely e(i) = d;(1 — Pz(»llzody,i)'

The Temperley-Lieb algebra generators satisfy the relations

e*(i) = dy e(i),
e()e(i £ De(i) = e(i), )
le(i),e(j)] =0 for|i — j| > 2.

The action of the Temperley-Lieb generators on the local
degrees of freedom labeling the states in the Hilbert space can

be written, following Pasquier,?’ as

. TS B
e(D)xi1,xi.x1) = Y [e@i ] iy xien),  (10)

i

80,50,/

oxi 1%
e()yi [ =8 g | —————
[ x,,l] Xi—1,Xi+1 SO.x,-_l SO,x,-_H ’

Xi

1)

where §;; are the elements of the modular S matrix of
the su(2); CFT, which are labeled by i,j = 0,1/2,...,k/2,
corresponding to the different type of anyons in su(2); theory.
Explicitly, one has

= 2 Sin<(2i + D2j + 1)7t>. (12)
k+2 k+2

We can write down plaquette weights, or R-matrix elements
of the corresponding 2D classical statistical mechanics model,
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FIG. 5. The plaquette weight W(l,l5,l5,l4), which in the
anisotropic limit (# — 0) gives rise to the two-body Hamiltonian
Hy,—1, 5,—0-

in terms of the e(i) and the identity operator 1 as follows:

R = (sm.(mn— u) o .sm(l;tr) e(i)?)
sin () sin (75)
= ( Sx;,x,) W(-xifl’x;sxi#»lv-xi)v
i
(13)
e(i)f = ( 5x;,x,-) [@(")iﬁfi]ﬁ’
J#i

X
I; = H‘SX}JJ"
J

The subscript i on the R-matrix labels the plaquette on
which it acts, while the argument u is the so-called fugacity,
and W(x;_1,x;,x;+1,x;) gives the weight of an elementary
plaquette shown in Fig. 5. The above R matrix can be shown
to satisfy the Yang-Baxter equation,

Ri)Rj11(u +v)R;j(v) = Rjp1(V)R;j(u +v)Rj1(w), (14)

by making use of the Temperley-Lieb algebra relations for the
e(i) in Eq. (9).

From the R matrix, one can construct the “two-row” transfer
matrix (see Fig. 6)

T) =[] Ry [ ] Rojw), (15)
J J

which has a role of a discrete time-evolution operator for
the corresponding 1D quantum system. The time-evolution
operator acts on a Hilbert space, which is spanned by vectors
(...sbj—1,l2j,l2j41,...). For the golden chain model, this
Hilbert space coincides with that given in Fig. 1. We note that
in making the connection between the 2D statistical mechanics
model and the 1D quantum Hamiltonian, we have rotated the
plaquettes by 45°, or the time runs from the southwest to

’ !
by l3j41

FIG. 6. Two-row transfer matrix, which plays arole of the discrete
time-evolution operator for the corresponding 1D quantum system.
The transfer matrix acts on the Hilbert space spanned by vectors
(.. osbj—1.bj,hj41, - . ). (Imaginary) time runs vertically.
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northeast corner of the plaquette. In addition, we consider
a two-row transfer matrix in order that in one discrete time
step all heights can evolve. This allows for the possibility to
obtain a translationally invariant Hamiltonian. The following
calculation shows that this is indeed the case.

If R;(u) satisfies the Yang-Baxter equation, it follows that
the 7’s at different parameters u commute, allowing one
to construct a Hamiltonian which can be solved exactly. In
particular, one writes 7'(u) = e “#+°#")  which gives rise to
the Hamiltonian

dInT 1 dR;
g _dnTw R D — @) (16)
du u=0 - Ri(u=0) du |,
Applying this construction to the R matrix defined above, one
obtains
2 1 1
H=— " —— —eli
tanl/(k + 2)] 2 (2 ds em)

i

= ; 0 _ 1
N tan[z /(k + 2)] Z <P2—b0dy,i 2) ) (17)

which is, up to a positive scale factor and an overall shift, equal
to the golden chain Hamiltonian, Hj,— j,—0.

We now focus our attention on the RSOS model we
referred to at the beginning of this section. The model consists
of height variables (simply called “heights”) located at the
vertices of the square lattice. The heights can take the values
I =1,2,...,r — 1, where r is an arbitrary integer. We already
noted that the heights correspond to the different type of
anyons, 0,1/2, ... ,k/2, where k = r — 2. The connection with
the anyon Hamiltonian becomes complete by the following
identification: r = k + 2, and [; = 2x; + 1, where [; is the
value of the height at the vertex i.

The heights have to satisfy the constraint that they differ by
one if they are nearest neighbors. Weights are assigned to the
different types of plaquettes, which we introduce below.

This model can be solved for a two-parameter family
of weights, namely for the parameter u and an additional
parameter p. This parameter p is the parameter which drives a
phase transition, located at p = 0. The golden chain is related
to the RSOS model at this critical point.

We now briefly describe the weights of the RSOS model in
terms of the parameters28 n (whichisrelated to r; see below), u,
and p. There are six different arrangements of heights around
a plaquette, as shown in Fig. 7. The corresponding weights are
given in terms of elliptic functions as follows:

o (u) = M Bi(u) = h(u) [h(wlfl)h(wurl)]l/2
: h@ny h(2n) h(w;) )
_ h(w +u) _ h(w; — u)
MO =y T Ty 18)

where w; = 2nl. The function h(u) is given in terms of
elliptic theta functions, with argument # and modulus k = m?,
namely i(u) = H(u)®(u). The functions H(x) and ®(u) can
be expressed in terms of the 6 functions 8, and 6,4, in particular,
Hu) = 91(%,17) and O(u) = 94(%,[)), where K (m) is
the complete elliptic integral of the first kind. The parameter
is given in terms of K and r, namely n = K /r. Furthermore, p
can be expressed in terms of m as p = exp[—7 K'(m)/K (m)],
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o o —® [ ——
[+1 l -1 l l -1
(0] (0] Bl
l (-1 l [+1 [+1 l
o0 o0 o0
[ _e——— [ _se———— [ S——— ]
) [+1 l [+1 l -1
ﬁl n 0
[—1 [ [+1 l [—1 [
o o o0

FIG. 7. Six height configurations occurring in the RSOS model.

where K'(m) = K(1 — m). Using the product expansions of
the elliptic 8 functions, one can write

. Tu = u Tu ;
h(u) = 2p"*sin <2K(m)) ,!:[1 [I—Zp cos <K(m))+p2 i|

x (1 — p™)*. (19)

Note that we suppressed the dependence of the weights in
Eq. (18) on p. We refer to chapter 15 of Ref. 9, where the
properties of the elliptic functions used in this paper are
analyzed. It was shown in Ref. 8 that the weights given in
Eq. (18) satisfy the Yang-Baxter equation for all # and p.

Two phase transitions (in different regimes for u) occur for
p = 0, which implies that m = 0. These two critical points
correspond to the integrable point of the golden chain model
with tan 6 = 0 (i.e., the angles 8 = 0,7 of the J, — J3 model).
Thus, to relate the weights in Eq. (18) at the critical point to the
plaquette weights obtained from the golden chain model, we
take the limit lim,_,o 2(u)/ h(uz) = sin(u;)/ sin(u,), where
we used that K(0) = 7 /2.

Using this limit, one finds, at the critical point, that

sin (k% — u)

= sin (k%)
g = sin(u) [sin (%) sin ((l,::;”)]l/z 0)
' sin (k%) sin (kl%) '
)/l:sin(,{l%—l-u), lzsin(kl%—u)’
sin (k]%) sin (kl%)

which are identical to those obtained from Eq. (13).

The last statement can be verified by considering the explicit
form of the R matrix in Eq. (13). The «a-type plaquettes are
obtained from the first term in Eq. (13), when x;_; # x; ;. The
B plaquettes are the “off-diagonal” terms, with x; # x/, which
can occur if x;_; = x;41. Only the second term in Eq. (13)
contributes to these plaquettes. Finally, the plaquettes of types
y and § (which are diagonal, but also have x;_; = x; ) receive
contributions from both terms in Eq. (13).

Details of the connection between the critical behavior
of the golden chain can be found in the original paper.’
For details of the various phases of the RSOS model, we
refer to Refs. 8 and 10. Approaching the critical point p = 0
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from the positive p side, one finds that the observables of
the model, such as the height probabilities (see below), are
given in terms of the tricritical Ising model for u > 0, and
the three-state Potts model for # < 0. This establishes the
observed critical behavior of the golden chain model.> In
general, that is, for arbitrary k, this generalizes to the k-critical
Ising model for antiferromagnetic interactions (# > 0) and the
Z; parafermions for ferromagnetic (¢ < 0) interactions.

IV. CONSTRUCTION OF A NEW COMPOSITE
HEIGHT MODEL

A. R matrix for the composite model

To identify a new integrable model, which corresponds to
different parameter regimes of the generalized golden chain
model (J, — J;3 model), we use the ideas put forward in
two papers by Ikhlef et al.'”'® In these papers, a model
closely related to the anyonic chains is studied. Namely, the
underlying algebraic structure, the Temperley-Lieb algebra, is
the same, but a different representation is chosen. We consider
the “anyonic representation” [see Eq. (11)], while Refs. 17
and 18 consider a spin-%-type representation. An important
consequence of this difference in representation is that we were
forced to use the CTM method solve the model, as opposed to
the Bethe ansatz method,? which was used in Refs. 17 and 18.

sin®(y)R; (u,¢)

PHYSICAL REVIEW B 85, 115116 (2012)

Below, we introduce a height model which at its critical
point reduces to the anyonic chain at the integrable point.
However, we also study the ordered phases of our height
model.

It was put forward in Ref. 17, that one can use the R matrix
in Eq. (13) to construct a composite R-matrix R, which also
satisfies the Yang-Baxter equation.’” The composite R matrix
one has to consider takes the following form:

Rj(u,¢) = Rajy1(u — 9)Raj()Raj1a()Roji1(u + ), (21)

where we introduced an additional parameter ¢, ranging over
0 < ¢ < /2. It can easily be shown that the R matrix (21)
satisfies the Yang-Baxter equation. The only ingredient needed
to show this is that the original R matrix satisfies the Yang-
Baxter equation itself. In what follows, we focus on the case
¢ = /2, but we stress that the R matrix in Eq. (21) satisfies
the Yang-Baxter equation for all values of ¢. At ¢ = 7 /2, the
composite R matrix leads to particularly interesting points of
the J, — J; Hamiltonian, namely the critical point between the
“Haldane gap” phase and the extended AFM critical region.
The opposite point (considered in Refs. 17 and 18 in the
different representation) lies within the Z, critical region.

We now describe in some detail how to obtain the
Hamiltonian of the J, — J3 model, by taking the “anisotropic
limit.” We start by expanding the composite matrix R;(u,¢)
explicitly [using the notation y = 7 /(k 4+ 2) and ¢; = e(i)],

= —[sin(y — u)?sin(¢ + y — u)sin(¢p — y + u)]1 — [sin(u) sin(y — u)sin(¢p + y — u)sin(¢p — y + u)l(es; + €2i12)
+ % sin(u) sin(y — u){1 + 2 cos(2¢) — cos(2y) — cos[2(y — u)] — cos(2u)}es;+1
+ [sin(u) sin(y — u) sin(¢p — u)sin(¢p — y + u)l(eziezi+1 + €2i+2€2i+1)
+ [sin(u) sin(y — u) sin(¢p + u)sin(¢ + y — u)l(ezi+1€2 + €i+1€2i+2)
— sin()* sin(@ + y — w)sin(@ — y + wleziezisa + sin(u)’ sin(g — u) sin(¢ — y + w)eziesi12esit

+ sin(u)’ sin(¢ + u) sin(¢p + y — u)eziy1exeni2 — sin(u)’ sin(¢ + u) sin(p — u)esi 122422141 (22)

We note that the coefficients of the terms ej; ez 1€212 and
€2i42€2;11€2; are Zero.

As we explained in the previous section, one can construct
a Hamiltonian related to this R matrix via the two-row
transfer matrix 7(u) = ]_[j Ryj11(u) ]_[j Roj(u) = e~ uH+ow?)
by taking the anisotropic limit [Eq. (16)]. Applying this
procedure to the composite R matrix R;(u,¢), one sees that in
the two-row transfer matrix (see Fig. 6), one has to change R to
R. Consequently, it is not obvious that the procedure yields a
translationally invariant Hamiltonian. Applying the procedure,
one obtains

2cos(2y) —cos(2¢) — 1
= Z ( 2sin(y + @) sin(y — 9) ) ~Singp e
sin(¢)
sin(y) sin(¢ + y) sin(¢ — y)
x [sin(¢) cos(y)(e;ei+1 + eir1€i)
+ (—1) cos(e) sin(y )(eiei 11 — ei1ei)]. (23)

To make the connection with the anyonic chain, we focus on
the case ¢ = /2, which gives (after dropping the irrelevant
constant)

2

H= Sn2y) Y —cos(y)ei + eiy1) + (eieiys + eieisr).

i

(24)

We note that for ¢ = 0, we obtain the original golden chain
model H = — ), ¢;. In the case that 0 < ¢ < 7/2, the term
(ejei+1 — ei+1€;) has a nonzero coefficient, which gives rise
to a non-Hermitian Hamiltonian and breaks the translational
invariance.

To relate the Hamiltonian we just obtained from the com-
posite R matrix to that of the J, — J3 model, we write the two-
and three-body projectors appearing in the J, — J3 anyonic
Hamiltonian in terms of the Temperely-Lieb generators e;.
In general, the projectors of p spin-% particles onto the
“spin-p/2” channel, can be written in terms of the e;.
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Explicitly, for two and three particles, one has (see also Refs. 32
and 33)

d
1 32 k
Pz(_b)odyj =1——¢, PO2 . = (ei +e€it1)

dk 3-body,i d]? -1

1
+ 5 (eieiy1 +einr€), (25
-1

where we remind the reader that d; = 2cos[x/(k 4+ 2)]. In
the anyonic spin chain the three-body interaction was written
in terms of the projector onto the spin-% channel, which
reads

/2 dk
Pitoayi = 75— (e +eivn) — pr]
k

e;e; +ei11€).
71 _1( +1teivie)

(26)

We can now write the J, — J3 model in two different ways,
namely,

Higo= Y cosO)Psog,; +sin@) P 1 (27)
He =) cos(Be)(e; + eir1) + sin@)(eiei + eirier). (28)

By making use of the projectors in Egs. (25) and (26), we find
the following relation between the angles 6 and 6,:

(d,? — 1) tan 6,
2di (1 + dj tan 6,) ’

(d,? — 1) — 2d,% tan 0

tanf, =
2d; tan 0

tanf =

(29)

The angle 6, for which the model is integrable, 6, iy, can be
read off from Eq. (24) and is given by tan 6, j,, = —1/cosy =
—2/dy. This corresponds to the angle 6y, in the J, — J3 model,

d} —1
a
In particular, in the case # > 0, we find that the corresponding
angle @ is given by 6 = arctan[(d} — 1)/d}] + 7, thatis, when
both the two- and three-body interactions are ferromagnetic.

When u < 0, we have 6 = arctan[(d,? — 1)/d,f], and both
interactions are antiferromagnetic.

tan 6, = (30)

B. Constructing the composite height model

As we described in the previous section for the original
golden chain model, we have to consider a more general 2D
height model in order to obtain the critical behavior of the J, —
J3 model at the integrable points. The plaquettes of this new
integrable height model, which we introduce below, reduce to
the composite R matrix described above at the critical point
p=0.

From the construction of the R matrix, we know how to
construct the plaquette weights for the composite 2D classical
statistical mechanics model from those of the RSOS model
described in the previous section. The new plaquettes consist
of four plaquettes in the original RSOS model, as depicted
in Fig. 8. The model again lives on the square lattice, where
both the vertices as well as the middle of the links have a
height variable. Two neighboring heights have to differ by one,

PHYSICAL REVIEW B 85, 115116 (2012)

ll l-2 l3 ll ZQT l3
R
[}
[}
® ® = [ de——_—— -9
ls ly ZZ: ls ' ly
-
|
l7 l=6 l5 l7 lﬁlé l5

FIG. 8. The plaquette weight Wly,lo15,14,15,16,17,13) for the
composite model in terms of the weights of the RSOS model.

as in the original model. One can think of these plaquettes
as composite plaquettes, whose weights depend on the four
original plaquettes forming the composite one. The original
plaquettes each contribute to the weight of the composite
plaquette, but two of the plaquettes have an appropriate “shift,”
as in the construction of the composite R matrix [see Eq. (21)].

Using the six different types of plaquettes of the RSOS
model, it turns out that one can construct 66 different types of
composite plaquettes, which are given in Appendix A. Not all
the weights of these plaquettes are different. Moreover, they
satisfy certain symmetries, in the same way as the original
RSOS model. The actual number of different plaquettes
depends on the parameter r, which determines the number
of allowed heights, vial; = 1,2, ...,r — L.

The composite weights W [see Fig. (8)] in term of the RSOS
weights have the following form:

T / ’ /
Wlaj-1.0y;.05;01.0 40,243,212, L2 j+1,125)

=Y W (bj.Lhja.bj )W -1l ;)
!

X W(l,léjJrz,12j+3,12j+2)W+(léj,l£j+1,léj+2,l), (31)

where W*(u) = W(u & K) are the weights of the shifted
plaquettes (see Fig. 8). We note that each of the plaquettes
forming the composite plaquette is of type oy, B;,y;,6;, with
the appropriate values of /, namely,

Wi+ 1,0L1-101)=W(I-LLI+ 1,1) = a;(u),

WAL —11LI+1) =W+ LLI—1,1) = Biu),
(32)
W(I+1LLI+ 1) = v,

w{,l - 1,11 — 1) = §(u),

where the explicit expressions of these weights, in terms of the
parameters u and p, are given in Eq. (18).

Taking into account the quasiperiodic properties of h(u),
we have chosen the shift ¢ to equal K. Again, similar to the
RSOS model, we are interested in p — 0 (critical) limit and
note that in this limit, ¢ = K = 7 /2. Due to the symmetry
properties of elliptic functions we only need to consider the
region 2n — K < u < 2n + K, which naturally breaks into
two domains according to the sign of u (cf. Ref. 8):

Di:0<u<2n+K=02+r)n,
Dy, 2n—K=Q—-rm<u<02~.

(33)
(34)
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The different signs of the fugacity correspond to ferro- (D))
and antiferromagnetic (D;) regimes, which in the anisotropic
limit give rise to the integrable point of the generalized J, — J3
model, for both signs of the interaction.

We have now completely specified our new height model.
We employ the CTM method, which is described in the next
section, to solve it. The main interest is to calculate local
height probabilities in different domains for general p, that
is, away from criticality. It has been observed that these
off-critical (p # 0) local height probabilities of an integrable
lattice model can be mapped to partition functions of the
corresponding critical theory (p = 0) in a finite box with
appropriate boundary conditions.!' This mapping is realized
if one properly relates p, which plays the role of temperature,
to the finite size L of the critical system. In addition, it
has been realized that the local critical probabilities can be
written using characters of the underlying CFT.'> Relying
on these observations, we identify CFTs describing critical
theories of the generalized anyon model (p = 0) in subsequent
sections. In particular, we calculate the off-critical local height
probabilities and relate them to characters of a CFT, which
governs the critical properties of the generalized anyon model
(as well as the generalized RSOS model at p = 0).

V. CORNER TRANSFER MATRIX METHOD AND LOCAL
HEIGHT PROBABILITIES

A. Definition of corner transfer matrices

To exactly solve the generalized model, we use the CTM
method in analogy to the solution of the RSOS model by ABF.®
Here, we give a short account of the method and turn the
interested reader to literature for more details.”3* The object
of interest is the local height probability P,, which is the
probability for a site to have height a. This height probability
is given by

1
Po=— >

configurations

Sa 1_[ W(l.il’l./z’ljs’l.izt7l./5’ljs’lj77ljs) )

plaquettes

(35)

where product is over all plaquettes (faces) of the lattice and
sum runs over all allowed 2D height configurations, and

(S = 8,a) [ [8¢:.1). (36)

i=1

The size of the system is parametrized by m, which should not
be confused with the m related to the modulus m? = k of the
0 functions which appeared in Sec. III. The meaning of the
indices LI of the matrix S will become clear shortly.

The partition function Z, which is given by

Z= Z 1_[ W(ljl Aol LjsiLjssLjpaLj), — (37)

configurations plaquettes

can be expressed as

Z =Tr(ABCD), (38)
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li=a Iy I3 lin b c

l/

m

FIG. 9. Corner transfer matrix A for finite m, constructed using
the composite plaquettes. Heights b,c,d,e are the boundary heights
fixed by a ground-state pattern chosen.

by introducing CTMs A,B,C,D, corresponding to lower-
right, upper-right, upper-left, and lower-left quadrants of the
lattice [see Fig. 9 and text below for the precise definition
of A,B,C,D]. These CTMs are analogs of the row-to-row
transfer matrix 7', but instead of adding a row to the lattice,
they add a whole corner.

Finally, the local height probability can be written as

P, =Tr(S,ABCD)/Tt(ABCD). 39)

We now have to introduce the notion of ground states,
which is used extensively in the subsequent analysis. Ground
states are those configurations of heights which maximize
the summand (or minimize the “energy”) in Eq. (37). These
ground states depend on u in a way that in different domains
of u (D; and D,) different ground-state types exist and they
change discontinuously across the boundary between different
domains (# = 0). These different ground states determine
different critical behavior in corresponding domains as we
show below.

The CTMs can be expressed using local plaquette (face)
transfer matrices

Wiy = W(l2j—lJéj,léj_;,_laléj+2712j+37l2j+2,12j+l,12_1')
x [T sw.mn. (40)

i=15£2,2j+1,2j+2

Vir = W(léj+1»léj+2a12j+3al2j+2712j+1»ZZjaleflvléj)

m

<1

i=15£2j,2j+1,2j+2

8(i.1). (41)
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Here j=1,...,(m+1)/2, with  m odd, and
Ln1slyy s bmg2sly 0 kmy3s0, 3. lnya are boundary heights,
which should be fixed to proper ground state values
corresponding to a considered domain of u. The matrix U;
(V;) adds a plaquette to the lattice in the NE-SW (NW-SE)
direction.

Using the definitions in Egs. (40) and (41), the CTM A can
be expressed as

A=FF,.. . Fupo, (42)

where

Fi = U+ 2Um-1)2, -- -, Uj. (43)

The CTM A (see Fig. 9) has rows and columns, which are
labeled by the values of the boundary heights, collected in the
vectors 1 = (I1,02, ... ,l,) and V' = (1,05, ... .1},), where [| =
I} = a, because these heights correspond to the same central
height. In addition, we use boundary conditions, such that the
heights on the four outermost diagonals are fixed to be b,c,d, e,
respectively.

The CTMs B, C, D are expressed similarly to A by replacing
U; with V;, U7, and V].T, respectively. In general, properties
of the CTMs depend on symmetries of weights as well as those
of ground states. In what follows, we are interested in infinite
lattice limit, m — 0.

B. Corner transfer matrices as exponentials

From the Yang-Baxter equation for weights [see Eq. (14)]
follows a very important property of corner transfer matrices.
In the limit where the lattice size goes to infinity we can write
(symbolically) that

lim BC = lim 7", (44)
m—00 n—00
where T is the row-to-row transfer matrix and » is the number
of rows, covering a half plane in the limit n — oo.

We should note that the above relation is not valid for
finite m and n, since different boundary conditions are used
to calculate left- and right-hand sides of the equation (in
fact, even the shapes of the lattices differ). However, in
the large m,n limit this difference becomes negligible. The
Yang-Baxter equation ensures that the row-to-row transfer
matrices with different fugacities commute and, hence, the
product B(u#)C(v) depends only on the difference u — v
(modulus the overall multiplicative factor). Similar equa-
tions that involve other corner transfer matrices can be
obtained by rotating the lattice in steps of m /2. Using these
properties one can show that the corner transfer matrices
have the following form (dropping irrelevant multiplicative
factors):®

Aw) = Q1 Me™™ Q5!
B(u) = Q2 My Q3"

C(u) = Q3Mze™ 70",
D(u) = QaMye"™ Q7"

(45)
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where the matrices H,Q1,...,Q4,M1, ...,M, are indepen-
dent of u and can be chosen to commute with Sy, ...,S,_;. In
addition, the matrices H, M, ..., M, are diagonal.
Using the identity (see Appendix B)
AO0)= Q1M 05" =1, (46)

we immediately see that

Au) = Qe Q5" 47

which implies that the diagonal form of the CTM A can
be written as an exponential. From Eqgs. (39) and (45) we
immediately see that

Py = Te(Se M\ Mo M3 M)/ Tr(MiMaM3My).  (48)

To calculate M; M, MzM, we need to consider different
domains of u separately to find different limiting properties of
the CTMs. Here we summarize the properties of the corner
matrices near the boundaries of domains D; and D, (see
Appendix B for details), which are required for the calculation.
In the domain Dy, in the # — 0 limit we find (upon dropping
an irrelevant multiplicative factor)

Au=0)=Cu=0)=1, (49)
while in the u — (2 4 r)n limit we have
Blu=Q+rn)=Du=Q2+rm =V, (50
where we have defined
(Vo = [h2nl)]?8@,1). (1)
Using the above limits for CTMs we can write that
A =0)Blu=Q+rmlCu=0)Dlu=Q2+rn] =V
(52)

Substituting Eq. (45) in the above equation we get the
following result for the product of the matrices M| M, Mz My,
which appear in the expression for the height probability in
Eq. (48):

M\ My M3 M > = 2, (53)
In the domain D,, we can show that
A(u = 0)Blu = 2 —r)ylCu = 0)D[u = 2 — r)n] = V?}
(54)
and
My My M3 M>>I = 72, (55)

Taking into account relations in Eqgs. (53) and (55), the local
height probability can be written as

P, = Tr(S, Vie M) /Tr(Vie 21, (56)
where
24r ueD,
t = 57
{2 —r uec Dz. ( )
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C. Diagonal form of the corner transfer matrix A

What is left to do is to find the diagonal form of the
CTM A and the matrix H, which is the most involved part
of the calculation. The CTMs in Eq. (45) should satisfy
quasiperiodic conditions as do the weights, with the period
2i K’, which implies that elements of H are integer multiples
of m/K’, Hyy = s NDHS(L,I')/K’'. Similar to the solution of
the RSOS models,® we assume that 7 does not change
discontinuously with p, which implies that the integer function
N() is independent of p and we can derive it in a limit
where the composite weights assume a simple form. We can
show that (see Appendix C) in the p — 1 limit the weights
of the composite model take a particularly simple form and
the CTM A can be readily diagonalized. After a fairly lengthy
calculation, involving the “conjugate-modulus” (or modular)
transformation, the dust settles, and one finds the diagonal
form of A,

A = [e7 M = g w28, (58)

where

—2nu/K’

w=e Loy = w0, (59

and

N()/2 = o)

2 s — Loy
(2j3 — bj—
= § ]< 4 + 612/1sz+1812j+1,12/+3512/,121+2>’
j=1

(60)

where sum over j is performed along a line in the 2D lattice
(see Fig. 9). Each term in this sum corresponds to the weight
of the jth plaquette (counted from the central site), times j,
which is the number of plaquettes on the jth diagonal. In the
limit p = 1, these plaquettes all have the same form, because
A is diagonal then, as shown in Appendix C.

D. Local height probability

We can now collect the results and obtain the local height
probabilities P,. Substituting the diagonal form of A, Eq. (58)
in Eq. (56), we find that

Pa = Silvaxm(a;bycvdae;xz)- (61)

Here we adopted the following definitions:

Xuasb.ed.eq)= Y ¢, (62)
byeoilm
v, = x(zft)(Za—r)Z/(lﬁr)E(xa’xr)’ (63)
S=Y viXula:b.c.d.e;x"), (64)
a
x = e 4K (65)

The function ¢ (1) was given in Eq. (60) and the function E(z,x)
appears in Jacobi’s triple product identity,

E@zx) =[]0 —x""20 —x"z7)(1 —x").  (66)
n=1
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Furthermore, /; = a and heights b,c,d,e (see Fig. 9) are
the boundary heights, which are to be fixed to the values
of a ground state in the domain of u# under consideration.
We see from Eq. (62) that the partition function as well as
the local height probability is expressed as a sum over 1D
height configurations, in contrast to 2D configurations in the
original formulation [see Eq. (37)]. This property is the con-
sequence of integrability of the model and greatly simplifies
calculations.

VI. PHASES OF THE COMPOSITE HEIGHT MODEL

In this section, we make a start with the exploration of the
phase diagram of the composite height model, which is focused
on the regions which are related to the anyonic quantum chain.
We will give a more detailed description of the various phases
of the model in a forthcoming publication.

The phase diagram of the composite height model bears
resemblance to the phase diagram of the original RSOS model.
We consider the phase diagram as a function of the parameters
u and p, where the parameter u is related to the anisotropy
of the model. Only the sign of this parameter is relevant. The
parameter p drives a phase transition between different ordered
and disordered phases, as was the case in the RSOS model.
We consider the regime 0 < p < 1, which is the one relevant
for our purposes.

We start by analyzing the ordered phases by taking either
u > 0, which we call regime III, or u < 0O, called regime II.
The naming of the regimes follows the nomenclature of ABF.
We use the results of the previous section, where we calculated
the height probabilities in terms of the functions

Xn(asb,ede;q) =Y q*", (67)

D03yl
where the vector 1 has m+4 components, 1=
(a,l,....In,b,c,d,e), which satisfy the constraint

l; =1l;_1 £ 1, implying that a + ¢ = 0 mod 2. We repeat the
function ¢ (1) for convenience,

(m+1)/2 I I |

A Nlaj3 —hj

p()= Z J(f + 812/'1’12/'+l812j+]s12j+3812ja12j+2> :
=1

(68)

For 0 < p < 1, the height probabilities are proportional to
Xnu(a;b,c,d,e;x"), witht =2+r foru>0,andt =2 —r
foru < 0.

To find the ground states, we analyze the function ¢(1).
The ground states are those configurations which contribute
maximally to the partition function. In domain D;, which has
u > 0,andt = 2 4+ r > 0, the ground states are given by those
configurations which minimize the function ¢(l). For domain
D,, with u <0 and t =2 — r < 0, the function ¢(1) should
be maximized instead. As long as 0 < p < 1, one finds that
the arguments about the ground states go through, because
x < 1. Atthecritical point (p — 0) wehavex — 1;hence, the
argument fails and all height configurations contribute equally.

The model is critical when p — 0, and we study the full
height probabilities P,, which give the probability that the
central height takes the value a, depending on the boundary
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heights (b,c,d,e) (see Fig. 9). We evaluate these height
probabilities, in the case that the boundary heights are such
that they belong to a ground-state pattern.

A. Ground states for u > 0 (domain D))

Let us start by analyzing the case # > 0 and minimize the
function ¢(l). In this case, as many plaquettes as possible
should give zero contribution to ¢(l). This can be achieved in
the following way. First of all, one should have that /; = [; 14,
such that the first term within the parentheses in Eq. (68) is
zero. There are now two different ways in which one can
avoid a contribution from the second term. First, one can set
lito =1 £2and ;4 =l;13 = I; £ 1, where the sign in both
equations should be the same. The other possibility is/; 1, = ;,
while /;1; =1; £ 1 and ;13 = [; F 1, where the signs in the
last two equations have to be opposite.

In particular, the vector 1 describing the ground states for
0 < p < 1, u > 0 takes the form (we show the case r = 7)

1,2,3,2,1,2,3,2,1, ...
(3,4,5,4,3,45,4,3, ...
(3,2,1,2,3,2,1,2,3, ...
(5,4,3,4,5,4,3,4,5, ...

(2,3,4,3,2,3,4,3,2,...)
(4,5,6,5,4,5,6,5,4,...)
(4,3,2,3,4,3,2,3,4,...)

)

)
)
)
) (6,5,4,5,6,5,4,5,6,...

for the ground states of the first type. The patterns of the second
type are mere translations of the patterns of the first type, and

are given by the vectors 1 of the form

(2,1,2,3,2,1,23.2,..) (3.2.3,43,2,3,43,...)
(4,3,4543,454,..) (54,5,6,5456,5,..)
(2,3,2,1,2.32,1,2,...) (3,4,3,2.3,43,2.3,..))
(4,5,43,4543.4,..) (56,54,56,545,...).

In the limit p = 1, the CTM A is diagonal, which gives rise
to ground-states patterns which are invariant under translation
along the northeast to southwest (NE-SW) diagonal. A partic-
ular ground-state pattern for # > 0 is displayed in Fig. 10. All
the ground states are of the form (I — 1,/,l + 1,1, — 1,1,] +
1,...), or translations of this pattern.

To count the number of different ground states, we note that
the ground-state patterns are specified by three consecutive
integers. Because the heights can take the values 1,2, ...,r —
1, there are r — 3 possible consecutive integers. By translation,
each of these sets of consecutive integers gives rise to four
different ground states, for a total of 4(r — 3) ground states.

We now count the number of different height probabil-
ities, P,(b,c,d,e), where the boundary condition (b,c,d,e)
corresponds to a ground-state pattern. First, we note that
a, the height of the central site, and e have to have the
same parity, a + e = 0 mod 2. For r odd, there are (r — 1)/2
odd-valued heights and (» — 1)/2 even-valued heights. In both
cases, a can take (r — 1)/2 values, giving 2(r — 1)(r — 3)
different height probabilities. In the case that r is even,
there are r/2 odd-valued heights and r/2 — 1 even-valued
heights. Of the 4(r — 3) ground-state patterns, 2(r — 3) have
e even and 2(r — 3) have e odd. Hence, also for r even, the
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i 1 P 3 2 i 1 2 3 2 1
2 2 P 2 2

3 2 ?-;f----;-----; ------ Q-E 1 P 3

2 2 2 2 2

1 2 3 2 1 2 3 2 1

2 2 2 2 2

3 2 1 2 3 P 1 2 3

2 2 2 2

1 2 3 P 1 2 3 P 1

FIG. 10. Ground-state pattern for u > 0, which is characterized
by the pattern in the dashed boxes.

number of height probabilities to consider is 2(r — 1)(r — 3).
These height probabilities are given in terms of the functions
Xm(a; b,c,d,e; q), which satisfies the relation (which follows
from the symmetry properties of the plaquette weights)

Xm(a;b,c,d,e;q) = X,y(r —a;r —b,r —c,r —d,r —e;q).
(69)

This halves the number of independent height probabilities,
which s thus given by (r — 1)(r — 3),orintermsofk =r — 2,
by k* — 1.

B. Ground states for u < 0 (domain D,)

We now consider the ground states for # < 0 and look
for configurations which maximize the function ¢(I). Because
l; and [; 14 maximally differ by four, both terms within the
parentheses in Eq. (68) can maximally contribute 1. However,
in order that the first term contributes for every plaquette,
the heights /; would have to steadily increase or decrease,
which is impossible, because the values the /; can take lie in
the range [; = 1,2, ...,r — 1. The second term inside of the
parentheses in Eq. (68) can be 1 for all plaquettes. The only
requirement is that lr;_; =lj41 =ljq3 and b = b =
lj—1 £ 1. For p =1, the ground states again are invariant
under translations over the NE-SW diagonal. Thus, for u <
0, the ground states are given by configurations for which
the heights stay as constant as possible; that is, they take the
form (I,l + 1,1,1 4+ 1,1, ...), as depicted in Fig. 11 for a typical
example.

The number of ground-state patterns is given by the number
of consecutive pairs (both increasing and decreasing), that is,
2(r — 2). We again need the number of height probabilities we
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51 251 2 1 2 1 2 1
2 2 2 2 2
S .

51251 2 1 2 2
2 2 2 2 2
12 1 2 1 21 21
2 2 2 2 2
12 1 2 1 2 1 2 1
2 2 2 2 2
12 1 2 1 2 121

FIG. 11. Ground-state pattern for u < 0, which is formed char-
acterized by the pattern in the dashed boxes.

have to consider, or the number of functions X,,(a; b,c,d,e; q).
We only have to specify (a;d,e), because d and e fix the
values of b and c in the ground states. There are 2(r — 2)
pairs (d,e). It turns out that the number of height probabilities
is given by (r — 1)(r —2), irrespective of whether r is
even or odd. Thus, there are (r — 1)(r —2)/2 = k(k + 1)/2
independent height probabilities, because of the relation in
Eq. (69).

C. Criticality at p =0

We found the ground states for u > 0 and u < 0 deep in
the ordered regime, namely for 0 < p < 1, by minimizing
or maximizing the function ¢(l), which appears in the
height probabilities, as well as the partition function. At the
critical point, for p = 0 as in the original RSOS model, all
configurations contribute, and one has to do a more careful
study of the model. In the remainder of this paper, we focus
on the full form of the height probabilities, which have a
close connection with CFT characters, which allows us to
unambiguously identify the critical behavior of the model, for
bothregimesu > Oandu < 0. Because we already established
the connection between the composite height model and the
anyonic chains, we thereby also explain the critical behavior
of the anyonic chains at the integrable point. A more detailed
study of the critical behavior of the composite height model
will be left for a future publication.

VII. EVALUATION OF THE HEIGHT PROBABILITIES

We now turn our attention to the evaluation of the height
probabilities. We have shown that the probability that the
central height takes the value a depends on the boundary
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condition, which we specified by fixing the boundary heights
(b,c,d,e). The height probabilities are governed by the
functions X, (a; b,c,d,e; q) given in Egs. (67) and (68). We are
ultimately interested in the behavior of these functions in the
limit m — oo. In that limit, we can let the boundary heights
correspond to the ground-state patterns, which extremize the
function ¢(1).

We therefore consider the functions X,,(a; b,c,d,e; q), for
all possible values of (a;b,c,d,e) such that the boundary
heights (b,c,d,e) are part of a ground-state pattern. In the
limit m — oo, these functions receive contributions from all
possible configurations specified by the vectors 1. For finite
m, these functions are finite polynomials in g (or ¢'/? times
such polynomials). The minimal power of ¢ which can occur
is zero, while the maximal power is (m + 1)(m + 3)/8. We
note that these extremal values are not obtained for all choices
of (a;b,c,d,e).

In the following sections, we provide explicit expressions
for the functions X,,(a;b,c,d,e;q) in the case r =5. We
did not yet obtain explicit expressions for r > 5, but by
analyzing the functions, we unambiguously identified them as
the characters of certain conformal field theories. In particular,
we checked extensively that in the limit of m — oo, the
functions X,,(q) tend to affine Lie algebra branching functions,
or, in other words, characters of the various primary fields in
certain coset models. This is precisely the connection we are
after, because these coset models describe the behavior of the
model at the critical point and hence the critical behavior of
the anyonic quantum chains. Before delving into the details,
we first state the results here.

For u > 0, we find that the functions X,,(a;b,c,d,e;q)
tend to the characters of the coset W, where
k =r —2. In the case that k = 3, this coset is equivalent
to a Gepner parafermion theory? based on su(3),, explicitly
% The characters of this theory were considered in
Ref. 35 in the context of a particular non-Abelian spin-singlet
quantum Hall state.*® The finitizations of the characters consid-
ered in Ref. 35 precisely correspond to the functions X,,(g) we
obtain from the integrable model we introduced in this paper.

For u < 0, one needs to consider the part of the func-
tions X, (¢g) with the highest powers of ¢, as explained
below. In particular, the functions ¢ +D+3/8x  (4=1) are
the functions one needs to consider in the limit m — oo.
We found that they precisely correspond to the characters of
the Z; parafermion theory?® (which is, for instance, given by
the coset %) The characters of this theory can be found in
Ref. 37.

For r =5, we have the interesting situation that the fini-
tization of the characters of the su(3), Gepner parafermions,
that is, the functions X,,(q), also can be considered as finitized
characters of the Z3 parafermions. Because both theories con-
tain Fibonacci particles, one could say that “Fibonacci meets
Fibonacci,” in the same spirit as “Ising meets Fibonacci,”®
which establishes a connection between the theories su(2),
and su(3),, which have Ising and Fibonacci-type fusion rules.

In the following two sections, we provide explicit expres-
sions for the functions X,,(a; b,c,d,e; q), for finite m in the
case, r = 5. These expressions are such that the limit m — oo
can be taken explicitly.
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The identification of the functions X,,(a; b,c,d,e; q) for all
values of r and (a; b,c,d,e) in terms of the CFT characters is
the subject of Appendix D, which deals with both cases u > 0
andu < 0.

A. Probability amplitudes for u > 0

In this section, we give the explicit form of the functions
Xm(a;b,c,d,e,q) for those values of (a; b,c,d,e) which corre-
spond to the ground states for u > 0 (for r = 5). We did not yet
prove these results, but we expect that a proof along the lines
of the original paper® is feasible. Such a proof involves the
recursion relations for the functions X,,(a; b,c,d,e,q), which
we give in Appendix D [Eq. (D1)].

We start by giving the expressions for finite m and take the
limit m — oo afterward. We introduce the function (q),, =

Z’:,(l — qk), for positive integers m, and (q)o = 1, which
appears in the definition of the g binomials, or Gaussian
polynomials

(@m
" — 1 @@ for 0<n<m, (70)
n 0 otherwise.

The precise form of the following function we introduce
was inspired by the (finitized) character of the Gepner
parafermions associated with su(3), (see Ref. 35), as well as
the characters for the original RSOS model (see, for instance,
Ref. 13). In particular, we introduce

a?+b2—ab—asy, 3-b3}, mAb+ 148, 3
>a ’

a,b>0 a

m~+a+38y, 143812481, 2
x : , (71)
b

y(m;la,l3,l5q) =

where we assume that m is an integer, lp,l3 = 1,2 and 4 =
1,2,3,4. The prime on the sum indicates the constraints that
the argument of the ¢ binomials have to be (non-negative)
integers. We labeled the function with /5,/3,/4, because of the
connection with CFT characters, which we describe below (the
label /; can always be chosen as [} = 1).

We then have the following results

Xm(1;2,1,2,3;q)=y( ,l,l,l,q)
Xm(3;2,1,2,3;q)=y( > ,1,1,3 q)
Xn(2:3,2,3,41q) = y (m2 q)
X,(4:3,2,3,41q) = y (’"2 q)
X, (2:1,2,3.2:q) = y (mT 2.1,2; q)
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m—1
Xn(4;1,2,3,2;q) =y (7;2,1,4;61) ,
(72)
m—1
Xn(1;2,3,43;9) =y (T;Z,Z,l;q>

m+l m—3
+qg +y T;l,l,l;q ,

m— 1
Xn(3;2,3,43;9) =y 7;2,2,3;61

m4l m-—3
+qg*y T;1,1,3;q .

We can now rather easily take the limit m — oo, by using

the result
[ 1
lim = .
n—oo | n’ (Q)n’

We assume that m is of the form 4p + 3, with p integer (the
case m =4p + 1 is only slightly different). By taking this
limit, we find that

lim Xg,2(1:2,1.23:9) = " (g).
lim Xy2(4:3.2.3.419) = lim Xipia(4:1.2.32:0)
= pli_{Iolo Xap13(152,3,4,359)
= (), @3

lim Xpi3(2:3,2,3,4:9) = lim Xgp43(2:1,2,3,25)
p—00 p—>00

lim X4p+3(3; 2,3,433; f])
p—>00

1 o
= q 10 (g),

lim Xap43(3;2,1,2,3;9) = ¢~ 002 (g).
p—>00
Here, the functions c*“(3)2 (g) denote the characters of the su(3);
parafermion theory. This theory has eight fields, including
the identity field 1, with the character ¢}"*(¢), and three
parafermions, V1, ¥, and ¥, which have identical characters
Su(S)Z(q) The remaining four fields are three “spin” fields, o},
2, and o7,, which have identical characters ¢3®2(g). Finally,
there is the field p, whose character we denote by c;”(3)2 ().

In the above, the characters of the fields are “normalized”
such that the first term in the expansion is ¢”, where £ is the
conformal dimension of the field under consideration. These
conformal dimensions are given by hy =0, hy = 1 L he = o o’
and h, = % Combining all the factors, the expressmns for
the limit of X,,(g) are series expansions with integer or half
integer powers of ¢q.

For our present proposes, it is best to view this CFT as
the following coset model: 42U XU The fields in this

su(2)s
coset model are labeled by the labels of the constituent factors,
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CIDZ’IQ’I", where [,1,,l3 correspond to the factors su(2);, and I4
corresponds to the factor su(2);. These labels have to satisfy
the constraint/y + I, + I3 + I, = 0 mod 2, which we use to set
[} = 0, and consider the fields with I, + I3 + 4 = 0 mod 2.

For completeness, we explicitly give the labels of the
parafermion fields:

0,0,0 01,1 0.1,0 0,0,1
Oy =1, Oy =Yy, Oy =yn, P =y,

0,0,0 0,11 01,0 0,0,1
O,y =p, Dy =03, P =0, P =opn.

For r > 5, we did not yet obtain closed expressions for
the functions X,,(a;b,c,d,e;q). However, one can obtain
expansions to high order, by making use of the recursion
relations satisfied by the X,,(¢) [Eq. (D1)]. These high-order
expansions can be compared to the branching functions (or
characters) of various coset model. In doing so, we have
established that the X,,(a;b,c,d,e;q;r) are (in the limit
m — 00) the characters of the cosets W (we
recall that k = r — 2). In Appendix D, we give the relation
between the values (a;b,c,d,e) and the labels of the coset
fields.

B. Probability amplitudes for u < 0

The functions X,,(g), with the boundary heights (b,c,d,e)
given by the ground-state patterns for u < 0, can also be
expressed in terms of the function y(m;/,/3,l4), which was
introduced in the previous section. We first state these results
and subsequently take the limit m — oo in order to identify the
critical theory describing the critical behavior of the anyonic
quantum spin chain. In particular, for r =5,

mt -1
Xu(132,1,2,1;q) = ¢*y (’”T,l,l,l) :

m+l m—1
X(12323q)—q4y< 5 ,1,2,1),

m+l m—1
Xn(1;4,3,43;9) =q 2 y <T,2,2,1> ,

(74)

ml m—1
Xm(z’ 172’172 CI) =4q 2 y (Tvzyzaz) 5

m+1 m—1
Xm(2:3,23,2;9)=q *y (7,1,2,3) ,

Xn(2:3,4,3,4,q) = ¢" 71,1,1,3).
The ground states correspond to the highest possible powers
of g, so to make the identification with the CFT, we have
. _ . n+D(m+3)
to make the substitution ¢ — ¢~! and multiply by ¢ s,
which is the maximal power of ¢ which occurs in the functions
Xm(q). This will make sure that the function corresponding
to the vacuum character is a polynomial in ¢, starting with
1. We find that the functions thus obtained tend to the
characters of the su(2); parafermions in the limit m — oo.
The su(2); parafermion theory contains six fields, the identity,

with character ci“(2)3, two parafermion fields ¥; and y,, with
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the character c:; s , two spin fields o} and o0,, with characters

@5 and finally the field e, with the character s, The

scaling dimensions are iy = 0, hy = %, hy = 15, and /.
We find
plLIIgoq(lz+l)z(l:+2> X2p+1(1 2,1,2,1,q 1) — Ciu(Z)S(q)’ (75)
. (ﬁ+1>(p+7) -1
lim ¢ 2 X5,41(1;2,3,2,3;97)
p—00
= lim ¢ Xap 1 (1:4.3,4.3:07) = ¢ 53 (),
p—>00
(76)
lim ¢ X0, 1(201.2,1.2:97")
p—>oo
— lim q(p+1)2(p+2> X2p+1(2 3.2.3.2: q )_ q- 15 Csu(2)3(q)
p—00
(77
hm q(p+l)(p+2) X2p+](2 3 4 3 4 q*l) _ qmcsu(Z)-‘(q) (78)
[)—)OO

The identification of the functions X,,(¢g~") for u < 0 in the
limit m — oo is given in Appendix D, in the case k > 3 (r >
5). They correspond to the characters of the Z; parafermions.®’

VIII. CONCLUSIONS AND OUTLOOK

We have introduced a 2D classical statistical mechanics
model, the critical properties of which correspond to the
integrable points of a chain of su(2); anyons with competing
two- and tree-body interactions [J, — J3 model, given in
Eq. (24)]. The 2D classical model is a composite height model
which is a generalization of the RSOS model solved by ABF®
by means of the CTM method. We have also used the CTM
method and have found that, similar to the RSOS model, there
are four different regimes with two critical points at p = 0.
We have studied two new integrable critical points of the
anyonic chain at tan 6y, = (d,f -1 /d,?, which correspond to
the p — 40, u — =0 limits of the composite height model.

For ferromagnetic interactions (u > 0, 6 = arctan[(d,f —
1)/d,3] +m, Jo,J3 < 0) the critical point is described by
the W coset CFT. This critical behavior
actually describes an extended critical region around the
integrable point. For antiferromagnetic interactions (u < O,
6 = arctan[(d,? — 1)/d,f], J>,J3 > 0) the behavior is that of the
Z parafermions. This critical point constitutes the boundary
between a gapped phase, and an extended critical region,
which s described, in general, by the M(k + 1,k + 2) minimal
model.?

These CFT identifications stem from the observations that
functions X,,(q), which define the local height probabilities are
given by characters of the corresponding CFT. The integrable
properties of quantum 1D and classical 2D models are fully
defined by the Temperley-Lieb algebra relations in Eq. (9),
which suggest that the Hamiltonian in Eq. (24) can be
exactly solved in different representations of TL algebra. A
particular physical interpretation of the model depends on
the particular representation chosen to solve it. In our case,
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we have used the representation of su(2); anyons, which
straightforwardly maps onto the composite RSOS model. In
this representation, an interpretation as a chain of interacting
anyons is straightforward.

A different interpretation as a Q-state Potts model [with
JO = ZCOS(knﬁ) = di, where in this case k is considered
to be a continuous parameter] or a six-vertex model was
put forward by Ikhlef et al.,'””'® which naturally admits
the so called “loop representation.” The J, — J3 model at
the integrable point, 6 = arctan[(d,? - 1)/ d,?] + m, has been
exactly solved in spin-% representation of the U,[SU(2)]
quantum algebra.'”!8 In this representation, in contrast to
the “anyon representation,” the Hilbert space has a tensor
product structure and the J, — J3 model admits the solution
by the algebraic Bethe ansatz method. We should note that
in spin or loop representations the 1D quantum Hamiltonian
is non-Hermitian and lacks obvious physical interpretation.
Despite this non-Hermiticity, it has been conjectured that
the part of the spectrum which scales as 1/L is real. In
contrast, in the anyon representation, which is adopted in
this paper, the Hamiltonian is Hermitian (real symmetric) and
has a physical interpretation as a local interaction between
anyons. Despite the differences, the critical properties at
6 = arctan[(d? — 1)/d?] +  found by us are similar to those
found by Ikhlef et al.'”"'8 Namely, they have the same central
charge, at least for u positive. The precise connection between
these models is interesting and requires more detailed research.
We note that a similar loop model, related to the anyon model
with u <0 (0 = arctan[(d,f — 1)/d,§]), has been studied in
Ref. 38. It was conjectured and several arguments were given
that the critical behavior of this loop model (in an appropriate
limit) is described by Z; parafermions.

The anyonic chains have been generalized in different
ways. the first is to different types of unitary anyons.* It
would be very interesting to investigate to what extend the
methods of “fused models,” as studied in Refs. 12 and 31,
can be applied to the anyonic chains of Ref. 4. Chains of
nonunitary anyons were also considered.’® This leads, in
general, to non-Hermitian Hamiltonians, which nevertheless
have a real spectrum. It should be possible to generalize the
models considered in Ref. 40 to composite versions and make
a connection with a generalization of the chains considered
in Ref. 39.

In this paper, we have described only half of the phase
diagram of the composite RSOS model, positive p regime
(0 < p < 1). The CTM method makes it possible to study the
negative p regime (—1 < p < 0) also, which will be addressed

/ I+1 [+2
I—1 I+1 =B BB (),
[ -2 [—1 [
[—1 l [+1
1-2 I =8 vl ),
I—1 [—-2 [—-1
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in a subsequent publication. We have shown that the positive p
regime has the interpretation in terms of 1D interacting anyons.
The 1D quantum mechanical interpretation of the negative p
regime is yet unknown and also requires further investigation.

Last, but not least, we would like to point out that the
study of the RSOS model by ABF gave rise to an interesting
set of Rogers-Ramanujan-type identities. Further study of the
composite height model in light of these identities will be most
interesting.
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APPENDIX A: THE PLAQUETTES OF THE
COMPOSITE-RSOS MODEL

The plaquettes of the composite model are obtained
by stacking four plaquettes of the original RSOS model
(see Fig. 7), and giving them the appropriate weights. In the
process of stacking the plaquettes, one has to sum over the
internal height, which in some cases can take two possible
values (see Fig. 8).

In the following, we display the possible composite plaque-
tte types and give the associated weights in terms of the weights
of the RSOS model. In this case, the composite plaquette
weights have the same symmetry as the original model (with
¢ = 0); namely, the weights are unchanged under exchange
of the northwest (NW) and southeast (SE) corners, as well
as under exchange of the northeast (NE) and southwest (SW)
corners. This last property is lost if ¢ # 0,K.

We start by giving the composite plaquettes for which
the internal height is fixed by the boundary heights. In case
the plaquette is not symmetric, we indicate the amount of
plaquettes which can be obtained from the given by taking the
appropriate mirror image. These mirrored plaquettes have the
same weight as the displayed plaquette.

The weights of the composite plaquettes are given in
terms of the weights of the original RSOS model, given
in Eq. (18). Let ¢(u) be any weight of the RSOS model,
that is, { = «,8,y,8. Then, § = ¢ (u), {f’ = ¢§(u + K), and
¢ = §(u — K). With this notation, we can give the weights
of the composite plaquettes for ¢ = K:

[+2 [+1 l
I+1 -1 =ofa opma ), (AD)
I -1 1-2
I+1 l [—1
42 I =B850 ), (A2)
I+1 I+2 I+1
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I+1 1 I—1 I—1 1 1+1
) [-2 = a]tla[__lal(sl—l (\)7 l [+2 = O[:HO[I__‘_I()[[‘}/H_] (\), (A3)
I—1 1-2 1—1 I+1 1+2 [+1
I—1 1 141 I+1 1 1-1
1-2 I =B By D, 1+2 [ =B s X, (A4)
I—1 1 -1 I+1 1 141
I+1 1 I—1 I-1 1 I+1
l I = Sfotf_]otlﬁl,l (X), [ l = leral:_]alﬁlJrl (x)v (AS)
I—1 1-2 [—1 I+1 142 1+1
I—1 1 141 I+1 1 1-1
1-2 I =B B (X, I+2 I =B B (X, (A6)
I—1 1 1+1 I+1 1 I-1
I 1+1 1 I 1-1 1
I+1 I+1 =80 B X, -1 I=1 =yl 88 X), (AT)
I 1—-1 1 I 1+1 1
I 1+1 1 I I+1 1
-1 I+1 =85 ,7,8 ), 1—1 -1 =ofa B ), (A8)
I 1—1 1 I 1+1 1
I 1+1 1
[+1 I-1 =ofa s OV (A9)
I 1—-1 1

We now focus on the composite plaquettes for which the internal height is not fixed by those of the boundary in general and
hence takes two different values. The composite weight is a sum of two terms, the first term corresponding to the internal height
being [ 4 1 and the second one to the internal height / — 1:

[+1 1 [+1 I—1 1 1—1
l l =y Y 8+ BB l l =B B o) + 878 vl (A10)
I+1 1 141 =1 1 I-1
I+1 1 1-1 I-=1 1 1+1
! I =By st +8 B (D, ! I =y Brar+ B8 v (D). (AlD
I+1 1 1+1 I—=1 1 1-1
I—1 1 1+1 I+1 1 1-1
l l =¥y S+ B B auvi—r (N, l l =B B Sy + 88 i (N,
[+1 [ [+1 [—1 1 -1

(A12)
I+1 1 [—1 I—1 1 I+1
! I =B B 8 + 575 of, [ I =v'v o+ BB v (A13)
I—1 1 1+1 I+1 1 1-1
[—1 1 [—-1
l l = By b + 8 B viciw (). (A14)
[+1 [ [+1

We find that the total number of possible composite plaquette types is 66. The total number of plaquettes depends on the
value of r = k + 2, as is the case in the RSOS model.
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APPENDIX B: PROPERTIES OF CORNER TRANSFER
MATRICES IN DIFFERENT DOMAINS

To find out the properties of CTMs near the boundaries
of different domains we need to calculate the weights of the
composite model in those limits.

1. u — 0 limit

Using the properties of the elliptic 6 functions it is
straightforward to show that the weights of the RSOS model
in the # — O limit are

a(u=0)=1,
vi(u=0)=1,

The RSOS wights with shifted fugacities, ¢ = K = nr,
have the form

Bi(u =0)=0,
Si(u=0)=1.

(BI)

_ h(2n —nr)
otl+(u=0)= —o; (u=0)= #,

Bl =0)=—p (u=0)
_ hGur) {p[2n( — DIA[29( + D)2

- . (B2
h(2n) h(2nl)
N o e _h(2nl+77r)
H=0) =~y =0 =5 =0 = TR
_ _ h(2nl — nr)
WW=®=—&W=®=MW=®=—ﬁZ#L

We are able to show that in this limit all off-diagonal (NE-
SW asymmetric) weights of the composite model are zero
and only diagonal (NE-SW symmetric) weights survive. This
implies that the CTMs A and C are diagonal in this limit.
Of the 66 different type of plaquettes, 50 are off-diagonal.
Of these 50 type of plaquettes, 42 are trivially zero in the
limit u — 0, because they contain a factor g;(u = 0) = 0. The
remaining plaquettes are those in Eqs. (A11) and (A14), and
they are zero because of the relations between the weights
given in Eq. (B2). As an example, we have for the plaquettes on
left hand side of Eq. (A11): B, )/1_812+1 + 8,4'/31_0112 = ﬂfyl_ +
5B =BT8 — 8B =0.

The weights of all the diagonal plaquettes turn out to be
the same. For the weights which only have one contributing
term, we immediately find W, = —(h(i?T_n')"))z. The weights of
the diagonal plaquettes which consist of two terms read W, =
—(”ﬁ'ggg”)z — (h(zﬁgzgn,))%(znl — 2m)h(2yl + 2n). By mak-
ing use of the following identity for elliptic functions (see, for
instance, Chapter 15 of Ref. 9),

h2(2n — nr)h®(2nl) = K222yl — nr)
+ h2(r)h[2n( — DIR[0 + 1],
(B3)

we find that W, = W,. Thus, the general weight of the
composite model reads, in the limit u — 0,

W(ly,12,15,14,15,16,17,13)(u = 0)

_ (h(Zn —r)

2
e ) 81,,15013,1, 61, 15 - (B4)
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Using the definition of U; [Eq. (40)], we can show that
h(2n —nr)
h(2n)

such that U, is a diagonal matrix. From the above and Eq. (42)
it follows that

2
Ujnr(u=0) =— < ) s, (BS)

Au=0=Cu=0)=1, (B6)

where we have dropped the irrelevant multiplicative factor,
which only depends on r.

2.u — 2+ r)n limit

We show that in the limit # — (2 4 r)n, the CTMs B and
D are diagonal. For unshifted weights of the RSOS model in
the u — (2 + r)n limit we get

il = Q-+ rnl =~ 00,

Bilu=(+r)]= _h(zziz—n))w) {h[2n(— 1})3(1;572;)7(z+1>]}1/2’
il = 2. ) = =MD
Bilu = 2 +rm) = h[zn(lh(;;l))_ i (B7)

The shifted weights take the form

of [u=Q+rml=co [u=Q2+rn=0,
B lu=@Q+rml=—p[u=Q2+rn
{h[2n(1 — DIR[2n( + D]}/
- h(2nl) ’
h[2nd + 1)]
h@2nl)
h2nd — 1))
nQnl)
(B8)

Vilu=Q+rml =~y u=QC+rnl=

’

8f[u=(2+r)n] =6 [u=2+rml=-

Because oz;r[u =Q2+r)n] =0, [u=Q2+r)nl =0, most of
the NW-SE asymmetric weights are zero. The remaining NW-
SE asymmetric weights can be shown to be zero, by making
use of the properties Eqs. (B7) and (B8). This shows that for
u — (24 r)n, the CTMs B and D are diagonal.

As was the case for u = 0, the plaquettes which contribute
in the limit u — (2 + r)n fall into two classes, the ones with
one term and those with two terms. Again, the plaquette
weights of these two classes can be shown to give rise to the
same weights, by making use of the elliptic function relation
in Eq. (B3). The final form of the weights is slightly more
complicated than in the case u = 0 and does, in fact, depend
on the heights,

Wyl 15 L, s, L, 17, Is)[u = (2 + r)n]

_ [h(2nl3)h(2ni)]' > (h(277 —nr)
h(2nl) h(2n)

2
) 81,,1501,,1, 815,15 -
(B9)
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Using the definition of V; [Eq. (41)], we can show that

hen—n\* -~ -
Vilu=Q2+r)n] = - (;Tn)n> VajoiVajsaV 2,
(B10)
where we introduced
(Vo = [RQ20IHT28QLY). (B11)

From the above and the definition of the CTMs [Eq. (42)], it
follows that

Blu=Q+ryl=Dlu=Q+rn =V, (BI2)

where we again dropped the irrelevant (/; independent)
multiplicative factor.

3.u — (2 —r)plimit
In this limit all the weights of the RSOS model just change
sign compared to the u — (2 4 r)n limit. Hence, the weights
of the composite model are unchanged and we find
Blu=Q2—rnl=Dlu=Q-rnl=Vi. (BI3)

APPENDIX C: WEIGHTS OF THE COMPOSITE MODEL
IN THE p — 1 LIMIT

To derive the integer function N(I), we consider the limit
p — 1, where weights of the composite model, and hence
the CTM A, become diagonal. For 0 < p < 1, employing the
conjugate modulus transformation, the function 4(x) can be
written in the following way?®:

7 — K)? -
h(u) = —— | E UK Wy, Cl
() TeXp[ KK } (e y) (&)
where
, K & 1 —y"?
y = e—4nK/K, T=— —yz’ (C2)
K ol 1+ yn/
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and the function E(z,x) is Jacobi’s triple product

E@zx)=]]d—x""20 —x"z7)(1 —x"). (C3)

n=1

Then the weights of the RSOS model have the form

o =V glz 12 E(xwil’xr)v
81-181+1 E(x,x")
p = B8 XEG ) EGT 2\ E(w.x")
: 87 wE2(x! x") E(x,x")’
g1\ EG'w,x")
v=vl— ) /w7
g E(x!,x")
2 L,—1 ,r
“\E ,
5= (82 By -
g E(x!,x")
where
x = e Ky = e 2mu/K
(C5)
Tunl — K)?
=exp|———|.
81 p 8K K’

and v is a constant independent of [.

In what follows, we show that in the limit of p — 1 and
w — 1 the weights of the composite model become diagonal
(similar to the RSOS model). Itis straightforward to see that the
limit p — 1 implies that x — 0, since K’(p — 1) diverges.
To find out the limiting values of the weights, we use the
following properties of the function E(z,x):

In this limit the weights of the RSOS model (unshifted as well as shifted) can be written as

r=1 + o+l 3-r
aZ:wZ»" al = —Ww rx4’
_r=1 1 + l-r 3-r
B=0-ww >x2, fr=wrx7,
1420—r  1420—r
w2 X 4
1420—r + 1 1
yy=w V) = wz,-(l—;))m
L420-3r  1-2i4r
—w  2r Xx 4
1-21—r 142
—w 2r x 4
1=21+r 1 1
+ o 1 1
= 2 = — =
S=w > 8, wr (] w))“
1-24r  1-24r
w2 X 4

. ; l—w [=0,
lim E(x'w,x") = (Co)
x—0 1 1<Ii<r—1,
1 01 <r/2,
lim Ewx™2x) = 11wt 1=, (C7)
—wx"/* ! r/2 <l<r—1,
—wx!7"?2 01 <r/2,
lim E(wx™?xy=11-w 1 =r/2, (C8)
1 r/l2<l<r—1.
og; = w%xl%,
,31_ = _w]T’rxl%7
I <5, Y Tl S Y z,
I=5 oy =jwr(—wxt =3
l - r wl+§/—7rx717421+r l - r
. " > (€9)
r 124 i4der P
| < 75 w r x 4 l < 75
l=73, 8, = wr (1 — w)x~3 l=3,
r 1-2143r —1-214r r
l>§, —w > x4 l>§.
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Using the limits above and taking into account the exact
forms for the composite weights (see Appendix A), we are able
to show that the diagonal weights become much larger than the
off-diagonal ones. In particular, the leading x behavior of the
weights of the diagonal plaquettes (those which are NE-SW
symmetric) is given by x'~"/2,in the limit x — 0. We explicitly
checked that all the off-diagonal plaquettes have weights with
a leading exponent of x strictly larger than 1 — r/2, showing
that A is diagonal when p — 1. So in this limit we can drop all
the off-diagonal weights and only diagonal weights contribute
to the CTM:

W(ly, 1,15 14,15,16,17,13)

_ 813817x17r/2wul715\/4+5,I‘,75,6_,3511,,5 8,
81,815

1505.00,.0-  (C10)

The dependence on w of the weights in the limit p — 1 follows
from the form of the weights «;, etc., given in Eq. (C9),
combined with the form of the weights given in Eq. (C4).
Note that the exponent of w is always integer or half integer.

(n+1)(1b—1~el/4+8p_1 cSc.e8p.4)

Xm(a;b,c,d,e;q) = q 2

(4 Db+ 1—el 448y 11 cde.edp. 1)
2

+q

where we define X,,(a;b,c,d,e;q) to be zero if any of the
a,b,c,d,e lies outside of the range 1,2, ...,r — 1. In addition,
Xm(a;b,e,de;q) =0if |b—c|# 1, [c—d|# 1, |d —e| #
1. Finally, X(a;b,c,d,e;q) = q'4=¢V/4+3acdnadee if also |a —
b| = 1 and zero otherwise.

Using these recursion relations, one can obtain high-order
expansions for X,,(g), which allows one to identify the CFT,
by direct comparison to the CFT characters. The following
exact results were obtained in this way and hence not proven.

1. The case u > 0 (domain D)

For u > 0, we could identify the functions X,,(q), where
(a; b,c,d,e) correspond to ground-state patterns, as characters
of the coset model M”‘ﬁ% where r —2 =k > 3.
The ground states for u > 0 are discussed in Sec. VI A. The
fields in this model are labeled by CI>§;’*“, where ¢’ and t
correspond to the factors su(2);, s; corresponds to su(2);_»,
and s, to su(2);. Because of the constraint ' + ¢ + s; + s, =

0 mod 2, we can set ¢’ = 1 (both ¢ and 7 can take the values 1

[s1 (k+2)—s52k]*—4 +
_ 8k(k+2)
h(t,s1,82) = {[Sl(kﬂ)_xzk]z_z‘ N
8k(k+2)

1
2
1
8

Xm—2a;b—2,b—1,b,c;q)+¢q 2
Xm—2(a;b,b+1,b,c;9) +q

(s1—s2+2t) mod 4
4
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Inserting the above in the definition A in Eq. (42), we get
that

(m+1)/2
Ay = l_[ (Waj—1,bj,bj1,l2j12.02) .2 j41,
j=1
bj2.b2j43)) 8T (C11)
and
Ay = g w?PsD), (C12)

where we have dropped the irrelevant multiplicative factor
x'="/2 and ¢(1) is given in Eq. (60).

APPENDIX D: CONNECTION WITH CONFORMAL FIELD
THEORY FOR r > 5

In the case r > 5, we did not yet obtain explicit expressions
for the functions X,,(q) with m finite. However, the functions
Xm(q), with m odd, satisfy the following recursion relations
(m is odd by definition):

(m+1D)(|b—1—e|/4+8p_1 (dc,edp d)

Xpn—2(a;b,b—1,b,c;q)

(n+ )b+ 1—el[4+8p 11 cde.e8p. )
2

Xm—a(a;b+2,b+1,b,c;9),
(D)

and 2). Finally, sy =1,2,....,k—1land s, = 1,2,...,k+ 1.
Note that we use the height values to label the fields.

To make the connection between the labels (¢/,¢,s1,s2),
we assume that m =4p +3, with p an integer (the
case m =4p+1 is very similar). Because of the re-
lation X,,(a;b,c,d,e;q) = X,y(r —a;r —b,r —c,r —d,r —
e;q), we only have to consider two cases for the labels
(a;b,c,d,e). The function lim,_, o X4p43(a;b,b —1,b,b +
1;g) gives the character of the field dbtll’l’b’l. Finally, the
function lim,_. o X4p43(a;b,b + 1,b+2,b + 1;q) gives the
character of the fields ®}2*.

For completeness, we give the scaling dimensions of the
fields in the coset theory explicitly. This formula resembles the
formula for the scaling dimensions of the minimal models.*!

Finding the scaling dimensions of the fields in coset
conformal field theories is typically easiest done in a Coulomb
gas formalism.*? In the case at hand, the relevant Coulomb
gas was studied in Ref. 18. Based on those results we find
(by appropriately constraining the values of the electric and
magnetic charges)

for sy +symod2=0,
(D2)
for sy +spymod2=1.

The scaling dimensions satisfy h(3 — t,k — 51,k + 2 — 52) = h(t,s1,52), reflexing the fact that the fields Cszrtz/’_t”k*s‘ and Cbg;f*sl

are identified.
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2. The case u < 0 (domain D,)

For u <0, the system is described in terms of Zj
parafermions, and we find the following identification. The Z;
parafermion fields are labeled by two integers, ®;, where j =
0,1,...,k,and j + n = 0 mod 2. Two fields which only differ

in their n label by 2k are identified, o) = Cbi 4o In addition,
k

one has the identification CI){; = CDnjri, which is reflected in the
function X,,(q) via X,,,(a; b,c,d,e;q) = X,,(r —a;r —b,r —
c,r —d,r —e;q). We remind the reader that k =r — 2 and

that the parameters a, . .. e lie in the range 1,2, ...r — 1.

PHYSICAL REVIEW B 85, 115116 (2012)

For u < 0, the ground states are specified uniquely by
(a;b,c), because d = b and e = c (the ground states foru < 0
were discussed in Sec. VIB). Note that ¢ = b & 1. The label
a corresponds directly to the label j = a — 1. The magnitude
of the field label n is given by ¢ — 1, with a positive sign if
¢ = b+ 1 and a negative sign if c = b — 1. Thus, in general,
we find that lim,_ o g™V +I8X, (a;b,c,b,c;q7 ")
corresponds  to  the  character of the field
CDE‘C__ lh)(c_l), where the limit is taken over the odd
integers.
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