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Structure of spinful quantum Hall states: A squeezing perspective
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We provide a set of rules to define several spinful quantum Hall model states. The method extends the one that
is known for spin-polarized states. It is achieved by specifying an undressed root partition, a squeezing procedure,
and rules to dress the configurations with spin. It applies to both the excitationless and the quasihole states. In
particular, we show that the naive generalization where one preserves the spin information during the squeezing
sequence may fail. We give numerous examples such as the Halperin states, the non-Abelian spin-singlet states, or
the spin-charge separated states. The squeezing procedure for the series (k = 2,r) of spinless quantum Hall states,
which vanish as r powers when k + 1 particles coincide, is generalized to the spinful case. As an application of
our method, we show that the counting observed in the particle entanglement spectrum of several spinful states
matches the one obtained through the root partitions and our rules. This counting also matches the counting of
quasihole states of the corresponding model Hamiltonians, when the latter are available.
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I. INTRODUCTION

The theoretical study of the fractional quantum Hall (FQH)
effect has relied on model wave functions since its discovery.1

They provide an easy way to understand the physical properties
of an inherently hard quantum n-body problem. In addition,
having knowledge of the wave functions representing different
topological phases provides insight to the question as to
which topological phases can exist. Trying to fully classify
all topological phases is a tremendous task, but progress
has been made in the context of topological insulators and
superconductors (see, for instance, Refs. 2 and 3).

In the context of the quantum Hall wave functions,
progress also has been made in several ways. A popular and
successful approach has been to study model Hamiltonians
in combination with conformal-field-theory techniques. In
this approach, one studies the zero-energy ground states
of model electron-electron interactions, which give rise to
certain vanishing properties of the model quantum Hall wave
functions. The simplest example of this is the Laughlin wave
function (say, at filling ν = 1/3), which is the unique, densest
zero-energy ground state of the model interaction given by
the Haldane pseudopotential.4 Excitations of quantum Hall
states can be created by changing the flux. Upon increasing the
flux, one creates quasihole states, which still are zero-energy
ground states of the model Hamiltonian. These quasiholes
can have fractional charge,1 fractional statistics,5 and even
non-Abelian statistics, which was pioneered in Ref. 6. For
recent developments with regard to the non-Abelian Berry
phase, we refer to Refs. 7 and 8.

The model Hamiltonians, for which the quasihole states
are the exact ground states, only constrain the behavior of the
underlying electrons. Thus, it should be possible to infer the
properties of the anyons from the properties of the electrons
in the quantum liquid alone. This implies that, for model
quantum Hall states, there should be a “duality” between the
electrons and excitations. Such a duality has been observed
a long time ago already. In the context of the low-energy
Chern-Simons description of the Abelian Laughlin states, we
refer to Ref. 9 (see, also, Ref. 10 for a detailed account on the

edge-state version of this duality). Subsequently, this notion
has been extended to non-Abelian quantum Hall states (see, for
instance, Ref. 11). More recently, a seemingly related duality
was observed between the conformal-field-theory correlators
describing the electron and quasihole states.12

The notion of this duality is important because it implies that
it should be possible to deduce the properties of the excitations
from the ground-state wave functions, and therefore restricts
the number of wave functions that can describe topological
phases. In addition, it puts constraints on the underlying
(conformal-) field-theory description of topological phases in
the quantum Hall effect setting. Apart from this duality, there
is another, more practical, constraint that one can impose,
namely, requiring that the wave functions one considers are
eigenstates of a local model Hamiltonian. This constraint
allows one to effectively study the topological properties of the
state, and provides a way of uniquely defining (or specifying)
the state, by a small set of rules. We note that, for instance, the
successful Jain states13 do not satisfy this constraint, so this
is not a physical but rather a practical requirement to obtain a
more tractable, but still very rich and interesting problem. We
also stress that even if the state satisfies the duality and is a
ground state of a local Hamiltonian, this does not imply that
the wave function represents a genuine topological phase of
matter.7

Recent developments in generating candidate quantum
Hall wave functions gave rise to a framework based on
root partitions, squeezing, and highest weight conditions that
provides an elegant manner to address several candidate wave
functions. This includes the ground state, its quasihole,14,15 and
some aspects of quasielectron excitations as well as excitons16

(see, also, Refs. 17–20 for more details on quasielectrons and
excitions).

For the time being, the effort has mostly concentrated on
the spin-polarized systems. However, spinful FQH states are
relevant in many realistic cases. The additional spin degree of
freedom can be the true spin of the electrons, a layer index in
bilayer systems, pseudospin to handle valley degeneracy, or
spin-1/2 rotating ultracold fermions. With the success of root
partitions for spinless (or spin-polarized) systems, it is worth
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analyzing how this concept can be translated to the spinful
case.

The main goal of this paper is to give a set of rules, which
can be used to define model quantum Hall states, with spin (or
another internal degree of freedom) by specifying a so-called
“root partition” and a squeezing procedure, which is used to
define a Hilbert space. The model states are then obtained
by imposing highest weight conditions on this Hilbert space
for both the orbital and spin parts. The model states we are
considering in this paper can be uniquely defined in this
way in the case when no excitations are present. For such
a procedure to be meaningful, this procedure should also work
when (quasihole) excitations are present, i.e., in the case when
the number of flux quanta is increased, in comparison to the
state without excitations.

It is not a priori clear how to generalize the squeezing
procedure from polarized states to model states with spin (or
other “internal” degrees of freedom). There are, in principle,
several routes that one might take, but we found that only one
of them correctly generates all the ground states of the model
Hamiltonians, including the quasiholes states. Prior work21–24

has mostly focused on the Halperin25 or Haldane-Rezayi26

states. We show that this concept can be extended to other
known states such as the non-Abelian spin-singlet or spin-
charge separation states, but can also provide a way to obtain
new interesting states.

The outline of the paper is as follows. In Sec. II, we review
the squeezing procedure for the case of spin-polarized quantum
Hall states. In Sec. III, we explain how the root partitions
and squeezing technique can be extended to the spinful wave
functions. We give several examples in Sec. IV. Interesting
series of root partitions are described in Sec. V. It generalizes
the spinless series (k = 2,r), which include the Moore-Read,
Gaffnian, and Haffnian states. As an application of our results,
we then show in Sec. VI that the counting we have obtained for
the quasihole excitations matches the counting deduced from
the particle entanglement spectrum.

In Appendix A, we collect the requirements for a state to
be a spin-singlet state, and give the spin-raising and -lowering
operators explicitly. Appendix B briefly describes how the
various highest weight conditions can be implemented on the
(reduced) Hilbert spaces. Finally, in Appendix C, we collect
the formulas from the literature giving the number of quasihole
states for a set of model Hamiltonians that we consider in this
paper.

II. OVERVIEW OF SQUEEZING FOR POLARIZED
QUANTUM HALL STATES

Because of the importance of the quasihole states in the
spinful case, it seems prudent to review the spin-polarized case
and pay special attention to the model state in the presence of
quasihole excitations. Moreover, many of the spin-polarized
states can be viewed as particular spinful states with quasihole
excitations.

We focus our attention to those states that have a ground
state that can be uniquely defined by a squeezing procedure,
including the Laughlin,1 Moore-Read,6 and Read-Rezayi27

states, as well as, for instance, the Gaffnian28,29 and Haffnian30

wave functions.

Quantum Hall states in the lowest Landau level are,
apart from a geometry-dependent “confining factor,” given
by (anti)symmetric polynomials in terms of the coordinates of
the (fermionic) bosonic constituent particles. For simplicity,
we will be mainly considering bosonic states in this paper;
fermionic versions can trivially be obtained by multiplying
with an additional global Jastrow factor. An exception to this
rule will be fermionic states, which do not contain a Jastrow
factor of all particles, and these states can thus not be made
bosonic by removing an overall Jastrow factor.

Let us now start by reviewing the squeezing procedure
for polarized bosonic quantum Hall states. Being symmetric
polynomials, these states can be expanded in so-called “sym-
metrized monomials.” Symmetrized monomials are labeled by
partitions, or, equivalently, and perhaps more appropriate in the
context of quantum Hall states, orbital occupation numbers.

To be explicit, let us consider the orbital occupation
(n0,n1, . . . ,nNφ

), such that the lth orbital is occupied with
nl particles. The total number of flux quanta is denoted by
Nφ (we only consider the spherical geometry in this paper),

while the total number of particles is given by N = ∑Nφ

l=0 nl .
The total degree of the symmetrized monomial corresponding
to these orbital occupation numbers is d = ∑Nφ

l=0 l nl . The
partition μ partitions the total degree d and has nl rows of
length l. As an example, we take the orbital occupation (2,0,2),
which corresponds to a symmetrized monomial of total degree
four. The corresponding partition is μ = (2,2,0,0), where we
included the zeros, which indicate that the zeroth orbital is
doubly occupied. In addition, including the zeros ensures
that the length of the vector describing the partition equals
the number of particles. The elements of the partition μ

will denoted by μi . Now, the symmetrized monomial mμ

corresponding to μ is given by

mμ = S
[
z
μ1
1 z

μ2
2 , . . . ,z

μN

N

]
, (1)

where zi is the complex coordinate of the ith particle and
S denotes the symmetrization, which is normalized such
that each term in the symmetrization has coefficient one.
In particular, in the case of the partitions μ = (2,2,0,0),
μ = (2,1,1,0), and μ = (1,1,1,1), corresponding to the orbital
occupations (2,0,2), (1,2,1), and (0,4,0), respectively, one
obtains

m(2,2,0,0) = z2
1z

2
2 + z2

1z
2
3 + z2

1z
2
4 + z2

2z
2
3 + z2

2z
2
4 + z2

3z
2
4,

m(2,1,1,0) = z2
1z2z3 + z1z

2
2z3 + z1z2z

2
3 + z2

1z2z4

+ z1z
2
2z4 + z1z2z

2
4 + z2

1z3z4 + z1z
2
3z4

+ z1z3z
2
4 + z2

2z3z4 + z2z
2
3z4 + z2z3z

2
4,

m(1,1,1,1) = z1z2z3z4.

As stated above, any symmetric polynomial in a certain
number of variables can be expressed in terms of symmetrized
monomials

�sym({zi}) =
∑

μ

cμmμ({zi}) . (2)

For comparison, antisymmetric wave functions describing
fermions can be expanded in antisymmetric monomials (i.e.,
Slater determinants), which are written as slμ = Det(z

μj

i ).
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Inspired by quantum Hall states on a spherical geometry,4

we assign an orbital angular momentum lz to each orbital.
We choose the convention that the lz quantum numbers of
the orbitals are given by (−Nφ/2, − Nφ/2 + 1, . . . ,Nφ/2 −
1,Nφ/2), i.e., the orbital corresponding to z0 has the lowest
angular momentum −Nφ/2. With this convention, we have
that the angular momentum operators are given by

L− =
N∑

i=1

∂zi
, Lz = NNφ/2 −

N∑
i=1

zi∂zi
,

(3)

L+ =
N∑

i=1

Nφzi − z2
i ∂zi

.

With these preliminaries in place, we can now explain how
various model states can be completely specified by a few
simple rules. First, for all states, there is a unique “highest”
symmetrized monomial. The concept of highest can be defined
in a few different, but equivalent, ways. In terms of the orbital
occupation numbers, all the orbital occupation numbers of the
symmetric monomials present in the expansion of the states
can be obtained from the highest one by squeezing particles
inward (such that all the symmetrized monomials have the
same angular momentum). In terms of the orbital occupation
numbers, the squeezing process takes the following form.
Taking two particles (assumed to be bosons for now) in orbitals
i and j , with i < j − 1, we move these particles to orbitals
i + 1 and j − 1, respectively. Explicitly, if one starts with the
orbital occupation (n0,n1, . . . ,ni,ni+1, . . . ,nj−1,nj , . . . ,nNφ

),
one ends up with (n0,n1, . . . ,ni − 1,ni+1 + 1, . . . ,nj−1 +
1,nj − 1, . . . ,nNφ

) after squeezing particles in orbitals i and
j . In the case of spinless fermions, one needs that i < j − 2,
as well as ni+1 = nj−1 = 0, because of the Pauli principle.

It was realized by Haldane and Bernevig14,31 that many
model quantum Hall states can be written as a single Jack
polynomial (with negative parameter). Such Jack polynomials
had been studied in the literature32 and indeed have a highest
root configuration.

Alternatively, this highest orbital occupation (at least for
states in the absence of quasihole excitations) also corresponds
to that part of the wave function that survives if one puts the
wave function on the cylinder, and takes the thin-cylinder (or
Tao-Thoules) limit.33–35 In this limit, only those states that
maximize

∑Nφ

i=0 n2
i survive.

Finally, in mathematical terms, one says that the highest
partition dominates all the partitions corresponding to sym-
metrized monomials present in the wave function. A partition
μ dominates a partition λ if λ can be obtained from μ by
successive squeezing operations on μ. If there exists a highest
dominating partition (which is not completely unsqueezed),
one can reduce the sum over partitions μ in the expansion
in terms of symmetrized monomials over those partitions μ,
which are dominated by the root partition λ, which is denoted
as μ � λ:

�({zi}) =
∑
μ�λ

cμmμ({zi}) . (4)

The existence of a dominating partition, which is smaller
than the completely unsqueezed partition, means that one can

define a reduced Hilbert space by taking this highest partition
and obtaining all the states in the reduced Hilbert space by
using the squeezing operation successively. In general, this
reduced Hilbert space is significantly smaller than the full
Hilbert space, which can be exploited in explicit calculations.

We will now explain how one can completely specify a
large set of model quantum Hall states, first in the case when
no quasihole excitations are present, and then in the presence
of quasiholes. The starting point is the model Hamiltonian,
which will be used to obtain the highest, or root partition.
For the (bosonic) Read-Rezayi states,27 which we will take as
an example throughout this section, the model Hamiltonian
simply gives a positive energy any time k + 1 particles
are coincident. In the thin-cylinder limit, this interaction
translates to an assignment of a positive energy every time
two neighboring angular momentum orbitals have a total
occupation that is bigger than k. One can show, for instance,
by an explicit calculation using the thin-cylinder limit that the
root partition, in the absence of quasihole excitations, is given
by (k,0,k, . . . ,0,k) (see Refs. 36 and 14). To obtain the full
Read-Rezayi state, one constructs the (reduced) Hilbert space,
which contains all those symmetrized monomials, which can
be obtained from the one with root partition (k,0,k, . . . ,0,k)
by symmetrically squeezing inward. Total angular momentum
is a good quantum number, and because we are looking at a
state without excitations, we have an L = 0 state. Note that,
indeed, the root partition has Lz = 0. To obtain the L = 0
states in the reduced Hilbert space, one needs to impose
the condition L+� = 0. Because the Read-Rezayi state is
the unique, highest-density state that vanishes when k + 1
particles come together, it is ensured that this procedure will
completely determine the coefficients of the monomials that
form a basis for the reduced Hilbert space.

We will now focus on constructing the Read-Rezayi states
in the presence of quasiholes. We will only be interested
in those parts of the wave functions that depend on the
coordinates of the underlying particles. Increasing the flux
will lead to the introduction of quasihole excitations. The
ground state of the model interaction will, in general, be
degenerate. For the Abelian Laughlin state, there is a so-called
orbital degeneracy of the quasihole excitations. In the case of
the non-Abelian quantum Hall states, there is an additional
intrinsic degeneracy, coming from the non-Abelian nature
of the states. This degeneracy is present, even when the
quasiholes are completely localized (in which case the orbital
degeneracy is absent). We should note that the explicit counting
of states in the presence of quasihole excitations has been
studied extensively, resulting in an explicit counting formula,
from which all the angular momentum multiplets can easily
be obtained. For details on these counting formulas for various
model states, we refer to Refs. 37–40.

To determine which angular momentum states are present
for a given number of quasiholes, and to obtain these states
explicitly, one can also use the above squeezing procedure.
First, one needs to obtain the root partitions for the various
angular momenta Lz. The highest angular momentum is of
course obtained by “shoving” all particles as far as possible
to the highest angular momentum orbital as possible, i.e., as
allowed by the model Hamiltonian. This will, by definition,
also be the state that survives in the thin-cylinder limit. The
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root partitions of the states at lower angular momentum are
obtained by successively moving a (or the) particle with the
lowest angular momentum to lower angular momenta. Once
this particle is in the lowest angular momentum, one takes the
next particle that has lowest angular momentum and moves it
to lower angular momenta (of course, in such a way that one
does not violate the interaction). One stops with this procedure
when, in the following step, one would obtain a state with
negative Lz. By construction, the states described above will
survive the thin-cylinder limit (within the corresponding Lz

sector). As an example, we will look at the (ν = 1 bosonic
Moore-Read state) for six particles, with �Nφ = 2 added flux
quanta, or four quasiholes. In this case, one has the following
root partitions for the various angular momenta:

(0,0,2,0,2,0,2) Lz = 6,

(0,1,1,0,2,0,2) Lz = 5,

(1,0,1,0,2,0,2) Lz = 4,

(1,1,0,0,2,0,2) Lz = 3,

(2,0,0,0,2,0,2) Lz = 2,

(2,0,0,1,1,0,2) Lz = 1,

(2,0,1,0,1,0,2) Lz = 0.

To determine the number of multiplets with L = l, one takes
the root partition corresponding to this sector and constructs
the associated reduced Hilbert space by squeezing. On this
Hilbert space, one acts with the constraint L+� = 0. This will
give a set of equations on the coefficients of the basis states.
The number of nontrivial solutions of this set of equations is
the number of L = l angular momentum states. After having
obtained these highest weight states, with Lz = l, it is a simple
matter to obtain the other states in the same multiplet by acting
with L−.

III. SQUEEZING RULES IN THE
MULTICOMPONENT CASE

After having reviewed the squeezing rules in the one-
component, spin-polarized case, we now turn our attention
to the main topic of this paper, the squeezing rules in the
multicomponent case. The additional degree of freedom could,
for instance, be a layer or valley degree of freedom, but in
this paper, we will focus on spin-1/2 particles. Of course, the
considerations apply to more general, multicomponent states
as well.

As in the spinless, or polarized case, we will be concerned
with model Hamiltonians, which have a unique, zero-energy
ground state, in the absence of quasihole excitations.

In the case of bosonic states, the quantum Hall states
are symmetric in the coordinates of the several components
separately, which implies that we can expand them in the
following way in terms of symmetrized monomials:

�({z↑
i ,z

↓
j }) =

∑
μ,μ′

cμ,μ′mμ({z↑
i })mμ′({z↓

j }) , (5)

where the z
↑
i and z

↓
j are the coordinates of the spin-up and

-down particles, respectively, and the cμ,μ′ are coefficients.
For fermionic states, one writes the states in terms of Slater
determinants instead. The main point that we address in this

section is how one can use squeezing to reduce the Hilbert
space [i.e., to identify a large class of coefficients cμ,μ′ in
the expansion in Eq. (5) which are zero]. Equipped with this
reduced Hilbert space, we will again (as in the polarized, one-
component case) explain how to explicitly obtain the various
quasihole states (and, hence, also the number of quasihole
states present at a given flux).

A. Some considerations about root configurations

The main objective will be to find a generalization of the
squeezing rules of the polarized case outlined in the preceding
section to the spinful case for several model states.

In the preceding section, we explained that, for the ground
state [i.e., in the absence of (quasihole) excitations] for several
model states, there is a unique partition, the root partition,
from which all the other basis states could be obtained
by successively squeezing particles inward in all possible
ways. This root configuration was identical to the unique
root configuration of the ground state, which survived in the
thin-cylinder limit.

In the spinful cases, there are, in general, several configu-
rations that survive the thin-cylinder limit because this limit is
insensitive to the spin (or other internal) degrees of freedom.
Some of these configurations might be forced to have zero
coefficient due to the explicit form of the model Hamiltonian.
Thus, it is not a priori clear how to generalize the squeezing
procedure to the spinful case. In fact, one can think of several
ways. Here, we will discuss the only procedure we found to
work for every model state that we considered.

Let us take an explicit example to explain our considerations
and focus on a simple spin-singlet state, the Halperin-(221)
state25 [using later the abbreviation (221) state] for spinful
bosons, with filling fraction ν = 2/3. This state is written as

�(221)({z↑,z↓}) =
∏
i<j

(z↑
i − z

↑
j )2(z↓

i − z
↓
j )2

∏
k,l

(z↑
k − z

↓
l ), (6)

where the z
↑
i and z

↓
i denote the complex coordinates of the ith

spin-up and -down particles, respectively.
The (221) state is the ground state of a local Hamiltonian,

which can be written in terms of Haldane pseudopotentials. In
particular, this Hamiltonian projects onto states in which no
two particles of the same spin have angular momentum less
than two, and no two particles of opposite spin have relative
angular momentum zero. These properties can be read off from
the wave function (6).

Let us denote by Pi,j (L,S) the projector, which projects
onto (i.e., penalizes) the state in which particles i and j have
relative momentum L, and have overall spin S. In terms of
these projectors, the model Hamiltonian can be written as

H(221) =
∑
i<j

Pi,j (0,0) + Pi,j (0,1) . (7)

The sum here is over all pairs of particles, irrespective of their
spin. We remind the reader that we are dealing with bosons,
so we do not have to add the projector Pi,j (1,1).
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For completeness, we quickly introduce the general
Halperin-(mmn) states, which take the form

�(mmn)({z↑,z↓}) =
∏
i<j

(z↑
i − z

↑
j )m(z↓

i − z
↓
j )m

∏
k,l

(z↑
k − z

↓
l )n .

(8)

For m = n + 1, these states are singlet states. In general, they
are the densest zero-energy ground states of the interaction
(note that the projectors now project onto Sz states)

H(mmn) =
∑
i<j

[ ∑
0�p<n

Pi,j (p,Sz = 0)

+
∑

0�q<m

Pi,j (q,Sz = 1) + Pi,j (q,Sz = −1)

]
.

(9)

We return to the question of identifying root configurations
of spinful wave functions by considering the bosonic (221)
state. Because, in this example, no orbital can be occupied by
two particles, we will use the following notation. If the ith
orbital is occupied by one spin-up particle, we write ni = ↑
and ni = ↓ for a down particle. An unoccupied orbital simply
has ni = 0.

It has been shown that, in the thin-cylinder limit, the states
that survive are those that have electrons in neighboring sites
that form singlets, separated by an empty site.41 In parti-
cular, there are four configurations of the (221) state of four
particles that survive in the thin torus limit, namely,

(↓,↑,0,↓,↑), (↓,↑,0,↑,↓),
(10)

(↑,↓,0,↓,↑), (↑,↓,0,↑,↓).

The partitions of the form

(↑,↑,0,↓,↓), (↓,↓,0,↑,↑) (11)

are absent in the (221) state because two particles of equal spin
have a minimal relative angular momentum of two, as in the
bosonic Laughlin state with ν = 1/2.

We will show in the next section how the configurations
(10), which correspond to states that survive in the thin-
cylinder limit,41 can be used as root configurations to obtain
the reduced Hilbert space.

B. Squeezing rules for spinful states

Our strategy to uniquely specify spinful states will follow
the polarized case as closely as possible, namely, we will try
to find a single, or several, root partitions from which the
others can be obtained by squeezing. On this restricted Hilbert
space, we furthermore impose the highest weight condition
L+� = 0. If the state is a spin-singlet state, obeying SU(2)
invariance, we will impose the additional condition S+� = 0.
As we already pointed out, there are, in principle, several
ways of doing this. In the following, we will give a set of
rules, which we found to uniquely define a large class of
model quantum Hall states, including the spin-singlet Halperin
state, the non-Abelian spin-singlet states proposed by Ardonne
and Schoutens (AS),39,42 the Haldane-Rezayi state,26 and a
non-Abelian state exhibiting spin-charge separation,43 which

we will denote by the acronym “SCsep.” A lesser-known
fermionic spin-singlet state that can be constructed this way
is the product of a permanent and a complete Jastrow factor
�SFPer = Per( 1

z
↑
i −z

↓
j

) × �(111), a state that was studied by Read

and Rezayi.37

As examples of states that are not SU(2) invariant, we
mention the (pp0) states with p > 1, and the bosonic Sz = 0
state �SBper = Per( 1

z
↑
i −z

↓
j

) × �(221). Many of the states we just

mentioned turn out to have root configurations that are closely
related. We will come back to this interesting issue in Sec. V.

We remark that, although the spin-singlet composite
fermion states do obey a squeezing principle, it is not possible
to uniquely define these states by imposing constraints on the
reduced Hilbert space. The reason behind this is the same as
for the polarized composite fermion states: they are not the
unique ground states for any local model Hamiltonian.

We will now describe the procedure to generate the model
states, which we divide in a few steps.

(i) First, one needs to decide which root configuration
to use. This can simply be a choice or derived from a
model Hamiltonian. In this root configuration, one completely
ignores the spin or internal degree of freedom. For spin-
1/2 fermions, the maximal occupation number in the root
configuration is two; for spin-1/2 bosons, there is no such
constraint.

(ii) To construct the reduced Hilbert space, one starts by
constructing all the possible states one can obtain by squeezing
from the root configuration obtained in (i). Still, one does not
take the spin degree of freedom into account [apart from the
restriction in the case of fermions, as in (i)].

(iii) Continue by taking all states obtained in (ii) and
distribute the spin degree of freedom in all possible ways.

(iv) Impose the constraints coming from the Hamiltonian,
which are not taken into account already.

(v) Impose the applicable highest weight conditions. This
always includes L+� = 0. If the total spin is a good quantum
number, one also needs to impose S+� = 0.

Some remarks about these steps are in order here. The
procedure we employ is to first strip off the internal degrees of
freedom, perform the squeezing, and reintroduce the internal
degree of freedom. Although we seem to be working in a
roundabout way, this procedure is, in fact, necessary to obtain
a large enough reduced Hilbert space. By this, we mean that
we would like our procedure to work for all known model
states with internal degrees of freedom.

An example of a state for which the naive procedure does
not work is the Halperin-(332) state. One of the putative root
configurations reads as (↓,0,↑,0,0,↓,0,↑,0,0,↓,0,↑), while
the other seven are obtained by replacing ↓,0,↑ with ↑,0,↓
in the various locations. If one starts to squeeze the up and
the down particles from these root configurations, one never
obtains a configuration like (↑,0,0,↑,↓,0,0,↓,0,0,↑,0,↓),
which is nevertheless present in the expansion of the (332)
state. Our procedure overcomes this problem.

The fact that we first drop the internal degree of freedom and
later reintroduce them in all possible ways gives sometimes rise
to basis states that actually are not allowed by the Hamiltonian.
A simple example is the (221) state, in which the basis states
in Eq. (11) have zero coefficient. This problem can be dealt
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with in a simple way by giving these basis states, which are not
allowed because of the Hamiltonian zero coefficient by hand.
This typically only involves a low number of basis states and
only the first few orbitals, depending on how complicated the
Hamiltonian is. Typically, the number of constraints coming
from the highest weight L+� = 0 condition is much bigger. In
fact, explicitly setting coefficients to zero reduces the number
of variables one has to solve for. Sometimes, one does not
even have to set these coefficients to zero by hand because
these constraints are incorporated in the condition L+� = 0.
Examples are the (221) state and the AS states. On the other
hand, for the Haldane-Rezayi and SCsep states, one has to
take additional constraints coming from the Hamiltonian into
account explicitly.

The squeezing rules we presented above can be used
for states without quasiholes present as well as states with
quasiholes. The only difference lies in the root configurations
one starts with. One obtains these in the same way as for
polarized states with quasiholes present. One considers the
root configuration disregarding the spin, with the appropriate
number of orbitals, and fills the orbitals such that the particles
have as high an angular momentum as possible, taking
the Hamiltonian into account. This automatically gives a
configuration with the highest Lz possible. The other Lz

sectors are obtained by hopping the particles to lower angular
momenta, as explained for the polarized case at the end of
Sec. II. This gives a set of root configurations, all at different
Lz. To obtain the reduced Hilbert spaces in the different Lz

sectors, one uses the same squeezing procedure we introduced
above. The number of states is then given by the number
of solutions to the constraints, namely, L+� = 0, as well as
S+� = 0 and the constraints coming from the Hamiltonian, if
applicable.

IV. EXPLICIT EXAMPLES OF SPINFUL
QUANTUM HALL STATES

In this section, we consider a set of (spinful) states for
which we checked that the squeezing procedure we presented
in the preceding section works, and gives the right number of
multiplets as given by the counting formulas. For singlet states,
this means that we obtain the right number of (L,S) multiplets,
while for states where total spin is not a good quantum number,
but Sz is, we obtain the correct number of L multiplets at each
possible value of Sz.

Underlying these counting formulas lies an exclusion44

(or generalized Pauli) principle, which limits the number of
particles that can occupy a certain number of adjacent orbitals.
In the polarized cases, the orbital occupations that satisfy the
exclusion principle are precisely those orbitals that are used
in the construction of the states using the squeezing principle.
We will show that in the spinful or multicomponent case, we
have exactly the same result. Namely, one can obtain the right
number of states from an exclusion principle, but to make the
correspondence work, one needs a procedure where one first
ignores the spin to generate a set of orbital occupations. Then,
one has to dress these orbital occupations with the spin degrees
of freedom, taking constraints coming from the Hamiltonian
into account. The amount of states obtained in this way is in
one-to-one correspondence to the number of states present for

the number of particles and quasiholes under consideration.
Below, we will go over the different states in more detail,
and state in detail the constraints one has to impose on the
configurations to obtain the correct counting. We checked
this in each case for a considerable number of particles and
quasiholes, but a proof for the claims made will be left for
another occasion.

A. (221) singlet states

As we pointed out in the preceding section, the bosonic
(221) state is the ground state of a local Hamiltonian that can
be written in terms of Haldane pseudopotentials. We repeat the
wave function here for convenience, and refer to the preceding
section for the model interaction [Eq. (7)]

�(221)({z↑,z↓}) =
∏
i<j

(z↑
i − z

↑
j )2(z↓

i − z
↓
j )2

∏
l,m

(z↑
l − z↓

m) .

(12)

The root configuration, which one should use to generate
this state, is closely related to the configurations that survive in
the Tao-Thouless limit (see Ref. 41 for this state). We already
discussed these configurations in the preceding section, where
we described the squeezing procedure in detail. In particular,
the configurations needed are the Tao-Thouless configurations,
but with the spin degrees of freedom removed, which leads to
configurations of the form (1,1,0,1,1,0, . . . ,0,1,1) in the case
of the ground states (i.e., states without additional quasiholes).
The various configurations needed for states with quasiholes
are obtained in exactly the same way as the configurations
of polarized states in the presence of quasiholes, which we
explained in detail in Sec. II.

The number of states generated in this way indeed form all
the ground states of the pseudopotential Hamiltonian described
above. The counting of the number of states has been described
in detail in the literature. Here, we will formulate this counting
in terms of an exclusion (or generalized Pauli) principle.44

To describe this exclusion principle, which can be used to
count the number of ground states for an arbitrary number of
particles and flux, we start by noting that the filling fraction of
the (221) state is ν = 2/3. So, we will be considering orbital
occupations in which no three neighboring orbitals contain
more than two particles. In addition, no orbital can be occupied
by two particles. By enumerating all the configurations that
satisfy these criteria, we obtain a set of configurations, which
can be grouped into a set of angular momentum multiplets. We
will now turn our attention to the question of how to “introduce
spin” to these multiplets.

We thus consider all possible ways to distribute spin over
the orbital configurations obtained from the rules above. Dis-
tributing the spins over the orbital configurations is subjected to
a constraint, namely, two neighboring orbitals can not contain
two particles with the same spin (or better, can not form
an S = 1 multiplet), which follows from the pseudopotential
Hamiltonian. Because the (221) state is SU(2) symmetric, this
implies that two particles occupying neighboring orbitals must
form a singlet pair.

The particles that are not forced to be part of a singlet pair by
this rule are free and can be part of an arbitrary spin multiplet.
To complete the counting, we thus need to know the number
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FIG. 1. The configurations enumerating the number of S = 0 states in the tensor product of six spin-1/2 particles.

of different s multiplets that the free spins can form. This is a
standard problem. If one has n spin-1/2 particles, the number
of s multiplets is given by

#(n,s) = 2s + 1

n/2 + s + 1

(
n

n/2 + s

)
. (13)

This completes the counting of the ground states of the model
Hamiltonian of the (221) state in terms of the exclusion
principle outlined above.

We checked that the above is in accordance with the
counting formula for the number of (quasihole) states given
the number of particles N and the total number of flux quanta
Nφ on the sphere. The number of flux quanta is given by
Nφ = 3N

2 − 2 + n
2 , where n = n↑ + n↓ is the total number of

quasiholes, and N = N↑ + N↓. Then, the number of states is
given by

#(221)(N,n) =
′∑

N↑ + N↓ = N

n↑ + n↓ = n

(
N↑ + n↑

N↑

)(
N↓ + n↓

N↓

)
, (14)

where the sum is over all possible ways of dividing N (and n)
into up and down particles. In addition, the sum is constrained
by the relation N↑ + n↑ = N↓ + n↓, which guarantees that
both spin species see the same amount of flux. Finally, the total
Sz quantum number of particular contribution to the number
of states is given by 2Sz = N↑ − N↓.

It will be useful in the following to give an alternative
description of the number of spin-s multiplets in the tensor
product of n spin-1/2 representations. One of the simpler ways,
out of the many ways possible, to show that this number is
given by Eq. (13) is as follows. The number of states with
a fixed, total value sz is given by ( n

(n + 2sz)/2 ). The number
of spin-s multiplets is then given by the number of states
with sz = s minus the number of states with sz = s + 1, or
( n

n/2 + s ) − ( n

n/2 + s + 1 ) = 2s+1
n/2+s+1 ( n

n/2 + s ).
For the non-Abelian generalization of the (221) state, we

will need a more graphical description of the number of spin-s
multiplets present in the tensor product of n spin-1/2 particles,
which goes under the name of the Rumer-Pauling rules.45,46

In this representation, all the n spin-1/2 particles are depicted
by lines, which carry the SU(2) s = 1/2 representation. For

convenience, we order the lines next to each other. Joining
two lines, as depicted in Fig. 1, means that the two spin-1/2
representations form a singlet (or valence bond). The total
number of spin singlets one can form out of n spin-1/2 particles
is given by the number of ways one can connect the n spins
pairwise, such that the connecting lines do not cross. The
number of such diagrams can easily be shown to be a Catalan
number, in accordance with Eq. (13). The total number of
spin-1 states can be found in a similar way, but this time,
one should leave two of the spin-1/2 particles unpaired, and
pair up the remaining ones.69 Again, the lines representing the
spin-1/2 representations can not cross one another. In Fig. 2,
we display the diagrams enumerating the spin-1 diagrams.
Analogously, there are five spin-2 configurations and only one
spin-3 configuration, with all spins unpaired.

B. Non-Abelian spin-singlet states

One can construct non-Abelian analogs of the (221) spin-
singlet states in the same way as one can generalize the
Laughlin ν = 1

2 state to the Moore-Read and Read-Rezayi
states. The Read-Rezayi (RR) states are labeled by a parameter
k, which characterizes the vanishing properties of the states
when one clusters the constituent particles. By concentrating
on the simplest bosonic state, one has that the RR-k state does
not vanish when k particles coincide, while the wave function
vanishes quadratically when k + 1 particles coincide. It turns
out that there is a unique, densest state with these properties.

The non-Abelian spin-singlet states42 are the spin-singlet
analogs of the Read-Rezayi states. The AS ground states also
have the property that they do not vanish when k particles
coincide (irrespective of their spin), while the wave function
vanishes quadratically (linearly) when k + 1 particles of the
same (mixed) type coincide. An easy explicit form of the
wave function uses the Cappelli form47 of the Read-Rezayi
wave functions, which is a symmetrized product of k bosonic
Laughlin 1/2 states. Similarly,48 one can write the AS states
as a symmetrized product of k (221) states

�AS,k({z↑,z↓}) = Sz↑,z↓ [�(221)({z↑
a ,z↓

a })
×�(221)({z↑

b ,z
↓
b }) . . . �(221)({z↑

k ,z
↓
k })],

(15)
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FIG. 2. The configurations enumerating the number of S = 1 states in the tensor product of six spin-1/2 particles.
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where the (221) wave function is given in Eq. (6) and Sz↑,z↓

denotes the separate symmetrization of the spin-up particles
on the one hand and the spin-down particles on the other. The
filling fraction of these simplest bosonic AS states is given by
ν = 2k

3 , which changes to ν = 2k
2kM+3 upon multiplication of a

complete Jastrow factor for spin-up and -down particles. For
future reference, we will write this factor as

∏
i<j (xi − xj )M ,

where x can denote the position of either a spin-up or -down
particle.

For k = 2, it is rather straightforward to write down an
interaction for which the (simplest bosonic) AS states are the
unique ground states. We will concentrate on the simplest
bosonic case M = 0. For k = 2, the interaction is a three-
body interaction, which does not depend on the spin of the
interacting particles, and is identical to the model interaction
having the (spinless) Moore-Read state as its ground state. In
particular, we can write

HAS,k=2 =
∑

i<j<k

Pi,j,k

(
0,

1

2

)
+ Pi,j,k

(
0,

3

2

)
. (16)

We do not need the term Pi,j,k(1, 3
2 ), because this term will not

give a contribution to the energy because we are dealing with
bosons. For arbitrary k, the interactions will be a k + 1 body
interaction, penalizing the coincidence of k + 1 particles.

After this short overview of the AS states, we turn our
attention to the root configurations, which survive in the
Tao-Thouless limit, and which are the configurations to be
used in generating the states (with or without quasihole
excitations) by using the squeezing procedure we presented
in this paper. Because the states can be written as a sym-
metrized product over k (221) states, it naturally follows
that the root configurations (after stripping the spin degrees
of freedom) can be written as (k,k,0,k,k,0, . . . ,0,k,k). We
have checked extensively that the number of states [or better,
(L,S) multiplets] generated from the root configurations via
our procedure to construct model states as explained in the
preceding section corresponds one-to-one with the counting
formula obtained from the underlying conformal field theory.
This counting formula precisely gives the number of (L,S)
multiplets, given the number of particles and flux quanta. In
Appendix C, we collect counting formulas for several model
quantum Hall states.

The number of states can also be obtained from an exclusion
principle, analogously to the RR and Halperin states. This
exclusion principle makes use of the structure of the root
configurations. As we did for the (221) state, we describe
the counting in the case M = 0; multiplication of the wave
functions by an overall Jastrow factor does not change the
counting, although the precise form of the root configurations
changes.

From the symmetrized expression for the AS states in
Eq. (15), one observes that every orbital can at most be
occupied by k particles, while every set of three consecutive
orbitals can at most be occupied by 2k particles. These rules
are enough to determine the possible angular momentum
multiplets for a given number of particles and number of
orbitals. The more interesting part of this problem lies in how
one has to “introduce” the spin degrees of freedom to the
obtained configurations.

In the Halperin states, no two up particles can occupy
neighboring orbitals, which forces two particles occupying
two neighboring orbitals to form a singlet. In the case of
the AS states, we instead have that two neighboring orbitals
can occupy at most k up particles. This means that if two
neighboring orbitals are occupied by k + 1 particles or more,
some of these particles will have to form singlets. Two
particles forming such a singlet have to occupy neighboring
orbitals. This follows from the fact that the AS states are
symmetrized products of (221) states, which allow, in their root
configurations, for maximally one particle per orbital. Upon
symmetrization, no singlets are formed in a single orbital. As
a result, we find that some particles occupying neighboring
orbitals are forced to form singlets.

We focus now on the remaining particles. If these particles
were free to form arbitrary multiplets, we could use Eq. (13)
to obtain the number of S multiplets for each L multiplet
we obtained earlier. However, the free spins, which are not
bound to form singlets, can not form arbitrary S multiplets
because we have the additional constraint that no singlet can
be formed on a single site. As such, the amount of S multiplets
actually depends on the precise distribution of the free spins
over the orbitals. To complete the description of the exclusion
principle for the AS states, we therefore make use of the
explicit diagrams enumerating the number of S multiplets,
given a number of (free) spin-1/2 particles, which we outlined
in the preceding section. Given these diagrams, in which all
the singlets are completely explicit, we can simply check if
they give rise to singlets on a single site for a particular
orbital occupation of the free spins. If so, the diagram does
not contribute to the number of (L,S) multiplets. By making
use of the rather simple exclusion principle for the (221) state,
and the fact that AS states are symmetrized products of these,
we were able to obtain an exclusion principle for the AS states.
We checked the results from this method against the known
counting formula derived from the underlying conformal field
theory (which also makes use of an exclusion principle) and
found complete agreement.

V. ROOT CONFIGURATIONS (2,0r−1,2,0r−1, . . . ,0r−1,2)

In the following sections, we concentrate on a set of
fermionic spin-singlet states for which the root configurations
are of the form (2,0r−1,2,0r−1, . . . ,0r−1,2), where 0r−1 de-
notes a sequence of r − 1 zeros. These states are interesting
because they are closely related to a set of spinless (or spin-
polarized), bosonic quantum Hall states at the same filling frac-
tion. In a recent paper,23 we explained this connection in detail
for the fermionic spin-singlet Haldane-Rezayi state and the
bosonic polarized Haffnian state. Both these states can be ob-
tained from the root configuration (2,0r−1,2,0r−1, . . . ,0r−1,2)
with r = 4. In the following section, we will consider r = 3,
giving rise to the bosonic, spin-polarized Gaffnian wave
function, while if one considers the same root configuration for
spinful fermions, one obtains a non-Abelian spin-singlet state,
showing spin-charge separated excitations. Finally, for r = 2,
the root configuration gives rise to the Moore-Read state as
well as a spin-singlet, fermionic permanent state.
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A. Haldane-Rezayi case

Let us start with the Haldane-Rezayi wave function,26

which is a fermionic, spin-singlet d-wave paired state, which
takes the form

�HR({z↑,z↓}) = Det

(
1

(z↑
i − z

↓
j )2

)∏
i<j

(xi − xj )2 , (17)

using the convention that the variables xi can stand for either
spin-up or -down particles. The filling of the Haldane-Rezayi
(HR) wave function is ν = 1/2, and originally, this wave
function was proposed to describe the ν = 5/2 quantum Hall
effect. Nowadays, we know that this wave function describes
the transition between a gapped strong paring phase and a
weak pairing d-wave singlet phase.49 A lot more is known
about the HR wave function, which we will not dwell on here,
but instead refer the reader to the literature.26,49–52

One property we would like to point out is that the wave
function does not vanish when a spin-up and a spin-down
particle coincide. The wave function vanishes, however, as a
fourth power when any three particles come together (when
two particles of the same spin coincide, the wave function
vanishes as a third power).

In the following, we will focus on the connection between
the HR wave function and the so-called Haffnian wave
function, first pointed out in Ref. 23. This connection has
its origin in the root configurations needed to generate both
states, as well as in the the generalized Pauli (or exclusion)
principle, which can be used to count the number of states.

Let us start by giving the interaction, for which the HR
state with filling fraction ν = 1

2 is the exact ground state.26 The
interaction assigns a nonzero energy to any two particles with
relative angular momentum 1. If one changes the exponent of
the Jastrow factor in Eq. (17) to q, with q � 2, the interaction
that will have the Haldane-Rezayi wave function as its unique
ground state at flux Nφ = qN − (q + 2) gives nonzero energy
to any two particles with relative angular momentum q − 1
or q � 3. We will, however, mostly be concerned with the
(fermionic) case q = 2. In terms of two-body projectors
Pi,j (L,S), the interaction for q = 2 can be written as

HHR =
∑
i<j

Pi,j (1,0) + Pi,j (1,1). (18)

To generate the HR wave function via our squeezing proce-
dure, one has to specify the root configuration (without spin!),
which for the case at hand can be described, for q = 2, as
follows. Each orbital is occupied by at most two particles (this
follows of course from the Pauli principle), and any sequence
of four consecutive orbitals can also at most be occupied by two
particles. This leads to the following most densely packed root
configuration (2,0,0,0,2,0,0,0,2,0, . . . ,0,2,0,0,0,2), corre-
sponding to filling ν = 1

2 and shift δ = 4 (the shift being
defined as Nφ = ν−1N − δ). To obtain the wave function,
we use the method outlined in the preceding section. The
only things we need to specify are the additional constraints
coming from the Hamiltonian. Two particles with combined
spin-1 can not have relative angular momentum 1. Indeed,
from the wave function, one sees that the minimal relative
angular momentum of two up (or down) particles is two.
For the squeezing rules, this implies that all configurations

with n
↑
0 = n

↑
1 = 1 or n

↓
0 = n

↓
1 = 1 get zero coefficient. With

this rule in place, we have specified all the rules necessary to
generate the zero-energy ground states of the model interaction
for the HR state, at any flux. We have verified that the
amount of zero-energy ground states corresponds exactly to the
counting of such states as performed on the sphere originally
in Ref. 37.

To formulate an exclusion principle, which can be used to
count the number of (quasihole) states for the Haldane-Rezayi
case, one has to follow the same strategy as for the Halperin-
(221) and AS states. One takes the root configurations with the
spin degrees of freedom removed and adds spin in all possible
ways consistent with the Hamiltonian. We will follow the
discussion of this as given in Ref. 23. In that paper, it was shown
that it does not suffice to start from the configurations that
satisfy the basic principle that each four consecutive orbitals
can be occupied by a maximum of two particles, as is the
case for the root configurations used to construct the state.
In addition, one needs to consider configurations of the form
(0,2,0,0,1) as well. The presence of these configurations was
confirmed by the results for the HR state on the thin-cylinder
limit.24 This latter paper also provided a counting formula for
(nonlocalized) quasihole states on the torus.

Following Ref. 23, it was found that to formulate an
exclusion principle for the Haffnian state, it was necessary
to consider these additional configurations. They take care of
the fact that the Haffnian is a so-called irrational state, with a
ground-state degeneracy that grows linearly with the number
of particles. For the results on the torus, we refer to Ref. 23 (see,
also, Ref. 24) and focus on the spherical geometry here. The
additional configurations can be described as follows. Every
time one has a ν = 1/2 Laughlin-type root pattern, namely,
1,0,1,0,1,0,1,0,1, one allows squeezing of two neighboring
particles, i.e., 0,1,0,1,0 → 0,0,2,0,0, as long as one does not
generate a sequence 0,1,0,0,2. Alternatively, one can think of
the configurations 0,2,0,0,1 as appearing symmetrized with a
0,1,0,0,2 configuration (but not separately counting the latter).
The basic configurations, combined with the additional ones,
do account for all the ground states of the model Hamiltonian
having the Haffnian as its densest ground state. This counting
was performed in Ref. 30.

To obtain the exclusion principle for the HR state, one
takes the configurations we just described for the Haffnian
and dresses them with spin in all possible ways consistent
with the model Hamiltonian. The Pauli principle implies that
an orbital occupied by two particles harbors a singlet. The
Hamiltonian implies in addition that the same is true for two
neighboring orbitals that are singly occupied, and even for
two next-nearest-neighbor orbitals that are singly occupied.
Thus, for a spin to be free, meaning that it could be part of an
arbitrary big spin multiplet, both its two nearest-neighbor and
its two next-nearest-neighbor orbitals have to be unoccupied.
Thus, the spin of the particle occupying the middle orbital in
the configuration 1,0,0,1,0,0,1 is free to be part of an arbitrary
large spin multiplet.

The rules given above suffice to count the number of ground
states of the HR model Hamiltonian at arbitrary number of
fluxes on the sphere. Namely, one takes all the configurations
allowed for the Haffnian state, and dresses them with spin,
in all possible ways consistent with the rules above. One
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determines which of the spins are forced to be part of a singlet.
The remaining spins form arbitrary big spin multiplets, with
a degeneracy given by, as explained in the preceding section,

2s+1
n/2+s+1 ( n

n/2 + s ), where n is the number of (free) spins and s

the spin multiplet.
In Ref. 23, it was explained that a similar reasoning indeed

gives the right ground-state degeneracy on the torus for both
the Haffnian and HR states. For the HR state, a conformal-
field-theory description has been worked out in Refs. 50–52.
The quasihole states can be counted by employing the same
exclusion principle. The generalized Pauli principle we de-
scribed here can also be used to count the number of states for
the Haffnian and HR state on the torus (see Ref. 23). Explicit
counting formulas for these cases were given in Ref. 24.

B. Spin-charge separated states

By considering the root configuration
(2,0,0,2,0,0,2,0, . . . ,0,2,0,0,2), which for spin-polarized
bosons gives rise to the Gaffnian wave function,29 one can
also construct a fermionic spin-singlet state. The state one
obtains in this way has been considered in the literature
before and goes under the name of the spin-charge separated
state because the state exhibits minimal quasihole excitations
without spin.43 The relevance of this state in the realm of
cold atomic gases was studied in Ref. 53. Interestingly, while
the Gaffnian state is described by a nonunitary conformal
field theory, the spin-charge separated state is obtained
from a unitary conformal field theory, which is a necessary
condition for a well-behaved, unitary theory describing the
edge excitations of the bulk, gapped phase.

The wave function of this state takes the form

�SCsep({z↑,z↓}) = Pf

(
1

xi − xj

)
�(221)({z↑,z↓}) , (19)

where the Pfaffian factor is with respect to all particles. This
state has filling ν = 2

3 , and the shift on the sphere is given by 3.
The interaction for which this state is the unique, zero-energy
ground state was worked out in Ref. 54, and can be written in
terms of three-body projectors55 Pi,j,k(L,S), assigning energy
according to the relative angular momentum and the overall
spin of the particles:

HSCsep=
∑

i<j<k

Pi,j,k

(
3,

3

2

)
+Pi,j,k

(
1,

1

2

)
+ Pi,j,k

(
2,

1

2

)
,

(20)

where we choose to set the coefficients of the projectors to
one. This Hamiltonian penalizes the closest approach, allowed
by the Pauli principle, of three up particles (say). In addition,
the two closest approaches allowed by the Pauli principle of
three particles that form a doublet S = 1/2 are also penalized.

To describe how we can construct this state by means of
our squeezing procedure, we have to specify the additional
constraints coming from the Hamiltonian. In this case, it turns
out we have to set the coefficients of all basis states that obey
n

↑
0 = n

↑
1 = n

↑
2 = 1 or n

↓
0 = n

↓
1 = n

↓
2 = 1 to zero. In this way,

we can generate all states by squeezing from the appropriate
root configuration, which satisfies the rule that every three
consecutive orbitals are occupied by at most three particles.

Solving the highest weight conditions for L and S gives, with
the additional constraints just given, the ground states of the
Hamiltonian (20).

We checked that the number of states generated by our
squeezing procedure indeed gives the correct number of
ground states. This counting was performed in Ref. 54; the
resulting counting formula will be reproduced in Appendix C.
As we did for the Haldane-Rezayi state, we will also
give an exclusion principle in this case, based on the root
configurations we employ to generate the (quasihole) states,
which can also be used to count the number of ground states
of the model Hamiltonian (20).

In contrast to the Haldane-Rezayi case, in the case at hand,
no additional patterns are required to reproduce the counting.
The procedure to arrive at the exclusion principle will be
equivalent to the HR case, namely, we take the patterns from
the related, polarized bosonic state and dress them with spins,
taking the constraints from the Hamiltonian into account. The
related polarized bosonic state is the Gaffnian. The exclusion
principle for the Gaffnian wave function is simply that one
allows all configurations, which satisfy the basic rule that
no three consecutive orbitals are occupied by three particles
or more. Taking these configurations, we assign spins in all
possible ways to each configuration. Each site occupied by
two particles will have to host a singlet. In addition, there
is an additional constraint originating in the Hamiltonian
and Hilbert space constraints. In particular, all configurations
with three particles of the same spin in any four consecutive
orbitals are to be discarded in the exclusion principle. This
puts a constraint on configurations such as (1,1,0,1) and
(1,0,1,1), which dictates that two of the three particles in these
configurations have to form a singlet. With these rules, one
can convince oneself that one indeed reproduces the number
of ground states of the model Hamiltonian.

C. Overview

In the previous sections, we pointed out that various states
can be related to each other via the root configurations that are
used to generate these states. This gave a relation between the
nonunitary Gaffnian and a unitary spin-charge separated state,
as well as a relation between the irrational Haffnian and the
nonunitary Haldane-Rezayi wave function. Here, we will give
a broader perspective by considering the root configurations
(2,0r−1,2,0r−1, . . . ,0r−1,2), with r an integer. These root
configurations can be used to generate spinless bosonic states,
spin-singlet fermionic states, as well as spinful bosonic states.

In Table I, we give an overview of the states one can
construct for r = 1,2,3,4. To generate the spinless boson
states, one simply uses squeezing to generate the reduced
Hilbert space from the appropriate root configuration, and
demands that the state is an L = 0 state. For the singlet
fermionic states, one in addition requires the states to be S = 0
states as well. Finally, to define some of the spinful bosonic or
fermionic states, one needs to impose that some of the states in
the reduced Hilbert space have zero coefficient. We list these
additional constraints separately below:

(i) S = 1/2 fermions, r = 3 [SCsep state]. Partitions
with n

↑
0 = n

↑
1 = n

↑
2 = 1 or with n

↓
0 = n

↓
1 = n

↓
2 = 1 have zero

coefficient.
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TABLE I. Table with the various states that one can define starting from the (2,0r−1,2,0r−1, . . . ,2) root configurations. A
dash indicates that there is no L = 0 state for a general number of particles. We remind the reader that �(mmn) denotes the (mmn)
state, while �m denotes the Laughlin state with filling ν = 1

m
.

(2,2,2) (2,0,2,0,2) (2,0,0,2,0,0,2) (2,0,0,0,2,0,0,0,2)

Spinless bosons – Pf
(

1
zi−zj

) × �1 (MR) Gaffnian Hf
(

1
(zi−zj )2

) × �2 (Haffnian)

S = 1/2 fermions (S = 0 GS) �(110) Per
(

1

z
↑
i
−z

↓
j

) × �(111) Pf
(

1
xi−xj

) × �(221) (SCsep) Det
(

1

(z↑
i
−z

↓
j

)2

) × �(222)(HR)

Two-component bosons (Sz = 0 GS) – �(220) Per
(

1

z
↑
i
−z

↓
j

) × �(221) �(440)

(ii) S = 1/2 fermions, r = 4 [HR state]. Partitions with
n

↑
0 = n

↑
1 = 1 or with n

↓
0 = n

↓
1 = 1 have zero coefficient.

(iii) Two-component bosons, r = 2 [H(220) state]. Parti-
tions with n

↑
0 = 2 or with n

↓
0 = 2 have zero coefficient.

(iv) Two-component bosons, r = 3 [Per( 1
z
↑
i −z

↓
j

) × �(221)

state]. Partitions with n
↑
0 = 2 or with n

↓
0 = 2 have zero

coefficient.
(v) Two-component bosons, r = 4 [H(440) state]. Parti-

tions with n
↑
0 = 2, n↓

0 = 2, n
↑
0 = n

↑
2 = 1 or with n

↓
0 = n

↓
2 = 1

have zero coefficient.
We note in passing that it is possible to construct an-

other two-component bosonic state with r = 2, namely, � =
Pf( 1

z
↑
i −z

↑
j

) × Pf( 1
z
↓
i −z

↓
j

) × �(111). This state was considered in

the context of cold atomic gases in Ref. 56. This state can
be obtained from our squeezing procedure with root partition
(2,0,2, . . .), but now one needs the additional constraint that
partitions with n

↑
0 = n

↓
0 = 1 have zero coefficient. This gives

rise to the state �, but only when the number of particles
is a multiple of four. If the number of particles satisfies
Ne = 4p + 2, with p an integer, then the equations obtained
from the construction above do not have a nontrivial solution,
in agreement with the fact that one can not write down the
state above in this case (at least in the absence of quasiholes).
Similarly, we can construct a state at r = 4 of the form
� = Hf( 1

(z↑
i −z

↑
j )2

) × Hf( 1
(z↓

i −z
↓
j )2

) × �(222) by squeezing from

(2,0,0,0,2, . . .), and requiring that partitions with n
↑
0 = n

↓
0 =

1, or n
↑
0 = n

↓
1 = 1 or n

↑
1 = n

↓
0 = 1 have zero coefficient.

In the next section, we will consider the state �SBper =
Per( 1

z
↑
i −z

↓
j

) × �(221) in some more detail. We do not currently

have a Hamiltonian for which this state is the unique zero-
energy ground state. Thus, to find for instance the number of
quasihole states, we have to rely on our squeezing method to
obtain these states. What we will show in the next section
is that the numbers we obtain are in accordance with the
numbers obtained from the so-called particle entanglement
spectrum calculated for the state in the absence of quasihole
excitations.

VI. SOME APPLICATIONS: PARTICLE ENTANGLEMENT

As one possible application of our root-configuration
analysis, we can compare the results that we have obtained
for the quasiholes (namely, the number of quasihole states
for a given number of flux quanta) with the one provided
through the entanglement spectrum (ES).57,58 For a single

nondegenerate ground state |�〉, the entanglement spectrum
can be defined through the density matrix ρ = |�〉〈�| and
the decomposition of |�〉 in two regions A, B. By tracing out
the degrees of freedom of B, one obtains the reduced density
matrix ρA = TrBρ. Its spectrum is called the entanglement
spectrum and it unveils a rich structure of the state |�〉.
The key idea is to focus on one block of ρA, fixing all but
one of the quantum numbers that are conserved within this
operation. Then, one plots the ξi as a function of this quantum
number, where exp(−ξi) are the non-negative eigenvalues of
ρA. Depending on the space in which the system is split into
two parts, be it real, momentum, orbital, or particle space,
different aspects of the system excitations will be revealed
through the ES.

It was shown that, if the regions A, B are regions of
particles,58 the particle entanglement spectrum (PES) hence
obtained by tracing over the positions of a set of B particles
gives information about the number of quasiholes of the system
of NA particles and number of orbitals identical to that of the
untraced system. In the case of the many model FQH states, the
particle entanglement spectrum contains an identical number
of levels as those of the quasihole states with a reduced number
of particles. This property seems to be valid even when no local
Hamiltonian is known (such as the composite fermion wave
functions13).

In Fig. 3, we show a typical ES, namely, the particle ES for
the Haffnian wave function. All the entanglement levels are
plotted against the total projected angular momentum of part
A, Lz,A. From the figure, it is immediately clear that indeed the
total angular momentum of part A, L2

A is also a good quantum
number. For comparison, we show the same spectrum but with
only the highest Lz state of every multiplet in Fig. 4.

It is interesting to note that the particle ES in Fig. 4 shows
a great deal of resemblance to the real-energy spectrum of a
typical quantum Hall state on the sphere, with a lowest lying
L = 0 state, separated by a gap from a continuum. In addition,
even a feature resembling the typical roton mode present in the
energy spectrum seems to be present in the particle ES. The
particle ES of the Haffnian state shown in Fig. 4 was obtained
by tracing out half of the particles. The Haffnian can be seen
as a symmetrized product of two Laughlin ν = 1

4 states. It
is, thus, perhaps not so surprising that a state such as the
Laughlin ν = 1

4 state should have a large contribution to the
density matrix after tracing out half of the particles. Indeed,
the overlap between the state corresponding to the lowest L =
0 entanglement level has a very large overlap with the Laughlin
ν = 1

4 , namely, 〈�4|ρ0〉2 ≈ 0.999 860. Such a feature has also
been observed for the Moore-Read state.58
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FIG. 3. (Color online) The particle entanglement spectrum for
the bosonic Haffnian state with N = 10 particles, keeping NA = 5
particles. The Lz,A degeneracy is due to the multiplet structure
associated with L2

A. The counting per value Lz,A sector exactly
matches the corresponding number of quasihole states for 5 particles
and 10 added flux quanta.

For the spin-polarized case on the sphere geometry, we can
rely on two quantum numbers: the total angular momentum L2

A

and its projection Lz,A. The additional L2
A quantum number

compared to the orbital ES explains the multiplet degeneracy
observed in Fig. 3. The PES can be trivially extended to the
spinful case. There, we have up to two additional quantum
numbers that we can use, namely, the total spin S2

A if the state is
a spin singlet and its projection Sz,A, which is always available.
The orbital entanglement spectrum was already calculated for
a spinful quantum Hall wave function, namely, the Haldane-
Rezayi case.59

As an example of the particle ES for a singlet state, we
use the AS state, for N = 12 particles, and trace out half of
them. The spectrum is shown in Fig. 5, where we plot the
highest Lz and Sz levels for each (L,S) multiplet. The lowest
entanglement level, i.e., the state contributing the most to the
reduced density matrix, is an L = 0, S = 0 multiplet. The
k = 2 AS state can be thought of as a symmetrized product
of two Halperin (221) states. This fact is reflected in the
overlap between the N = 6 particle (221) state and the state
|ρ0〉 corresponding to the lowest lying L = 0, S = 0 multiplet,
which is 〈�(221)|ρ0〉 ≈ 0.997 878.
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FIG. 4. (Color online) The particle entanglement spectrum for
the bosonic Haffnian state with N = 10 particles, keeping NA = 5
particles. Only the entanglement levels of the highest weights are
shown.
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FIG. 5. (Color online) The particle ES for the N = 12 bosonic
AS state, with NA = 6.

We will now employ the particle ES to obtain
some knowledge about the spinful Sz = 0 bosonic per-
manent state �SBper = Per( 1

z
↑
i −z

↓
j

) × �(221). This state can

be obtained by squeezing from the root configuration
(2,0,0,2,0, . . . ,0,2,0,0,2). Then, requiring a state to be an
L = 0 state, and that no two particles with the same spin have
relative angular momentum smaller than two (and thus that
configurations with n

↑
0 = 2 or n

↓
0 = 2 have coefficient zero),

leads to a unique state, the Sz = 0 bosonic permanent state. We
checked this statement for small particle numbers. One way
to analyze this state would be to find a model Hamiltonian for
which this state is the unique ground state. With this model
Hamiltonian, one can check the number of quasihole states
upon adding flux in comparison to the state without quasiholes.
These numbers can then be compared to the number of states
one obtains from the squeezing procedure we presented in this
paper. Another way of comparing the number of quasihole
states is to make use of the connection between the level
counting of the particle ES, and the number of quasihole states,
which has been shown to hold for all model states so far. To this
end, we calculated the particle entanglement spectrum for the
state �SBper = Per( 1

z
↑
i −z

↓
j

) × �(221) with six particles. Figure 6

shows the particle ES for system A consisting of two and three
particles in parts (a) and (b), respectively.

In these particle entanglement spectra, we only plot the
maximum Lz,A state of each multiplet for clarity. The red
lines indicate Sz,A = 0 (Sz,A = 1/2) states, the green crosses
Sz,A = 1 (Sz,A = 3/2) state, for NA = 2 (NA = 3). This state
is not a spin-singlet state, so S2

A is not a good quantum number.
The number of (L,Sz) multiplets for the two cases are given
in Table II. In Fig. 7, we show the particle ES in the case of
eight particles, and NA = 4.

The total number of flux quanta for the bosonic spin-
permanent state is Nφ = 3Ne

2 − 3. For six particles, Nφ = 6.
So, if we want to compare the number of levels in the particle
ES, we should compare with the number of states obtained
from the squeezing procedure, with 2 and 3 particles, for
Nφ = 6. The root configurations that one should use as a
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FIG. 6. (Color online) The particle entanglement spectrum for the bosonic spin-permanent state SBper, with N = 6 particles, keeping (a)
NA = 2 and (b) NA = 3 particles.

starting point for the squeezing procedure are

N = 2 N = 3
Lz = 6 (0,0,0,0,0,0,2) (0,0,0,1,0,0,2)
Lz = 5 (0,0,0,0,0,1,1) (0,0,1,0,0,0,2)
Lz = 4 (0,0,0,0,1,0,1) (0,1,0,0,0,0,2)
Lz = 3 (0,0,0,1,0,0,1) (1,0,0,0,0,0,2)
Lz = 2 (0,0,1,0,0,0,1) (1,0,0,0,0,1,1)
Lz = 1 (0,1,0,0,0,0,1) (1,0,0,0,1,0,1)
Lz = 0 (1,0,0,0,0,0,1) (1,0,0,1,0,0,1).

By performing the procedure we outlined above, we
obtained a number of states for each possible value of L

and Sz, which is in complete accordance to the number of
multiplets obtained from the particle entanglement spectrum.
We checked this for both Ne = 6 and 8, which gives us a
nontrivial consistency check on the squeezing procedure we
proposed, where we used a state for which (at the moment) no
other approaches, such as a conformal-field-theory approach,
are available. It seems likely, however, that a conformal-field-
theory description is possible. Most likely, such a description
would rely on a nonunitary conformal field theory, which could
serve as a check on the results obtained above.

VII. CONCLUSION AND OUTLOOK

In this paper, we have generalized the concept of root
partitions and squeezing, known for spinless states, to the case
of spinful quantum Hall states. We have checked for several

TABLE II. Number of particle ES (L,Sz) multiplets for the
bosonic spin-permanent state with NA = 2 (top) and NA = 3
(bottom).

Na = 2 L = 0 1 2 3 4 5 6

Sz,A = 0 1 1 1 1 1 1 1
1 1 0 1 0 1 0 0
Na = 3 L = 0 1 2 3 4 5 6
Sz,A = 1/2 0 2 2 3 2 2 1
3/2 0 1 0 1 0 0 0

model states that our procedure leads to the right wave function
both for the ground state and the quasihole states. In particular,
we have stressed that the naive generalization, i.e., keeping the
spin information during the squeezing procedure, may fail.
Thus, one has to rely on an undressed root partition, proceed
with the squeezing, and then dress the configurations with spin
in a way that is compatible with the Hamiltonian.

We have looked at several model states, such as the Halperin
states and non-Abelian spin-singlet states, to test the validity
of our set of rules. Using these spinful root partitions, we have
provided a spin-1/2 generalization of the spinless (k = 2,r)
sequence, which includes the Moore-Read, Gaffnian, and
Haffnian states. As an application, we have shown that the
counting observed when performing the particle entanglement
spectrum on the ground state exactly matches the counting
of the quasihole states relying on our rules. In addition,
this counting also matches the counting results obtained by
counting the number of zero-energy states of the model
Hamiltonian for the state under consideration in the cases when
such a Hamiltonian is available.

We hope that our method will provide a way to study
topological phases with internal degrees of freedom, and
shed light on some poorly understood quantum Hall wave
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FIG. 7. (Color online) The particle entanglement spectrum for the
bosonic spin-permanent state SBper, with N = 8 particles, keeping
NA = 4.
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functions, such as the irrational Haffnian wave function,
via the connection with better understood wave functions
such as the nonunitary Haldane-Rezayi wave function. In
addition, it would be interesting to compare our method
in detail with other methods (inspired by the question of
classifying the possible topological phases), such as the pattern
of zeros approach60–63 (see, also, Ref. 64) and generalization
of the Jack polynomials.65 Another interesting question is
the generalization of the series (k = 2,r) for r > 4 since the
polarized case already displays a rich structure, such as its
connection to the N = 1 superconformal theories66 for r = 6.
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APPENDIX A: SPIN-SINGLET STATES

We will start by a brief description of spin-singlet states.
In the following, the coordinates z

↑
i will denote the spin-up

particles, while the z
↓
j denote the spin-down particles. The

wave functions are composed of the orbital part �({z↑
i ,z

↓
j }),

which is a polynomial in the z
↑
i ’s and z

↓
j ’s, as well as a spin

part, which we usually omit. The spin part has the first N↑
spins up, and the following N↓ spins down. We will omit the
usual exponential factors.

We will state the condition on �({z↑
i ,z

↓
j }) in order for the

state to be a spin singlet. We assume that we are dealing with
either bosons or fermions states. We will be concerned with
the symmetry properties under the exchange of z↑’s with z↓’s.
For the state to be a singlet, acting with both spin-raising
and -lowering operators should give zero. Acting with the
spin-raising operator has the following effect on the orbital
part �({z↑

i ,z
↓
j }) of the wave function. A spin-down particle,

say z
↓
N↓ , has to be raised to become a spin-up particle, which

means it has to be symmetrized (antisymmetrized) with all
spin-up particles:

S+�({z↑
i ,z

↓
j }) = �({z↑

i ,z
↓
j }) ±

N↑∑
i=1

�(z↑
i ↔ z

↓
N↓ ), (A1)

where in the bosonic (fermionic) case, one needs the plus
(minus) sign. We will implicitly assume that the variable z

↓
N↓

will be renamed to z
↑
N↑+1 to incorporate the effect that the

number of spin-up (-down) particles was increased (decreased)
by one. Similarly, we have the spin-lowering operator

S−�({z↑
i ,z

↓
j }) = �({z↑

i ,z
↓
j }) ±

N↓∑
j=1

�(z↑
N↑ ↔ z

↓
j ) , (A2)

where we assume that z
↑
N↑ is renamed to z

↓
N↓+1. The condition

for the state to be a spin singlet is now easily written. First,

to have Sz = 0, we need to have N↑ = N↓. Second, both spin-
raising and -lowering operators should give zero:

S+�({z↑
i ,z

↓
j }) = 0,

(A3)
S−�({z↑

i ,z
↓
j }) = 0.

The conditions (A3) go under the name of the Fock-cyclic
conditions, and were spelled out in detail in Ref. 67. Note
that, in this paper, we will not be concerned with the Young
“symmetrization” procedure. In the case of quasihole states,
we will have to consider multiplets of both spin and angular
momentum. In that case, to obtain the highest spin state, we
only need to consider the action of the spin-raising operator.
This is actually also true for the spin-singlet case because
the polynomials we will consider will be (anti)symmetric
under exchange of all spin-up particles with all the spin-down
particles.

For completeness, we recall that angular momentum raising
and lowering operators (on the sphere) take the following form:

L−�({z↑
i ,z

↓
j }) =

( N↑∑
i=1

∂
z
↑
i
+

N↓∑
j=1

∂
z
↓
j

)
�({z↑

i ,z
↓
j }),

(A4)

Lz�({z↑
i ,z

↓
j })

=
(

NNφ/2 −
N↑∑
i=1

z
↑
i ∂

z
↑
i
−

N↓∑
j=1

z
↓
j ∂

z
↓
j

)
�({z↑

i ,z
↓
j }),

(A5)

L+�({z↑
i ,z

↓
j }) =

(
Nφ

N↑∑
i=1

z
↑
i + Nφ

N↓∑
j=1

z
↓
i −

N↑∑
i=1

(z↑
i )2∂

z
↑
i

−
N↓∑
j=1

(z↓
j )2∂

z
↓
j

)
�({z↑

i ,z
↓
j }) , (A6)

where Nφ is the number of flux quanta, and the total number
of particles is given by N = N↑ + N↓.

APPENDIX B: NUMERICAL IMPLEMENTATION

Having the explicit form of the raising and lowering
operators (see Appendix A), it is now a straightforward matter
to implement the squeezing procedure we introduced in this
paper numerically. From the form of raising and lowering
operators L+ and L−, it is clear that it is easiest to implement
L−, and demand that the states are lowest weight states, which
is of course completely equivalent with demanding states to
be highest weight.

In practice, one has to implement the form of L− and S+ on
arbitrary symmetric or antisymmetric monomials, depending
on whether one is considering bosons or fermions. We have
implemented these routines, as well as some others, in a
MATHEMATICA package, which is available for download.68

These routines include solving routines, which find the
solutions for the highest weight constraints.
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APPENDIX C: A COLLECTION OF COUNTING
FORMULAS

In this appendix, we will collect, for convenience, the
counting formulas for the number of states of the various
model quantum Hall states we considered in this paper. After
introducing some notation, we will start with some polarized
states, in particular, the Read-Rezayi states for arbitrary k

(including the Laughlin and Moore-Read cases), followed by
the characters for the (polarized states obtained from the root
configurations (2,0r−1,2, . . . ,0r−1,2) for r = 2,3,4, i.e., the
Moore-Read, Gaffnian, and Haffnian states.

We will continue with some spin-singlet states, first the
AS states for arbitrary k [including for k = 1 the Halperin-
(221) state], again followed by states obtained from the
root configurations (2,0r−1,2, . . . ,0r−1,2), in this case the
fermionic spin-singlet states, i.e., the permanent state for
r = 2, the spin-charge separated state for r = 3, and the HR
state for r = 4

1. Some notation

The character formulas are stated in terms of q binomials,
which are q deformations of the ordinary binomials, and keep
track of the Lz angular momentum. We will first introduce the
notation (q)m, for m a positive integer, (q)m = ∏m

i=1(1 − qi).
In addition, we define (q)0 = 1. The q binomial is defined as[

a

b

]
=

{ (q)a
(q)a−b(q)b

for a,b ∈ N and 0 � b � a,

0 otherwise.

(C1)

For instance, the number of states with f fermions in
Nφ + 1 orbitals is given by ( Nφ + 1

f ). Assigning the lz angular
momenta −Nφ/2,Nφ/2 + 1, . . . ,Nφ/2 to the orbitals, as is
applicable for quantum Hall states on the sphere with Nφ

flux quanta, one finds that the number of states is generated
by q−(Nφ+1−f )f/2[ Nφ + 1

f ]. Namely, this expression can be

expanded as
∑(Nφ+1−f )f/2

l=−(Nφ+1−f )f/2 cl q
l , where l runs over half-

integers if both Nφ and f are odd. Otherwise, l runs over the
integers. The numbers cl are equal to the number of states with
Lz = l. In addition, these states can be organized into angular
momentum multiplets because, for l � 0, one has cl � cl+1

and cl = c−l . As an example, the number of states for two
fermions in six orbitals is given by q−4[ 6

2 ] = q−4 + q−3 +
2q−2 + 2q−1 + 3 + 2q + 2q2 + q3 + q4. This gives rise to
one L = 4, one L = 2, and one L = 0 multiplet.

The number of states of b bosons with Nφ flux, or in Nφ + 1

orbitals, is similarly given by q−Nφb/2[ Nφ + b

b ].
Finally, we will make use of the following notation in

the subsequent sections. The matrix Mk has dimensions
k × k, and elements (Mk)i,j = min(i,j ). The matrix Ok has
dimensions k × k, and elements (Ok)i,j = max(0,i + j − k).

2. Read-Rezayi state

We will start out with the character for the Read-Rezayi
states, with parameter k. The basic bosonic RR states, i.e.,
those without any overall Jastrow factor, have filling fraction

ν = k
2 . The number of flux quanta for these states is given

by Nφ = 2
k
N − 2 + n

k
, with N the number of particles and n

the number of quasiholes. We note that, for N not a multiple
of k, n has to be nonzero in order that the number of flux
quanta is an integer. We note that the counting of quasihole
states remains unchanged if the wave function is multiplied by
an overall Jastrow factor. We therefore write the formulas in
terms of N and n, the number of quasiholes, and not in terms of
the number of flux quanta because the latter will change upon
multiplying the wave function by an overall Jastrow factor.

The counting formula for the number of (quasihole) state
in the RR case is given by40

#RR(N,n,k) = q− (2N+n)N
2k

∑
a1, . . . ,ak � 0∑k

i=1 iai = N

qa·Mk ·a

×
k∏

j=1

[
j 2N+n

k
− 2(Mk · a)j + aj

aj

]
. (C2)

Here, the vector a is given by a = (a1,a2, . . . ,ak).

3. Root configurations (2,0r−1,2,0r−1, . . . ,0r−1,2):
Polarized bosonic states

For r = 2, this case equals the Moore-Read cases, which in
turn can be thought of as the RR state for k = 2. Here, we will
display the (q-deformed version of the) form of the counting
formula as it originally appeared in Ref. 37. Equation (C2)
with k = 2 yields a different, but equivalent, expression

#MR(N,n) = q− Nn
4

∑
f

q
1
2 f 2

[ n
2

f

][
N−f

2 + n

n

]
. (C3)

The sum over f runs over even (odd) integers for N even
(odd), and the number of quasiholes n is always even.

For r = 3, we obtain the Gaffnian wave function for which
the the number of flux quanta is given by Nφ = 3N

2 − 3 + n.
The counting formula was derived in Ref. 29 and we will
display its q-deformed version here, which is valid for n > 0:

#Gaffnian(N,n) = q− Nn
4

∑
f

q
f

2 ( f

2 +1)

×
[

n+f

2 − 1

f

] [
N−f

2 + n

n

]
. (C4)

For n = 0, there is only one state for N even and no states
otherwise. This case can be included in the formula, if we
define [ a

0 ] = 1 for all integers a, even when a < 0. For N odd,
the minimal number of quasiholes required to have a state is
three. We note that N and n have the same parity.

The case r = 4 corresponds to the Haffnian wave function,
which was considered in detail in Ref. 30, where the counting
was performed. The number of flux quanta is given by Nφ =
2N − 4 + n

2 . The counting formula is given by

#Haffnian(N,n) = q− Nn
4

∑
b

qb

[
b + n

2 − 2

b

][
N−b

2 + n

n

]
.

(C5)
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In order for this formula to be valid in all cases, we again have
to define [ a

0 ] = 1 for all integers a. For N odd, n has to be at
least four.

4. Non-Abelian spin-singlet states

We will continue with a set of spin-singlet states, which,
analogously to the Read-Rezayi states, can be defined for an
arbitrary integer k. For k = 1, they reduce to the Halperin-
(221) states. The filling fraction of these states is ν = 2k

3 (in
their simplest bosonic version). The flux is given by Nφ =
3

2k
N − 2 + n

2k
, with N the total number of particles N = N↑ +

N↓, and n the total number of quasiholes n = n↑ + n↓. There is
a constraint on these numbers, namely, N↑ + n↑ = N↓ + n↓,
which implies that the flux seen by the spin-up particles is the
same as the flux seen by the spin-down particles. The counting
formula for the number of states is given by40

#AS(N,n,k)

= q− (3N+n)N
4k

′∑
N↑ + N↓ = N

n↑ + n↓ = n

a1, . . . ,ak � 0
b1, . . . ,bk � 0

s
N↑−N↓

2 qa·Mka+b·Mkb−a·Okb

×
k∏

j=1

[
j

2N↑+N↓+n↑
k

− (2Mk · a + Ok · b)j + ai

ai

]

×
[
j

N↑+2N↓+n↓
k

− (2Mk · b + Ok · a)j + bi

bi

]
, (C6)

where the prime denotes the constraints
∑k

i=1 iai = N↑,∑k
i=1 ibi = N↓, and N↑ + n↑ = N↓ + n↓. The vectors a and

b are given by a = (a1, . . . ,ak) and b = (b1, . . . ,bk). The
exponent of s gives the Sz quantum number of the particular
contribution to the number of states. Having access to both the
Lz and Sz quantum numbers, one can extract the number of
(L,S) multiplets present for an arbitrary number of flux quanta.

5. Root configurations (2,0r−1,2,0r−1, . . . ,0r−1,2):
S = 0 fermionic states

As in Sec. C 3, we will define [ a

0 ] = 1 for all integers
a. We will start with the case r = 2, which corresponds
to the ν = 1 fermionic singlet permanent state �SFper =

Per
(

1
z
↑
i −z

↓
j

) × �(111). The number of flux quanta is given by

Nφ = N − 2 + n
2 . The model Hamiltonian as well as the

counting formula were given in Ref. 37. Here, we give the
q-deformed version in a slightly different form

#SFper(N,n) = q− Nn
4

∑
b↑,b↓�0

s
b↑−b↓

2 q
b↑+b↓

2

[
b↑ + n

2 − 1
b↑

]

×
[

b↓ + n
2 − 1

b↓

][
N−b↑−b↓

2 + n

n

]
. (C7)

The structure resembles the structure of the counting formula
for the Haffnian. In particular, it is expected that the number of
states without quasiholes on the sphere grows linearly with the
number of particles, indicating that this state is also irrational.

The case r = 3 corresponds to the (unitary) spin-charge
separated state of Ref. 43. The number of flux quanta for
this state is given by Nφ = 3

2N − 3 + n↑+n↓+nh

2 , where N =
N↑ + N↓ is the number of particles, while n↑, n↓, and nh are the
number of up, down, and charged but spinless quasiholes. The
total number of quasiholes n = n↑ + n↓ + nh has the same
parity as N . The counting was worked out in Ref. 54, with the
following result:

#SCsep(N,n) = q− Nn
4

′∑
N↑ + N↓ = N

n↑ + n↓ + nh = n

f � 0

s
N↑−N↓

2 q
f 2

2 + (n↑+n↓)2

4

×
[ nh

2

f

][
N↑ − n↓ + n↑

n↑

]

×
[

N↓ − n↑ + n↓
n↓

][
N−f

2 + nh

nh

]
, (C8)

where the prime indicates the constraint N↑ + n↑ = N↓ + n↓.
Finally, we come to r = 4, namely, the Haldane-Rezayi

case. The counting for this state was worked out in Ref. 37.
The number of flux quanta is given by Nφ = 2N − 4 + n

2 ,
with n the number of quasiholes. The counting formula
reads as

#HR(N,n) = q− Nn
4

∑
f↑,f↓�0

s
f↑−f↓

2 q
f 2↑+f 2↓+f↑+f↓

2

×
[

n
2 − 1
f↑

][
n
2 − 1
f↓

][
N−f↑−f↓

2 + n

n

]
. (C9)
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51M. Milovanović and N. Read, Phys. Rev. B 53, 13559 (1996).
52V. Gurarie, M. Flohr, and C. Nayak, Nucl. Phys. B 498, 513

(1997).
53G. Moller, Th. Jolicoeur, N. Regnault, Phys. Rev. A 79, 033609

(2009).
54F. J. M. van Lankvelt, Ph.D. thesis, University of Amsterdam, 2004.
55S. Davenport and S. H. Simon (unpublished).
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