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We prove a generic spin-statistics relation for the fractional quasiparticles that appear in Abelian quantum
Hall states on the disk. The proof is based on an efficient way for computing the Berry phase acquired by a
generic quasiparticle translated in the plane along a circular path, and on the crucial fact that once the gauge-
invariant generator of rotations is projected onto a Landau level, it fractionalizes among the quasiparticles and
the edge. Using these results we define a measurable quasiparticle fractional spin that satisfies the spin-statistics
relation. As an application, we predict the value of the spin of the composite-fermion quasielectron proposed
by Jain; our numerical simulations agree with that value. We also show that Laughlin’s quasielectrons satisfy
the spin-statistics relation, but carry the wrong spin to be the antianyons of Laughlin’s quasiholes. We continue
by highlighting the fact that the statistical angle between two quasiparticles can be obtained by measuring the
angular momentum while merging the two quasiparticles. Finally, we show that our arguments carry over to the
non-Abelian case by discussing explicitly the Moore-Read wave function.
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Introduction. The spin-statistics theorem is one of the pil-
lars of our description of the world and classifies quantum
particles into bosons and fermions according to their spin,
integer, or half integer [1]. It was noted early on that in two
spatial dimensions this relation is modified and intermediate
statistics exist, called anyonic [2,3]. These objects too satisfy
a generalized spin-statistics relation (SSR), and it is common
nowadays to speak of fractional spin and statistics [4,5]. This
type of SSR, which we also consider, arises in a nonrelativis-
tic, non-field-theoretic context [6,7].

The quantum Hall effect (QHE) [8,9] is the prototypical
setup where anyons have been studied, and several of their
remarkable properties have also been experimentally observed
[10,11]. Whereas the notion of fractional statistics has been
earlier applied to the localized quasiparticles of the QHE
[12–15], the notion of spin has been more controversial. The
existence of a fractional spin satisfying a SSR has been es-
tablished for setups defined on curved spaces owing to the
coupling to the curvature of the surface [16–21]. The exten-
sion of this notion to planar surfaces has required more care
and it is not completely settled yet [22–24].

In this Letter we prove an SSR for the Abelian quasipar-
ticles of the QHE on a planar surface, for arbitrary filling
fractions, directly from the microscopic Hamiltonian under
the generic assumption that a QHE state satisfies the screening
property. It does not require the notion of curvature and identi-
fies an observable spin that is an emergent collective property
unrelated to the physical SU(2) spin. Several applications are
presented. First, we study the quasielectron (QE) wave func-
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tions proposed by Jain [25] and by Laughlin [26] for the filling
factor ν = 1/M. Second, we show how the fractional statistics
affects the total angular momentum of the setup. Third, we
discuss how our arguments carry over to the non-Abelian case.
Finally, we remark on an intrinsic ambiguity in the definition
of the spin.

The QHE model. We consider a two-dimensional (2D)
system of N quantum particles with mass m and charge q > 0
traversed by a uniform and perpendicular magnetic field �B =
Bêz, B > 0. The cyclotron frequency and the magnetic length
read ω = qB/m and �B = √

h̄c/(qB). We adopt the standard
parametrization of the plane z j = x j + iy j = |z j |eiφ j .

The Hamiltonian is

H0 =
N∑

i=1

(
π2

i,x + π2
i,y

2m
+ v(|zi|)

)
+

∑
i< j

Vint(|zi − z j |), (1)

where πi,a = pi,a − (q/c)Aa(zi ) and v(|z|) is a central confin-
ing potential. We assume that the interaction potential Vint (|z|)
is rotationally invariant, as it is the case for the Coulomb
[27] and contact [28] interactions, relevant for electrons and
for cold gases respectively. We also assume that the ground
state of (1) is not degenerate and realizes an incompressible
QHE state characterized by screening: In the presence of
perturbations which do not close the energy gap the particles
will arrange in such a way that the density of the system is the
same everywhere except in an exponentially localized region
close to the defects; gentle modifications of the confinement
potentials fall into this class of perturbations, so that the spe-
cific form of v(|z|) is not important if we are only interested
in the bulk.

We assume the presence of Nqp pinning potentials lo-
cated at positions sα; using the complex-plane parametrization
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FIG. 1. Action of L̃. (a) Contour plot in z space of the function
f (z, η) = exp[− 1

2 Re(z − η)2 − 2 Im(z − η)2] for η = 2. (b) Con-
tour plot of f (zeiβ, η) for β = 2π/3: With respect to (a), the plot
is translated and rotated. (c) Contour plot of f (z, ηeiβ ): This time,
the plot is only translated. (d) Contour plot of f (zeiβ, ηeiβ ): The
composition of the two is just a rotation and thus L̃ generates the
self-rotations of the quasiparticles in the z plane.

ηα = sα,x + isα,y = |ηα|eiθα we write

H1(η) =
Nqp∑
α=1

N∑
i=1

Vα (|zi − ηα|), (2)

where η is shorthand for η1, . . . , ηNqp . Since the pinning po-
tentials might be different, we keep the subscript Vα; they are
all assumed to be rotationally invariant.

The ground state of the model Hη = H0 + H1(η) is |�η〉;
we assume that it is unique and that it localizes Nqp quasipar-
ticles at ηα . By virtue of screening, the density is the same
everywhere as in the absence of pinning potentials, except
close to the defects and at the boundary. Since the pinning po-
tentials can be different, the quasiparticles need not be of the
same kind. The set of ηα is completely arbitrary and rotational
invariance is generically broken; in our discussion, we will
assume that they are always kept far from the boundary. These
assumptions imply that |�η〉 can be a smooth function of η.

Quasiparticle self-rotations. We introduce the operator that
is the sum of the particle angular momentum and of its quasi-
particle generalization measured in units of h̄ (we use the
symmetric gauge A = 1

2 B ∧ r),

L̃ = Lz + L′
z with Lz = −i

N∑
i=1

∂

∂φi
, L′

z = −i

Nqp∑
α=1

∂

∂θα

.

(3)

We also define the group operator Uβ = eiβL̃ that is generated
by (3), with β ∈ R. The physical meaning of Uβ is best
understood by considering its effect on a generic function
f (z, η) (see Fig. 1). Globally, Uβ is the composition of the two
transformations, and represents the quasiparticle self-rotations
over an angle β.

Since the ηα are parameters, a gauge transformation
|�η〉 → eig(η)|�η〉 using an arbitrary smooth function of the
parameters g(η) does not change the energy of the state. Our

goal is to show that it is always possible to use a gauge such
that the ground state is annihilated by L̃ and is thus invariant
under the quasiparticle self-rotation operator Uβ ; this result is
crucial for the proof of the SSR.

Let us first consider for simplicity the case of one quasi-
particle, Nqp = 1, so that L′

z = −i∂θ (we suppress the index
α = 1 for brevity). The Hamiltonian is explicitly invari-
ant under the action of the group: UβHηU †

β = Hη. With a
quasiparticle at η, the ground state satisfies the Schrödinger
equation Hη|�η〉 = Eη|�η〉. However, Eη can only depend
on |η|, and not on θ ; thus, ∂θEη = 0. We conclude that
HηUβ |ψη〉 = UβEη|�η〉 = EηUβ |�η〉, namely that Uβ |�η〉 is
an eigenvector of Hη with energy Eη. If the ground state is
unique, it must be an eigenvector of Uβ and of its generator
L̃; we dub the eigenvalue of the latter �η. For example, in the
case of the normalized Laughlin state with a quasihole (QH),
N (|η|)−1/2 ∏

i(zi−η)
∏

j<k (z j − zk )Me− ∑
i |zi|2/4�2

B , the eigen-
value �η = M

2 N (N − 1) + N is the degree of the polynomial
in zi and η.

We now perform a gauge transformation that unwinds the
generalized angular momentum �η moving along a trajectory
at fixed |η|: |�̃η〉 = eig̃(η)|�η〉 with g̃(η) = − ∫ θ

0 �|η|eiθ ′ dθ ′. In
the aforementioned case, the Laughlin state gets multiplied by
the phase (η/η∗)−

M
4 N (N−1)− N

2 . Let us show that

L̃|�̃η〉 = 0. (4)

By definition, L̃|�̃η〉 = eig̃(η)L̃|�η〉 + (L′eig̃(η) )|�η〉. The first
term of the sum is �η|�̃η〉, the second term is obtained by
differentiating the exponential, and equals −�η|�̃η〉. This con-
cludes the proof of the statement that one can find a gauge
such that L̃ annihilates the ground state. Note that for a state
satisfying Eq. (4), it is also true that Uβ |�̃η〉 = |�̃η〉 for any
angle β. Choosing β = 2π we obtain that this state is single
valued in the η coordinate because U2π |�̃η〉 is also equal to
|�̃ηei2π 〉.

This reasoning can be easily extended to the case of sev-
eral quasiparticles. We can define a reference angle θ0 and
express θα = θ0 + �θα , treating the variables �θα = θα − θ0

as independent from θ0. The operator −i∂θ0 generates the
group eiβ×(−i∂θ0 ) that modifies the quasiparticle polar angles as
follows, θα → θα + β, leaving the radial distance unchanged;
thus ηα → ηαeiβ . This is exactly the action of L′

z, and thus we
conclude that L′

z = −i∂θ0 . With arguments paralleling those
for one quasiparticle, one can (i) show that L̃|�η〉 = �η|�η〉,
(ii) make the dependence on θ0, the �θα and the |ηα| explicit
by writing �θ0,�θα,|ηα |, and (iii) define |�̃η〉 = eig(η)|�η〉 with
g(η) = − ∫ θ0

0 �θ ′
0,�θα,|ηα |dθ ′

0, which is in the kernel of L̃.
Berry phase for the translation of the quasiparticles along a

circle. We now compute the Berry phase corresponding to the
translation along a closed circular path of the Nqp quasiparticle
coordinates via θ0 → θ0 + 2π generated by L′

z, leaving all
the �θα and |ηα| invariant. Using the fact that |�̃η〉 is single
valued in η, this Berry phase is γη = ∫ 2π

0 〈�̃η|i∂θ0 |�̃η〉dθ0,
where only the θ0 coordinate is changed in the state inside
the integral. Employing the definitions of L̃ and L′

z, and using
(4), we get

γη =
∫ 2π

0
〈�̃η|Lz|�̃η〉dθ0 =

∫ 2π

0
〈�η|Lz|�η〉dθ0. (5)
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The matrix element in the integral is manifestly gauge inde-
pendent, as the Lz operator does not act on the η; one can
thus also use the original states. Finally, let us note that the
integrand cannot be a function of θ0, and thus we have an even
simpler expression: γη = 2π〈�η|Lz|�η〉. This result was first
established in Ref. [29] for the specific case of the Laughlin
wave function and is here proved in full generality.

As any operator projected onto the lowest Landau level
(LLL), the angular momentum Lz is a function of the guiding-
center operators [8] Rj,x = x j + (�2

B/h̄)π j,y and Rj,y = y j −
(�2

B/h̄)π j,x, with [Rj,x, Rj′,y] = −i�2
Bδ j, j′ , and it reads Lz =∑

j (R
2
j/�

2
B − 1)/2. Written in this projected form, Lz is the

gauge-invariant generator of rotations, and it is just a function
of the density of the gas ρη(z), which through the screen-
ing property can be split into a bulk contribution ρb(z) (the
state without quasiparticles), an edge contribution ρe(z) (the
difference at the edge with respect to the state without quasi-
particles), and a quasiparticle contribution localized around
the ηα , ρqp,η(z). We split the integrand into three parts:
〈�η|Lz|�η〉 = Lb + Le(Nqp) + Lqp(η); as long as the quasipar-
ticles are far from the edge, the screening property ensures that
Le can only depend on their number (more precisely, on how
many quasiparticles of each kind), but not on their positions;
in fact, it also does not change when two of them are put close
by or stacked on top of each other.

Notice that Lb is an integer owing to rotational invariance;
therefore we disregard this contribution to the Berry phase (5).
The only relevant information is contained in the remaining
pieces, which indeed depend, directly or indirectly, on the
quasiparticles, and this constitutes the first main result of the
Letter:

γη = 2π × [Le(Nqp) + Lqp(η)]. (6)

Compared to the direct computation of the integral, Eq. (6) is
simpler to evaluate.

Let us consider now the case of a single quasiparticle at
η; on the basis of very general arguments, γη should be the
Aharonov-Bohm (AB) phase qQπ |η|2B/(h̄c), where Q is the
charge of the quasiparticle in units of q. Let us compare
Eq. (6) with this widely accepted result. In very general terms,
the angular momentum of a rotationally invariant quasiparti-
cle Lqp(η) = ∫

d2r(r2/2�2
B − 1)ρqp,η(r) can be split into an

orbital part Q|η|2
2�2

B
and an intrinsic part,

Jqp =
∫

d2r
(
r2

/
2�2

B − 1
)
ρqp,η=0(r) = Lqp(0). (7)

It follows that γη = πQ|η2|/�2
B + 2π [Le(1) + J1qp]. We rec-

ognize the AB phase, to which an apparently spurious
contribution has been added; yet, we can show that it is an
integer multiple of 2π , and thus inessential. To show that
Le(1) + J1qp is an integer, we consider a system with a QP
at its center, which is rotationally invariant, so its angular mo-
mentum Lb + J1qp + Le(1) is an integer; since Lb ∈ Z, J1qp +
Le(1) is also an integer. By the same logic Jnqp + Le(n) ∈ Z
where Jnqp is the spin of the rotationally symmetric QP ob-
tained by fusing n QPs together, stacking them on top of
each other. Very generically, the gauge-invariant generator of
rotations fractionalizes between the bulk quasiparticles and
the edge, implying that the spin is robust to local circularly

symmetric perturbations. Before continuing, we mention a set
of earlier works that have studied the properties of the second
moment of the depletion density of fractional quasiparticles,
which is shown to be related to the conformal dimension
[30–32].

Spin-statistics relation. We consider two identical quasi-
particles placed at opposite positions η and −η and far from
each other and from the edge. In order to compute the statis-
tical parameter κ , we consider a double exchange, that gives
a gauge-invariant expression and avoids any discussion on the
identity of the pinning potentials [12]. Accordingly, we study
the difference between the Berry phase for exchanging two
opposite particles and the single-particle AB phases [33]:

κqp = 1

2π
(γη,−η − 2γη ). (8)

Using Eq. (6), we write κqp = Le(2) + Lqp(η,−η) −
2Le(1) − 2Lqp(η). As long as the QPs are well separated and
since the liquid is screening, ρqp(η,−η) = ρqp,η + ρqp,−η and
thus Lqp(η,−η) = 2Lqp(η); since Le(n) + Jnqp ∈ Z we obtain
the SSR:

κqp = −J2qp + 2J1qp (mod 1). (9)

This result allows us to identify the intrinsic angular mo-
mentum with the fractional spin associated to the fractional
statistics, and constitutes the second main result of the Letter.
Interestingly, we have linked the statistics to a local property
of the quasiparticles: If we assume screening, the fine details
of the boundary do not matter, and one could probably prove
(9) without requiring that v(|z|) is a central potential.

With similar arguments, the SSR can be extended to the
situation where the two quasiparticles are different: Calling Ja

and Jb their spins, and Jab the spin of the composite quasiparti-
cle obtained by stacking them at the same place, we obtain the
mutual statistics parameter: κab = −Jab + Ja + Jb (mod 1).
In the theory of modular tensor categories (see, for instance,
Ref. [34]), a relation of this type is called a ribbon identity.
Moreover, the fractionalization property allows us to read
the phase κ directly at the edge; indeed, one easily obtains
κqp = Le(2) − 2Le(1) and κab = Le(a, b) − Le(a) − Le(b).

The spin of the QE. As a first application of our SSR
(9), we consider the QE of the Laughlin state at filling ν =
1/M. Numerical studies have highlighted that the composite-
fermion wave function for the QE proposed by Jain [25,35]
has the correct statistical properties when the QE is braided
with another QE (κqe = 1/M) or with a QH (κqe-qh = −1/M)
[36–41]. Previous papers have already shown that LLL quasi-
particles composed of p stacked QHs fractionalize the angular
momentum Jp = −p2/(2M ) + p/2, and that these results are
compatible via the SSR (9) with a correct QH statistics
κqh = 1/M [21,24].

On the basis of these results and of the SSRs, it is easy
to predict that Jain QE fractionalizes the same spin Jp, with
p < 0 for QEs and p > 0 for QHs. We numerically verify
this statement by performing a Monte Carlo analysis of Jain’s
wave function with one QE (p = −1) or two QEs (p = −2)
[42]. Table I summarizes the expected values. The results of
our simulations are in Figs. 2(a) and 2(b), and they agree
perfectly with our theory. In the Supplemental Material [42]
we show the same results obtained with the matrix-product-

L041105-3



NARDIN, ARDONNE, AND MAZZA PHYSICAL REVIEW B 108, L041105 (2023)

TABLE I. The spin Jp of Jain’s QE at filling factor ν.

ν = 1
2 ν = 1

3 ν = 1
4

p = −1 − 3
4 − 2

3 − 5
8

p = −2 −2 − 5
3 − 3

2

state formulation [41,43–46] using the Landau gauge. As we
anticipated, our definition of quasiparticle spin is gauge invari-
ant, and even if the two simulations are performed in different
gauges (the symmetric and the Landau ones) the results coin-
cide. Remarkably, this way of assessing the statistics of Jain’s
QE does not suffer from the undesired multiparticle position
shift that needs to be taken into account in order to get the
correct statistical phase [37,41].

Concerning the QE wave function proposed in the original
paper by Laughlin [26], it was shown that it fractionalizes the
correct charge, without making definitive statements about its
braiding properties [33,36–38,40]. The results of our numeri-
cal simulations are in Figs. 2(c) and 2(d). The plateau values
are described by the spin J ′

p = −p2/(2M ) + p(2 − M )/(2M ),
that gives the correct braiding phase for the Laughlin QEs, but
that also shows that it is not the antianyon of the Laughlin’s
QH.

Angular momentum of the gas. As a further application of
the SSR, let us consider what happens when two QHs placed
far apart are displaced radially in the sample. Let us call L0 the

(a) (c)

(b) (d)

FIG. 2. Calculation of the QE spin via the integral J (r) =∫ r
0 ( |r′ |2

2�2
B

− 1)ρqp(r′)2πr′dr′; the spin of Eq. (7) coincides with the

plateau appearing when r is far from the center and the boundary;
Rcl = √

2N/ν is the classical radius of the droplet. (a) The spin of
a single Jain’s QE for ν = 1/2, 1/3, and 1/4. (b) The case of two
stacked Jain’s QEs. (c) and (d) The same for one and two Laughlin’s
QEs, respectively. Theoretical predictions following from the SSR
relation in Table I are marked with dashed lines and are only com-
patible with the spin of Jain’s QE. Dashed-dotted lines in (c) and (d),
together with their values, highlight the position of the spin plateau
for Laughlin’s QE.

(a) (b)

FIG. 3. Angular momentum L(R1, R2) of a Laughlin state
(N = 25, ν = 1/2) with two QHs at distances R1 and R2 from the
center, computed with Monte Carlo techniques [47,48]. (a) Displace-
ment of the first QH; the angular momentum variation L(R, R0) −
L(R0, R0) is plotted in black circles, and it is a quadratic function
of R that agrees with the theory prediction −ε(R2 − R2

0 ) (red line).
(b) Displacement of the second QH; the variation L(0, R) − L(0, R0)
is plotted in brown triangles and it is a quadratic function of R only
at large R; when the QHs fuse a deviation sets in that equals −κ , the
statistical parameter.

angular momentum of the initial state with both quasiparticles
at the same distance R0 from the center. The first QH is then
moved to the center: During this process the angular mo-
mentum increases and depends on the distance R as L(R) =
L0 − ε(R2 − R2

0) with ε = qQπB/(hc) [42]. A gain in angular
momentum of εR2

0 is expected at the end of the process. The
same is now done with the second QH. Whereas also in this
case the angular momentum increases, it does not attain the
value L0 + 2εR2

0 because when the two QHs fuse, their total
spin changes. In fact, the final value is L0 + 2εR2

0 − κ . We
verify this result with numerical simulations reported in Fig. 3.
This provides an experimental procedure for measuring the
mutual statistics of two generic quasiparticles in a controllable
quantum simulator of the QHE.

The non-Abelian case. Our arguments carry over to non-
Abelian QHE states (see Ref. [49] for some earlier ideas).
When considering a state with two QPs in a definite fusion
channel, the ground state is actually unique (we restrict our-
selves to the case without fusion multiplicities); therefore,
even the non-Abelian case is covered, because the hypotheses
of derivation of the SSR are uniqueness of the ground state,
screening, and rotational invariance. The non-Abelian nature
shows up via the possibility that fusing two QPs can lead to
different anyons, labeled by c. There is a different SSR for
each possibility, κab,c = −Jc + Ja + Jb (mod 1).

As an example we discuss the SSR for the Moore-Read
(MR) state [50]. We write the filling fraction of the state as
ν = 1

q , where q is even in the fermionic case and odd in the
bosonic one. The MR state is defined in terms of a chiral
boson field ϕ and the fields of the Ising conformal field theory
[51]. This means that we should label the quasiholes by their
Ising sector (i.e., 1, σ , or ψ), and their charge. The smallest
charge quasihole has the labels (σ, 1

2q ). Because the fusion of
two σ fields has two possible outcomes, σ × σ = 1 + ψ , the
fusion of two quasiholes also leads to two possible results. In
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TABLE II. The spin Jp of the MR quasiparticles.

J(1, 1
q ) J(σ, 1

2q ) J(ψ, 1
q )

1
2

1
8q + 3

16 0

particular, we have (the charge label is additive, as is the case
for the Laughlin state)

(
σ,

1

2q

)
×

(
σ,

1

2q

)
=

(
1,

1

q

)
+

(
ψ,

1

q

)
. (10)

The first possible outcome (1, 1
q ) is the quasihole one ob-

tains by piercing the sample with an additional flux, i.e., the
“ordinary” Laughlin quasihole. The second possible outcome
“contains” an additional neutral fermionic mode ψ . Table II
summarizes the expected value of the spin Ja for each of the
aforementioned quasiparticles [42,52]. We perform a Monte
Carlo sampling of the MR wave function with the different
quasiparticles localized in the center of the system. The nu-
merical calculations reported in Fig. 4 agree with the expected
results [42].

Alternative spins. Our definition of spin follows di-
rectly from the physical angular momentum L = LR + Lπ ,
where LR = (R2

x + R2
y )/2l2

B and Lπ = −(π2
x + π2

y )l2
B/2h̄2; it

is manifestly gauge invariant and is the generator of two-
dimensional (2D) rotations, because it satisfies [L, Rj] =
iε jkRk and [L, π j] = iε jkπk , with ε jk the Levi-Civita tensor.
The definition is ambiguous: Any operator Lc = L + c, with
c a c-number, has indeed the correct commutation properties;
this is a peculiarity of U(1) rotations in 2D physics, as SU(2)
ones do not leave room for such ambiguity. We conclude that
any operator Lc defines a correct quasiparticle spin Jp(c) [21].
In very general terms, Jp is composed of a part proportional
to p2 that determines the anyonic statistics [53], and of a
part proportional to p that does not affect κqp [see (9)]. It is
not difficult to prove that c can only appear in the prefactor
multiplying p, as it is linear in the quasiparticle density. We
consider this as an essential ambiguity that cannot be re-
solved, although different choices may have different physical
meanings.

Conclusions. We have presented a SSR for the Abelian
quasiparticles of the QHE on planar surfaces derived from
very mild assumptions. We have shown that the quasiparticles

FIG. 4. Comparison of the quasihole spins J (r) = ∫ r
0 ( |r′ |2

2�2
B

− 1)

ρqp(r′)2πr′dr′, for the different Moore-Read quasiholes: (a) the
(σ, 1

2q ), (b) the (1, 1
q ), and (c) the (ψ, 1

q ), for the bosonic filling

ν = 1 (corresponding to q = 1) and the fermionic ν = 1
2 (q = 2).

Rcl = √
2N/ν is the classical radius of the droplet and the number of

particles is N = 200.

fractionalize the gauge-invariant generator of rotations and
that this quantity can be used to define a measurable spin. The
fractional statistical properties of the quasiparticles follow
from that. Our results carry over to non-Abelian quantum Hall
states.
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I. THE SPIN OF THE QUASIELECTRON

We tested the spin of two paradigmatic quasielectron (QE) wavefunctions: Laughlin’s [1] and Jain’s [2], both for
single and double QE. The spin of lowest Landau level projected wavefunctions is computed according to [3]

Jqe(R) = 2π

∫ R

0

r dr

(
r2

2
− 1

)
(ρqe(r)− ρ(r)), (1)

ρqe(r) being the density of a QE state placed at the origin and ρ(r) the background density of the fractional quantum
Hall state hosting the QE excitation. When 1� r � Rcl, Jqe(R) has a plateau at the spin value. The knowledge of
the analytical form of the wavefunctions allows us to compute the spin by Monte Carlo sampling [4] the spin integral
(1).

In the following subsections, some information on the numerics is given. The results for the spin (1) are shown in
the main text; here in Fig. 1 we complement by showing the density of the states at filling fraction ν = 1/2 and the
excess charge with respect to the bulk Laughlin liquid.

A. Single Jain’s quasielectron

Jain’s composite fermion approach to the fractional quantum Hall states suggests [2]

ΨJQE = P̂LLL

∣∣∣∣∣∣∣∣∣
z∗0 z∗1 z∗2 . . .
1 1 1 . . .
z0 z1 z2 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣
∏
i<j

(zi − zj)m−1 (2)

as a candidate wavefunction for the QE on top of a Laughlin state at filling ν = 1
m . Here and in the following,

Gaussian factors will be left implicit. Carrying out standard projection onto the lowest Landau level [5] gives (apart
for constant proportionality factors)

ΨJQE =
∑
i

 1∏
l 6=i zl − zi

∑
j 6=i

1

zi − zj

∏
i<j

(zi − zj)m (3)

which has already been shown to carry the correct fractional charge [6] and having the correct exchange statistics [7, 8].

B. Double Jain’s quasielectron

Jain’s composite fermion approach suggests the following wavefunction for a doubly charged QE at the centre of a
circularly symmetric droplet

ΨJ2QE = P̂LLL

∣∣∣∣∣∣∣∣∣∣∣

z∗0
2 z∗1

2 z∗2
2 . . .

z∗0 z∗1 z∗2 . . .
1 1 1 . . .
z0 z1 z2 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣
∏
i<j

(zi − zj)m−1. (4)



2

0

0.05

0.1

0

0.05

0.1

0

0.3

0.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.5

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ρ
(r
)l

2 B

Single quasieletron

ν = 1/2
ν = 1/3
ν = 1/4

(a)

Double quasieletron

(c)
Q
(r
)

r/R
l

(b)

r/R
l

(d)

FIG. 1. Comparison of Jain’s and Laughlin’s QE densities ρqp(r) and charges Q(r) =
∫ r

0
(ρqp(r′) − ρL(r′)) r′dr′, where ρqp(r) is

the QE density and ρL(r) the background Laughlin density. The charge Q of the QE coincides with the plateau appearing when

r is far from the center and the boundary; Rcl =
√

2N/ν is the classical radius of the droplet. Panel (a) (/(c)): comparison
between the densities ρqp(r) of a single (/double) Jain’s QE (full lines) compared to that of Laughlin’s QEs (dashed lines),
for ν = 1/2, 1/3 and 1/4. Horizontal dashed-dotted lines represent the bulk Laughlin state density ρb = ν/2πl2B . Panel (b)
(/(d)): comparison between the QE charge Q(r) of a single (/double) Jain’s QE (full lines) compared to that of Laughlin’s QEs
(dashed lines). Horizontal dashed-dotted lines represent the charge of Laughlin’s quasiparticles, Q = ν.

Notice that this wavefunction is not the most energetically-favourable double quasielectron state [9], which is realized
by promoting two composite fermions to their first Landau level. We study the composite fermion antiparticle of the
double-quasihole state wavefunction because it has the same angular momentum as the Laughlin’s double quasielectron
state and therefore the comparison is more direct [10].
We use standard lowest Landau level projection, although different inequivalent projection methods [11] have been
proposed. After some tedious algebra (and again dropping constant proportionality factors) we find

ΨJ2QE =
∑
i6=j

(
(zi − zj)Γij∏

k 6=i(zk − zi)
∏
k 6=j(zk − zj)

)∏
i<j

(zi − zj)m (5)

where

Γij = (m− 1)2A2
iAj − (m− 1)BiAj +

2(m− 1)Ai
(zi − zj)2

− 2

(zi − zj)3
(6)

and {
Ai =

∑
j 6=i

1
zi−zj

Bi =
∑
j 6=i

1
(zi−zj)2 .

(7)

C. Single Laughlin’s quasielectron

Laughlin proposed a QE wavefunction by generalizing his successful quasihole (QH) wavefunction [1]

ψLQE =

(∏
i

2
∂

∂zi

)∏
i<j

(zi − zj)m, (8)
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which however - unlike the QH counterpart - is not easy to deal with from the computational point of view, due to the
N -th order derivative term. We are interested in computing expectation values of local, single-particle observables
Ô =

∑
i ôi

〈Ô〉 =

∫
Dz ψ∗LQEO(z, z∗)ψLQE (9)

where Dz =
∏
i d

2zi and z is a shorthand for all the particles’ coordinates. To simplify the expressions we assume
O(z, z∗) = O(|z|2). By performing integration by parts 2N times we then get

〈Ô〉 =
1

Z

∫
Dz

∣∣∣∣∣∏
i<j

(zi − zj)m
∣∣∣∣∣
2∏

i

(|zi|2 − 2)
∑
i

Ai(|zi|2) (10)

where Ai is related to the observable oi through

A(r2) = o(r2)− 4
r2 − 1

r2 − 2

∂o(r2)

∂r2
+ 4

r2

r2 − 2

∂2o(r2)

∂(r2)2
(11)

but crucially involves its derivatives. The normalization factor Z can be found by looking at Ô = I.
As an example, we expand here the expressions for the observable being the charge up to radius R

o(r2) = θ(R2 − r2). (12)

where θ is the step function. The spin case (1) is perfectly analogous but the expressions are more lengthy because of
the r2/2− 1 factor multiplying the step function. The integrals involve derivatives of the δ function. It is convenient
to take these out of the integrals and rearrange (10) in the following form

Q(R) = I0(R2) + 4I1(R2) + 4
∂I2(R2)

∂R2
(13)

where 
I0(R2) = 1

Z

∫
Dz

∣∣∣∏i<j(zi − zj)m
∣∣∣2∏i(|zi|2 − 2)

∑
i θ(R

2 − r2i )

I1(R2) = 1
Z

∫
Dz

∣∣∣∏i<j(zi − zj)m
∣∣∣2∏i(|zi|2 − 2)

∑
i δ(R

2 − r2i )
r2i−1
r2i−2

I2(R2) = 1
Z

∫
Dz

∣∣∣∏i<j(zi − zj)m
∣∣∣2∏i(|zi|2 − 2)

∑
i δ(R

2 − r2i )
r2i
r2i−2

.

(14)

Taking derivatives of noisy observables is tricky; to circumvent the problem we Fourier transform the relevant quantities

Ĩ(k) =

∫ ∞
0

I(R)J0(kR)RdR (15)

where J0 is the order 0 Bessel function of the first kind. We then filter out the “high-wavevector” noise superimposed
to the “low-wavevector” signal Ĩc(k) = c(k)Ĩ(k), with some suitably chosen cut-off function c(k), and invert the
transform

∂nIc(R)

∂(R2)n
=

∫ ∞
0

Ĩc(k)
∂nJ0(kR)

∂(R2)n
k dk. (16)

Derivatives of J0 can be expressed in closed compact form in terms of the 0F1 hypergeometric function, thus avoiding
the computation of finite differences.

D. Double Laughlin’s quasielectron

A doubly charged Laughlin’s QE can be placed at the origin as [9]

ψL2QE =

(∏
i

2
∂

∂zi

)2∏
i<j

(zi − zj)m. (17)
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Again, carrying out the derivatives explicitly seems not to be feasible, however it is simpler to look at local observables
as (9). Repeated integration by parts yields

〈Ô〉 =
1

Z

∫
Dz

∣∣∣∣∣∏
i<j

(zi − zj)m
∣∣∣∣∣
2∏

i

(8− 8|zi|2 + |zi|4)
∑
i

Ai(|zi|2) (18)

with

A(r2) = o(r2)− 8
4− 6r2 + r4

8− 8r2 + r4
∂o(r2)

∂r2
+ 8

4− 12r2 + 3r4

8− 8r2 + r4
∂2o(r2)

∂(r2)2
−

− 32
−2r2 + r4

8− 8r2 + r4
∂3o(r2)

∂(r2)3
+ 16

r4

8− 8r2 + r4
∂4o(r2)

∂(r2)4
.

(19)

Once again, the expressions for the observables involve derivatives of the observable itself; whenever dealing with
derivatives of the delta function, we adopted the procedure outlined in the previous paragraph.

II. ANGULAR MOMENTUM OF THE GAS

We here discuss a bit more extensively the results presented in Fig. 3 of the main text. We considered a Laughlin
state with two quasi-holes

ψ(η1,η2) =
∏
i

(zi − η1)
∏
i

(zi − η2)
∏
i<j

(zi − zj)m (20)

initially at diametrically opposite positions, η2 = −η1 = R0. As long as the two quasi-holes are well within the bulk
of the systems and far away from each other, the angular momentum of the state can be decomposed as

L(η1,η2) = Lb + Le(2) + Lqp(η1) + Lqp(η2). (21)

We decompose the quasi-hole angular momenta exploiting the fact that their density profile is circularly-symmetric
and depends only on r, η through |r− η|

Lqp(η1) =

∫
d2r

(
r2

2
− 1

)
ρqh(|r− η1|) = J1 +

Q1|η1|2

2
(22)

where J1 is the single quasi-hole spin, while Q1 =
∫
d2rρqh(r) its charge. As one quasi-hole is moved through the

quantum Hall fluid at time t0 and brought towards the centre at time t1, the angular momentum variation reads

∆L(η1,η2) =
Q1

2

(
|η1(t)|2 − |η1(t0)|2

)
(23)

provided the two quasi-holes are far away from one other.
When also the second quasi-hole is brought towards the center a naive use of Eq. (21) would predict the same

angular momentum variation, with final angular momentum L̃(0, 0) = Lb + Le(2) + 2J1. This is not correct though,
since as soon as the two quasi-holes start fusing the assumption of them being far away from each other ceases to be
valid. The correct η1 = η2 = 0 limit reads L(0, 0) = Lb+Le(2)+J2, so the difference between the parabolic behaviour

and the correct one reads L(0, 0)− L̃(0, 0) = J2 − 2J1 = −κ, the statistics parameter.

III. MONTE-CARLO SAMPLING

The numerical results presented in the main text and those in Fig. 1 in this Supplemental Materials are the results
of Monte Carlo simulation; in particular, we used standard Metropolis-Hastings Monte Carlo algorithm[4, 12] to
sample configurations from Jain’s (3) and Laughlin’s (8) wavefunctions (in the latter case, according to the methods
described in the previous paragraphs I C and I D), as well as the quasi-hole state Eq. (20). Observable expectation
values 〈Ô〉 have been obtained by collecting the results of multiple Monte-Carlo runs executed in parallel on a single
GPU, for a total of ≈ 1010 ÷ 1011 configurations, which were split into M ' 100 independent realizations, Oi; the



5

average and statistical errors are computed in the usual way, 〈Ô〉 ' 1
M

∑
iOi and σ2

O ' 1
M(M−1)

∑
i(Oi − 〈Ô〉)2. The

massive parallelism of the GPU allowed for relatively quick simulations (longest simulations taking up to some days),
taking down the error-bars on Eq. (1).

Finally, let us comment on the system size we chose. We mainly focused on large systems of N & 200 when looking
at the spin Eq. (1) because the density oscillations at both the quasiparticle “edge” and at the system’s one grow
larger with the reciprocal of the filling fraction, m = 1/ν; it can indeed be seen in Fig. 2(a) of the main text that the
plateau is much more pronounced at ν = 1/2 than it is at ν = 1/4.

Numerical data can be shared upon reasonable request.

IV. THE MPS FORMULATION ON THE CYLINDER

In the main text, the spin of the single and double QEs was obtained for the disk geometry. Here, we report results
on the cylinder, using the MPS approach, for the ν = 1

M fermionic Laughlin state. We refer to [13, 14] for more
information on the MPS formulation of quantum Hall states in general. The MPS formulation of a single Jain QE
was given in detail in [8]. Here, we provide the MPS matrices for a QH of size p, i.e., a QH with charge p

M , as well
as for QEs with various sizes, i.e., the cases with p negative.

As was discussed in detail in [8], if one wants to be able to consider a state with several QHs and QEs, it is necessary
to introduce two chiral boson fields ϕ and ϕ̃, in order that the various operators have the correct statistics with one
another. However, in the case that one is interested in simulating only one QE (which can be a single QE of arbitrary
size), without any QHs, a single chiral boson field suffices.

The CFT operators for an electron, a size p > 0 QH and a the modified electron operator for the size p < 0 QE (on
the disk) are given by (in terms of the single chiral boson field ϕ(z))

Vel(z) =: eiϕ(z)
√
M : , Vqh,p(η) =: eiϕ(η)p/

√
M : , Ṽel,p(z) = ∂|p|z : eiϕ(z)(M−|p|)/

√
M : , (24)

where we note that p < 0 in the QE case. In addition, one has the following constraint on the size of the QE,
0 < |p| < M .

Without going into the details, we here state the MPS matrices for an empty site, a site occupied by an electron,
the matrix for a size p QH, as well as the modified electron operators corresponding to a size p QE.

A. The matrices of the empty sites and ordinary electron operator

The circumference of the cylinder is denoted by L. Using the notation of [8], the MPS matrix for an empty site is
given by

B[0] = δQ′,Q−1δP ′,P δµ′,µe
−
(

2π
L

)2(
(Q′)2
2M + Q′

2M+P ′
)
. (25)

The matrix for an site occupied by an electron is given by

B[1] = δQ′,Q+M−1δP ′,P−QA
√
M

µ′,µe
−
(

2π
L

)2(
(Q′)2
2M + Q′

2M+P ′
)
, (26)

where Aβµ′,µ is given by

Aβµ′,µ =

∞∏
j=1

m′j∑
s=0

mj∑
r=0

δmj−r,m′j−s
(−1)r√
r!s!

( β√
j

)r+s√(m′j
s

)(
mj

r

)
. (27)

B. The matrices for the size p QH operator

We consider the matrix for the size p QH operator, where it is assumed that we only consider states with one QH
(which can be of arbitrary size p > 0). The operator is inserted between orbitals l− 1 and l. We denote this operator
as Hl,p(η), where η is the position of the QH on the cylinder. We find

Hl,p(η) = (−1)
p
M (Q+l)δQ′,Q+pA

p√
M

µ′,µe
−
(

2π
L

)2
(τ̃η−l)(Q

2−Q′2+Q−Q′
2M +P−P ′)e−

(
2π
L

)
(ixη)(P

′−P+ 1
M (pQ−τ̃η)) . (28)
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C. The matrices for the modified electron for the size p QE operator

As explained in detail in [8], a QE is created by modifying an elektron operator, to create a delocalized (angular
momentum eigenstate, with angular momentum k) QE. The latter are used to create a localized QE at ξ, by means
of applying a localizing kernel, weighing the angular moment QEs. Here, we give the result for the modified electron
operator, for the orbital l, that creates the localized QE of size p at ξ,

El,p(ξ) = e−
τ2ξ
2M

∑
k

e−
(

2π
L

)2
Mk2e

2π
L k(ixξ+τξ)Ek,l,p . (29)

Here, Ek,l,p is given by

Ek,l,p = (−1)|p|
Q+l
M FδQ′,Q+M−|p|−1δP ′,P−Q−k+|p|+ |p|M (Q+l)

A
q−|p|√
M

µ′,µ e−
(

2π
L

)2
(Q
′2

2M + Q′
2M+P ′)e

(
2π
L

)2
(lk+

l2|p|+l|p|2
2M ) , (30)

where the factor F (which takes care of the derivative in the modified electron operator, and ensures that we have
proper angular momentum states) is given by

F =

|p|∑
s=0

(−1)s
(
|p|
s

)( s−1∏
r1=0

k − r1
|p|Ne − r1

)( |p|∏
r2=s+1

(l − k + r2)
)( s∏

r3=1

(M(Ne − 1)− |p|Ne + r3)
)
, (31)

where the products are defined to be one if the range of the product is empty. This happens for s = 0, s = |p| and
s = 0 for the first, second and third product in the sum, respectively.

a. Results from the MPS formulation — We used the MPS formulation for the QH and QE states, to
obtain the density profiles, the access charge Q(r) and the spin J(r) of the excitations. In all cases, we used the
following parameters for the MPS. The number of electrons Ne = 100; the circumference of the cylinder L = 18`B .
The maximum value of the momentum for the non-zero modes pmax = 12. In all cases, the excitations were placed in
the middle of the cylinder.

We first display the obtained density profiles in Fig. 2. In Fig. 3, we display the excess charges Q(r) (as defined
above), as a function of the radial distance (in units of the magnetic length `B). Finally, in Fig. 4, we display the
spin J(r) as defined in the main text.

In calculating the integrals to obtain Q(r) and J(r), we assumed that the quasiparticles have cylindrical symmetry,
and integrated only along the cylinder. The exception is the double QE. In that case, we performed the full 2-
dimensional integral up to radius r = `B/2. For r > `B/2, we again assumed cylindrical symmetry for the double
QE. The reason for doing this, is that in the case of the double QE, one needs a higher cutoff value pmax to obtain a
cylindrically symmetric double QE.

The results we obtain using the MPS formulation of the quasihole and quasielectron states are fully consistent with
the results obtained using Monte Carlo for the disk geometry. We should note, however, that the double quasielectron
we simulate using the MPS formulation, has different short distance properties in comparison to the double Jain
quasielectron studied in the main text. It has been noted before in the literature, see for instance [9, 15], that
there are different ways to create double quasielectron excitations. The double quasielectron studied in the MPS
formulation, has a charge profile that is more concentrated, leading to a higher value of the spin, in comparison to the
double Jain quasielectron studied in the main text. Because the difference between the two spins is an (even) integer,
the results are nevertheless fully compatible with one another, the spin-statistics relation is satisfied in both cases.

V. THE NON-ABELIAN CASE

In this section, we provide some details concerning the non-abelian case in general, and for the Moore-Read state [16]
in particular. For non-abelian quantum Hall states, fusing two quasiparticles generically can lead to more than one
different outcome. This means that in the case of several quasiparticles, the ground state is typically degenerate.
However, for our purposes of obtaining a spin-statistics relation, we can focus on the case with two quasiparticles, for
which the ground state is unique [17]. Therefore, even the non-abelian case satisfies the assumptions we made in our
derivation of the spin-statistics relation in the main text, in particular that the ground state is non-degenerate. The
non-abelian nature manifests itself via the possibility that fusion of two quasiparticles can lead to different results.
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FIG. 2. The particle density profile ρ(r) (in units of 1/`2B) as a function of the radius (in units of `B), for a single/double
quasihole (upper/lower left panel) and for a single/double Jain quasielectron (upper/lower right panel). The dotted lines
represent the background density ρ0 = ν/(2π) with ν = 1/3.

For each of these results, we have a different spin-statistics relation, that takes the same form as stated in the main
text,

κab,c = −Jc + Ja + Jb (mod 1) , (32)

where c denotes the particular fusion outcome of fusing a with b.

A. The Moore-Read case

In this section, we explain how the spin-statistics relation works for the Moore-Read state [16]. This is confirmed
by our numerical results. We write the filling fraction of the state as ν = 1

q , where q is even in the fermionic case.
The Moore-Read state is defined in terms of a chiral boson field ϕ and the fields of the Ising conformal field theory
(see f.i. [18]). This means that we should label the quasiholes by their Ising sector (i.e., 1, σ or ψ), and their charge.

The smallest charge quasihole has the labels
(
σ, 1

2q

)
. Because the fusion of two σ fields has two possible outcomes,

σ× σ = 1 +ψ, the fusion of two quasiholes also leads to two possible results. In particular, we have (the charge label
is additive, as is the case for the Laughlin state)(

σ,
1

2q

)
×
(
σ,

1

2q

)
=

(
1,

1

q

)
+

(
ψ,

1

q

)
. (33)

The first possible outcome
(
1, 1q

)
is the quasihole one obtains by piercing the sample with an additional flux, i.e., the

“ordinary” Laughlin quasihole. The second possbile outcome “contains” an additional neutral fermionic mode ψ.
From the explicit conformal field theory construction [16] (see also [19]) one obtains the statistical parameters of

the double exchange of two charge 1
2q quasiholes, for both possible fusion outcomes. For clarity, we drop the charge
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FIG. 3. The excess charges Q(r) (in units of q) as defined in the caption of Fig. 1 for a single/double quasihole (upper/lower
left panel) and for a single/double quasielectrons (upper/lower right panel). The dotted lines represent the expected values ± 1

3

and ± 2
3
.

label when referring to the braid parameter κ. In particular, one finds κσσ,1 = 1
4q −

1
8 (when the quasiholes fuse

to (1, 1q ), the ordinary Laughlin quasihole). For the other fusion channel, one has κσσ,ψ = 1
4q + 3

8 , that is, one has

κσσ,ψ = κσσ,1 + hψ, where hψ = 1
2 is the scaling dimension of the neutral fermion.

We know, on theoretical grounds, the spin of the Laughlin quasihole in the Moore-Read state, that is, we know
J(1,1/q). We can then first make a prediction for the spin of an elementary quasihole, J(σ,1/(2q)), using the spin-

statistics relation. Finally, using J(σ,1/(2q)), we can obtain the spin for the quasihole of type
(
ψ, 1q

)
, i.e. J(ψ,1/q). In

the following subsection, we provide numerical results, that confirm the values of the spin in these three cases.
Generically, the spin of a Laughlin quasihole is given by J(1,1/q) = − 1

2q + S
2q , where S is the shift of the state, as

can for instance be computed from the assumption of a rigid shift of the droplet’s boundary [3]. For the Moore-Read
state, the shift is given by S = q + 1, which results in

J(1,1/q) =
1

2
. (34)

We find that the spin of the Laughlin quasihole in the Moore-Read state does not depend on the filling fraction.
By making use of J(1,1/q) = 1

2 , κσσ,1 = 1
4q −

1
8 , and the spin-statistics relation, we find

J(σ,1/(2q)) =
1

2
(κσσ,1 + J(1,1/q)) =

1

8q
+

3

16
. (35)

For q = 1, this results in J(σ,1/2) = 5
16 , while for q = 2, we have J(σ,1/4) = 1

4 .

With the values of J(σ,1/(2q)) = 1
8q + 3

16 and κσσ,ψ = 1
4q + 3

8 at hand, we can now obtain J(ψ,1/q). From the
spin-statistics relation, we obtain

J(ψ,1/q) = 2J(σ,1/(2q)) − κσσ,ψ = 0. (36)
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FIG. 4. The spin J(r) (in units of ~) for a single/double quasihole (upper/lower left panel) and for a single/double quasielectron
(upper/lower right panel). The dotted lines represent the expected values, namely 1

3
for both the single and double quasihole,

− 2
3

for the single quasielectron and 1
3

for the double quasielectron.

Again, this value is independent of q. In the following subsection, we numerically confirm the values of the spin
obtained here.

B. The Moore-Read case, numerical results

In this Subsection we describe how we employed a Monte-Carlo sampling of the Moore-Read wavefunction in the

presence of the different quasiholes
(
σ, 1

2q

)
,
(
1, 1q

)
and

(
ψ, 1q

)
in order to characterize their charges and spins.

Since the technique is analogous to that described in Section III, here we just briefly describe the wavefunctions we
considered.

We here always consider N to be even because it is numerically simpler. The “Laughlin” quasihole
(
1, 1q

)
can be

obtained by adiabatically piercing the system with a flux at position η, resulting in

Ψ(1, 1q )(η) =

N∏
i

(zi − η) Pf

(
1

zi − zj

) N∏
i<j

(zi − zj)q exp

(
−1

4

∑
i

|zi|2
)
. (37)

The “sigma” quasiholes
(
σ, 1

2q

)
are instead defined by “splitting” a Laughlin quasihole making use of the properties

of the Pfaffian factor

Ψ(η1, η2) = Pf

(
(zi − η1)(zj − η2) + (i� j)

zi − zj

) N∏
i<j

(zi − zj)q exp

(
−1

4

∑
i

|zi|2
)
. (38)

From the numerical point of view, it is useful to maximize the distance between the quasiholes and the boundary of

the system; the optimal solution is to place a single
(
σ, 1

2q

)
quasihole at η = 0 – the system’s centre – and send the
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0
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and ρMR(r) the background Moore-Read density, for the dif-

ferent Moore-Read quasiholes: (a) the
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)
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FIG. 6. Comparison of the quasihole spins J(r) =∫ r

0

(
r′

2
/2 − 1

)
(ρqp(r′) − ρMR(r′)) r′dr′, where ρqp(r) is the

QH density and ρMR(r) the background Moore-Read density,

for the different Moore-Read quasiholes: (a) the
(
σ, 1

2q

)
, (b)

the
(
1, 1

q

)
and (c) the

(
ψ, 1

q

)
, for the bosonic filling ν = 1

(corresponding to q = 1) and the fermionic ν = 1
2

(q = 2).

Rcl =
√

2N/ν is the classical radius of the droplet.

other at spatial infinity. This will in general modify the properties of the boundary, but not those of the quasihole at
the centre of the system. We obtain

Ψ(σ, 1
2q )(η = 0) = Pf

(
zi + zj
zi − zj

) N∏
i<j

(zi − zj)q exp

(
−1

4

∑
i

|zi|2
)
. (39)

Finally, we introduce a quasihole
(
ψ, 1q

)
by inspecting the four-

(
σ, 1

2q

)
quasiholes wavefunction. Introducing the

four quasi-hole “building-block”

Ψ(ab)(cd) = Pf

(
(zi − ηa)(zi − ηb)(zj − ηc)(zj − ηd) + (i� j)

zi − zj

) N∏
i<j

(zi − zj)q exp

(
−1

4

∑
i

|zi|2
)

(40)

it is possible to define two degenerate four-quasihole states for suitable short-ranged Hamiltonians with pinning
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potentials [20] 
Ψ0 =

∏4
µ<ν η

1
4q−

1
8

µν
(η13η24)

1
4√

1+
√
1−x

(
Ψ(13)(24) +

√
1− xΨ(14)(23)

)
Ψ1 =

∏4
µ<ν η

1
4q−

1
8

µν
(η13η24)

1
4√

1−
√
1−x

(
Ψ(13)(24) −

√
1− xΨ(14)(23)

) (41)

where ηµν = ηµ − ην and x = η12η34
η13η24

; these states are orthonormal [19].
By taking the appropriate limit of Ψ1, we obtain

Ψ(ψ, 1q )(η = 0) ∝ Pf

(
z2i + z2j
zi − zj

)
N∏
i<j

(zi − zj)q exp

(
−1

4

∑
i

|zi|2
)
. (42)

In Fig. 5 and Fig. 6 we exhibit Monte Carlo results for the charge Q(r) =
∫ r
0

(ρqp(r
′)− ρL(r′)) r′dr′ and spin Eq. (1)

of the different Moore-Read quasiholes
(
σ, 1

2q

)
Eq. (39),

(
1, 1q

)
Eq. (37) and

(
ψ, 1q

)
Eq. (42).

It was not possible to run the Monte Carlo sampling on a GPU because of the larger space resources required
to store the matrix Aij = 1

zi−zj ; this indeed reflects on the larger errorbars for the Moore-Read spins in Fig. 6 as

compared to the Jain’s and Laughlin’s quasielectron spins displayed in Fig. (2) of the main Article. Nonetheless, the
results for both the charge and spin are in agreement with the expectations, thereby proving the validity of our proof.
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[18] P. Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory (Springer Science & Business Media, 2012).
[19] P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B 83, 075303 (2011).
[20] C. Nayak and F. Wilczek, Nuclear Physics B 479, 529 (1996).

mailto:alberto.nardin@unitn.it
mailto:ardonne@fysik.su.se
mailto:leonardo.mazza@universite-paris-saclay.fr
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.63.199
http://dx.doi.org/ 10.1103/PhysRevB.105.085125
http://dx.doi.org/10.2307/2280232
http://dx.doi.org/10.1103/PhysRevB.29.5617
http://dx.doi.org/https://doi.org/10.1016/S0550-3213(99)00353-3
http://dx.doi.org/10.1103/PhysRevLett.91.036801
http://dx.doi.org/ 10.1088/1742-5468/aab679
http://dx.doi.org/10.1103/PhysRevB.68.165346
http://dx.doi.org/ 10.1103/PhysRevB.72.245312
http://dx.doi.org/10.1142/S0217979297001301
http://arxiv.org/abs/https://doi.org/10.1142/S0217979297001301
http://dx.doi.org/10.2307/2334940
http://dx.doi.org/10.1103/PhysRevB.86.245305
http://dx.doi.org/10.48550/arXiv.1311.2936
http://dx.doi.org/10.1103/PhysRevB.80.165330
http://dx.doi.org/https://doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1016/0550-3213(96)00430-0

