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Abstract

In this paper we examine fermionic type characters (Universal Chiral Partition Functions) for
general 2D conformal field theories with a bilinear form given by a matrix of the fisren K—1.
We provide various techniques for determining these K-matrices, and apply these to a variety of
examples including (higher level) WZW and coset conformal field theories. Applications of our
results to fractional quantum Hall systems and (level restricted) Kostka polynomials are discussed.
0 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Two-dimensional conformal field theories can be studied in a variety of ways. In this
paper, we will pursue the quasiparticle description, which has attracted a lot of attention
recently. In a quasiparticle description, the characters of the conformal field theories are
of the fermionic sum type. It has been conjectured that all these fermionic sums are of a
form which goes under the name of the ‘Universal Chiral Partition Function’ (UCPF), see,
for instance, [6,9,12], and references therein. In general, the statistics of the quasiparticles
is fractional and interpolates between Fermi and Bose statistics. Moreover, to describe
general CFTs, we need to be able to incorporate the effect of the non-trivial fusion
rules of the fields, which can be done by allowing for so-called pseudoparticles. These
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pseudoparticles do not carry any energy and are essential in describing the non-Abelian
statistics which is found in the CFTs with non-trivial fusion rules.

Fractional statistics can be described in terms of the Haldane ‘exclusion statistics’ [27].
If we allow for new types of particles, such as the pseudoparticles, the same is true for
the non-Abelian statistics, see [26] and [9]. The exclusion statistics is defined in terms of
the exclusion statistics parameters of the particles. The parameters are intimately related to
the Universal Chiral Partition Functions, as it is these parameters which lie at heart of the
UCPF, via the so-called K-matrix, which contains all the (mutual) statistics parameters. In
this paper, we will determine the K-matrices related to the affine Lie algebra CFTs, in a
particular basis. This basis was first proposed in the context of the fractional quantum Hall
states.

The topological properties of (fractional) quantum Hall states are also encoded in
matrices, which turned out to be the same as the K-matrices alluded to in the above. In
the Abelian states, the entries correspond to the coupling parameters of the Chern—Simons
fields which appear in the effective action of the quantum Hall system (see, in particular
[47], and references therein). The Chern—Simons term effectively changes the statistics of
the matter fields, making the relation between with the exclusion statistics plausible. More
details on this relation can be found in [3]. The basis used in the description of certain
classes of non-Abelian quantum Hall states is found to be useful in the context of general
affine Lie algebra CFTs as well.

One of the reasons that this basis is useful relates to the presence of a duality, which
relates the ‘electron-like’ particles to the quasiparticles (the notion of electron-like and
guasiparticles will be explained in Section 2.1.4). Moreover, there is no mutual statistics
between these two types of particles. As this structure simplifies the study of the conformal
field theories, we will use this type of basis throughout this paper.

One of the main themes in this paper will be the determination of the K-matrices for the
affine Lie algebra CFTs. We will develop a scheme which is used to find the general K-
matrices. The mainidea is to use ‘Abelian coverings’ of the (in general non-Abelian) CFTs,
and project out some degrees of freedom (see also [13]). Having obtained the K-matrices,
we will propose a scheme to obtain the K-matrices for conformal field theories which are of
the coset form. We will address the diagonal cosets, as well the parafermion CFTs, related
to the affine Lie algebra CFTs. Another application are the Kostka-polynomials (see, e.g.,
[34,35], and references therein), which can also be described in terms of the K-matrices.

In more detail, the outline of this paper is as follows. We start with a general introduction
to the role of the K-matrix in 2D conformal field theories in Section 2. We will review some
results concerning the Universal Chiral Partition Function and the relation with exclusion
statistics. The structure of the basis of quasiparticles which will be used throughout
this paper is explained. We will end Section 2 by explaining the relation between the
pseudoparticles and the fusion rules of CFTs. In Section 3 we will explain the tools we will
use in determining the K-matrices for a general affine Lie algebra. The idea is to embed the
level affine Lie algebra irk copies of the level-1 version, and project out certain degrees
of freedom, by using what we call a P-transformation. In Section 4, we will explicitly give
the K-matrices for all the simple (untwisted) affine Lie algebras. We will apply these results
to obtain K-matrices for cosets in Section 5. Finally, in Section 6, we will present some
new results on level restricted Kostka polynomials related to affine Lie algebras. Some of



E. Ardonneet al. / Nuclear Physics B 660 [ FS (2003) 473-531 475

the details are presented in the appendices. Appendix A deals with some notational issues,
and explicitly gives all the Cartan matrices and there inverses. Appendix B and Appendix
C deal with the K-matrices foso(5)1 and G2,1, respectively, while Appendix D relates

two different bases fos((3).

2. K-matricesfor 2D conformal field theories
2.1. The UCPF and exclusion statistics

Quasiparticles play an important role in the description of 2-dimensional conformal
field theories (CFTs). The exclusion statistics of these particles is closely related to
characters for CFTs, or more precisely, the ‘Universal Chiral Partition Function’ (UCPF).

2.1.1. Quasiparticlebasis

We will start the discussion by introducing quasiparticle bases for two-dimensional
conformal field theories, and in particular (truncated) partition functions based on these
bases. In CFTs, the quasiparticles take the form of chiral vertex opegsitocs) (i =
1,...,n), which intertwine between irreducible representations of the chiral algebra. By
applying the modes of these operators on a set of vagyane finds (in general) an over
complete basis, which, by using suitable restrictions on the modes. ., sy), can be
turned into a maximal, linearly independent set of states

¢iNSN T ¢i72s2¢ijs1|w>' (21)

The grand canonical partition function is obtained by taking the trace over this basis

P(z;q) =Tr(<HZ;Vi>qLO)_ (2.2)

N; is the number operator for the quasipartiq}¢8 and Lo = > i si. Furthermorez; =
ePli is a (generalized) fugacity and= ¢#¢. To find the ‘one particle grand canonical
partition functions’s;, we will use truncated partition functions, see [44]. In particular,
one defines the truncated partition functiBn(z; ¢) by restricting the trace over the states
(2.2) in such a way that the modesof the quasiparticles of specigssatisfys < L;

(L =(L1,...,Ly)). Inthe limit of largeL one has

P e (Z;9) s (L
Pag @) (2-3)

whereg; is the unit vector in thé-direction. By using a recursion relation for the truncated
partition functionP_ (z; ¢) (which can be obtained from the basis (2.1)) and the limit (2.3),
one finds relations for the one particle partition functiapgfor more details, see [9,12]).
For all the CFTs which were investigated by means of a quasiparticle basis as discussed in
this section, the equations determininaare of the form (2.14), and thus the quasiparticles
satisfy so-called ‘exclusion statistics’, see Section 2.1.3.
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2.1.2. Theuniversal chiral partition function
It has been conjectured (see [6], and references therein) that the characters of all the
irreducible representations of (rational) conformal field theories can be written in the form

) N

which goes under the name of the ‘Universal Chiral Partition Function’ (UCPF) (or
‘fermionic-type character’). The matriK is a symmetricn x n matrix, I is then x n
identity matrix andQ andu are n-vectors. The sum is over the non-negative integers

m1, ..., my,. The restrictions denoted by the prime are (in general) such that the coefficients
of theg-binomials are integers. Thegebinomials are defined by
M (@) m - k
== (@m = 1—4%). 25
[m } Ovn@n ,El( 7) (25

Depending on the parameters the associated particles are of certain type. gFysical
particles u; = oo, while pseudoparticles haveu; < co. Note that in the limitu; — oo the
ith g-binomial reduces to /Xg),,, due to

lim [M} -1 (2.6)
M—oco| m (@m

As will become clear below, pseudoparticles do not carry energy. They come about in
theories with a non-Abelian symmetry, and in a sense they serve as bookkeeping devices
for the internal structure of the theory.

It was conjectured in [9,26] that the UCPF (2.4) is the partition function of a set of
particles satisfying exclusion statistics. To be able to make this connection with exclusion
statistics, we will take a closer look at truncated versions of the UCPF, and continue with
a discussion on exclusion statistics and the relation between the two.

Squpose that the truncated partition functiBn(z; ¢) takes the form of a ‘finitized’

UCP

PL(z:q) = Z’(l—[ Z71i>q§m.K.m+Q~m H[(L + (I —5) -m+ u); ] @2.7)

m

One can then derive recursion relations for these truncated characters by usipg the
binomial relation

M| [M-1 Mem| M —1
E R A e
This leads to the recursion relations [3,8]

PL(Z:q) = PL_o (Z: )+ ziq 250t QUi oo (7. q). (2.9)

2 While this is the case for many examples, in general the finitzed UCPF corresponding to a set of
(quasi)particles may differ from (2.7) by term8 with n = O(L;). This will, however, not affect the conclusion.
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After dividing by P, (z; q), settingg = 1, taking the larg&. limit and using relation (2.3),
one finds

_ —Kji
1= 4z a7 (2.10)
J
or equivalently,

)\i_l K
A =1z 2.11
; 17[ J ! ( )

A

These relations are known as the Isakov—Ouvry—Wu (IOW) (2.14) equations, which give
the one particle partition functions for a system of particles which obey exclusion statistics;
this will be addressed in the next section. For more details on this issue, we refer to [3] and
references therein.

In the case of WZW Conformal Field Theories, i.e., CFTs with affine Lie algebra
symmetry, it is known that in many cases (see [10,28,39,48], and references therein) the
(chiral) partition function can be written in the form

Pziq) =) My @M q). (2.12)
WhereMﬂ‘L)(q) are the so-called levéd-truncated Kostka polynomiaIM,(fo) (z; g) their
k — oo limit (with fugacity parameter). Having found an expression for the K-matrices
of these CFTs will thus give a natural guess for an explicit expression of theseklevel-
truncated Kostka polynomials. We will explore this further in Section 6.
For completeness, let us recall the value of the central charge of a CFT with affine
Lie algebra symmetryg at levelk,

kdimg
k+hv’
where K is the dual Coxeter number corresponding o

For convenience, throughout this paper we will denote the (untwisted) affine Lie algebra
at levelk, corresponding to a finite-dimensional Lie algebfa by X, «, rather than by

(X,ﬂl))k which is more common in the literature.

CALA = (2.13)

2.1.3. Exclusion statistics

The starting point of the discussion on exclusion statistics will be an ideal gas of
particles which satisfy ‘fractional (exclusion) statistics’ [27].

The one particle grand canonical partition functionsfor a set of quasiparticles
obeying fractional exclusion statistics can be obtained from the IOW equations [31]

ri—1 Kf}
oy ]:[xj =xi, (2.14)

whereKStis the ‘statistics matrix’ and; = z;q = ¢f#ie~F¢ the fugacity. Herey; is the
chemical potential of specigsande the energy. Under the assumption of a symmetric
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matrix KS!, the one particle distribution functions follow:

9
=Y xj—logx; (2.15)
£) 3 Bx]

xj=ePi—e xj=ePWHi—e)

0
n;i(e) —x,‘a—xi |OgHAj
J
These distribution functions are in general interpolations between the Bose—Einstein and
Fermi-Dirac distribution functions.

The discussion above holds in the case of Abelian statistics, but can be generalized to the
non-Abelian case [2,3]. Non-Abelian statistics arises when quasiparticle operators (chiral
vertex operators, see below) in the underlying CFT have non-trivial fusion rules. The effect
of these fusion rules can be taken into account via so-called ‘pseudoparticles’, which do
not carry any energy (i.eq,= 1). Note that for all the cases we consider, a formulation in
which the pseudoparticles have= 1 is possible. In fact, we only consider formulations
in which x = 1 for the pseudopatrticles. More on the relation between fusion rules and
pseudoparticles can be found in Section 2.2.

We will now turn to the question of how to calculate the central charge of a system
of quasiparticles satisfying exclusion statistics with statistics matf(and speak of the
central charge associated to the mak¥). First, we consider an Abelian system, i.e., a
system without pseudoparticles. In that case, the central charge is given by

1
6 [dx
CCFT= 5 / — Atot(X), (2.16)
b4 X
0

whereit(z) denotes the product

Mot(x) = [ [ 1 (xj = ). (2.17)

By using the IOW-equations the central charge of Eq. (2.16) can be rewritten in the form
(see, for instance, [12])

6
=— ) L(&), 2.18
CCFT= — ZI: &) (2.18)
where theg;’s are solutions of the ‘central charge equations’
st
g=[]a-g&)%, (2.19)
J
andL(z) is Rogers’ dilogarithm
Zz
1 lo log(1—
L) = ——/dy 9y  logd =), (2.20)
2 1—y y
0

The presence of pseudoparticles gives rise to a reduction of the central charge. This
reduction can be calculated in a similar way, by considering the central charge equations
restricted to the pseudopatrticles. For future convenience, we will denote the statistics
matrix restricted to the pseudoparticles Ky, . The central charge equations become
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(the prime denotes the restriction to the pseudoparticles)

& = H/(l _ é-]/_)(wa)ij’ (2.22)

J

giving rise to a reductioryf’—2 Z,‘ L(gj’.). The central charge becomes

CCFT= %(Z L&) — Z/L(SJ/-)) (2.22)
i J

This formula agrees with the central charge calculated from the asymptotics of the UCPF
(2.4) (see, e.g., the discussion in [3]).

To summarize the above, we note that the truncated UCPFs in theldiget give
rise to one particle partition functions (2.11), which are of the form of the IOW-equations
(2.14), with statistics matri¥s! = K. Thus the K-matrix of the UCPF can be interpreted
as a matrix which describes the statistical interactions between the (quasi)particles.

The other important point was that in all the cases where conformal field theories were
studied by means of quasiparticle bases, Egs. (2.3) which deteknimere shown to be
of the form of the IOW-equations.

We end this section by discussing the so-called quantum Hall basis, which turns out to
be very convenient for determining and studying K-matrices for conformal field theories.

2.1.4. The quantumHall basis

A convenient basis for WZW conformal field theories was first proposed in the context
of the quantum Hall effect [18]. (This basis is also very natural from the mathematical
point of view as it is closely related to the existence of generalizations of the Durfee square
formula in combinatorics [8].) The ‘electron-like’ particles (with unit charge and %pin-
and (fractionally) charged quasiparticles (sometimes called quasiholes) are chosen to form
a basis. It was found that a basis could be chosen in such a way that the statistics matrix
Ke for the electron-like particles, and the matifyp for the quasiparticles are each others
inverse

Kgp=Kg1, (2.23)

while, furthermore, there is no mutual statistics between the quasiparticles and electrons,
ie.,

K = Ke ® Kgp. (2.24)

This is a very important observation, which will have many consequences. Though this
basis was first proposed in the context of the Laughlin and Jain states [18], it was
soon realized that a basis with a similar structure could be constructed for the non-
Abelian generalizations of the Abelian quantum Hall states [2,3,26]. These non-Abelian
generalizations are based upon Wess—Zumino-Witten conformal field theories. In this
paper, we will determine bases for general WZW conformal field theories. In the next
section, we will review and develop some techniques which are needed to perform this
task. Here, we will first explore some consequences of the ‘duality’ between the electron
and quasiparticle sector.
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In the description of the quantum Hall effect, the quantum numbers of the particles play
an important role, as they are used to calculate physical properties. The most important are
the charge and spin quantum numbers, which are usually grouped in the so-called charge
and spin vectord, ands, respectively (see, for instance, [47]). Denoting a general vector
for the electron (quasiparticle) sector gy (qqp) We have

dop = —Ke* - Ge. (2.25)

The filling fractionv and the spin fillings are given by the expressions

v=tl Kot te=tg - Kop - tgp. o= Kot se=5,-Kgp -Sqp. (2.26)

These quantities are important physically; from a mathematical point of view they are
interesting, as they are conserved by the W- and P-transformations of Section 3. In a sense,
these transformations are constructed in such a way that they have this property.

Let us explore some consequences of the duality, in particular Egs. (2.23) and (2.24).
We will focus on the thermodynamic properties first and have a closer look at the IOW-
equations (2.14). We will denote the one particle distribution functions for the electron-like
particles and quasiparticles hy andx;, respectively. The corresponding fugacities are
given byy; andx;. Thus, theu; and; are the solutions to the equations

wi A A

mi—1 (Ke)ij Ai— Ly Kepij
i u-e’=yf, i : ij quzxi. (2.27)
J J

Now Eg. (2.23) leads to the following relations

1 —(Ke)t
I | (2.28)
J

i

Another important feature of the basis described in this section is that the presence of
pseudoparticles in the quasiparticle maliy, is accompanied by the presence of so-called
‘composite’ particles in the electron matrike. The reason for this will become clear in
Section 3. In general, the matri. contains a few ‘electrons’ (particles with unit charge
and spin up or down), with fugacities In addition, there are composite particles, with
fugacitiesy’ , where the; are positive integers. The quantum numbers of the composites
in the electron sector are integer multiples of the quantum numbers of the electrons. In
the presence of composites in the electron sector, there will be pseudoparticles in the
guasiparticle sector. Pseudoparticles have 1, and as a consequence, pseudoparticles
will have all quantum numbers equal to zero. In principle, the fugacity of pseudoparticles
might be of the more general form/x; (compare Egs. (3.19) and (3.20)), but in all
cases we will consider, this will not be the case. Also, physical particles with all quantum
numbers trivial might occur, but again, we will not encounter such a situation in this paper.

In the following, we will only encounter the situation where the electron sector
has composites, but no pseudoparticles, while the quasiparticle sector does contain
pseudoparticles, but no composites. Thus, we will assume that the quasiparticle matrix
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has the following form:

Kap= (Kw KW)
Ky Kegg

K;w =Kyy, K;qb =Kgpp, K% =Kgy, (2.29)

whereKys denotes the statistic matrix for the physical (as opposed to pseudo) quasi-
particles andKy,4 the mutual statistics between the pseudo- and physical particles.

In the presence of composites and pseudoparticles, we have to generalize the definition
of Lot (see Eq. (2.17)) to

hot(x) = [ [[2 (xj = 2'7)]". (2.30)
With this definition, the central charge is still given by Eq. (2.16). In the absence of
pseudoparticles, the central charge associated to the sy&emKqp, is simply given
by the rank: of the matrixKe (see, for instance, [3]). To show this, we take a look at the
central charge equations

G=[la-¢p¥e,  s=]]a-g) . (2.31)
J J

Now because of the fact thatq, = K1, the solutions to these equatioisandé; are
simply related byt; =1 — ¢;. We find the central charge to be

6 6
cerr= 3 ) (LE) +LA— &) = LD =n, (2.32)

by using the dilogarithm relation

72

L@+LA-=L)= 4 (2.33)

In the case pseudopatrticles are present, we again have a simple subtraction (see Eq. (2.22),
the prime denotes the restriction to the pseudoparticles)

6 ’ ,
CCFTZH—?Z L(§)). (2.34)
J

It is important to note that the knowledge of the K-matrix is not enough to specify
the theory completely. In addition, one has to know, or rather specify, which particles are
pseudoparticles. So two theories can have the same K-matrix, but differ in the ‘particle
content’ and thereby (for instance) have different central charge. We will encounter this
situation frequently, namely as we discuss the K-matrices for CFTs with affine Lie algebra
symmetry, in cases the Lie algebra is non-simply-laced.

2.2. Pseudoparticles and fusion rules

There is an intimate connection between the pseudoparticle K-niétix and the
fusion rules of a CFT, which can be used as a consistency check or guiding principle
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on the construction of K-matrices. To explain this connection, consider a CFT with fusion
ruIesNijk, i,j,k=1,...,£. The incidence matrix of the fusion gragh, corresponding

to taking consecutive fusions with the figldis given by the matrixV; with components
(N;) ;¥ = N;j*. Hence, ifP; ;¥ (M) denotes the number of paths of lengthon the fusion
graphr; beginning atj and ending ak we have

Pt (M) = (VM) . (2.35)
Thus we find a recursion relation
Pijk(M)=ZPijl(N)Pi1k(M—N), (2.36)

/

for each 0< N < M, with initial condition Pijk(O) = 8/‘. These recursion relations,
however, involve paths beginning and ending at arbitrary points. To derive a recursion
relation for fixed;j andk we apply the characteristic equation &f, i.e., thefth order
polynomial equation forN; arising from the eigenvalue equation, R;jk(M). If the
characteristic equation is given as

4
D an(N)"=0, ao=1, (2.37)

then, by using (2.36) foN = 1, we find the recursion relation

4
> an Pk (M —n)=0. (2.38)
=0

That is, a recursion relation for fixedlandk and with coefficients independent pfand
k. Different solutions of (2.38), determined by different initial conditions, correspond to
different choices off andk.3 In particular, asymptotically the number of paths is given by
(Amax)™, whereAmax is the largest eigenvalue of;.

On the other hand, according to the UCPF assumption, the number of paths of
length M on the fusion grapi; is given in terms of thg — 1 limit of the UCPF (2.4),

i.e.,
PL_ZH(((H Hop) Mt L ) (2.39)

whereL; = a;M + u; andKyy the pseudoparticle K-matrix. The numbegsare fixed
(only depend on the sectoy, in fact they arise as the part of the K-matrix describing the
coupling of the pseudoparticles to physical particles, whijles determined by begin and
end point of the path. (Thg-analogue of Eq. (2.39) is related to (level restricted) Kostka
polynomials and will be discussed in Section 6.) The numbgrsatisfy the recursion
relations (cf. (2.9))

PL=P ¢+ P Ky e (2.40)

3 In fact, for specific initial conditions, the solution might actually satisfy simpler recursion relations obtained
by factorizing the characteristic equation and taking a subset of the factors.
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whereeg; is the unit vector in théth direction. In principle, the recursion relations (2.40)
can be manipulated to yield a recursion relation®@M ) = P,, i, the quantity of interest.
Ideally, this recursion relation should be the same as (2.38). In practice, however, one
finds that one corresponds to a factor of the other due to the fact we are dealing with
specific initial conditions. In practice, it is easier to study the recursion relations (2.40)
in the largeM limit, where they reduce to the IOW-equations (2.11). These can then be
used to derive an equation for= [, A" which should correspond to the characteristic
equation for the eigenvalues Mjk, i.e., Eq. (2.37). In particular, the largest root of the
equation determining should be equal tdmax.

Moreover, note that while the recursion relations corresponding to graphsaepend
on the sector, they should all derive from one and the same pseudoparticle ni&grjx
(they just differ in the choice aof;). This puts extra constraints on the possible choices of
Ky, given a set of fusion ruIeNij". Unfortunately, this still does not suffice to uniquely
associate a pseudopartiélg,, with a set of fusion ruleV;;* as is illustrated, for instance,
by the matrix

4 2

Kyy = (g j) : (2.41)
3 3

which arises both im2 2 and F4 1 (see Sections 4.3.1 and 4.3.6), while these two theories

clearly have different fusion rules. This is because additional information is present in the

coupling of pseudoparticles to the physical particles (i.e., the numbgr€onversely,

given a pseudoparticle K-matrix leading to the correct fusion rules, one can always

construct other K-matrices giving rise to the same recursion relations by extending the

matrix ‘symmetrically’. An example of this will be given in Section 2.3.

Finally, given a set of fusion ruleﬂ,»j", we can compute the modul&rmatrix, since
this is the matrix which simultaneously diagonalizes all matridgg46]. Since theT -
matrix acts diagonally on the characters of the CFT with valueg2exh; — c/24)), we
can find constraints on the conformal dimensi@psand the central charge from the
condition(ST)3 = 1 (whens? = 1) or (ST)® = 1 (whens* = 1).

The central charge constraint in particular can be compared to the central charge (2.34)
arising from a particular choice of pseudoparticle K-matrix. Obviously, the constraints on
which fusion rules correspond to which pseudoparticle K-matrix derived this way are much
weaker than those arising from the comparison of the above recursion relations.

2.3. Smple examples

Let us illustrate the considerations of the previous section in a few examples.
Consider a CFT with two primary fields 1 agdand non-trivial fusion rule x ¢ =1,

ie.,
No = (cl) é) (2.42)

which has eigenvalugs= +1 and is diagonalized by

s— % (i _11> , (2.43)
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which satisfiess? = 1. We find that S7)3 = 1 yields the condition
1

1

while

1
1mod8 forhy =—mod],
c= g (2.45)
7mod8 forhy = 2 mod 1
Clearly, A1 1 is an example of the first possibility, whilg; 1 is an example of the second.
Sincec is necessarily an integer, one would conclude that as far as this calculation is
concerned no pseudoparticles are necessary. The characteristic equatigiisfgiven by
22 —1=0and leads to the recursion
P(M)=PM - 2), (2.46)

which is trivially solved byP (2M) = P(0) and P(2M + 1) = P(1). Again, this does not
require pseudoparticles, since the fusion paths are obviously unique.

Now considerAy x for generic levek. The fusion matrix of the generating fiefg is
given by the incidence matrix of the Dynkin diagramAf, 1 (see, for example, [23]). The
characteristic equation is thus given by

[(k+1)/2] .
> 1/ (k + i —J ) Akt1=2j _ o (2.47)

j=1
and has roots (see, e.g., [23])

x,-:zcos(%), =1, k+1. (2.48)
For example, the characteristic equation at the first few levels is given by

k=1, »®>-1=0,

k=2, A(32-1)=0,

k=3, AM-32+1=0%2+1r—-1)(1%—1r—-1)=0,

k=4, -3 +3=202-3)*-1=0. (2.49)
On the other hand, the pseudoparticle K-matrix fary, is known to beKy, = Ini_q,
whilea=(3,0,...,0). This leads to, e.g.,

k=2, p?>-1=0,

k=3, p’—pu—-1=0. (2.50)

which, in general, corresponds to a factor of (2.49) as discussed in Section 2.2.
As a final example consider a CFT with two primary fields 1 gnend fusion rule
pxop=1+¢,ie,

Ny = (‘1) i) . (2.51)



E. Ardonneet al. / Nuclear Physics B 660 [ FS (2003) 473-531 485

The characteristic equation is given by

A2—1—1=0, (2.52)

with rootsiy = %(11 V/5). The constraints oh andc, arising from the modular matrices,
are (see, e.g., [23], Exercise 10.16)

c—12h=-2mod§ (2.53)
while
m
h= gmodl m=123,4. (2.54)

G2,1is an example of a solution fat = 2 (c = 14/5, h = 2/5), while F4 1 is an example
of a solution form = 3 (¢ = 26/5, h = 3/5). Examples ofn = 1, 4 solutions can be found
among the minimal (non-unitary) models.

The characteristic equation (2.52) leads to the recursion relation

P(M)=PM —-1)+ P(M - 2), (2.55)

the solutions of which are (generalized) Fibonacci numbers. Clearly, the recursion relation
(2.55) arises from the pseudoparticle matrix (cf. (2.40))

K =(2), (2.56)
with a= (1).
The central charge subtraction corresponding to (2.56) is, according to (2.34), given by
6 3 1 2
—Ll=—=V5)== 2.57
72 (2 2f> 5 (2.57)

which is not the correct subtraction for eithén» or F4. We can however double the
subtraction while, at the same time, keeping the recursion relation, by a ‘symmetric
doubling’ of (2.56), i.e., by making a & 2 matrix with entries that sum to 2 in all
columns and rows and which is such that the solution to the IOW-equation is identical
for all components, e.g.,

4 2
K:@ Z) (2.58)

3 3
with, a= (a1, a2) wherea1+a» = 1. This case is relevant fQFél))kzl (see Section 4.3.6).

To get a subtraction of &, as needed fo(rGél))k=l, we need to do a ‘symmetric tripling’
such as

K — (2.59)

NI NI B
= NI Nl

1
2
1
1
2
7

Cf. Section 4.3
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3. Composite and dual composite construction

As is well known in the context of the quantum Hall effect, the K-matrices describing
the Abelian quantum Hall states are not unique, but are in fact determined up to similarity
transformations. These similarity transformations can be thought of as changing the basis
for the description. Moreover, the physical properties such as the filling fraction are not
changed by this transformation. Also the central charge is left unchanged.

A similar situation occurs when we want to view the K-matrices as the data for a
general (i.e., non-Abelian) CFT. There exist transformations of the K-matrices, which
leave the corresponding characters unchanged. Therefore, the K-matrices related by such
a transformation correspond to the same theory. A prime example will be described in
Section 3.2 and the dual version in Section 3.3. At first sight, this might be a disturbing
observation because we would like to have a unique description of the theory. However, the
situation can be used in our advantage, for instance, in the construction of the K-matrices
for general affine Lie algebra CFTs, as will be pointed out in Section 3.4.

3.1. W-transformations

To describe the well-known W-transformations (see, for instance, [47]), we will use the
notation of the fqH basis (as we will do in the rest of this section). Of course, itis applicable
to all Abelian quantum Hall systems. So we have a K-maiipand the quantum number
vectorsge (the dual data is obtained by applying Egs. (2.23) and (2.25))W.die an
S.(n, Z) matrix, wheren is the rank ofK. The W-transformation takes the form

KEZW'KQ'WT, qu: (W_l)T ~qu~W_1, (31)

while

Je=W-Qe, Qgp= (W_l)T - Jgp- (3.2)

Indeed, physical quantities of the foqﬁ -Kgl - (e, such as the filling fraction are invariant
under this transformation. Also, the central charge, which is given fyr the Abelian

states, is not changed. In the non-Abelian case, we can also apply these W-transformations,
however, to conserve the central charge, we can only use those transformations which do
not change the pseudopatrticle part of the K-matrix.

In the following, we will concentrate on constructions based on character identities (so
we view the K-matrices as matrices containing CFT data). In addition, we will show that
extended matrices obtained in this way can be used to make a reduction of the theory,
which turns out to be closely related to the W-transformations described above. We will
use the results of this section extensively in the remainder of this paper, in particular in
Section 4, where we will obtain the K-matrices for general affine Lie algebra CFTs.

3.2. Composite construction

The basic ‘transformation’ one can do on a K-matrix, leaving the theory invariant, is
the composite construction [3]. The effect of this transformation is to add a particle, which
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is the composite of two particles already present in the theory. The quantum numbers of
this composite particle are just the sum of the quantum numbers of the two constituent
particles. In order to keep the theory unchanged, one has to increase the mutual exclusion
statistics of the two constituent particles. In a sense, they avoid one another more, while
the gap is filled by the composite particle.

To make this more precise, consider the IOW-equations (2.14) with a symmetric matrix
Ke (i.e.,a12 = az1 andKe = KJ), fugacitiesy and quantum numbetg

ailr ... A ail a2 aI
. . T

Ke=| : ) =la1 a2 & |,
apl ... Qupn aa a Ke

y1 de1
y= (yz , Qe = (Qe,z . (3.3)
y e

If we define the operatio; 2, corresponding to adding a composite of the quasiparticles 1
and 2 to the system, by

ai aip+1 ai1+ a2 aI
azp1+1 az? az1+ azz J
ClZKe = Ta2 T 1> (34)
a11+az1 aiz+azy an+2a2+a2 a+a
al az a+a K
and
y1 el
y2 qde2
C1oy = , C = ’ , 3.5
12 yiv2 120e gei-t ges (3.5)
y Qe

then the two systems are equivalent, at least at the level of thermodynamics. The action of
the general;; is defined, as above, by a suitable permutation of the rows and columns.
The solutiong;} to the IOW-equations defined ke, y) and{.;} defined by(Kg, y') =

(CijKe, Ci;y) are simply related by

/ Ml‘l’ﬂj_l / Ml_'_u“j_l
Ml‘:7’ M]zi’
M i
, il , .
Wy =—"", W=k, k#i, j,n+1 (3.6)
n+l Ml+//l«j—1 k

Note that, in particular, it follows:; = pju;,  andu; = V‘/j“;1+1 such thatutot = g

Also, fromu; = w4 andu; = M//'/’L;1+1 one sees that the original one particle partition

functions fori andj, receive contributions from the new particieand j, respectively, as

well as from the composite particte+ 1. The operatiol;; has the effect that states in the

spectrum containing both particleand j get less dense (their mutual exclusion statistics

is bumped up by 1), while the resulting ‘gaps’ are now filled by the new composite particle.
A consistency check on the equivalence of the systems describe&dy) and

(K&, Y) = (CijKe, Cijy) is the fact that both lead to the same central charge. It was shown

in [9] that this is in fact a consequence of the five-term identity for Rogers’ dilogarithm.
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For completeness, we repeat the argument here. It is not hard to check that the solutions
to the Egs. (2.19), witlKe andC;;Ke, which we will denote by; and¢/, respectively, are
related by

é_/_fi(l—é’j) p_5A=4)
Col-qg Tool-gGg
é‘r/g-f-]_:é‘i;j’ é‘]é:é‘ka k?’él,bn‘*‘l (37)

The equivalence of the central charge for both matrices follows from

x(l—y)> +L<y(1—x)
1—xy 1—xy

L(x)+L(y)=L< >+L(xy), (3.8)
which is the five-term identity for Rogers’ dilogarithm.

Finally, we note that the composite transformation (3.4) can be derived from the
following character identity, which is a special case of ¢hefaff—Saalschitz sum (see
[24])

My M ZZ (my—m)(mo—m) My —m2 My —ma
ma || mo q mi—m mo—m

m>=0

" (3.9)

y [M1+M2— (M1+m2)+m]
If one inserts this identity at thé, j)th entry in the UCPF of Eq. (2.4), one finds, after
shifting the summation variables; — m; — m andm; — m; — m, another UCPF, based
on the datE(Cin, Cijy).

The form (3.9) is used for the composite construction on two pseudoparticles. Taking
the limit M1 — oo (M1, M2 — o0) by using Eq. (2.6), gives the appropriate identity for the
composite construction applied to a physical and a pseudoparticle (two physical particles),
respectively.

3.3. Dual composite construction

Using the logic of the fqH basis, one might expect that upon inverting the extended
matrix C;;Ke, one should find a matrix, which is related ko, = Kg* by a character
identity as well. This turns out to be the case.

We will denote this transformation b;;, thus we defineD;;Kqp = (C;jKgy) .

After performing this transformation, the quasiparticles correspondingatiod j have
become pseudoparticles. This is necessary, because otherwise the central charge of the
transformed systeri = C;;Ke @ D;;Kqp would have been increased by one with respect

to Ke @ Kqp, because the rank of the K-matrices is increased by one. The presence of the
extra pseudoparticles reduces the central charge by precisely the right amount, to keep the
total central charge the same (see below).
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The action ofD;; on a symmetric matri¥qp, in the case of two (physical) particles,
can be described in the following way:

) 1 1 A-1  a-b-1
quz(z C), Dlqup=Z< A-1 1 c—b—1 )
a—b—1 c—b—1 (1+b)2—ac

(3.10)

whereA = 2— (a — 2b+¢). In addition, in the transformed formulation, the particles 1 and
2 are pseudoparticles. When, in the original formulation, the partidesl j are physical,
it is easily verified that the reduction of the central charge, in the transformed formulation,
due to the particlesand; is in fact equal to one. This is precisely the value needed to give
the transformed system the same central charge as the original formulation, as was to be
expected.

The action ofD1» on the fugacity and quantum number vectafs= (x1, x») and

qu = (9qp1- gqp2) IS given by

X2
x£1+b—c)/Ax£1+b—a)/A
1 4ap,1 — 4qp,2
D120qp = A 9qp.2 — qap.1 . (3.11)

If we havex; = x2 = x and hencegqp 1 = qqp.2 = gqp, as will always be the case in this
paper, we find

1 0
DioX = <l) , D1oQgp = ( 0 ) . (3.12)
x qap

From a character identity point of view, the transformation (3.10) is based og-the
binomial doubling formula

[M:N}Z 3 ‘I(M_p)(N_q)[A,ﬂ[ﬂ' (3.13)

P—qg=M—n
Indeed, considering the UCPF for two physical particles Wit as in Eq. (3.10), i.e.,

l(am%—Q—cm§+me1m2) %(am%+cm§+2bm1m2)

q? q my+m2
Z= = , 3.14
Z (Q)ml(Q)mz Z (Q)mlerz |: m1 ] ( )

and then applying (3.13) with

M=—b-cmi+A+b—a)mo,
N=QQ+b—c)ymy— (b—a)my,
n=mq, (3.15)
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to the g-binomial in (3.14), results in the UCPF based BKqp of (3.10), with the
identifications

my=p,  mh=q, mz=mi+my, (3.16)

and where the first two particles i 2Kqp are pseudo.

The general case can be derived from (3.13) as well, and is described in the following
way. Again, we will focus on the case where weT2twork on the first two particles. In
addition, we will assume that both those particles are physical. For ease of presentation,
we now defined =2 — (b11 — 2b12+ b22), 81 =1+ b12 — b1y andéz = 1+ b1o — boo.

Using similar notation as in Eq. (3.3), we take (the symmeifig), the fugacities and
guantum numbers

b11 b1 bI X1 qgp,1
Kgp= | b21 b22 b} |. X = ({2) . Qgp= (6]_qp,2> : (3.17)

The dual composite construction, applied on the first two particles is given by

1 A-1 —81 bl —bJ
1] 2a-1 1 —52 bl —b]
D12agp= Al -a ) (1+b12)2 — br1bpo 82b] +81b]
by —by by—by 82b1 +81bp A(Kqgp);; + (b1 —b);i (b1 —bp);

(3.18)

The first two particles have become pseudopatrticles, while the extra particle is a physical
particle. Note that this construction based on the character identity Eq. (3.13) only works
in the case that the particles on which it is applied are physical particles. We have not
found a character identity for the case where the dual composite construction is applied to
two pseudoparticles. However, we will show below that also in that case the central charge
works out alright, so we suspect that there is indeed a character identity relating the two
systems.

The action of the dual composite construction on the fugacities and quantum number
vectors is given by

()M
X2
()44
— X1
Dix = 52/A s1/a |
X1 X
_ b1—b2)i /A
xi(%)( 1—b2)i/
1 qaqp.1 — 4qp.2
_ qap.2 — 4qp,1
D = — . 3.19

Algp + (b1 — b2)(ggp.1 — 9qp.2)
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Again, specifying to the situation wherg = x = x andgqp1 = gqp.2 = gqp, as holds in
all the cases we consider, we find

1 0
1 0
DioXx = ) Diodgp=| - . (3.20)
x ap
X Uap

The solutions{x;} to the IOW-equations defined byKqp, x) and {1} defined by
(Kgp X) = (DijKqp, DjjX) are, as was the case for the composite construction (compare
(3.6)), related in a simple way

/:A.l')\.j_l /':)\,‘Aj—l
! )\j—l ’ J A—1"
Ay =ik, A=Ak, k#i,jn+1 (3.21)

Using the relations (3.21) it is not hard to show that the IOW-equations based the two
systems(Kqp, X) and (D;; Kqp, D;;X) are in fact equivalent. We also find thabt = A{y

by using the fact that the particlésand j are pseudoparticles after the dual composite
construction has been applied. The composite particle which is created is a physical
(pseudo) particle if particlesand j are physical (pseudo) in the original description.

From Eq. (3.21) it follows that the dual composite construction cannot be applied on a
physical and pseudoparticle. In that cagg, cannot be made equal ig,. Note that such
a restriction does not apply to the composite construction of Section 3.2. Though we do
not quite understand this difference, it will not affect any results in this paper.

Let us now focus on the central charge, and look at the case in which all the particles
are physical particles first. Because the rank of the transformed matrices is increased by
one, we need that the two created pseudoparticles reduce the central charge by one. This
is easily verified. Also, because the central charge of the mérik. equals the central
charge ofKe, we need to find the result that the central charge relatd®} & qp without
the pseudoparticle subtraction equals the central charge relatediig, plus one. To show
this, we need to relate the solutions to Egs. (2.19), which we dendjednydé/ for Kqp
andD;; Kqp, respectively. The relations are given by

£ = &i g = §j
s+ & &g IE+E &
é,;+l:%_i +§] _Sl§j7 %_]2 :é:k’ k¢l9]7n+ 1 (322)

Because of the relation between the central charges, we require the following dilogarithm
identity

L(x)+ L(y) = L<#> + L(*) LG +y—xy)— LD,
X+y—xy xX+y—xy
(3.23)

which is easily derived from Eq. (3.8) by applying Eqg. (2.33) to each term, and making the
change of variablegc — 1 — x, y > 1 — y).

The argument above not only shows that the central charge works out correctly in the
absence of pseudopatrticles. It can also be used to show that the reduction of the central
charge increases by one if we apply the dual composite construction on pseudoparticles.
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What remains to be checked is the central charge if we apply the composite construction
to physical particles, while pseudoparticles are present. For this, we need to compare the
central charge equations for the original pseudoparticles with the ones where the additional
two pseudoparticles are present. Though non-trivial, one can convince oneself that the
solutions to the central charge equations of the original pseudoparticles do not change,
while the solutions for the two pseudoparticles which are introduced add up to one and
therefore increase the reduction by one, which gives the correct result.

3.4. P-transformations

In this section, we will discuss a transformation which is based on the (dual) composite
construction. This construction is very useful in determining K-matrices for general affine
Lie algebra CFTs. We will motivate this construction by using a simple example, which
captures the essence of the method. In the end, this P-transformation is very similar
to the W-transformations described in Section 3.1, with one important difference. After
applying a P-transformation, some of the physical quasiparticles have transformed into
pseudoparticles. One of the consequences of this is a reduction of the central charge.

As we will use the P-transformations mainly as a tool to obtain K-matrices for level-

k affine Lie algebras from the direct sum 6flevel-1 algebras, we will explain the
construction using the simplest case. Afterwards, we will present the general case. In the
next section, we will use the results obtained here to find the K-matrices we are after.

3.4.1. Thecasesl(2)2

The goal in this section is to obtain the K-matrices for #), affine CFT, which
describes the Moore—Read (or Pfaffian) quantum Hall state. The corresponding matrices
are known, see, for instance, [2,3,45]. Let us recall the K-matrices for the (bosoait)
case, which corresponds4t2),

si2, (2 2 _ (1
aea(22). e (). o0

The first particle can be identified with the (bosonic) electron, while the second is a
composite of two electrons. In the quasiparticle sector

K5[(2)2—K1—< L3 top= ~Kzt-te=( 2 3.25
gp  — De = _% %)v QP—_e'e—<%>v ( )
where the first particle is a pseudoparticle. The K-matrices for the general Moore—Read
state, at filling fraction = ﬁ are obtained by applying the so-called shift map, which
is described in detail in [3]. Though the theory for genéifahas the same central charge,
the theory does not have the underlyini(®), structure anymore, but rather a deformation
(along the charge direction) of this. In this paper, we concentrate ofthe O case
throughout; the K-matrices for generad are obtained by applying the shift map as
indicated above. Note that the pseudoparticle matiiGeg are unchanged under this shift
map.

The main idea is now to obtain thes&2), matrices via an embedding 6f(2); in
50(2)1 @ sl1(2)1 (which we will call an Abelian covering, see also [13]). By introducing
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a composite, and projecting out some degrees of freedom, we obtain the K-matrices for
5[(2)2. In physical terms, we start from two, uncoupled, quantum Hall layers with filling
V= % (these are in fact bosonic Laughlin states). In a sense, this state is a covering state
for the Moore—Read state at filling= 1. By increasing the interactions between the two
layers, one might encounter a phase transition to the Moore—Read state, as described in
[30]. The bosons form pairs, and condense. In the terminology of an effective Landau—
Ginzburg theory (see [22]), the difference of the gauge fields describing the bosons acquires
a mass, and decouples from the spectrum. This is the Meissner effect.

On the level of the K-matrices, we can describe this in the following way. We first
introduce the composite of the two bosonic particles, and afterwards simply delete (or
‘project out’) one of the original bosons. So we actually reduced the theory, as required.
We start with the direct sum of twel(2)1 K-matrices

cover__ 2 0 - 1

= (5 9). e=-(3). (3.26)
1

geover_ (3 O o= (2 (3.27)

v “\o 1) ®={1) :

Now, applying the composite and dual composite constructions (Egs. (3.4) and (3.18)) on
these matrices gives the following, equivalent description

/212 ) 1
2 2 4 2
1 0 -3 0
~1 1 3 5
2 2 4

Note that the first two particles of the quasiparticle matrix are pseudoparticles. To obtain
thesl(2), matrices, we have to project out one of these pseudoparticles, by putting it into
the vacuum state. In addition, we discard one of the original bosons.

However, while projecting out one of the bosons in the electron sector simply
corresponds to deleting the respective row and columidnprojecting out one of the
pseudoparticles is more subtle, due to the negative coupling between the pseudoparticles
and the physical particle iKgqp.

For explicitness, consider the UCPF correspondiriﬁ(;pof (3.29)

1,2, 2 3,2
5 (my+ms5—(my+ma)ymaz+3ms) 1 1
q [zmﬂ[zmﬂ_ (3.30)
2 (@ms mL m2

Due to the minus-sign in the coupling between particles 2 and]Kﬁpnthe vacuum state
for particle 2 is not achieved fary = 0, but rather fom, = %m;;. Hence, rather than just
omitting particle 2 fromKgqp, we need to seh; = %m3 in the bilinear form. This results in

~ 3
mT-qu~m:m%—i—m%—(ml—i—mz)mg—}— Zm%
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2 1 ? 1 3 2 2 1,
—mi{+|zm3) —|m1+ sm3|m3+ -m§=m] —mimz+ -m3, (3.31)
2 2 4 2
which precisely corresponds to the matfkiyp of (3.25).

To summarize, the results of projecting out degrees of freedom in Egs. (3.28) and
(3.29), gives rise to the K-matrices of Egs. (3.24) and (3.25). One of the key points of this
section is that there is an elegant way of going from K-matrices for the (Abelian) coverings
(Egs. (3.26) and (3.27)) to the K-matricesstf2),, by what we call a ‘P-transformation’.

This also hold for the general case, as we will show below. We find

N _
Kg'@2 =P K&V PT,  Kg@2=(Ph) KPPt (3.32)
The vectors containing the quantum numbers (denotegt landaqp) transform as
- - _I\T
Ge=1D-Qe, Qgp = (P 1) * Oqp- (3.33)

In the above, we have to take= (1 9), and henceP~1)T = (3 ~'). A few remarks need

to be made here. First of all, the P-transformation described by Egs. (3.32) and (3.33)
closely resembles the W-transformation, as they act on the K-matrices in the same way
(compare (3.1)). However, there are a few important differences. As we explained above,
upon applying a P-transformation, we introduced a pseudoparticle in the quasiparticle
sector. This is important, as the presence of a pseudoparticle changes the theory. For
instance, the central charge is reduced, in the case at hand2yyhich is precisely

the difference in central charge betwed(?); @ sl(2)1 andsl(2)2 (given byc =2 and

¢ = 3/2, respectively). So the P-transformation actually changes the theory, while the W-
transformation is a basis transformation, which does not change the theory.

In the remainder of this section, we will show how a P-transformation works on a
general K-matrix. These results are used in the next section to find the K-matrices for
the general affine Lie algebra CFTs, in a similar way as we constructed{#he matrices
above.

3.4.2. Thegeneral case

In this section, we will relate the introduction of a composite (in the electron sector), and
the corresponding transformation in the quasiparticle sector to a general P-transformation.
For notational simplicity, consider introducing a composite of particles 1 and 2 in a general
symmetric K-matrix as given by Eqg. (3.4). Now, suppose we delete particle 2 from the
resulting matrixC12Ke, we then find a new K-matrix systee, Ge) given by

ail ail+aiz 2] q1
Ke= | a11+ax ai1+2a120+az aj+a) |, Ge= (611+6]2>~ (3.34)
a a1+ ap K q
Notice that we can write the relation betwe@t\e, 0e) and(Ke, ge) as
Ke=P-Ke-P',  Ge=P-Qe, (3.35)

with

100"
}P’=<1 1 0T>. (3.36)

0 0 I



E. Ardonneet al. / Nuclear Physics B 660 [ FS (2003) 473-531 495

Now consider the dual composite constructionKqp (see Eq. (3.18)). In analogy with
Eq. (3.30), putting the second pseudopatrticle in its vacuum state amounts to setting

mz = —(A — Lma + domz — (b2 —by) - M. (3.37)
Substituting this in the quadratic form yields, after a lengthy calculation,
mT - (D12Kgp) - m — mT - Kgp-m, (3.38)
Where]f{qp is given by
b11—2b12+b2p bio—byp bl —Db]

qu = b1 — b2 boo bg , (3.39)
by —Db> b2 K
which is related td<qp by
Rap=(P~")" - Kop- P, (3.40)
with
1 -1 0
P = (o 1 0T> : (3.41)
0 0 I

in accordance with Eq. (3.36). It is important to note that the first particl&@f in
Eq. (3.39) is a pseudoparticle. The presence of this pseudoparticle causes the reduction
of the central charge of the systeifia ® Kqp with respect tde @ Kqp. Of course, this is
to be expected when degrees of freedom are projected out.

Summarizing, a P-transformation acts on the K-matrices and quantum number vectors
(denoted byge andqgp) as follows:

Re=P-Ke-PT, Kgp=(P Y - Kgp- P, (3.42)

and

Ge=P" e, Ggp= (Pfl)T “Jqps (3.43)

where in addition, some of the quasiparticles have been transformed into pseudopatrticles.

In Section 4.1 we will repeatedly use the (dual) composite construction combined with
the projecting out of degrees of freedom to determine K-matrices for a variety of CFTs.
Rather than specifying the particles to which we consecutively apply this construction we
will simply state the required resulting P-transformation, and specify which quasiparticles
have become pseudoparticles.

Because the P-transformations take the form (3.42), properties such as the filling
fraction (see (2.26)), are not changed upon performing the P-transformation. Of course, the
statistics properties are changed in a profound way, because the induced pseudoparticles
lead to non-trivial fusion rules as described in Section 2.2. In turn, this leads to the non-
Abelian statistics of the physical quasiparticles (see, for instance, [38]).

One important remark needs to be made before closing this section. In the construction
of the K-matrices, we will use the (dual) composite construction via the P-transformation.
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We will always apply the dual composite construction to identical (quasi)particles. Hence,
the quantum numbers of the quasiparticles (and also their electronic equivalents) are the
same. Moreover, we will always havg; = a;; andb;; = b;;. As a result, it does not
matter which of the electron-like particles is projected out;if a;;, the two different
projections are related by = PT. The general form fo we use in this paper will be
discussed in the next section (see, in particular, Eq. (4.13)).

4. K-matricesfor affineLiealgebras

One of the main themes of this paper is the identification of the K-matrices for general
affine Lie algebra CFTs. We will work in the so-called quantum Hall basis, as described
above. In [3] (see also [2]), the K-matrices corresponding tostt®; andsl(3); CFTs
were derived. Here, we will give an alternative construction oktbel cases directly from
thek = 1 cases, which can be found in [2]. This construction is based on the embedding
of the levelk theory in the direct sum of level-1 theories. By applying composite and
dual composite constructions, we introduce pseudopatrticles. After projecting out some of
these, we have reduce the theory to the lavtdHeory. We will phrase all of this in terms
of the P-transformations of the previous section. Apart fronstt®; ands((3); theories,
we will also use this construction for the other (simply-laced) affine Lie algebra cases,
and provide a few non-trivial checks to show that we indeed found the correct K-matrices.
The non-simply-laced cases can be obtained by embedding the level-1 affine algebras into
simply-laced algebras, and performing a similar construction as outlined above.

4.1. Constructing the matrices

We will use the techniques described in the previous section to construct the K-matrices
for general affine Lie algebras.

In the this section, we will describe how this works in detail for the simplest examples,
which have all the characteristics of the general case. Motivation of this construction can
be found in the previous section. In Sections 4.2 and 4.3 we will present the results for the
K-matrices for general affine Lie algebra CFTs.

4.1.1. Example: the case s[(2)

Let us illustrate the construction for the levet 2 generalizations of the Moore—Read
states, the so-called Read—Rezayi states [41]. The covering state in this case is the direct
sum ofk level-1 theories (instead of just 2 for the MR case). So we have

2 1
2 1
) , tever=—1.|. (4.1)

Kgover:
2 1
(Here, and in the following we use the convention that ‘empty’ entries contain zeroes, if not

implied otherwise by ‘dots’.) We also indicated the charge vector, containing the charge
guantum numbers of the particles, as the transformation behavior of the quantum numbers
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under the P-transformation clearly shows that composites are introduced. To obtain the K-
matrices fors((2), describing the Read—Rezayi states, we need to introduce all types of
composites, from a pair up to a cluster made out ofitlegiginal particles. Thu® takes

the following form:

1
1 1
P=f. . . . (4.2)
1 .-~ 1 1
This leads to following matri¥Xe and charge vectdg (by using Egs. (3.42) and (3.43))
2 2 2 ... 2 1
2 4 4 ... 4 5
Kez 2 4 6 T 6 ) te=_ : 5 (4'3)
2 46 . % k

which are indeed correct for th&(2), theory. The dual sector is simply obtained by using
the duality relations (2.23), (2.25). Alternatively, we can apply the dual P-transformation
on the dual (i.e., the inverse) of the covering matrix Eq. (4.1). The corresponding P-matrix

1 -1
ey'=f | (4.4)
1
from which we find
1 -1
2
1
-3 1 0
Kgp= _% , tgp=1| - |- (4.5)
_1 4 _1 0
2 2 1
1 1 2
2

From the matrix equation (4.4) we read of that the first 1 particles are pseudopatrticles.
These results are in perfect agreement with the results of [3,26].

4.1.2. Example: the case s[(3)

As an example of a case where the rankf the affine Lie algebra is greater than 1,
we show that a similar construction can be carried out to obtain the K-matrices related to
the s[(3); CFT. This is the underlying theory of the ‘non-Abelian spin-singlet’ quantum
Hall states as defined in [5]. Finding the K-matrices when the rankl is somewhat
more complicated than for= 1. The K-matrices for thel(3);, CFT were obtained in [3].
There, the basis was chosen in such a way that all the particles in the electron sector had
the same sign for the charge. The reason for this choice was that the electron operators (for
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spin up and spin down) appearing in the construction of the quantum Hall state have the
same sign of the charge. These electron operators are associated to thea euds-o,

of s((3). From mathematical point of view, it is more natural to work withandaz, as

the resulting K-matrices have a simpler structure. So here we will present the results using
the (mathematically) more natural formulation, based on the positive roots. In Appendix
D, we will explain the precise relationship between the two descriptions. Essentially, the
relation is a W-transformation on the physical particles, which leaves the pseudopatrticles
unchanged. This is required, because the pseudoparticles are related to the fusion rules of
the affine Lie algebra and they also determine the central charge. The K-matrix for the
electron sector at level 1 takes the form in the representation chosen here

w(2) () ()

In the other formulation, used in [3], the off-diagonal elementKgfire 1, while the role
of te ands is interchanged.

The K-matrix in Eq. (4.6) is the building block of the covering matrix, from which we
construct the level-K-matrices

2 -1
-1 2
2 -1
Kgover: -1 2 ,
2 -1
-1 2
1 1
-1 1
1 1
tgoverz -1 , Sgoverz 1 (4_7)
1 1
-1 1

At this point, we need to specify the matrix which is used to project to the K-matrix

for the s1(3); theory. However, because we have- 2 in this case, we can construct the
composites (up to orde) in different ways. We will first state the form which gives the
correct result, and comment on the other possibilities afterwards. The P-transformation
which gives the correct central charge is given by

I
P=f. . . : (4.8)
I - I Ip
wherell, is the 2x 2 identity matrix. The resulting K-matrix has the following form
(explicit forms of the Cartan matrix, of A, and the symmetrized Cartan matM,:1
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of By can be found in Appendix A)

Ke =A@ My =

2
-1
4
-2

2k — 1)
—(k—1)
20k — 1)
—(k—1)

—(k—1)
2k — 1)
—(k—1)
2k — 1)

while the charge and spin quantum numbers are given by

te= s

k
—k

It is not to hard to see that introducing the composites can be done in different ways. For

NN P B

k
k

-1
-2

20k — 1)
—(k—=1)

499

(4.10)

instance, we could move some of the 1's in the lower-triangular part of the nfawix

Eqg. (4.8) to the corresponding place in the upper-triangular part. If done systematically,
we still would introduce all the composites, so the resulting quantum numbers would be
the same. Luckily, all the essentially different possibilities result in different K-matrices,
which have different central charge associated to them. So we can pick the, presumably,
correct description by looking at the central charge and perform further checks to assure the
validity of the chosen matrices. In all the cases we encountered, only one P-transformation
gave rise to a rational central charge (as far as the numerical checks could tell), which
indeed was the central charge corresponding to the affine Lie algebra CFT. We refer to
Section 4.3 for more details on the checks of the central charge associated to the K-
matrices. Whether or not the other possibilities correspond to (non-rational) CFTs is not

clear at the moment.

The K-matrices and quantum numbers for the quasiparticle sector are obtained similarly
as in thesl(2), case, by applying the dual P-transformation to the dual of the covering.

Now, the transformation matrix becomes the inverse transpose of Eq. (4.8)

(4.11)
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with the results

Agl ®Ar1
_ _ -1
Kep=A oMt = —Ay |,
-1 -1
A2 ‘ A2
0 0
1

—3 -1

1 -1

The K-matrix is to be compared with the matrix (7.23) in [3]. Note that part of the K-matrix
corresponding to the(® — 1) pseudoparticles is the same in both cases. So, because we
know the two descriptions are related (see Appendix D), we can say that by using the
method of the P-transformations, we were able to obtain correct K-matrices fal(3e

theory. One important check is the central charge. Because the pseudoparticles are the
same in both formulations, the central charge is also equal. In Section 4.3, the quasiparticle
matrices for all simple affine Lie algebra CFTs will be given. The electron matrices are
specified in Section 4.2. Before we come to that, we will first describe in detail how to
construct the general K-matrices, using the P-transformations and suitable coverings.

4.1.3. The general case

Using the knowledge obtained in the previous section, we go on and propose a scheme to
obtain the K-matrices for general affine Lie algebra CFTs. We will first concentrate on the
simply-laced cases, and discuss the non-simply-laced cases afterwards. As we discussed
the case 05((3), which has all the essential ingredients, in detail in the previous section,
we will be brief here. We saw that in the cases&f3);, we could use the particles related
to the simple roots as the basis of the electron sector. Simple roots are roots which cannot
be written as a sum of two positive roots. A Lie algebra of rankasn simple roots,
and their scalar products define the Cartan matrix. So we found that the K-matrix for the
electron sector of(3); was the Cartan matrix. In the following, we will assume that this
is the case for all the simply-laced affine Lie algebras. What we need to do further to obtain
the levelk K-matrices is construct the covering theory, which is just the direct suin of
level-1 theories, and apply the correct P-transformation. The form of the P-transformation
is similar to thes((3) case, where the rank is the only thing which needs to be changed. So
we find P for the simply-laced cases

ey = . (4.13)
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Applied to the covering matrix we find the restilt =P - (A, ® Ix) - PT = A, ® M. See

Section 4.2 for an explicit example. Of courgg, can be replaced by the Cartan matrix

of any other simply-laced algebr@,, or E,,. The K-matrix for the quasiparticle sector is
obtained by applying?—1)T to the dual covering,, *® 1, resulting inKgp = A, *@M; *.

From the form of P~1)T we find that the first (k — 1) particles are in fact pseudoparticles.
These matrices will be given explicitly in Section 4.3. For now, we note that the central
charge associated to these systems does indeed have the correct value. More on this can be
found in Section 4.3.

Let us now focus our attention to the non-simply-laced case. The idea is to apply the
same construction as for the simply-laced cases. However, we need to find the correct
starting point, that is, the levél= 1 formulation. The non-simply-laced affine algebras
have non-trivial fusion rules already at level-1, so we already need pseudoparticles at
level-1. This is also reflected in the central charge, which is non-integer. To find the K-
matrices, we embed the non-simply-laced algebra in a simply-laced one, and basically
do the same construction as before: project out some degrees of freedom by introducing
pseudoparticles. As an example, we quote the casa )1, which is related to the spin-
charge separated quantum Hall states of [4] (see also [9,11]). There, the K-matrices for the
s0(5)1 were obtained from theo (6)1 K-matrices using the construction outlined above. It
turns out that in general, the matrices for the non-simply-laced affine Lie algebras are equal
to the (simply-laced) affine Lie algebra in which they are embedded. The difference is the
presence of pseudoparticles in the non-simply-laced cases, as described above. Alternative
descriptions are possible, e.g., i@, we have an alternative description (which is used
in connection with the corresponding parafermion CFT), wherekthel K-matrix has
a couple of sign changes in comparison to the Cartan matrix of the algebra used for the
embedding, see Appendix C.

To check that we indeed found the correct matrices, we will provide another way to
obtain the K-matrix for non-simply-laced CFTs at level one. This time, we directly use
the exclusion statistics parameters of the electron-like operators, corresponding to the root
lattice of the algebra. It is important to know the exclusion statistics of the corresponding
parafermions (which are part of the electron operators, see Section 5.3 and also [25]), but
we can borrow results from the literature here. We will show how this works for the case
s0(5)1 in Appendix B, whileG, at level-1 can be found in Appendix C. The other non-
simply-laced cases can be obtained in a similar way.

Having identified thek = 1 K-matrices for the non-simply-laced algebras, we can go
on, and take the direct sum @f of the level-1 matrices, and do exactly the same P-
transformations as in the simply-laced case. Because the covering matrices for the non-
simply-laced cases are identical to the ones used for the corresponding simply-laced cases,
the resulting K-matrices will be identical as well. The only difference is the number of
pseudoparticles, as there will be more pseudoparticles in the non-simply-laced case. So,
specifying the nature of the particles is the only way to tell the difference between the two.
It is important to note that in the P-transformation, (dual) composites are made only out of
identical particles. We never have the situation where a physical particle is paired with a
pseudoparticle, in accordance with the results of Section 3.3.



502 E. Ardonneet al. / Nuclear Physics B 660 [FS (2003) 473-531

4.2. Thematrices Ke

The building blocks of all the K-matrices are the Cartan matriggsD,,, E, and their
inverses. In addition, we need the symmetrized Cartan matrb, pfvhich we denote by
My, and its inverse. All these matrices can be found explicitly in Appendix A.

From Section 4.1.3, we have the results that for the simply-laced gasesD,, x and
E, r the matricek take the formd, ® My, D, ® My andE, ® Mg, respectively. As an
example, we will give the result fab4 2 explicitly

2 -1 0 0 2 -1 0 0
-1 2 -1 -1 ] -1 2 -1 -1
0 -1 2 0 0 -1 2 0
0 -1 0 2 0 -1 0 2
Ke=Da®M2= |55 T > o0 ol (4.14)
1 2 -1 -1 | -2 4 -2 -2
0 -1 2 0 0 -2 4 0
0 -1 0 2 0 -2 0 4

For the non-simply-laced cases, we have to take the Cartan matrix corresponding to affine
Lie algebra which we used for the embedding. We find that the maffigaseD,, ;1 @ M,
Agy_1 @ My, Ee ® My andDg ® My, for B, k, Cu.k, Far andGa g, respectively.

4.3. The matrices Kqp

The matricedkqp can be obtained froriKe by a simple inversion (see (2.23)). In the
following, we will explicitly give these matrices, and indicate which particles are in fact the
pseudoparticles. With this knowledge, one can calculate the central charge corresponding
to Ke®Kqp by using Eq. (2.34). As this is hard to do analytically in general, we determined
the central charge numerically for some low valuegnk). All the cases up to rank= 10
have been checked up to levek 20. We found that the central charge corresponding to
the matrices was equal to the central charge of the CFTs up t& 10 better. The central
charge of an affine Lie algebra CFT is given by (cf. (2.13))

kdimX,
k+hv '’
where dimX,, is the dimension and*hthe dual Coxeter number of the Lie algebra.
Both can be found in Appendix A for every simple Lie algebra.

In the following, we will denote théth column of the matrixM by (M);. Recall that
the quasiparticle matrices are of the form (see Eq. (2.29))

Kap= (Kw Ky )
Koy | Koo
KL// =Kyy, K;qb =Kgpp. K% =Kgy, (4.16)

CALA = (4.15)

whereyr denotes the pseudoparticles, gnthe physical quasiparticles.
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4.3.1. Thecase A, k
The quasiparticle matriKqp, for sl(n 4 1) is given by

Al® A
L (4.17)

Kgp=A,t@M; ! =
_An_l ‘ An_l

In particular, the pseudoparticle matrix is givenKyy = At ® A .

4.3.2. Thecase B, «

As already pointed out, we need to an embedding to obtairBihedescription first.
This is done foso(5) in Appendix B, where we useD3 1 for the embedding. In general,
we needD,11. We find that we need one extra pseudoparticle, which corresponds to
the first node of the Dynkin diagram @,,1. This extra particle has exclusion statistics
parameter 1, which gives a reduction of the central charg%,bwhich is indeed the
difference of the central charge of the theori2s,1 1 and B, 1. At general level we find
thatKqp =D, }; ® M *, which is characterized by

-1 -1
2Dn+1 _Dn+l

-1 -1
_Dn+1 2]D)n+l

-1 -1 -1
_Dn+l 2DnJrl _(DnJrl)l
—1\T
_(Dn+l)l 1

where we see explicitly that there is an extra pseudoparticle next ﬂb}j}@@ Aj_1 part.
Accordingly, the matrixKy, is the inverse Cartan matrix db, 11, with the first row

and column omitted (denoted m/;ilu)

2 2 2 1 1
3 3
2 3 3 3 >
IR
Koo =Doali=1, 3 no1 a1 o (4.19)
3 n=1 ntl pn-1
2 2 4 3
3 n=1 n=1 n4l
2 2 3 4
Finally, we have
0 0
-1 -1
T L O C A W B (4.20
-1 e -1 _% _%
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where0 stands for the (column) vector with all zeroes (of ‘length’+ 1)(k — 2) in this
case). Putting the parts together, we find

K K
Kap = ( v W) =D}
Kys Kog
To put emphasis on the fact that the pseudoparticle matrix is bigger that the one for the

D,41 CFT, we gave the matriceSy etc. explicitly, as we will do for all non-simply-
laced cases.

@M L. (4.21)

4.3.3. Thecase Cy x

In this case, we needy,_1 ; as the theory for the embedding. For leket 1 we need
the particles corresponding to teeéen nodes to be pseudoparticles. These will be the extra
pseudoparticles fok > 1, givingn — 1 extra pseudoparticles. We again will specify the
matrix Kqp by its partskK,, etc.

1 1
285, 1 Ay

_Agnlfl 2&5’1171
K _ _Agnlfl
v —Agt ZAE}—% —(yr)y o~y Da |
—(B5 1),
28t
(A5 1)3
a2 (4.22)
0 0 0
-1 -1 -1
KW(?: _(A2nfl)1 _(A21171)3 _(AZHl)Zn—l)' (423)
Ky.¢

The matrixKy, 4, which contains the coupling between the physical particles anektize
pseudoparticles, is described most easily by specifying its entries explicitly. Let us first
recall the elements of the inverse Cartan matridgf_; (compare with Appendix A)

-1 . . 2 -1D2j-1
(Azi-1)zi-1.0j- 1 =MIN@I ~1.2) = 1) = ——— =

i,j=1...,2n—1 (4.24)
Then we have
2i —1)2j

2n
i=12,...,n, j=212,....,n—1. (4.25)

For the matrixKys we have

(K%q;) j =min(2i — 1, 2j)—

i,

(2i —1)(2j — 1)
I Pe—
Note that the elements of the matrix describing the extra pseudoparti€leg,); ; =
min(2i, 2j) — (2‘%”& wherei, j =1,...,n — 1is indeed equal t0152;_ll.

(KW)I.’]. =min(2i —1,2j — 1) — i,j=1,2...,n. (4.26)
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4.3.4. Thecase Dy, x
As we already used the matrix correspondind*p. 1 x in the case oB, x, we will be

brief here:

D@ Ar-1
-D,* |. (4.27)

_Dfl ‘ D;l

n

qu:D;l(X)M;l:

So we have:(k — 1) pseudoparticles, andphysical ones.
4.35. Thecases E, x withn =6,7,8
For E, «, we simply have a similar result as for the other simply-laced cases:
E;l QAr_1
-E, | (4.28)
_El;l ‘ E;l
so then(k — 1) pseudoparticles couple Vi, ® A;_1.

-1 -1
quzEn ®Mk =

4.3.6. Fay

The embedding used this time is based upn. Now we expect to have two extra
pseudoparticles, based on the level-1 case (cf. (2.58), Section 2.3), which turns out to be
true. The couplings of these extra pseudoparticles are related to the nodes 1 and 5 (see
Appendix A). For general, we have the pseudoparticle matrix

-1 -1
2Eg~  —Eg
-1 -1
—Eg  2Eg
-1
Kyy = s B N D)
—Eg 2Eg —(Eg )1 —(E )5
—1\T 4 2
—(Es )y 3 3
—1\T 2 4
—(Eg)s 3 3
while the physical particles have
10 8
4 6 4 3
2 3 2
Physical and pseudopatrticles are coupled via
0 0 0 0
~(BgY), —(Eg); —(Egh), —(Eg")
6 /2 6 /3 6 /4 6 /6
Kyg = 5 4 . (4.31)
3 2 3 1
4 5
3 2 3 1
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Again, if we combine the physical and extra pseudoparticles in the right way, we find the
matrix Eg *.

4.3.7. G

Finally we come to the last case, whichGs ;. This case is special in the sense that if
we use a similar procedure as we used in all the other cases, we find a description in which
the number of physical particles does not equal the rank of the algebra, as was the situation
in the other cases. This will have consequences as we consider the related parafermions in
Section 5.3. In Appendix C we will provide a different descriptiorGfy, which does have
two physical particles. For now, we will just use the description based on the K-matrices
for D4, in which we embeds . It turns out that we need three extra pseudoparticles,
leaving only one physical particle. Note that the coupling of the extra pseudopatrticles is
given by Eq. (2.59) in Section 2.3.

2t Dt
Dt 2t
) ) _]D)Zl
Kyw = -Dpt 20t (DY), —(DiY) (DY), |
_1I\T
-0, 1 3 3
_INT
-0Y; 3 1 3
-Y; 3 : 1
(4.32)
Kog = (2), (4.33)
0
_(Dll)z
Kyp = 1 . (4.34)
1
1

5. K-matricesfor coset conformal field theories

Having identified the K-matrices for the affine Lie algebra CFTs, one might hope to find
K-matrices for more general CFTs. An obvious class to look at are the coset conformal
field theories, as most CFTs can be written in a coset form. In this section, we will provide
K-matrices for a class of coset CFTs. In our search for the K-matrices for coset CFTs, we
will be mainly guided by the central charge. We can test our results by comparing to known
coset K-matrices. For diagonal cosets of simply-laced affine Lie algebras, the results of the
K-matrices are due to McCoy and co-workers. See, for instance, [6].

Having obtained a scheme, we will apply it to the coset®n);/so(2n — 1); with
k =1, 2, where the latter is the non-trivial one. The parafermionic cosets are dealt with in
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Section 5.3, as they require a different approach. This already shows that the scheme we
found is by no means unique, but useful anyway.

5.1. Diagonal cosets

As said, the central charge is an important quantity to keep in mind in determining the
K-matrices for the cosets. Let us take a look at the general ¢osHt, whereH C G is
maximal. Let us assume that bathand H are of the formKe @ Kqp, with equal rank
n. Also, both quasiparticle matrices can contain pseudopatrticles. So the central charge of
these theories (denoted byG) andc(H)) is given by

c(G)y=n— C(wa(G)), c(Hy=n-— C(wa(H)), (5.1)

wherec(Ky 4 (G)) denotes the central charge corresponding to the pseudoparticle matrix of
G. Let us further assume that all the pseudoparticles which app&asjiiG) also appear
in Ky (H). This restricts the applicability of the construction, but still covers a large class
of cosets. Now the argument of the central charge suggests to take the pseudoparticle K-
matrix of H, and change the pseudoparticles whichndbappear in the pseudoparticle
matrix of G into physical particles. The central charge corresponding to this matrix is
c(Kyy (H)) —c(Kyy (G)). This indeed equals the central charge of the coset theory, which
is given byc(G) — ¢(H). Note that the matrix we propose for the coset theory is not of
the formK @ K~1. This is in fact consistent with known results for K-matrices of coset
conformal field theories, as we will discuss below. This construction does work for the
cosets of the typ&,, x ® Xn.1/ Xu.x+1, WhereX, is a simply-laced Lie algebra. Indeed,
using this, we reproduce the results of McCoy for these diagonal cosets, see, for instance,
[6].

The construction above is in fact more generally applicable as we will show in
the next subsection, where we will show a non-trivial example based on the coset of
50(2n);/s0(2n — L)i.

5.2. s0(2n)i/s0(2n — 1)i

Applying the construction above to the coset?n); /so(2n — 1), at levelk = 1, we find
the K-matrix K = (1), which is obviously the correct result for this= % CFT. Another
coset withe < 1 is the casé = 2, which has: = 1. We find the following K-matrix

1 -1 ... -1 -

NI
Nl

K=| : , (5.2)
-1 2D 1

n

where only the first particle is physical. As mentioned, this matrix yields the correct central
chargec = 1 by construction. That it indeed describes the corcectl CFT can be seen
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as follows. Applying the dual composite construction to

1-% 4
K:( 1 1_L)’ (5.3)
2n 2n
where both particles are physical, we find
1 1
1 -3 -3
DiK=|-3 4 1-1% (5.4)
_1 q1_n n
2 2 2

Now applying the composite construction to the two pseudopatrticles in((b-4p) times
we find (5.2). On the other hand, the UCPF based on (5.3), summedmverm, =
0 mod 2, equals the = 1 u(1)-character

1
qn(anl)kz’ (55)
(@)oo

keZ
by using the Durfee square identity (see, e.g., [1])
m2
BT NI (5.6)
Doo =0 (@Dm(@Pm

So we indeed find that the matrix (5.2) describes-al conformal field theory, namely,
the free boson compactified on a circle.

In addition to this non-trivial example, also the equivalence used in the theary-of
holonomy—namely, betweesv(7)1/G2.1 and the tricritical Ising model—works, if we
take theG2 (levelk = 1) description of Appendix C. We find the K-matrix

1 -4

K= ( L ) , (5.7)
2

with one physical and one pseudoparticle. This is indeed the K-matrix corresponding to

the minimal model withe = 7/10.
5.3. Parafermions

Generalized parafermionic conformal field theories were defined by Gepner [25] as a
generalization of th&;, parafermions of [49]. The generalized parafermion theories can
be viewed as cosets based on general affine Lie algebras (ALAs) &ntheories

pf Xn k
e u @

wheren is the rank of the Lie algebrX,, andk the level. The central charge of the
parafermion CFT (5.8) is given by

(5.8)

Cpf = CALA — 1, (5.9

where caLa is the central charge of the corresponding affine Lie algebra theory (see
Eqg. (2.13)). The parafermion cosets (5.8) are somewhat different in comparison to the
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diagonal cosets of Section 5.1, and need to be treated differently. Before we come to the
discussion of the K-matrices, we first fix some notations concerning the parafermion fields,
following [25].

The primary fields of the theor«%" are labeled by a (highest) weightand a charge
A, which is also an element of the weight lattice, and is defined moklty , i.e., k
times the long root lattice. To obtain a complete, independent set of parafermion fields,
one has to impose the following restrictions. The chargeust be ‘accessible’ from by
subtracting roots (includingp) from A. Furthermore, the (proper) external automorphisms
o (see [23]) of the affine Lie algebra give rise to field identifications

A _ )
ot =07 (5.10)

whereo (0) denotes the image of the affine weighto undero .

An important check on the K-matrices for the parafermionic CFTs is based on the
relation between the parafermionic partition functions and the string funcrt@mﬁ the
corresponding affine Lie algebras [25]

Z;‘f’)‘ = (", (5.11)

wheren = ¢Y24T[21(1 — ¢%) is the Dedekind function. As an example, we will express
the partition functionZ';‘f’A with A = (0,...,0) =1 in terms of UCPFs based on the K-
matrices for the parafermion CFTs. Using Eq. (5.11), we can check our results against the
known (tabulated) string functions.

We will use the matrice&, of the corresponding affine Lie algebras as a starting
point for obtaining the parafermionic matric&®’. The matricesk, correspond to the
(elementary) electron-like particles and composites (up to drjlef these elementary
particles. The operators corresponding to these (elementary) particles have the form

oLel®?:, (5.12)

whereg = (¢1, ..., ¢,) is a set of bosonic fields, which correspond toki®) degrees of
freedom and determine the quantum numbers of the particles via the constdfds the

orderk composites, the parafermion fields are trivial, i@,}u =1, forue My (nalong

root), in which case only the vertex operator part remains.

In this section, we are interested in the K-matrices for the parafermionic CFTs. These
can be obtained from the matric& of the corresponding affine Lie algebra theories
by subtracting from the particles which have a non-trivial parafermion f«ie}dthe
part of the exclusion statistics which corresponds to the vertex operdtot:. This
can be done ‘by hand’ by calculating the exclusion statistics of the vertex operators.
Actually, because there are always particles which do not have a parafermion field (or
equivalently, a trivial parafermion field), this can be done by applying what we will call
an X-transformation. Such a transformation is like a W-transformation. However, the
matrices associated to an X-transformation areShot, Z) matrices, but rathe®L(r, Q).

This is because the quantum numbers of the largest composites (which are the particles
with trivial parafermion fields) aré times the quantum numbers of the particles in the

k = 1 formulation. In general, the non-zero non-diagonal entries take thelforpwith
[=1,...,k— 1. Explicitly, in the case of th&; = s[(2);/u(1) parafermions we find the
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following
1 -
2
1 —%
X = B (5.13)

k=1

1 -
1

For more general parafermions, the matrices are (a little) more complicated. In fact, each
entry of the matrix (5.13) becomes anx n matrix. Although fractions appear iK,

the quantum numbers of the particles after the transformation are still integers, because
the largest composite is of ordér More precisely, the X-transformation is such that

all the quantum numbers of the transformed particles are in fact zero; in a sense all the
vertex operators containing the chiral boson fields are stripped of from the parafermionic
fields. The transformed matrike splits in two pieces, namely, a part containing the order

k composites and the part corresponding to the parafernﬂz;}rJSNhich is the matrix

we are looking for. We will denote this matrix HiP". In the quasiparticle sector, the
pseudoparticles will completely decouple from the physical quasiparticles and hence the
transformed matrix is of the fori,, © Kyy, WhereKy, is a deformed quasiparticle
matrix. So we conjecture that the K-matrices for parafermionic CFTs are given by the
inverse of the pseudoparticle mati;,, of the corresponding affine Lie algebra CFT

K = K3, (5.14)

A first check on the proposed matrices is the corresponding central charge. The central
charge corresponding to the matrid€g,, is given by

Cyy = (n+ plk —caLa, (5.15)

wherep is the difference in rank between the affine algebra under consideration and the
one used to ‘build’ the K-matrices (thus for simply-laced algebpas,0). The rank of the
matrix Ky is (k — 1)(n + p) + e, wheree is the number of ‘extra’ pseudoparticles needed
for the non-simply-laced algebras. Thus we have the following result for the central charge
of matriceskPf

cpf=cAaLA —n—(p —e). (5.16)

For all the affine algebras, exce@b , the K-matrices of Section 4.3 haye= ¢, so we

obtain the correct result of Eq. (5.9). However, we also find that the construction above
does not work for the description @2 as given in Section 4.3.7, because there the
number of physical quasiparticles is 1 instead of 2, which is the radlpof uckily, there

exists another way to represent tfie ; affine Lie algebra, which does have two physical
guasiparticles. The inverse of the pseudoparticle matrix therefore has the correct central
charge. The corresponding K-matrices can be found in Appendix C. It has been checked
that thisG x parafermion K-matrix does give rise to the corresponding string functions
(fork =2, 3).
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5.3.1. Thecaseso(5)2 asan example
As an example, we will discuss the characters of the parafermionic theory associated to

50(5)».

The conjectured pseudopartidg,, for so(5)2 is given by Eq. (4.18) with =2,k =2

1 -1 -§ -

D5t —(D3Y)] -1 2 1 1
Kv,]//:( ( 37)111 ( 31)1)= 1 1 3 1 (517)

—(D37), 2D; 2 2 2

-1 1 1 3

2 2 2

The K-matrix which is supposed to describe #hé€5), parafermions is simply the inverse
of the pseudoparticle matrix, where it is assumed that all particles are physical

2 1 0 0
13 -3
KP' = 5.18
0 -3 1 0 (5-18)
0 -3 0 1
The UCPF based on this K-matrix, namely,
1 f
zm.Kp m
7A=1_\4 , 5.19
pf l_[i (@ m; ( )
with m a 4-dimensional vector, is the sum over string-functions
Z§f=l = Z(n)lc){l. (5.20)
A

The sum oven runs over the independent parafermion fi 10;2) (where we assume

that the first root is the short root). The various string—functioﬁﬁé)iz) are obtained by
restricting the sum in Eq. (5.19). Explicitly, we have

1m.KPf.
00 _ 6]_1/12 q2m KP'm (5.21)
L= 2 ) :
D% & Hi@m,
where
2m1 4+ mo + 2m3 =0mod4
m3+ma4=0mod2 for A = (0, 0);
2m1+mo + 2m3 =0mod4
m3+mg4=1mod2 for A =(2,0);
A) = 5.22
resih) 2m1 +mo + 2m3=2mod4 ( )

m3+ma4=0mod2 for A= (0, 2);
2m1+mo + 2m3=1mod4
m3+mg4=0mod2 forr=(0,1).

The string functionsgﬂz) can be obtained by using a shift vector; more explicitly, by

changing the power af in Eq. (5.19) to%m -KPf. M, whereft = (m1 — 1, ma, m3, ma).
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We have not yet found similar expressions for the other (independent) string functions,
0,1 (1,0

such as;’ 3, andc Clpin)"
5.3.2. Cases checked

The cases for which we checked that the conjectured matrices do give the string
functions& include all the affine Lie algebras up to ramk= 3 and levek = 2. In addition,
we also checkesdlo(5)3, s0(8)2, E6 2, E7.2, Es 2 and F4 2. The checks were performed by
numerically calculating the partition functions up to a certain order, idepending on the
dimension of the K-matrix. These results were compared to the weight-multiplicity tables
of Kass et al. [33]. Note that despite the fact that for the higher rank algebras the checks
were performed to rather low order in we believe that the formulas hold to all orders
ing.

As an example, we give the K-matrix associated tofh@arafermions at leved = 2:

3 -4 0 0 -} o 1 -}
-2 1 -3 o 0o 0 0 O
o -2 1 -3 0 -3 0 O
o 0 -3 1 -3 o 0 O
KP'(Fa2) = 1o . 1 %2 o 11 (5.23)
o 0 -3 o0 0 1 0 O
1 0 0 0 -3 0 2 -1
-2 0 0 0 1 0 -1 2

Explicitly, the relation between the parafermionic character based on the matrix in
Eq. (5.23), namely,

(Am-KP.m)

q
2722 Mg, (5:24)

{mi}

and the string functions is as follows. Upon splitting the character in pieces containing
powers ofg which differ by integers, one finds

,q( m-K-m) .
I —48@(cho00 +3booa) (4" neN), (5.25)
P [1:(@)m
( m-K-m)
rq'2 1 g d
=1275(9)3%¢{1.0.00) (¢"*2; neN), (5.26)
{m;) i@
(3m-K-m)
rq'? 1 nl
= 2445 (9)2C(0.0.1.0 (¢"*1; neN), (5.27)
mi) M@
( m-K-m)
rq'? 1 n 3
=245 (q)2C0.0.0.) (¢"*4; neN). (5.28)

{mi} T @,
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The primes on the sums denote the restriction to the powerssfindicated. The various
numerical constants for the string functimi&are the number of independent fields of the
form &}, which have the same conformal dimension as the figld

6. Application tolevel restricted Kostka polynomials

In Section 2.2 we have argued that there exists an intimate relation between the fusion
rules of a CFT and the pseudoparticle K-matrix as both count paths on the fusion diagram.
In fact, there exists a naturatdeformation of the number of fusion paths giving rise to
the so-called level truncated Kostka polynomial. This deformation shows up as part of the
UCPF expression for the characters of WZW models, as conjectured in Section 2.1.2. One
would thus expect that the level truncated Kostka polynomials can be expressed as UCPFs
with the K-matrices found in this paper.

Concretely, if¢; = ¢4,, i = 1,...,r, denotes the field corresponding to thih
fundamental weight of, the multiplicity of the fieldg, in the fusion rule

1t X X P (6.1)

ni

is given by(Nl . .N,"’)O*. By associating a power gfto each path, determined through

the crystal graph of,, we obtain a;-deformation of this number. This is referred to as the
(dual) levelk truncated Kostka polynomial (or truncatelebsch—Gordan coefficient) of

g and we will denote it b)Mi’;)(q) wherew = Y, n; A;. An explicit expression oMi’;)(q)

for k — oo is known (see, e.g., [12] and references therein) and originates in Bethe-ansatz
techniques [36]. Explicit UCPF type expressions for firtitere known forg = sl(n) (see

[42] for the most general result and also [7,15,28,34]) a@b)1 [12]. In [29], UCPF

type expressions for Kostka polynomials for general (non-twisted) affine Lie algebras were
conjectured. Proofs for some of these conjectures and expressions for some twisted cases
can be found in, for instance, [42] and [40]. The relation between the K-matrices used in
these expressions and the ones brought forward in this paper is not clear at the moment.
We are gratefull to Ole Warnaar for bringing these references to our attention.

According to the UCPF conjecturﬁzﬁ? (g) should be closely related to

q %n~K¢¢~nf%n/~K¢¢~n/ Z/ q %m~KW~m+n~K¢V,~m
m

m;

« H[((H —Kyy) -m); - (Kyg -N); +U; :| 6.2)
wherer =3 "n!A; andu =), n; A;. (We have seQ = 0 as we are only discussing paths

starting at the identity representation.)
In the simply-laced case, it has been conjectured before (see, e.g., [10] and references

therein) thatMi';)(q) can indeed be written in terms of the UCPF basedkop =
X1te Mk_l. Here we will focus on a specific non-simply-laced example, namel$)

at levelsk = 1, 2. We defer a general investigation to future work. An explicit recipe for
computingMi’l‘L)(q) for g =s0(5), at level 1, was given in [48]. Explicit formulae for the
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level k = 1 case were given in [12]. Concretely,

1
@ — 4 3(n34nang)+3n3 3(m3— 212
M50y gy (@) = g 20T TE S Tgalmimmn) |
my

1
ni1+ Enz + m1 €even np even

1
@  l2imng) i 3n2_ 1 Lm2 ino
M(l,O),(nl,nz)(q)_qz(nl ninz)+gns—3 E q2(m1 man2) [ 2 ,

mi 1
1
ni+ Enz +m1 0dd ny even
1
1 1.2 3,2 3 1.2 =(n _|_ 1
M((O,)l),(nl,nz) (@) =4q 2ritmn)tgna 5 ZC] i) |: 2( ”f’ll )],
mi
1
§(n2 + 1) +m1 even np odd (6.3)

The above formulae are of the UCPF form with

(6.4)

which is to be compared to th# 1 quasiparticle K-matrix of Section 4.3.2, given by

(6.5)

Bl DW (NI
BlWw DI (NI

While the pseudoparticle part of Egs. (6.4) and (6.5) agree, the K-matrices obviously differ
in the physical particle part. Both K-matrices are reminiscesb0d), but while (6.5) has
physical particles inherited from theand4 of s0(6), Eq. (6.4) contains physical particles
inherited from the4 and the6 of s0(6). Since6 =5 & 1 underso(5), the matrix (6.4)
does indeed seem to be better suited to describe general (truncated) Kostka polynomials
for so(5), although we expect that thwe (5) Kostka polynomials can also be expressed in
terms of a UCPF based on (6.5). Unfortunately, it seems that Eq. (6.4) does not have a
straightforward higher level generalization.
Therefore, motivated by the decomposition of finite-dimensional irreducible representa-
tions Wy, ny,n5) Of 50(6) into those ofso(5) under the regular embedding(5) — s0(6),
ie.,
ni
Wios2.00 = €D Wons 1.5+ (6.6)
=0
we introduce

ny

) _[m],,o

M 0.0),(ny.np (D = Z[ f }M 0.0),(ny—k.np) (@)- (6.7)
k=0
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Inserting the expression foMfé’)o)’(nrk,nz)(q), and changingk — n1 — k in the
summation, we find

1
~ (1 12 32,12 1 5n2 || n1
Mgo?ounl,nz)(‘]) = Z ‘12(k ) gt 21n2|: 21 :||: k :| (6.8)
k,l;k+l+n2/2 even
Now, letp =k — [, then
1
~ (1) _ 1 2+l +§ 2 kil an2 ni
DESROES SID S LA T S Rl I

P klk—l=p
1
— Zq%p2+%pnz+%n§ ni—+ zn2 (6.9)
p SEI 7
where, in the last step, we have used a finite version of the Durfee square formula (see [8]).
Finally, letting p — n1 — p, we find

e

1
(0,0),(n1,12) (@) = C]%("%Jr"l"zHg”% ZCI%%*F’”*%F"Z |:n1 + §n2:|. (6.10)

> p

A similar computation can be given for the other sectfmfé,) o) () (g) of (6.3). Now,
19 2 ) )
Eq. (6.10) is of the UCPF form with

1 \ -1 -1

K=| -1 1 % , (6.11)
_1 1 3
2 2 4

which has the samiy, andKy, parts as (6.4), but differs in the couplifg .

Now consider theso(5), level k = 2 case. As an ansatz we take the pseudoparticle
matrix of Section 4.3.2 (see also Eq. (5.17)), and the physical particles of Eq. (6.11), and
adjust the coupling between them. Specifically, let

1 1
1 -1 -1 -4 0 O
-1 2 1 1 | -1 -3
41§ 3|33
K= 1 1 1 3 1 1 (6.12)
—2 2 2 3 7%
1 1 1
0 | -1 -3 —3 1 3
0 _1 _3 _1 13
2 4 4 2 4

Note that this matrix is not invertible, as is the case for the matrix in Eq. (6.11). Thus,
Eq. (6.2) reads explicitly
™~ (2) _ 1 n2+niny 4352 12y n’)—gn’2
M(n’l.,n’z),(nl.,nz)(Q)_QZ( 1 ) 872 2( 1 172/ 82
> Z/q%(2m%+4m%+3m§+3m‘21)7%m1(2m2+m3+m4)+m2(m3+m4)+%m3m4

m
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— %n1(21n2+m3+m4)7 %n2(2mz+3m3+m4)

X q
. | 2@m2+ma+ma) +us
- ml
« [ m1 — (m2+m3+mag)+n1+ %n2+u2
- m2
o [ 3(m1— @mz+ms+ma)) + 301+ Fnz + us
- m3
ri 1 1
" 5(m1— (2ma+m3+ma)) + 3n1+ zn2+us (6.13)
L m4 ’ .
with some appropriate restriction on the summation @wer, . .., mg4).
Numerical evidence suggests the following conjecture (cf. (6.7))
ni nj
17 (2 _ ni 2
M(n’l,n’z),(nl,nz) (q) = Z|: k ] Z M(n/lfl,n/z),(nlfk,nz) (@), (614)
k=0 =0
or equivalently,
ni N
(2 _ vk Sk(k—1)| N1
M("’r"’z),(nlﬁnz)(Q) B Z( Dig? |: k :|
k=0
ny
177(2)
X Z(_l) M(n'lfl,n'z),(nlfk,nz)(q)’ (615)
1=0

where the vectors in (6.13), for given(n’, n5), are given in Table $.The summation
restrictions are such thatn + m3 + 3m4 = 2((n1 — n}) + (n2 — n%)) mod4, and
ni+%2+mi=(n)+ %)mOdZ.

Again, the conjectured formula (6.14) is strongly reminiscent of the decomposition of
finite-dimensional irreducible representations (6.6). This suggests that while the procedure
of Section 4.3.2 does produce a pseudoparticle K-matrix leading to the correct central
charge, it still overcounts the number of fusion paths. This overcounting can also be seen
by applying the analysis of Section 2.2, as the pseudoparticle K-matrix does not give rise to

Table 1
The vectorsn’ andu for the so(5)» Kostka polynomials
(n, n) (u1; up,u3, 14)
0,0 (0;0,0,0)
(1,0 (0:1.3.3)
©.1 (©3 %3

4 \We have not been able to find thevectors corresponding to the remaining integrable highest weight
modules at level 2, i.e(n}, n5) = (2,0), (1, 1) and(0, 2).
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the same recursion relations as te€5), fusion rules. For this reason we also expect that
theso(5)2 characters, when written in UCPF form using the K-matrices of Section 4.3.2,
will need alternating sign corrections.

7. Discussion

In this paper, we proposed a scheme to obtain the K-matrices for the CFTs with affine
Lie algebra symmetry. This construction was based on character identities, which were
applied to certain Abelian covering states. After projecting out some degrees of freedom,
the K-matrices were obtained. Subsequently, these K-matrices were used to obtain the K-
matrices of coset CFTs. Also, they appeared in some expressions for thé lesatlicted
Kostka polynomials.

It would be interesting to investigate if the K-matrices obtained here indeed are the
central objects in the Kostka polynomials related to a general affine Lie algebra. An
interesting open question is whether similar K-matrices can be used for more general CFTs,
such as the twisted affine Lie algebras (and their parafermions), which were studied in
[16] and [17]. Another interesting class of theories which might be addressed in a similar
fashion are the affine Lie superalgebras and the related parafermions (see, for instance,
[14] and [32] for the casesp(1]2)).

Most of our consistency checks on whether we obtained the correct K-matrices were
based on the fact that the central charge worked out correctly. Even though this proved
to be an extremely restrictive ‘guide’, the ultimate verification of course relies on the
construction of the CFT characters in the UCPF form using these K-matrices. While
we have proved this in special cases, and did numerical checks in others, a complete
verification requires tools beyond the scope of this paper, and will require proving a host of
newgq-identities. A systematic approach towards a full proof will undoubtedly benefit from
a better algebra-geometric understanding of the role of K-matrices (see, e.g., [10,19-21]
for some initial studies).

Note added

In an earlier version of this paper we referred to the Kostka polynomials of Section 6
as “generalized Kostka polynomials” to indicate the generalization of the stangard
Kostka polynomials to general simple Lie algebras. In order to avoid confusion with the
“generalized Kostka polynomials”, introduced independently by Schilling and Warnaar
[43] and by Kirillov and Shimozono [37] (cf. [40] for a discussion), which are more general
than the Kostka polynomials which are the subject of this paper, we will simply refer to the
polynomials in this paper as (level restricted) Kostka polynomials. We thank Ole Warnaar
for communication on these points.



518 E. Ardonneet al. / Nuclear Physics B 660 [FS (2003) 473-531

Acknowledgements

E.A. would like to thank the Department of Physics and Mathematical Physics at the
University of Adelaide, where most of this work was carried out, for hospitality. P.B.
acknowledges financial support from the Australian Research Council. The research of
E.A. was supported in part by the foundation FOM of the Netherlands and by the National
Science Foundation through the grant DMR-01-32990.

Appendix A. Cartan matricesand their inverses

In this appendix, we will list of the Cartan matrices of the simple Lie algebras, to clarify
the conventions used in this paper. In addition, we will give some other properties, namely
the dimension and the dual Coxeter number. Other properties can be found, for instance,
in [23].

In the Cartan matrices, the empty entries correspond to zeros, unless otherwise implied
by the dots. Even though we only use matrices corresponding to simply laced Lie algebras,
we will give the Cartan matrices of all the simple Lie algebras, for completeness. We will
denote the Cartan matrix corresponding to the Lie algahray X,,.

An: The Cartan matrix for,, is given by

2 -1
-1 2 -1
Ap= oz , (A1)
-1 2 -1
-1 2
n n—1 n—2 ... 2 1
n—1 2m—-1) 2m—2) ... 4 2
. 1 n—2 2mn—-2) 3n—-3) ... 6 3 )
A= . . 3 (A2)
2 4 6 2m—1) n-1
1 2 3 n—1 n
Bn:
2 -1
-1 2 -1
B, — -1 2 ’
-1
-1 2 =2
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(A.6)

A O OO m O
N T O g m
<0 N3 ;o
o 88 ANoo
w3 Yoo
0O Nm
N~————
—
I
-
| ©

E:

-1

-1

(A7)

4 8 10 12 8 4 6

5 10 15 18 12 6 9

6 12 18 24 16 8 13.

4 8 12 16 12 6 8

9 12 8 4 7

6

3

E7 =

1
2

-1
7

Esg:

-1

-1

Eg =
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2 3 4 5 6 4 2 3
3 6 8 10 12 8 4 6
4 8 12 15 18 12 6 9
5 10 15 20 24 16 8 14
E;l= . A.8
8 6 12 18 24 30 20 10 11 (A-8)
4 8 12 16 20 14 7 1d
2 4 6 8 10 7 4 5
3 6 9 12 15 10 5 8/
F4Z
2 -1 0 0 2 3 4
-1 2 -2 0 36 8 4
Fa= F;l= A.9
4 0 -1 2 1|’ 4 2 4 6 3 (A-9)
0 0 -1 2 1 2 3
Gz:
2 -3 2 3
Gy = , G;l= . A.10
=5 7)) @=(i2) (10

In Table 2 we list some of the properties of the simple Lie algebras. The black nodes in
the Dynkin diagrams correspond to the short roots.

In addition to the Cartan matrices given above, we will frequently use the symmetrized
Cartan matrix ofBy, which we denote ka_l. Explicitly, we have

2 -1
111 1 1 2 _1
1 2 2 2
M,=|1 2 3 - 3], Mk—lz -1 2
. . . . -1
12 3 -« &k -1 2 -1
-1 1
(A.11)
The simple Lie algebras are labeled By,, wheren is the rank, andX can be
A, B, ..., G.Aswe will only be dealing with the untwisted affine Lie algebras, we will use

the notationX,, «, rather thar(X,Sl))k, which is more common in the literature. Sometimes,

we will use the notationl(n)y, so(2n — 1)k, sp(2n), andso(2n) for the infinite series of

untwisted affine Lie algebras. Here, and in the rest of the paper, the level is dendted by
Blackboard bold, such as is used for matrices, while vectors are in boldface, such as

Q. If we want to specify a column of a matrix, sdy we use the notatio®)., where the

integerc denotes the column we want to specify. In bilinear forms suainask - m, we

will frequently omit the transposition symbdl
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Table 2
Some properties of the finite-dimensional simple Lie algebras
X, Dynkin diagram dimX,, hv
Oio ....... Oio
Ap 1 2 n—1 n nn+2) n+1
O—Q " O—O— @
By 1 2 n—2n—-1n n(2n+1) n-1
o— 0 0—0—0O
Cn 1 2 n—2n—-1n n(2n+1) n+1
e}
‘n —1
Dn O— Q- O—0O0——0O zn(n_l) 2n—2
1 2 n—3n—-2 n
o
‘6
Eg 00— O0—0—0—0 78 12
1 2 3 4 5
OH
|/
E7 0—0—0—0—0—0 133 18
1 2 3 1 5 [§
o
8
Eg 0—0—0—0—0—0—0 248 30
1 2 3 1 b) 6 7
oO—O—e—e@
Fa 1 2 3 4 52 9
G =9 14 4

Appendix B. Obtaining the so(5)1 matrices

The electron matrix foso(5)1 can be obtained by using knowledge about the root
diagram and the associated parafermions (see [25] for general parafermion theories). We
will anticipate that it is in fact possible to use a quantum Hall type of basis for this theory.
So we define a set of electron operators, where the vertex operator part is chosen in such
a way that the spin and charge are such that we actually have electron-like operators. The
matrix Ke is obtained via the connection with the exclusion statistics, i.e., we calculate the
associated exclusion statistics parameters of these electron operators. From [25] we obtain
that at levelk = 1, the short roots ofo(5) come with a parafermion operator, which is
in fact the Majorana fermiony, which has the same exclusion statistics parameter as a
fermion, namely, 1. The root diagramf(5) is givenin Fig. 1. The electron operators we
take to be part of the quantum Hall basis corresponﬁkoAéTT andA.. These operators
take the form (at levet = 1)

wl=1y A , Al = eV Ap = eV (B.1)
whereyp, andg, are spin and charge bosons, respectively, chosen according to the spin and
charge direction indicated in Fig. 1. From these operators, we infer the following exclusion
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Fig. 1. The rootge) and weightgo) of so(5).

statistics matrix

2 -1 -1 1 ~1
Ke=|-1 2 0], t=|0]. s=|2]. (B.2)
-1 0 2 —2 0

We should comment on a few things here. First of all, the matrix we found is equal to the
Cartan matrix ofso(6), which relates to the so-called covering state of the state related
to so(5). This is analogous to the situation of the Moore—Read state, which is related to
a two-layer state. So we could have started from this K-matrix, and performed a similar
construction as was done in Section 3.4.1 to find the K-matrices for the Moore—Read state.
This would lead to the same matrix (B.2). In addition, in the quasiparticle sector, there is a
pseudoparticle, just as in the Moore—Read case. The matrix for the quasiparticle sector can
simply be obtained by inverting the matrix (B.2). As said, it is important to notice that the
particle in the quasiparticle sector which has trivial quantum numbers, is to be considered
as a pseudoparticle. Otherwise, we would not obtain the correct central charge, and hence,
not the correct description. We find

1 3 3 0 0

Kp=]3 3 3| tgp=10]. sp=| —-1]. (B.3)
1 1 3
2 7 1 1 0

To obtain the K-matrices foso(5) at general level, we také copies of the level-1
formulation, and do a similar construction as described in Section 3.2. This gives the result
of Section 4.3.

Appendix C. Thecase G,k

In Section 4.3 we found that the K-matrices for the affine Lie alg€hra are special
in the sense that the number of physical quasiparticles is not equal to the rank of this
algebra (which is 2), if we use the standard construction of Section 4.1. Here, we will
find another way of describing this theory, which does have two physical quasiparticles.
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:

Fig. 2. The roots of5.

We will start by deriving the K-matrices for levél= 1, in a similar way as we did for
s0(5)1 in Appendix B. We continue by explaining how to obtain the K-matrices for general
level k. This is a little different from Section 4.1, as the P-transformation which is needed
is different.

The root lattice for the Lie algebi@s is given in Fig. 2. In fact, it is not possible to pick
four electron-like operators, such that the K-matrix is the Cartan matrix of the enveloping
algebraso(8), but we will stay as close as possible.

The short roots come with two types of parafermiofsandi2, which belong to the
Z3 parafermion theory. The operators needed to form the quantum Hall basis are

T =y LCLY: T =y —LC—LY: C.1
v wlexr){f¢+\/§¢‘}, 1z IﬂzeXp{ f¢ ﬁ¢‘}’ (C1)

Al =:exp{17¢c f } A) = exp{z—¢c Y}:, (C.2)

whereg,  are the charge and spin boson. As the K-matrix forZg@arafermions is given

by
i (335
p
-(3 9) c3

3 3

and the statistics parameters due to the vertex operators of the spin and charge bosons are
easily calculated, we find the following data for the ‘electron’ sector oiGhg—1 theory

> 0 1 1 1
0 2 -10 ~1 1

Ke=1, 4 2 1" %="|3 | ==| 1| (C.4)
0o 0 1 3 1
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By the duality construction, we find the dual data

1 -3 ‘ -1 3 0 0
1 1
-1 1 1 -1 0 0
Kgp= | —2 2|, tgp= , = , (C5
w=|—7T7 ‘ > 1 w=|, =, (C.5)
1 1
-1 1 1 1

where the first two particles are pseudoparticles, which reduce the central charge, and take
care of the non-Abelian statistics. Note that we do not use the usual ordering of the Cartan
matrix (compare Appendix A), because in the quasiparticle sector, we want the first to
particles to be the pseudoparticles.

Picking the operators associated to the right roots is crucial in finding a basis f@pthe
affine Lie algebra. The way we have chosen them here gives a description which does give
the right central charge, and has two physical quasiparticles.

We would like to comment on the difference between the pseudoparticle matrices
for the two descriptions 062 1. If we apply the composite construction on thex2
pseudoparticle matrix of this appendix, we indeed find the pseudoparticle matrix (at level 1)
of Section 4.3. This matrix also appeared in Section 2.2, Eq. (2.59). So the pseudopatrticles
are equivalent in both cases.

We now proceed by constructing the matrices for léveAs usual, the covering is of
the formKe ® I. The required P-transformation turns out to be of the form (compare with
Appendix D)

I, J% - J%
hola o
p_|fs B , (C.6)
N
Jil JQ T4
where]% andJ), are given by
1 0
U — = . C.7
A 0 , I 1 (C.7)
1 0

Becaus€]; + q]]ﬁ1 = I4, all composites up to orddr are formed. To display the resulting
matrix, it is most convenient to reorder the particles in the order of increasing quantum
numbers (this is not done automatically, because of the form of the P-transformation). To
conveniently display the ‘permuted’ K-matrix for the electron sector, we define a modified
Cartan matrix ofD4

Mda,b,c)= (C.8)

o S O
oo { O
S QR o &
{* & O o
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Then, the electron K-matrix fat 2 ; can be described by

M(2,0,-1) M(2,0,-1) --- S M(2,1,-0)
M(2,0,-1) M(4,0,-2) M(4,2,-2)
KGz,k _ : :
e - M(2min(, j), maxi + j —k, 0), —min(, j))
M(Z,.l,—l) M4,2,-2) --- . M(Zk,.k,—k)
(C.9
To make this a little more clear, we give the resultfee 2 explicitly
2 0 0 0] 2 0 1 o0
0 2 -1 0 0 2 -1 0
0 -1 2 0 1 -1 2 1
O 0 0 2|0 O 1 2
K, = C.10
‘12 o 1 o4 0 2 o0 (C.10)
0 2 -1 0 0 4 -2 0
1 -1 2 1 2 -2 4 2
0O 0 1 2|0 0 2 4

The quasiparticle sector fér> 2 is characterized by the following matrices (compare with
Section 4)

-1 -1 -1
2D, —Dy _(D4 )1
_Dzl 2]])21
-1
Kyy = PR | e
—Dy 2D, —(Dyg )3
1\ T
_(D4 )1 1 0
N
—(Dy )3 0 1
~(D;Y), o0 1
Ky = ( T 472 ) : (C.12)
—(D3), 7 0
2 0
Kpp = (O 1) ) (C.13)
Sap

So, although the form of the K-matrix differs from the general description, we still find
that all the elements are related to the (inverse) Cartan matrix of the Lie alBgbra

Now that we have a description 6f; which does have two quasiparticles (for eve)y
we can use the same conjecture (5.14) to find the K-matrices for the parafermions, namely,
the parafermion theorg ; /[u(1)]%. So, without giving the explicit form, it is found that
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the parafermion K—matri;Kpr2 = Kﬁ does have the right properties. It gives the correct
central charge, and reproduces the string functions as described in Section 5.3.

For the cas& = 1, we indeed find that the parafermions associate@i@re theZs
parafermions. At levek > 2 we find the K-matrices of th&, parafermions, which for
k =2 is given by

5 1 _1 o 4 3

3 3 2 3 2

1 5 _1 ¢ 2 4

3 3 2 3 2

1 1 1

1 1 1 _1 g 0
KPP = 2 "2 2 C.16
@k =271 0o o0 -3 1 00 (€.18)

4 2 8 4

3 35 0 0 3 3

2 4 4 8

5 3 0 0 3 3

Note the ‘asymmetry’ between the parafermions 3 and 4.

Appendix D. Relating different bases

In Section 4.1 we pointed out that the K-matricesdtB); found in [3] differ from the
ones we presented here. The reason for this was also given. In [3], all the particles in the
electron sector were chosen such that their charge all had the same sign. Consequently, the
K-matrix for level-1 was based on the roatg and —«». This resulted in the following
K-matrix and quantum number vectors

Kk=D — (i ;) th=— (i) &= (_11> (D.1)

In this appendix, we will explain in detail the relation between this approach and the
one followed in this paper. The matrix (D.1) can also be used to obtain K-matrices for
s1(3)r. This formulation is different, but can be related to the one obtained in Section 4.1.
We will first show that we can construct tb&3);, K-matrices found in [3] using the P-
transformations. We then explicitly relate the two constructions.

So, let us begin with the covering matrix based on Eg. (D.1), which is constructed
in the usual way, by taking a direct sum bfcopies: KSoVe" = K=Y ® I;. Now the
P-transformation is different than the one used in Section 4.1. It will be such that all
composites up to ordérare formed (for both spin up and spin down particles). However,
P is not lower triangular, but instead we have

I, J% - 4
!
I
po|d2 B2 (D.2)
: L
JIZ o le Ip

Here,J4 = (5 9) andJ} = (3 9). The transformed K-matri®’ - Kg£oVe' P'T is most easily
described after a suitable permutation of the particles, which orders the particles according
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to their quantum numbers; as indicated before, all composites (up to/grees formed,
becaused’; + .JI’Z = I». The quantum numbers after applying the P-transformation to the
covering and the permutation to order them, are givet,by —(1,1,2,2,...,k, k) and
ss=(1,-1,2,-2,...,k,—k). The K-matrix becomes

2 020 2 0 2 1
020 2 0 2 1 2
2 040 4 1 4 2
0 20 4 1 4 2 4
Ke=|: + + &+ " : : : : . (D.3)
2 0 4 1 2k-1) k-2 2k-1 k-1
0 2 1 4 k=2 2k-1) k-1 2k-1
2 1 4 2 2k—1) k-1 % k
12 2 4 k=1 2k-1) k 2k

This matrix is to be compared witKe of Eq. (4.9). The diagonal part of the2 blocks is

the same, namely, 2mifn j), wherei, j label the blocks. The off-diagonal parts are given
by maxk —i — j, 0). The inverse is found to be (again, after a suitable permutation of the
particles)

-4, 0
0 0
A£1®Ak71
r_ 0 0
@ 0 o0 o | 3 o
0 o0 | o 3

which is to be compared witqp of Eq. (4.12). To relate the two descriptions, we make use
of the fact that we know how to relate the matricesifer 1. The difference is the use o%

in the description detailed in Section 4.1 and> in the description of this appendix and
[3]. Recall that the K-matrix for level = 1 from Section 4.1is given bige > = ( 4 7).

So we find that we can relate the two K-matrices for level-1 by a W-transformation, which
is given byK.’a(k:l) =W-. Kg‘:l) -WT, whereW = (é f’l). Because we also know how to
transform the coverings into the corresponding K-matricesl{®),, we can relate the two
descriptions in terms of a W-transformation. Apart from the extra permutations which are

involved, the calculation is straightforward, and we find the relakigr= We - Ke - W[,
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with (dropping the subscript 2)

—Jl _Ju Ju
JH
We = 2 - (D.5)
—J“ o
Ju — JI

where: . stands for

=g =g
(% )
if k£ is odd and for
~J! =J
-1
—J -J
if k is even. Note tha‘t?\V,;l = We. For the quasiparticle sector we have a similar relation,
Ko =Wqp- Kgp- ng. But because we needed the extra permutations, we do not have the
relationWqp = (W5 1)T. This only holds for the case at hand if we undo this permutation.
Instead, we have
-1
-1
—I
oo e =g
Note that in going from the one formulation to the other, we are only transforming the
physical quasiparticles, the pseudoparticles are not changed. This should be the case, as
the pseudoparticles govern the fusion rules and the central charge.
Let us end this discussion by mentioning that the formulatiosf@); of the type of
Eqg. (D.3) can be generalized to arbitrary affine Lie algebra CFTs. The relations between the
description in this paper is precisely analogous to the relatiosl{8y as described in this
appendix. The only difference would be in the form of the matrieandJ'. However,

they still would only have non-zero elements on the diagonal, subject to the constraint
"+ =L
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