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We present a detailed study of the phase diagram of the Kitaev-Hubbard chain, that is the Kitaev chain in the
presence of a nearest-neighbor density-density interaction, using both analytical techniques as well as DMRG.
In the case of a moderate attractive interaction, the model has the same phases as the noninteracting chain, a
trivial and a topological phase. For repulsive interactions, the phase diagram is more interesting. Apart from
the previously observed topological, incommensurate, and charge density wave phases, we identify the “excited
state charge density wave” phase. In this phase, the ground state resembles an excited state of an ordinary charge
density phase, but is lower in energy due to the frustrated nature of the model. We find that the dynamical critical
exponent takes the value z � 1.8. Interestingly, this phase only appears for even system sizes, and is sensitive
to the chemical potential on the edges of the chain. For the topological phase, we present an argument that
excludes the presence of a strong zero mode for a large part of the topological phase. For the remaining region,
we study the time dependence of the edge magnetization (using the bosonic incarnation of the model). These
results further expand the region where a strong zero mode does not occur.
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I. INTRODUCTION

Topological phases of noninteracting fermions have been
studied extensively and the full classification of the possible
phases has been found [1–4]. The classification scheme is
based on time-reversal symmetry, particle-hole symmetry, and
chiral symmetry and which phases are possible depends on the
spatial dimension. To a given class and spatial dimension one
can attribute a group, i.e., Z2 or Z, that describes the possible
gapped topological phases in that class. As an example the
class BDI has all three symmetries (squaring to one) and in
one dimension its gapped phases are labeled by the group Z.
The prototypical model belonging to this class is the Kitaev
chain (with real couplings) [5]. In the topological phase of the
Kitaev chain, the model hosts Majorana zero modes on the
edges of the chain. This zero mode results in a fully doubly
degenerate many-body spectrum.

For interacting fermions there is no universal classification
scheme. Nonetheless for the class BDI it was shown that in
the presence of interactions the different topological classes
correspond to the elements of the group Z8 [6,7]. One should
note that this classification only concerns gapped phases and
the phase diagram of a general model has gapless points or
regions as well. Therefore it is interesting not only to wonder
about how the interaction affects a topological phase [8] but
also how gapless phases emerge due to interactions.

The main aim of this paper is studying the phase diagram
of the Kitaev chain in the presence of a density-density
interaction, see Refs. [9–14] for earlier results for this model.
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We refer to this model as the Kitaev-Hubbard chain. We
study both the attractive and repulsive regime. In addition to
the trivial and topological phases which are inherited from
the Kitaev chain, the model has an incommensurate phase, a
charge density wave phase, and a new phase which is sensitive
to the system size and the chemical potential at the boundaries
of the chain. Moreover, we study the possibility of having a
full doubly degenerate many-body spectrum in the topological
phase of this interacting model.

The paper is organized as follows. In Sec. II we briefly
review both the classical and quantum axial next-nearest-
neighbor Ising (ANNNI) model and present the model of
interest for this paper, namely the Kitaev-Hubbard chain.
We show that the quantum ANNNI model and the Kitaev-
Hubbard chain are dual to each other and present the main
result, that is the phase diagram of this model. We continue
by presenting our analytical results based on bosonization and
the numerical results based on density matrix renormalization
group (DMRG) [15,16] for an attractive interaction in Sec. III.
In Sec. IV we move on to the repulsive regime, for which
there is an incommensurate phase and a new phase which was
missed previously. Moreover, we will discuss the properties of
the highest excited states as well as the finite temperature fea-
tures of the model in Sec. V. We conclude the paper in Sec. VI.

II. THE MODEL AND THE PHASE DIAGRAM

To introduce the model we set the scene by reminding the
reader of the classical Ising model, which is the cornerstone
of our understanding of phase transitions [17–20].

To define this model consider a square lattice where on
each site, with coordinate (i, j), one has a classical spin,
si, j = ±1. For a configuration of spins {s} the energy is

E [{s}] = −
∑
i, j

(J̃1si, j si+1, j + J̃⊥si, j si, j+1). (1)
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We assume that J̃1, J̃⊥ > 0. The classical Ising model in two
dimensions was initially solved by Onsager [17], later other
solutions were found, see [18]. The model has two phases. For
temperatures T less than the critical temperature Tc, it is in
the ferromagnetic phase and for T > Tc it is in the disordered
phase.

As a generalization one can consider the ANNNI model
where one adds an extra interaction along one axis, which
could favor ferromagnetic or antiferromagnetic alignment
[9,21,22]. The energy for a given configuration of spins of the
ANNNI model is

E [{s}] = −
∑
i, j

(J̃1si, j si+1, j + J̃2si, j si+2, j )

−
∑
i, j

J̃⊥si, j si, j+1. (2)

We follow the usual notation and define κ̃ = − J̃2

J̃1
. For κ̃ <

0 there is no frustration, and the axial term only modifies the
critical temperature. For κ̃ > 0, however, the situation is more
subtle. For small and positive κ̃ the model has two phases,
a ferromagnetic and paramagnetic phase. The point κ̃ = 1/2
is a multicritical point, where four phases meet, namely the
ferromagnet, paramagnet, a floating phase, and the so-called
“antiphase” [9]. In the antiphase, the axial interaction dom-
inates and there are four spin configurations that minimize
the energy. For the floating phase however, all interactions are
important. Whether the floating phase continues to infinite κ̃

is an open question, which we study in this paper by analyzing
the corresponding quantum model.

The quantum counterpart of the classical Ising model is
the transverse field Ising model (TFIM) [23–25]. This model
is defined on a chain. On each site there is a spin-1/2 degree
of freedom and the Hamiltonian for a chain of size L can be
written as

H = −J1

L−1∑
j=1

τ z
j τ

z
j+1 + B

L∑
j=1

τ x
j , (3)

where τα are Pauli matrices. One can relate the parameters
J1 and B in terms of coupling constants of the classical
model and the temperature [25]. The TFIM shows a quantum
phase transition at T = 0. For |B| < |J1| the model is in the
ferromagnetic phase while for |B| > |J1| it is in the disordered
phase. The classical Ising model in two dimensions and the
one-dimensional TFIM are in the same universality class.

The quantum ANNNI model was also studied [10–12,14].
The Hamiltonian reads [9]

H = −J1

L−1∑
j=1

τ z
j τ

z
j+1 − J2

L−2∑
j=1

τ z
j τ

z
j+2 + B

L∑
j=1

τ x
j . (4)

In analogy with the classical ANNNI model, we define κ =
− J2

J1
. For κ < 1

2 the model has only ferromagnetic and param-
agnetic phases. In this regime there is a second order phase
transition between the ordered and the disordered phase at
Bc(κ ). The point κ = 1

2 is a multicritical point from which the
floating phase emerges. For very large κ the dominant term
is the next-nearest-neighbor term in Eq. (4) which gives rise
to four ground states. Previous studies found that the floating

phase survives till κ � 5 [11,12]. We will present our results
for infinite κ by studying the dual model.

To study large frustration, κ � 1, we employ the duality
map as follows:

τ z
j τ

z
j+1 → σ z

j ,

τ x
j → σ z

j σ
z
j+1. (5)

We further perform an on-site rotation,

σ x
j → σ z

j , σ z
j → (−1) jσ x

j . (6)

Using these two transformations one can transform the Hamil-
tonian for the quantum ANNNI model, Eq. (4), to an interact-
ing quantum Ising model,

H = −B
L−1∑
j=1

σ x
j σ

x
j+1 − J1

L∑
j=1

σ z
j + J2

L−1∑
j=1

σ z
j σ

z
j+1. (7)

Note that the sign of B and J1 are not important and we
will assume that both are positive. The sign of J2, however,
is crucial. Hence we use B as our energy scale and study the
following Hamiltonian:

H (h,U ) = −
L−1∑
j=1

σ x
j σ

x
j+1 − h

L∑
j=1

σ z
j + U

L−1∑
j=1

σ z
j σ

z
j+1, (8)

in which,

h = J1

B
, U = κ

J1

B
= κh. (9)

By performing a Jordan-Wigner (JW) transformation [26],
one arrives at the Kitaev-Hubbard chain,

H (h,U ) = −
L−1∑
j=1

(c†
j − c j )(c

†
j+1 + c j+1)

− h
L∑

j=1

(1 − 2c†
j c j )

+ U
L−1∑
j=1

(1 − 2c†
j c j )(1 − 2c†

j+1c j+1). (10)

For U = 0, the model reduces to the TFIM (or the Kitaev
chain [5]) which is exactly solvable [24,27]. In the bosonic
representation the two phases are the ordered (h < 1) and the
disordered (h > 1) phases which are converted to the topo-
logical and the trivial phases, respectively, in the fermionic
incarnation. The phase transition between these phases is
described by the c = 1

2 Ising CFT.
In the topological phase the model hosts Majorana zero

modes which live on the edges and has zero energy up to
exponentially small corrections in the system size. An inter-
esting question is whether the topological phase is stable in
the presence of interactions [8,28]. The U term in Eq. (8) gives
rise to a density-density interaction, but renders the model
nonintegrable.

Another special case is h = 0 for which the model is
called the XY model [27]. This model is gapped, except
when U = ±1, which are critical points with central charge
c = 1. The gapped phases are ordered phases in the bosonic
representation and topological in the fermionic incarnation.
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FIG. 1. The phase diagram for the model in Eq. (8). The green
region, between the IC and CDW phase, is the esCDW phase.

It is worth to mention that the model in Eq. (8) is actually
relevant for an array of superconducting islands [29]. More-
over, for a specific set of couplings known as the Peschel-
Emery (PE) line, the ground state is exactly doubly degenerate
[30]. This line lies in the topological phase and host weak zero
modes [31,32], see Sec. V for more detail on this.

We obtained the phase diagram of the model in Eq. (8)
as presented in Fig. 1. Parts of this phase diagram were
schematically drawn previously based on the known results
for the quantum ANNNI model [10,11,13,28,29]. We believe,
however, that in the previous studies one phase (the green
region in the plot) has been missed. This phase will be
described in Sec. IV C.

III. THE ATTRACTIVE INTERACTION CASE

For attractive interactions, U < 0, there is no frustration,
κ < 0, and one expects a direct transition from the topological
phase (ordered phase) to the trivial phase (disordered phase),
as is the case for U = 0. To study the U < 0 case, one can
start from the Ising critical point, namely h = 1 and U = 0,
and perform perturbative calculations to find the location of
the phase transition [33]. We will, however, start from another
critical point, namely the XY critical point with h = 0 and
U = −1. Close to this point we can use bosonization. To do
so it is convenient to transform the Hamiltonian in Eq. (8). We
first do an on-site rotation,

σ x
j → (−1) jσ

y
j , σ z

j → (−1) jσ x
j , (11)

which changes the Hamiltonian to

H (h,U ) =
∑

j

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

)

+
∑

j

[−δUσ x
j σ

x
j+1 − h(−1) jσ x

j

]
, (12)

in which we defined δU = U + 1 and dropped the lower and
upper bounds of the sums, since we will be working in the
continuum limit. We assume that δU, h � 1.

We can use the JW transformation, write the Hamiltonian
in terms of spinless fermions ψ j , and perform a Fourier
transformation to work in momentum space. Doing so, the

first two terms, namely the XY model, give rise to a gapless
cos(k) band, which can be linearized around k = ±π

2 , to get
the continuum model,

ψ j = √
a
[
ei π

2 jψ+(x) + e−i π
2 jψ−(x)

]
. (13)

In the last equation a is the lattice spacing and x = ja will be
the continuous spatial coordinate.

We first consider the δU term in Eq. (12). Plugging Eq. (13)
into this term we get a term proportional to∫

(ψ†
+(x)ψ†

−(x) + ψ+(x)ψ−(x))dx. (14)

To further simplify the result, we use the dual fields φ(x)
and θ (x), which obey the commutator [φ(x), θ (y)] = i�(y −
x), where �(x) is the Heaviside step function. Therefore,
∂xθ (x) is the conjugate momentum of the field φ(x). We
employ the bosonization dictionary [34],

ψ±(x) = 1√
2πα

ei
√

π [±φ(x)−θ (x)] , (15)

in which α is a cutoff in momentum space. Hence we can
write the δU term in terms of the dual fields, which is propor-
tional to ∫

cos(
√

4πθ )dx. (16)

The h term in Eq. (12) can be treated in the same way.
Using the bosonization dictionary and by dropping the fast
oscillatory terms which are proportional to (−1) j , one can
show that

(−1) jσ−
j → e−i

√
πθ (x). (17)

Therefore the h term reduces to∫
cos(

√
πθ )dx. (18)

The full Bosonized Hamiltonian then reads

H (h, 1 + δU ) = H0 + c1δU
∫

cos(
√

4πθ )dx

+ c2h
∫

cos(
√

πθ )dx, (19)

in which H0 is the free bosonic Hamiltonian and c1 and c2

are some constants which depend on a and α. Since H0 is
quadratic, we can calculate the renormalization group flow of
the couplings, δ and h, up to first order

dδU

dl
= δU, (20)

dh

dl
= 7

4
h. (21)

We should mention that we assumed that we can drop the
renormalization of K , one of the Luttinger parameters. These
two equations tell us that close to the XY point, h = 0 and
U = −1, the curve separating the topological and the trivial
phases is given by

h ∼ (U + 1)7/4. (22)

To check this analytical result we performed a numerical
study and compared to the results shown in Fig. 2. To locate
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FIG. 2. The phase boundary between the trivial band insulator
and the topological phase. The blue line is hc(U ) = 0.99(U + 1)1.73.
The red line is hc(U ) = 0.97(U + 1)7/4.

the phase transition we ran DMRG using the ALPS libraries
[35–37]. This DMRG study also serves to get acquainted with
the performance of the algorithm for the model at hand.

We should note that the second term in Eq. (10) [the
magnetic field in the bosonic incarnation in Eq. (8)] has been
implemented as follows:

L−1∑
j=1

−h

2
[(1 − 2c†

j c j ) + (1 − 2c†
j+1c j+1)]. (23)

Therefore in the bosonic incarnation the strength of the mag-
netic field in the bulk is h while it is half of this strength on
the first and the last sites, h1 = hL = h

2 .
We used finite size scaling (FSS) to pinpoint the transition.

Within this framework, one finds the ground state and the
first excited state and use the following scaling ansatz for the
energy difference between them, δ, close to the critical point
[38],

δ(L, h) = L−zF[L−ν (h − hc)], (24)

where L is the system size, z is the dynamical critical expo-
nent, ν is the correlation length exponent, and F is a scaling
function. For the TFIM it is known that z = ν = 1 [39].

We present our data for U = −0.4 as an example. For a
given U at h = hc(U ), the quantity Lzδ does not depend on
the system size. In Fig. 3 it is clear that Lδ for different system
sizes cross at hc = 0.406. One can use this critical value and
take ν = 1 to check the validity of the ansatz Eq. (24), see
Fig. 3. Indeed, the data for different system sizes follow the
same functional form if one scales the h axis appropriately.

We used FSS for −0.8 � U � 0.25 and calculated the
critical field hc(U ). The data are presented in Fig. 2. We fitted
a power law with the form

hc(U ) = a(U + 1)b (25)

to the data. Using the data in the range of −0.8 � U � −0.5
the fitting gives a = 1.02 and b = 1.81. For the full range of
data in Fig. 2, however, the best power-law fit has a = 0.99
and b = 1.73. The blue line in Fig. 2 is the fit to the full set of
data points. These results are in a very good agreement with
our bosonization result in Eq. (22). Our results are also in very

FIG. 3. Finite size scaling for U = −0.4. The quantity Lδ =
L(E1 − E0) for different system sizes cross at h = 0.406.

good agreement with the perturbative approach of Ref. [33]
around the point h = 1, U = 0.

To determine the central charge c along the curve we used
the scaling of the excited states’ energy as a function of system
size L [40] and the Calabrese-Cardy (CC) formula for the
entanglement entropy (EE) of a subsystem of size l , in the
case of an open chain at the critical point S(l, L) [41–43],

S(l ) = c

6
log

[
L sin

(
π l

L

)]
+ S0. (26)

Here c is the central charge and S0 is a constant. Both methods
result in the central charge c = 1

2 . Therefore we have the
central charge c = 1

2 all along the transition line except for
h = 0 and U = −1, where we have the XY critical point with
central charge c = 1 [40].

IV. THE REPULSIVE INTERACTION CASE

In this section we study the Hamiltonian Eq. (8) with
repulsive interaction U > 0, which is more involved. We can
qualitatively understand the physics in the weak and strong
interaction limits. For weak interaction, U � 1, we still ex-
pect to have two phases, i.e., a topological (ordered) phase
and a trivial (disordered) phase, as in the case of the TFIM.
On the other hand for very strong interaction, the model is in
the Néel phase which corresponds to the charge density wave
(CDW) in the fermionic representation. Apart from these two
easy limits it is hard to say something about the phase(s)
for intermediate interaction strength. For the earlier studies
of the model with repulsive interaction using DMRG and
bosonization we refer to Refs. [10–12,14].

To find the phase diagram of the model we performed
DMRG using the ALPS libraries [35–37]. We used the
fermionic incarnation of the model, i.e., Eq. (10), to perform
the DMRG. This is useful since the total parity P is a con-
served quantity,

P =
L∏

j=1

σ z
j =

L∏
j=1

(1 − 2n j ). (27)
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FIG. 4. Energy with respect to the ground state energy EP
n − EG

of the ground state (n = 0) and the first excited state (n = 1) in both
parity sectors are plotted as a function of U for h = 0.7 and L = 240.
Note that EG is either E+1

0 or E−1
0 . The range of U corresponds to the

dashed line in Fig. 1.

Above the parity is given in both bosonic and fermionic incar-
nations. Since P2 = 1, its eigenvalues are P = ±1. Because
parity is a good quantum number, the eigenstates with P = +1
are called the even sector and the ones with P = −1 the odd
sector. One can restrict DMRG to be done in one sector [37].

In a default setup we performed DMRG for a chain of size
L = 240, used the bond dimension χ = 500 for the Schmidt
decomposition, and swept eight times. By the convention in
ALPS each sweep means an optimization from the first site to
the last one and again from the last site to the first one. We
have, however, checked our results to be sure that the DMRG
is converged. Specifically, we increased the number of sweeps
up to 12, and considered different system sizes. We already
note that in the green region of the phase diagram (Fig. 1), the
system size modulo four plays an important role. We discuss
this issue extensively below.

To begin our tour of the repulsive regime, we present our
results for the lowest two eigenstates in each parity sector, the
ground state (n = 0) and the first excited state (n = 1). We
label the states with P and n and their energy will be denoted
by EP

n . The result for h = 0.7 along the dashed line in Fig. 1 is
presented in Fig. 4. One can see features of different phases in
this plot. For U � 1.05 the model is in a gapped topological
phase in which the ground state is doubly degenerate, with
opposite parities.

For 1.05 � U � 1.29 we have a gapless incommensurate
phase in which observables oscillate and the parity of the
ground state depends highly on details such as the system
size and the couplings. Increasing U further, for 1.29 � U �
1.41 we have a new phase which we believed has been
missed previously. The intriguing feature of this region is
that the nature of the ground state differs for even and odd
system sizes. Finally for U � 1.41 the system has a CDW
ground state. We will later discuss the degeneracy and the
parity of the ground state in this phase for different system
sizes.

(a) Entanglement entropy as a function of subsystem size.

(b) Occupation number in the ground state.

FIG. 5. Observables for h = 0.7 and U = 0.95, a point in the
topological phase, are plotted for the two ground states. The system
size is L = 240.

A. The topological phase

In Fig. 4 we start in the topological phase (the white region
in Fig. 1), where the model is gapped and the ground state
is doubly degenerate. The two ground states have different
parity. In Fig. 5 we present the EE S(l ) as a function of
subsystem size l and the (expectation value of the fermion)
occupation number at each site N ( j) for the ground state in
each parity sector. The difference of the energy of the two
states is of the order of 10−7 in units of hopping strength, note
that we set t = 1 in Eq. (10). As is evident, S(l ) saturates to
a high value in the bulk for both ground states, which is a
signature of the topological phase. The occupation number is
constant in the bulk for both parity sectors.

B. The incommensurate phase

By increasing the interaction strength we enter the incom-
mensurate (IC) phase, the orange region in Fig. 1. In part
of the literature, especially papers considering the classical
model or the dual model, this phase is called the floating
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(a) Entanglement entropy as a function of subsystem size.

(b) Occupation number in the ground state.

FIG. 6. Ground state observables for h = 0.7 and U = 1.2, a
point in the incommensurate phase, are plotted for L = 240. The
ground belongs to the odd sector.

phase. In this phase the ground state is unique but its parity
does strongly depend on the parameters and the system size.

In Fig. 6 we present the EE and occupation number N ( j)
for a chain of size L = 240 at a point in the IC phase, h =
0.7 and U = 1.2. For this set of parameters the ground state
happens to belong to the odd sector.

One signature of this phase is the presence of oscillations in
the EE and occupation number. Another feature of this phase
is that one can use the CC formula, Eq. (26), for the EE to
fit the data. Previously this has been done to distinguish the
IC phase from the topological and the trivial phases of a Z3

parafermionic chain [44].
For fitting we usually drop the first and the last 20 sites

because there are clear edge and finite size effects in the both
EE and occupation number, see Fig. 6. Using the CC formula,
Eq. (26), to fit the data, we get c = 1.03. The fitted curve
is also plotted in Fig. 6 as a solid line. Hence the essential
features of the EE in the IC phase can be captured by the CC
formula with c = 1. One would, of course, get a better fitting
by considering the fluctuations on top of the CC formula, but
we did not attempt this. We checked that the gap within each

FIG. 7. The derivatives of the ground state energy ∂EG
∂U (the blue

circles) and − ∂2EG
∂U 2 (the red squares) are plotted against U for h =

0.7.

parity sector scales as 1/L, consistent with the fact that the
main features of the EE are well described by the CC formula.

Pinpointing the transition from the topological phase to the
IC phase is rather a hard task and this transition was conjec-
tured to be of Kosterlitz-Thouless type [9,11]. We looked at
the energy and its derivatives and we did not find any signature
of a first or second order transition. We set the transition point
by the energy difference of the order of 10−3 between the
ground state in the two parity sectors and by requiring c = 1
for fitting the CC formula to the DMRG data. Note that for
a point in the topological phase close to the transition the EE
can also be fitted well to the CC formula with central charge
c < 1. One can distinguish the topological phase from the IC
phase by looking at larger system sizes. In the topological
phase, for large enough system size we do see the saturation
of EE, however, in the IC phase one would obtain c = 1 also
for larger system sizes.

Another qualitative check for distinguishing the IC phase
is the presence of oscillations in the occupation number. This
can be verified by looking at the bulk of the chain, comparing
Figs. 5(b) and 6(b).

From Fig. 4 it is evident that the parity of the ground state
in the IC phase changes. From this figure one can see that
there are several crossings between the ground states of the
two parity sectors, i.e., E+1

0 and E−1
0 . One should keep in mind

that both the precise point where the these crossings happen,
as well the parity of the ground state in this region, depends
on the system size. Nevertheless, there are two important
crossings, namely the last crossing at U � 1.41 and the next-
to-last crossing at U � 1.28. We will later discuss the region
between these two crossings in detail in Sec. IV C. Note that
for h = 0.7 the IC phase ends at the next-to-last crossing at
U � 1.28 in Fig. 4.

To verify that level crossings occur we looked at the ground
state energy and its derivatives with the steps of 10−2 along
the U axis. The first and the second derivatives of the ground
state energy with respect to U are shown in Fig. 7. There are
discontinuities in ∂EG

∂U which give rise to the peaks in − ∂2EG
∂U 2 .
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(a) Energy with respect to the ground state energy, EP
n − EG, of

the ground state (n = 0) and the first excited state (n = 1) in
both parity sectors are plotted as function of U for h = 0.05.

(b) The derivatives of the ground state energy, ∂EG
∂U

(the blue

circles) and − ∂2EG
∂U2 (the red squares) for h = 0.1 are plotted.

FIG. 8. Energy levels and the derivatives of the ground state
energy for small h are plotted. The system size is L = 240.

We have looked at the similar quantities for different system
sizes and the discontinuities are always present in the first
order derivative. These are clear signatures of level crossings.
We note that both the number of crossings, as well as their
location, depends rather strongly on the system size.

To address the question about the presence of the floating
phase in the ANNNI model [Eq. (4)] in the highly frus-
trated limit, i.e., κ � 1, we can use our knowledge of the
Kitaev-Hubbard chain. Because the Kitaev-Hubbard chain is
dual to the ANNNI model, the presence of the IC phase in
the fermionic incarnation corresponds to the presence of the
floating phase in the ANNNI model.

From Eq. (9) we can see that for U � 1 and small h,
we will be in the regime of B

J1
, κ � 1, which is exactly the

regime where the presence of the floating phase in the ANNNI
model was under debate. In Fig. 8(a) we plot the energy of the
ground state (n = 0) and the first excited state (n = 1) in both
parity sectors for a chain of length L = 240, at h = 0.05. This

corresponds to κ � 20. The situation is similar to h = 0.7,
as plotted in Fig. 4. For low enough U the ground state is
doubly degenerate and the states have different parities, i.e., a
topological phase. For large enough U , the ground state is also
degenerate and the states have the same parity, i.e., P = +1 in
this case.

In Fig. 8(b) one observes a discontinuity in ∂EG
∂U and the

corresponding peak in − ∂2EG
∂U 2 for h = 0.1 (which corresponds

to κ = 10) at U = 1.05, as well as a broad feature at U =
0.99. In addition, it is also possible to fit the EE with the CC
formula, resulting in c = 1 for a small region in U , even for
h = 0.05. Finally, one observes an onset to the oscillations
in the occupation number, that is characteristic for the IC
phase. Given these features, we conclude that the IC phase in
the Kitaev-Hubbard chain continues down to the XY critical
point. Therefore, we also conclude that the floating phase in
the ANNNI model is present for arbitrarily large frustration.

C. The excited-state CDW phase

In our numerical studies we found that the ground state for
h = 0.7 and U � 1.41 has CDW order and a low EE, which is
constant in the bulk, that is, independent of the subsystem size.
By looking at the energy levels in Fig. 4 we see that there is a
region, 1.28 � U � 1.41, just before the CDW phase in which
the the ground state is in the odd sector for our default system
size, L = 240. We believe that this part of the phase diagram,
colored light green in Fig. 1, is a phase which had been
missed before and has been considered to be part of the CDW.
We will discuss the properties of this phase thoroughly and
show how the behavior of the model in this part of the phase
diagram depends on the system size. Moreover, we show that
the transition point from the new phase to the CDW phase can
be actually controlled by tuning the chemical potential on the
first and the last sites.

We present the EE and occupation number for a generic
point (h = 0.7 and U = 1.325) in the new phase in Fig. 9.
It is clear the EE of the ground state grows as a function of
subsystem size. The particle number has a long wavelength
oscillation of twice the system size, accompanied by a π phase
shift for neighboring sites. These observations show that the
ground state does not have a conventional CDW ordering for
our system size. In fact, the properties of the ground state re-
semble the properties of low-lying excited states in the CDW
phase. We therefore refer to this phase as the “excited-state
charge density wave” (esCDW) phase. In addition, we found
that the model is gapless by looking at the first (n = 1) and the
second (n = 2) excited states in the odd sector. The energy
difference between them, �E−1

n = E−1
n − E−1

0 , approaches
zero as L−1.80 for n = 1, 2. The data for n = 1 and the fit are
shown in Fig. 10. This shows this phase is a gapless phase with
the dynamical critical exponent z � 1.80 and hence cannot be
described by a conformal field theory. We also found that there
is a finite gap to the lowest energy state in the even sector. In
Fig. 11 we plot E+1

0 − E−1
0 as a function 1

L which shows the
existence of the gap.

An intriguing feature of this region of the phase diagram
is that its features depend crucially on the system size. The
ground state belongs to the odd sector for system sizes that
are a multiple of four, L = 4n. For L = 4n + 2 however, the
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(a) Entanglement entropy as a function of subsystem size.

(b) Occupation number.

FIG. 9. Observables for the ground state at h = 0.7 and U =
1.325, a point in the esCDW phase are plotted. The system size is
L = 240.

ground state shows the same behavior as described above, but
it belongs to the even sector.

FIG. 10. Scaling of the gap E−1
1 − E−1

0 for systems of the size
L = 4n in the range of L = 64–240 at h = 0.7 and U = 1.325.

FIG. 11. Scaling of the gap E+1
0 − E−1

0 for systems of the size
L = 4n in the range of L = 144–480 at h = 0.7 and U = 1.325.
There is a finite gap � � 0.077 between the ground states of the
two sectors.

For an odd number of sites, L = 4n + 1 (or L = 4n + 3),
however, the model is gapped and has a unique ground state
with the CDW ordering in the even (odd) sector. In Fig. 12 we
present the two lowest states in each parity sector for L = 243.
One should compare this plot with Fig. 4; one observes that
after the IC phase there is only one phase. We checked that the
ground state has a low EE and the occupation number showed
CDW ordering. However, there is one important difference
with the CDW phase for even system sizes. Namely, in Fig. 4
we see that as soon as one enters the CDW phase the ground
state is doubly degenerate and both of them have the same
parity, i.e., P = +1. For odd number of sites, however, the
ground state is unique, with a finite gap to the lowest excited
state, which has opposite parity. This excited state also has
a low EE and CDW ordering. For large U , the gap between

FIG. 12. Energy with respect to the ground state energy EP
n − EG

of the ground state (n = 0) and the first excited state (n = 1) in both
parity sectors are plotted as a function of U for h = 0.7 and L = 243.
Note that EG is either E+1

0 or E−1
0 . The range of U corresponds to the

dashed line in Fig. 1.
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FIG. 13. Energy with respect to the ground state energy EP
n − EG

of the ground state (n = 0) and the first excited state (n = 1) in both
parity sectors are plotted as a function of U for h = 0.7 and L = 240
with the implementation of the magnetic field in Eq. (28).

these states goes to zero, which we verified by considering
values for U up to U ∼ 10. We conclude that for odd system
sizes, upon increasing U , the IC phase gives way to a CDW
phase (with a unique ground state) immediately.

We should comment on one more feature in Fig. 12. The
energy of the ground state in the even sector (the green dots)
makes a rather large jump between U = 1.5 and U = 1.525.
We thoroughly checked that this jump is not an artifact of the
DMRG algorithm. First of all, the states are clearly converged,
because the observables all have smooth profiles (as a function
of the site number), and the energy does not change if the
number of sweeps is increased. In addition, this feature is
present for all system sizes and parameters in this region, it
does not go away upon slightly varying these parameters.

In the region where the esCDW phase is observed, the
behavior of the model does not only depend on the (parity
of the) system size, but also on how one implements the
magnetic field term. As we mentioned before we have imple-
mented the magnetic field term on bonds, see Eq. (23). We
also considered the model with the same magnetic field on
all sites, namely by using the following term in the fermionic
incarnation in DMRG:

L∑
j=1

−h(1 − 2c†
j c j ). (28)

As expected, we did not seen any difference between the two
ways of implementing the magnetic field in the topological
and the IC phases. The IC phase for h = 0.7 still ends around
U � 1.28, however, the esCDW phase extends up to a larger
value of U , namely U � 1.68, as can be observed by compar-
ing Figs. 4 and 13, in which we plot the two lowest energies
for both parity sectors as a function of U .

Therefore the esCDW phase is sensitive to both the system
size as well as the chemical potential on the first and the last
sites. To be sure that these results are not due to convergence
issues and unluckily chosen system sizes, we checked the
results for various smaller system sizes as well, leading to
identical results.

We should make two important remarks, before closing our
discussion about the esCDW phase. First of all we should
mention that if one uses infinite DMRG to study this phase,
one would conclude that it belongs to the CDW phase [12].
This is due to the fact that the ground state energy per unit
site (or per bond) for the odd number of sites is lower than the
one for even number of sites by 10−3 in the units of hopping
energy.

Another issue concerns the presence of the esCDW phase
for small h. We clearly see the presence of the esCDW
phase for h = 0.1. For smaller h, however, it is hard to draw
firm conclusions. As we discussed in Sec. IV B we see the
signatures for the crossing between the energy levels and
hence discontinuities in the first order derivative of the energy
with respect to U . However, to conclude that both the IC and
the new phase are present for small h we need to see two
crossings, one which corresponds to the transition from the IC
phase to the new phase and another one for the transition from
the new phase to the CDW phase. With current accuracy and
system sizes we only see one crossing. Because the ground
state EE is consistent with the CC formula for c = 1 we
conclude that at least the IC phase is present. However, the
the width of these two phases shrinks as we get closer to the
XY critical point and distinguishing them becomes harder and
needs larger system sizes and more accurate treatments. We
expect, however, that the new phase also extends to h = 0,
i.e., down to the XY critical point, as indicated in the phase
diagram, Fig. 1.

D. The charge density wave phase

By further increasing U , as we concluded above, we enter
the regime where the ground state has CDW ordering. For
L = 240 and implementing the h term as in Eq. (23), the
EE and occupation number for h = 0.7 and U = 1.5, are
presented in Fig. 14. In this case the two ground states belong
to the even parity sector. In general, if we implement the h
term on bonds as we have in Eq. (23), the ground state is
doubly degenerate. For L = 4n (or L = 4n + 2), where n is a
large integer, the two ground states belongs to the even (odd)
sector. For L odd, however, one ground state has even parity,
the other odd. This can easily be understood in the limit where
U is infinite, so that one ignore the hopping and pairing terms
in the Hamiltonian (which is then diagonal). As is shown in
Fig. 14 the EE for both ground states is saturated to a low
value and the occupation number shows the pattern which one
expects in the CDW phase, i.e., (1010 · · · ) and (0101 · · · ).

If one instead implements the magnetic field on the sites,
as in Eq. (28), the ground state for an even number of sites
is still twofold degenerate. However, for an odd number of
sites, the ground state is unique, and the first excited state has
energy 2|h|. Both of these states have the usual characteristics
of CDW states.

V. ON THE EXCITED STATES AND FINITE
TEMPERATURE PROPERTIES

In this section we study some properties of the model
which are related to the full many-body spectrum of the model
and its properties at finite temperature.
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(a) Entanglement entropy as a function of subsystem size.

(b) Occupation number.

FIG. 14. Observables for the ground state (n = 0) and the first
excited state (n = 1) at h = 0.7 and U = 1.5, a point in the CDW
phase, are plotted. The system size is L = 240.

First of all we address the nature of the zero mode in
the topological phase of the model. Usually in the studies
on the topological phases the emphasis is on the degeneracy
of the ground state. There are, however, a few cases where
one can say more. For example in the Kitaev chain [5] which
can be written in terms of free fermions, the presence of the
zero mode guarantees that the full many-body spectrum is
doubly degenerate [45]. Given an eigenstate in the many-body
spectrum of the Kitaev chain with a given fermionic parity,
one can construct another eigenstate with opposite parity. This
can be done by looking at the occupancy of the zero mode. If
it is empty, one can consider a state with an occupied zero
mode and vice versa. Since filling the zero mode does not
cost any energy (or an energy that is exponentially small in
system size), the states are degenerate but with opposite parity.
Therefore full many-body spectrum is doubly degenerate and
the zero mode is called a strong zero mode. Another, more
nontrivial, example is the XY Z chain for which Fendley found
an operator which commutes with the Hamiltonian up to
exponentially small corrections in the system size [46]. The
operator, however, is only normalizable in the topological

FIG. 15. Part of the phase diagram of the model in Eq. (8). The
solid red line separates the trivial and topological phase. The solid
blue line parametrized by s, which lies in the topological phase, is
an arbitrary line for which H [h(s),U (s)] has a doubly degenerate
ground state. The dashed red and blue lines are the mirrors of the
solid red and blue lines with respect to the h axis.

phase, and hence the model hosts a strong zero mode and full
many-body spectrum degeneracy in this phase.

There is also a conjecture for general interacting models
[47] which states that if one starts from a noninteracting model
within a topological phase, where we know there is a strong
zero mode, one can construct a strong zero mode for the
general interacting model providing that the system does not
go through a phase transition or has level crossings. Therefore
the full many-body spectrum would be degenerate all over the
topological phase and there is equivalence between different
parity sectors. In another study on nonintegrable interacting
models such as the Kitaev-Hubbard chain [48], it was argued
that a strong zero mode is not present. Below we present an
analytic argument that excludes the presence of a strong zero
mode for a large part of the topological phase. We also study
the edge magnetization in the region where our argument does
not apply.

A. Absence of strong zero mode in some regions within the
topological phase

As we mentioned previously, the Hamiltonian in Eq. (8)
is solvable for U = 0 [24] and h = 0 [27], because it can be
reduced to a free fermionic model in those cases. Based on
the exact results we know that there is a strong zero mode all
along the U axis, except for the critical points U = ±1 and
along the h axis for |h| < 1. Thus it is natural to ask whether
a strong zero mode survives throughout the topological phase.
Here we present an argument to exclude the possibility of
having a strong zero mode for some regions of the topological
phase.

Consider the solid blue line [h(s),U (s)] in Fig. 15, which
lies in the topological phase. Hence the Hamiltonian H (s) =
H[h(s),U (s)] has a doubly degenerate ground state. Actually,
the line we chose is the Peschel-Emery line [30], for which
the ground state degeneracy is exact, the splitting is not
exponentially small in system size. We want to prove that the
full many-body spectrum of H (s) is not doubly degenerate
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all along this line. To do so we examine the behavior of the
highest excited state(s). This can be done by noting that for
any Hamiltonian H , the ground state(s) of −H are the highest
excited state(s) of H itself. Let us consider −H (s),

−H (h,U ) =
L−1∑
j=1

σ x
j σ

x
j+1 + h

L∑
j=1

σ z
j − U

L−1∑
j=1

σ z
j σ

z
j+1. (29)

Now we perform an on-site rotation,

σ x
j → (−1) jσ x

j , σ z
j → −σ z

j , (30)

with which we get

−H (h,U ) = −
L−1∑
j=1

σ x
j σ

x
j+1 − h

L∑
j=1

σ z
j − U

L−1∑
j=1

σ z
j σ

z
j+1

= H (h,−U ). (31)

Therefore we can track the behavior of the highest ex-
cited state(s) of H (s), by looking at the ground state(s) of
H[h(s),−U (s)]. The dashed blue line in Fig. 15 is the mirror
of the solid blue line with respect to the h axis. Following this
dashed line from h = 0 and U = 0 till P∗, the ground state
of H is doubly degenerate. By passing P∗, however, we enter
the trivial phase and hence the ground state becomes unique.
We can use this information and interpret as the behavior of
the highest excited state(s) of H (s), namely the Hamiltonian
along the solid blue line. Doing so, we learn that by passing
the point P, the highest excited state is not doubly degenerate
anymore. As a result there cannot be a strong zero mode and
hence no equivalence of the parity sectors beyond the point P
along the blue solid line. Having this argument, we can draw
the red dashed line which gives a bound on the region where
the system potentially hosts a strong zero mode.

Below we present numerical results which show that in
part of this region, the edge magnetization survives for a
long time, both for low as well as high temperature, which
is consistent with the presence of a strong zero mode. We
cannot rigorously prove its existence, and it might well be that
a strong zero mode is only present when the model reduces to
a free-fermionic model.

B. Time dependence of the edge magnetization

In the following we consider the time dependence of the
edge magnetization [48], to see if the system has a strong
zero mode. Long time coherence of edge magnetization at
infinite temperature is a signature of a strong zero mode
[48]. We will also consider finite temperature, in which case
the time-dependent edge magnetization at temperature T is
given by

AT (t ) = 〈
σ x

1 (t )σ x
1 (0)

〉

= 1

Z

∑
j1, j2

e−ε j1 /(kT )ei(ε j1 −ε j2 )t
∣∣〈 j2|σ x

1 | j1〉
∣∣2

, (32)

where ε j are the energies of the system. We will refer to the
time in units of 1/J , and temperature in units of J , where J =
1. We considered system sizes up to L = 16.

We first look at small h = 0.1, and a rather strong inter-
action |U | = 0.5, but still in the region in Fig. 15 where the

FIG. 16. Edge magnetization |AT (t )| for U = −0.1, h = 0.1, as
a function of time, for T = 10−3, 1, and 103, blue, green, and red
symbols, for (a) L = 12, (b) L = 14, and (c) L = 16. Note that the
logarithmic time axis starts at 103.

analytic argument cannot exclude a strong zero mode. In these
two cases, we find that the edge magnetization at very large
T = 103, so effectively infinite temperature, survives up to
t ∼ 100, before dropping to zero, with only little variation
upon increasing the system size from L = 10 to L = 14. For
T = 1, one obtains roughly the same result, while for T =
10−3, the long-time edge magnetization oscillates around 0.7,
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FIG. 17. The edge magnetization |AT =1000(t )| for U = 0.1, h =
0.1 and system sizes L = 8, 10, 12, 14, 16 versus time on a logarith-
mic scale.

with an amplitude of 0.1. For these parameters, it is clear that
the system does not have a strong zero mode.

For h = 0.1 and |U | = 0.1, the situation is rather different,
as we show in Fig. 16 for h = 0.1 and U = −0.1, where we
plot |AT (t )| as a function of t on a log scale for temperatures
T = 10−3, 1, and 103, with blue, green, and red symbols,
respectively. The magnetic field was implemented on the
bonds, see Eq. (23).

We observe that the edge magnetization survives longer
upon increasing the system size, for all temperatures. Inter-
estingly, the edge magnetization survives longer for higher
temperatures. However, at high temperature, it drops to zero,
while for low temperature, the edge magnetization rapidly
oscillates at long times. The high temperature behavior is
consistent with the behavior seen for the XY Z chain [48], for
which it was proven that the system has a strong zero mode
[46]. In Fig. 17 we plot the T = 1000 edge magnetization
for U = 0.1, h = 0.1 and even system sizes L = 8–16. We
observe that the time that the edge magnetization survives
grows exponentially with system size, at least for the system
sizes that we could consider. So based on this data, we
cannot rule out the presence of a strong zero mode for these
parameters.

We note that for U < 0, the different ways of implementing
the magnetic field give very similar results. However, for U >

0 at low temperature, the time at which the edge magnetization
drops to zero for the first time can differ by as much as
two orders of magnitude. For which implementation of the
magnetic field this happens first, depends on the system size.
That the time dependence of the edge magnetization depends
on the value of the magnetic field on the edges is of course not
so strange, but from the numerical results we obtained, a clear
picture does not emerge.

For larger magnetic fields and moderate interaction, h =
0.7, and |U | = 0.1, the edge magnetization for infinite tem-
perature survives to t ∼ 100, again with little dependence
on the system size. Hence, for these parameters, there is
clearly no strong zero mode. For h = 0.7 and U = 0.5, our
analytical argument excludes a strong zero mode, because
the point h = 0.7, U = −0.5 is in the trivial phase. Indeed,
we found that at high temperature the edge magnetization
drops sharply at t ∼ 1, while the edge magnetization for low

temperature, probing the ground state, survives up to long
times.

VI. DISCUSSION

We presented a detailed study the phase diagram of the
Kitaev-Hubbard chain, that is the Kitaev chain in the presence
of a nearest-neighbor density-density interaction. In the case
of attractive interactions, the model exhibits a topological
phase and a trivial phase, the same phases which also appear
in the Kitaev chain. For repulsive interactions, however, the
phase diagram is more interesting, with an IC phase, an
esCDW and a CDW phase, in addition to the trivial and
topological phases.

The bosonic incarnation of the interacting Kitaev chain
is an interacting transverse field Ising chain, which is dual
to the quantum ANNNI model. There was an open question
in the quantum ANNNI model about the presence of the
floating phase for high value of frustration. Using fermionic
terminology, this translates to presence of the IC phase in the
Kitaev-Hubbard chain for small values of the transverse field
h that is close to the XY critical point. Using DMRG we see
the presence of the IC down to h = 0.05 which corresponds
to κ � 20, although it becomes quite narrow. Therefore we
strongly believe that the IC phase continues to h = 0, which
is the limit of infinite frustration.

The IC phase is a gapless phase, for which the EE can
be fitted to the CC formula with a value of the central
charge c � 1. However, the EE as a function of subsys-
tem size shows additional oscillations, on top of the CC
behavior. It would be interesting to find a good ansatz for
the oscillations, because a quantitative knowledge of these
oscillations can shed additional light on the nature of the
IC phase. It would also be interesting to see how well they
correlate with the oscillations observed in the site occupation
number.

The esCDW phase, we believe, was missed in previous
studies. This phase only appears for an even number of
sites and its ground state looks like an excited state in the
CDW phase. In this region, the model is gapless, with a
dynamical critical exponent z � 1.8. The EE in this phase
grows as a function of subsystem size, but cannot be fitted
to the CC formula, which is consistent with the dynamical
critical exponent z > 1. For odd system sizes, the model
shows a CDW phase, with a unique ground state. It is quite
intriguing that there is finite region in the phase diagram
which responds to the (parity of) the number of sites. In
infinite system size studies, one observes a normal CDW
phase [12]. This is consistent with our findings, because the
ground state energy per site is slightly lower, of order 10−3,
for odd system sizes. Because the energy difference is so
small, the nature of this phase will in practice be determined
by other perturbations, for instance additional interaction
terms.

For repulsive interactions, we found that there are four
phases which emerge from the XY critical point, namely the
topological phase, the IC phase, the esCDW phase, and the
CDW phase. Capturing these phases and finding the relevant
operator(s) for each phase using for instance bosonization will
be left for future research.
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Finally, we considered the nature of the zero mode in the
topological phase. We presented an analytical argument that
excludes a strong zero mode for a large part of the topological
phase. To address the remaining region, we calculated the time
dependence of the edge magnetization [48]. In the remaining
region these results rule out a strong zero mode in the case
that either h or |U | is large. For small h and |U |, we cannot
exclude a strong zero mode. For U > 0, the time dependence
of the edge magnetization does not show consistent behavior
as a function of temperature and the implementation of the

magnetic field. This warrants further study of the edge mag-
netization in this model.
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