
e

s) for

riety of
f our
ssed.

this
ention
es are
re of a
, see,
articles
scribe
usion
These
Nuclear Physics B 660 [FS] (2003) 473–531

www.elsevier.com/locate/np

K-matrices for 2D conformal field theories

Eddy Ardonnea,1, Peter Bouwknegtb, Peter Dawsonc

a Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands

b Department of Physics and Mathematical Physics and Department of Pure Mathematics,
University of Adelaide, Adelaide, SA 5005, Australia

c Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, SA 5005, Australia

Received 10 January 2003; accepted 7 March 2003

Abstract

In this paper we examine fermionic type characters (Universal Chiral Partition Function
general 2D conformal field theories with a bilinear form given by a matrix of the formK ⊕ K−1.
We provide various techniques for determining these K-matrices, and apply these to a va
examples including (higher level) WZW and coset conformal field theories. Applications o
results to fractional quantum Hall systems and (level restricted) Kostka polynomials are discu
 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Two-dimensional conformal field theories can be studied in a variety of ways. In
paper, we will pursue the quasiparticle description, which has attracted a lot of att
recently. In a quasiparticle description, the characters of the conformal field theori
of the fermionic sum type. It has been conjectured that all these fermionic sums a
form which goes under the name of the ‘Universal Chiral Partition Function’ (UCPF)
for instance, [6,9,12], and references therein. In general, the statistics of the quasip
is fractional and interpolates between Fermi and Bose statistics. Moreover, to de
general CFTs, we need to be able to incorporate the effect of the non-trivial f
rules of the fields, which can be done by allowing for so-called pseudoparticles.
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pseudoparticles do not carry any energy and are essential in describing the non-A
statistics which is found in the CFTs with non-trivial fusion rules.

Fractional statistics can be described in terms of the Haldane ‘exclusion statistics
If we allow for new types of particles, such as the pseudoparticles, the same is tr
the non-Abelian statistics, see [26] and [9]. The exclusion statistics is defined in ter
the exclusion statistics parameters of the particles. The parameters are intimately re
the Universal Chiral Partition Functions, as it is these parameters which lie at heart
UCPF, via the so-called K-matrix, which contains all the (mutual) statistics paramete
this paper, we will determine the K-matrices related to the affine Lie algebra CFTs
particular basis. This basis was first proposed in the context of the fractional quantu
states.

The topological properties of (fractional) quantum Hall states are also encod
matrices, which turned out to be the same as the K-matrices alluded to in the abo
the Abelian states, the entries correspond to the coupling parameters of the Chern–
fields which appear in the effective action of the quantum Hall system (see, in part
[47], and references therein). The Chern–Simons term effectively changes the stati
the matter fields, making the relation between with the exclusion statistics plausible.
details on this relation can be found in [3]. The basis used in the description of c
classes of non-Abelian quantum Hall states is found to be useful in the context of g
affine Lie algebra CFTs as well.

One of the reasons that this basis is useful relates to the presence of a duality
relates the ‘electron-like’ particles to the quasiparticles (the notion of electron-like
quasiparticles will be explained in Section 2.1.4). Moreover, there is no mutual sta
between these two types of particles. As this structure simplifies the study of the con
field theories, we will use this type of basis throughout this paper.

One of the main themes in this paper will be the determination of the K-matrices fo
affine Lie algebra CFTs. We will develop a scheme which is used to find the gene
matrices. The main idea is to use ‘Abelian coverings’ of the (in general non-Abelian) C
and project out some degrees of freedom (see also [13]). Having obtained the K-ma
we will propose a scheme to obtain the K-matrices for conformal field theories which
the coset form. We will address the diagonal cosets, as well the parafermion CFTs,
to the affine Lie algebra CFTs. Another application are the Kostka-polynomials (see
[34,35], and references therein), which can also be described in terms of the K-matr

In more detail, the outline of this paper is as follows. We start with a general introdu
to the role of the K-matrix in 2D conformal field theories in Section 2. We will review so
results concerning the Universal Chiral Partition Function and the relation with excl
statistics. The structure of the basis of quasiparticles which will be used throu
this paper is explained. We will end Section 2 by explaining the relation betwee
pseudoparticles and the fusion rules of CFTs. In Section 3 we will explain the tools w
use in determining the K-matrices for a general affine Lie algebra. The idea is to emb
level-k affine Lie algebra ink copies of the level-1 version, and project out certain deg
of freedom, by using what we call a P-transformation. In Section 4, we will explicitly
the K-matrices for all the simple (untwisted) affine Lie algebras. We will apply these re

to obtain K-matrices for cosets in Section 5. Finally, in Section 6, we will present some
new results on level restricted Kostka polynomials related to affine Lie algebras. Some of



issues,
endix
s

rmal
ed to
PF).

ional
these

a. By
r

al
lar,
es

ted
.3),
).
ssed in
E. Ardonne et al. / Nuclear Physics B 660 [FS] (2003) 473–531 475

the details are presented in the appendices. Appendix A deals with some notational
and explicitly gives all the Cartan matrices and there inverses. Appendix B and App
C deal with the K-matrices forso(5)1 andG2,1, respectively, while Appendix D relate
two different bases forsl(3)k.

2. K-matrices for 2D conformal field theories

2.1. The UCPF and exclusion statistics

Quasiparticles play an important role in the description of 2-dimensional confo
field theories (CFTs). The exclusion statistics of these particles is closely relat
characters for CFTs, or more precisely, the ‘Universal Chiral Partition Function’ (UC

2.1.1. Quasiparticle basis
We will start the discussion by introducing quasiparticle bases for two-dimens

conformal field theories, and in particular (truncated) partition functions based on
bases. In CFTs, the quasiparticles take the form of chiral vertex operatorsφ(i)(z) (i =
1, . . . , n), which intertwine between irreducible representations of the chiral algebr
applying the modes of these operators on a set of vacua|ω〉, one finds (in general) an ove
complete basis, which, by using suitable restrictions on the modes(s1, . . . , sN ), can be
turned into a maximal, linearly independent set of states

(2.1)φ
iN−sN · · ·φi2−s2φi1−s1|ω〉.

The grand canonical partition function is obtained by taking the trace over this basis

(2.2)P(z;q)= Tr

((∏
i

z
Ni

i

)
qL0

)
.

Ni is the number operator for the quasiparticlesφ(i) andL0 = ∑
i si . Furthermore,zi =

eβµi is a (generalized) fugacity andq = e−βε. To find the ‘one particle grand canonic
partition functions’λi , we will use truncated partition functions, see [44]. In particu
one defines the truncated partition functionPL(z;q) by restricting the trace over the stat
(2.2) in such a way that the modess of the quasiparticles of speciesi satisfy s � Li
(L = (L1, . . . ,Ln)). In the limit of largeL one has

(2.3)
PL+ei (z;q)
PL(z;q) ∼ λi

(
ziq

Li
)
,

whereei is the unit vector in thei-direction. By using a recursion relation for the trunca
partition functionPL(z;q) (which can be obtained from the basis (2.1)) and the limit (2
one finds relations for the one particle partition functionsλi (for more details, see [9,12]
For all the CFTs which were investigated by means of a quasiparticle basis as discu

this section, the equations determiningλi are of the form (2.14), and thus the quasiparticles
satisfy so-called ‘exclusion statistics’, see Section 2.1.3.
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2.1.2. The universal chiral partition function
It has been conjectured (see [6], and references therein) that the characters of

irreducible representations of (rational) conformal field theories can be written in the

(2.4)P(z;q)=
∑′

m

(∏
i

z
mi

i

)
q

1
2m·K·m+Q·m∏

i

[(
((I − K) · m + u)i

mi

)]
,

which goes under the name of the ‘Universal Chiral Partition Function’ (UCPF
‘fermionic-type character’). The matrixK is a symmetricn × n matrix, I is then × n

identity matrix andQ and u are n-vectors. The sum is over the non-negative integ
m1, . . . ,mn. The restrictions denoted by the prime are (in general) such that the coeffi
of theq-binomials are integers. Theseq-binomials are defined by

(2.5)

[
M

m

]
= (q)M

(q)M−m(q)m
, (q)m =

m∏
k=1

(
1− qk

)
.

Depending on the parametersui , the associated particles are of certain type. Forphysical
particles ui = ∞, while pseudoparticles haveui < ∞. Note that in the limitui → ∞ the
ith q-binomial reduces to 1/(q)mi due to

(2.6)lim
M→∞

[
M

m

]
= 1

(q)m
.

As will become clear below, pseudoparticles do not carry energy. They come ab
theories with a non-Abelian symmetry, and in a sense they serve as bookkeeping d
for the internal structure of the theory.

It was conjectured in [9,26] that the UCPF (2.4) is the partition function of a s
particles satisfying exclusion statistics. To be able to make this connection with exc
statistics, we will take a closer look at truncated versions of the UCPF, and continu
a discussion on exclusion statistics and the relation between the two.

Suppose that the truncated partition functionPL(z;q) takes the form of a ‘finitized
UCPF2

(2.7)PL(z;q)=
∑′

m

(∏
i

z
mi

i

)
q

1
2m·K·m+Q·m∏

i

[
(L + (I − K) · m + u)i

mi

]
.

One can then derive recursion relations for these truncated characters by usingq-
binomial relation

(2.8)

[
M

m

]
=
[
M − 1
m

]
+ qM−m

[
M − 1
m− 1

]
.

This leads to the recursion relations [3,8]

(2.9)PL(z;q)= PL−ei (z;q)+ ziq
− 1

2Kii+Qi+ui+Li PL−K·ei (z;q).
2 While this is the case for many examples, in general the finitized UCPF corresponding to a set of
(quasi)particles may differ from (2.7) by termsqn with n= O(Li). This will, however, not affect the conclusion.
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After dividing byPL(z;q), settingq = 1, taking the largeL limit and using relation (2.3)
one finds

(2.10)1 = λ−1
i + zi

∏
j

λ
−Kji

j ,

or equivalently,

(2.11)
λi − 1

λi

∏
j

λ
Kij

j = zi .

These relations are known as the Isakov–Ouvry–Wu (IOW) (2.14) equations, whic
the one particle partition functions for a system of particles which obey exclusion stat
this will be addressed in the next section. For more details on this issue, we refer to [
references therein.

In the case of WZW Conformal Field Theories, i.e., CFTs with affine Lie alg
symmetry, it is known that in many cases (see [10,28,39,48], and references there
(chiral) partition function can be written in the form

(2.12)P(z;q)=
∑

M
(k)
λµ (q)M

(∞)
µ (z;q),

whereM(k)
λµ (q) are the so-called level-k truncated Kostka polynomials,M(∞)

µ (z;q) their
k → ∞ limit (with fugacity parameterz). Having found an expression for the K-matric
of these CFTs will thus give a natural guess for an explicit expression of these lek
truncated Kostka polynomials. We will explore this further in Section 6.

For completeness, let us recall the value of the central chargecALA , of a CFT with affine
Lie algebra symmetrŷg at levelk,

(2.13)cALA = k dimg

k + h∨ ,

where h∨ is the dual Coxeter number corresponding tog.
For convenience, throughout this paper we will denote the (untwisted) affine Lie al

at levelk, corresponding to a finite-dimensional Lie algebraXn, by Xn,k , rather than by
(X

(1)
n )k which is more common in the literature.

2.1.3. Exclusion statistics
The starting point of the discussion on exclusion statistics will be an ideal g

particles which satisfy ‘fractional (exclusion) statistics’ [27].
The one particle grand canonical partition functionsλi for a set of quasiparticle

obeying fractional exclusion statistics can be obtained from the IOW equations [31]

(2.14)
λi − 1

λi

∏
j

λ
K

st
ij

j = xi,
whereKst is the ‘statistics matrix’ andxi = ziq = eβµi e−βε the fugacity. Here,µi is the
chemical potential of speciesi andε the energy. Under the assumption of a symmetric
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matrixKst, the one particle distribution functions follow:

(2.15)ni(ε)= xi
∂

∂xi
log

∏
j

λj

∣∣∣∣
xi=eβ(µi−ε)

=
∑
j

xj
∂

∂xj
logλi

∣∣∣∣
xi=eβ(µi−ε)

.

These distribution functions are in general interpolations between the Bose–Einste
Fermi–Dirac distribution functions.

The discussion above holds in the case of Abelian statistics, but can be generalize
non-Abelian case [2,3]. Non-Abelian statistics arises when quasiparticle operators
vertex operators, see below) in the underlying CFT have non-trivial fusion rules. The
of these fusion rules can be taken into account via so-called ‘pseudoparticles’, wh
not carry any energy (i.e.,q = 1). Note that for all the cases we consider, a formulatio
which the pseudoparticles havex = 1 is possible. In fact, we only consider formulatio
in which x = 1 for the pseudoparticles. More on the relation between fusion rules
pseudoparticles can be found in Section 2.2.

We will now turn to the question of how to calculate the central charge of a sy
of quasiparticles satisfying exclusion statistics with statistics matrixKst (and speak of the
central charge associated to the matrixKst). First, we consider an Abelian system, i.e.
system without pseudoparticles. In that case, the central charge is given by

(2.16)cCFT = 6

π2

1∫
0

dx

x
λtot(x),

whereλtot(z) denotes the product

(2.17)λtot(x)=
∏
i

λi (xj = x).

By using the IOW-equations the central charge of Eq. (2.16) can be rewritten in the
(see, for instance, [12])

(2.18)cCFT = 6

π2

∑
i

L(ξi),

where theξi ’s are solutions of the ‘central charge equations’

(2.19)ξi =
∏
j

(1− ξj )
K

st
ij ,

andL(z) is Rogers’ dilogarithm

(2.20)L(z)= −1

2

z∫
0

dy

(
logy

1 − y
+ log(1 − y)

y

)
.

The presence of pseudoparticles gives rise to a reduction of the central charge
reduction can be calculated in a similar way, by considering the central charge equ

restricted to the pseudoparticles. For future convenience, we will denote the statistics
matrix restricted to the pseudoparticles byKψψ . The central charge equations become
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(the prime denotes the restriction to the pseudoparticles)

(2.21)ξ ′
i =

∏′

j

(
1 − ξ ′

j

)(Kψψ )ij ,

giving rise to a reduction6
π2

∑
j L(ξ

′
j ). The central charge becomes

(2.22)cCFT = 6

π2

(∑
i

L(ξi)−
∑′

j

L
(
ξ ′
j

))
.

This formula agrees with the central charge calculated from the asymptotics of the
(2.4) (see, e.g., the discussion in [3]).

To summarize the above, we note that the truncated UCPFs in the largeL limit give
rise to one particle partition functions (2.11), which are of the form of the IOW-equa
(2.14), with statistics matrixKst = K. Thus the K-matrix of the UCPF can be interpre
as a matrix which describes the statistical interactions between the (quasi)particles.

The other important point was that in all the cases where conformal field theories
studied by means of quasiparticle bases, Eqs. (2.3) which determineλi were shown to be
of the form of the IOW-equations.

We end this section by discussing the so-called quantum Hall basis, which turns
be very convenient for determining and studying K-matrices for conformal field theo

2.1.4. The quantum Hall basis
A convenient basis for WZW conformal field theories was first proposed in the co

of the quantum Hall effect [18]. (This basis is also very natural from the mathem
point of view as it is closely related to the existence of generalizations of the Durfee s
formula in combinatorics [8].) The ‘electron-like’ particles (with unit charge and sp12
and (fractionally) charged quasiparticles (sometimes called quasiholes) are chosen
a basis. It was found that a basis could be chosen in such a way that the statistics
Ke for the electron-like particles, and the matrixKqp for the quasiparticles are each oth
inverse

(2.23)Kqp = K−1
e ,

while, furthermore, there is no mutual statistics between the quasiparticles and ele
i.e.,

(2.24)K = Ke ⊕ Kqp.

This is a very important observation, which will have many consequences. Thoug
basis was first proposed in the context of the Laughlin and Jain states [18], i
soon realized that a basis with a similar structure could be constructed for the
Abelian generalizations of the Abelian quantum Hall states [2,3,26]. These non-A
generalizations are based upon Wess–Zumino–Witten conformal field theories.
paper, we will determine bases for general WZW conformal field theories. In the
section, we will review and develop some techniques which are needed to perfor

task. Here, we will first explore some consequences of the ‘duality’ between the electron
and quasiparticle sector.
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In the description of the quantum Hall effect, the quantum numbers of the particle
an important role, as they are used to calculate physical properties. The most impor
the charge and spin quantum numbers, which are usually grouped in the so-called
and spin vectors,t ands, respectively (see, for instance, [47]). Denoting a general ve
for the electron (quasiparticle) sector byqe (qqp) we have

(2.25)qqp = −K−1
e · qe.

The filling fractionν and the spin fillingσ are given by the expressions

(2.26)ν = tT
e · K−1

e · te = tT
qp · K−1

qp · tqp, σ = sT
e · K−1

e · se = sT
qp · K−1

qp · sqp.

These quantities are important physically; from a mathematical point of view the
interesting, as they are conserved by the W- and P-transformations of Section 3. In a
these transformations are constructed in such a way that they have this property.

Let us explore some consequences of the duality, in particular Eqs. (2.23) and
We will focus on the thermodynamic properties first and have a closer look at the
equations (2.14). We will denote the one particle distribution functions for the electro
particles and quasiparticles byµi andλi , respectively. The corresponding fugacities
given byyi andxi . Thus, theµi andλi are the solutions to the equations

(2.27)
µi − 1

µi

∏
j

µ
(Ke)ij
j = yi,

λi − 1

λi

∏
j

λ
(Kqp)ij
j = xi.

Now Eq. (2.23) leads to the following relations

(2.28)λi = µi − 1

µi
, xi =

∏
j

y
−(Ke)

−1
ij

i .

Another important feature of the basis described in this section is that the prese
pseudoparticles in the quasiparticle matrixKqp is accompanied by the presence of so-ca
‘composite’ particles in the electron matrixKe. The reason for this will become clear
Section 3. In general, the matrixKe contains a few ‘electrons’ (particles with unit char
and spin up or down), with fugacitiesy. In addition, there are composite particles, w
fugacitiesyli , where theli are positive integers. The quantum numbers of the compo
in the electron sector are integer multiples of the quantum numbers of the electro
the presence of composites in the electron sector, there will be pseudoparticles
quasiparticle sector. Pseudoparticles havex = 1, and as a consequence, pseudopart
will have all quantum numbers equal to zero. In principle, the fugacity of pseudopar
might be of the more general formxi/xj (compare Eqs. (3.19) and (3.20)), but in
cases we will consider, this will not be the case. Also, physical particles with all qua
numbers trivial might occur, but again, we will not encounter such a situation in this p

In the following, we will only encounter the situation where the electron se

has composites, but no pseudoparticles, while the quasiparticle sector does contain
pseudoparticles, but no composites. Thus, we will assume that the quasiparticle matrix
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has the following form:

Kqp =
(

Kψψ Kψφ

Kφψ Kφφ

)
,

(2.29)KT
ψψ = Kψψ, KT

φφ = Kφφ, KT
ψφ = Kφψ ,

whereKφφ denotes the statistic matrix for the physical (as opposed to pseudo) q
particles andKψφ the mutual statistics between the pseudo- and physical particles.

In the presence of composites and pseudoparticles, we have to generalize the de
of λtot (see Eq. (2.17)) to

(2.30)λtot(x)=
∏
i

[
λi
(
xj = xlj

)]li .
With this definition, the central charge is still given by Eq. (2.16). In the absenc
pseudoparticles, the central charge associated to the systemKe ⊕ Kqp, is simply given
by the rankn of the matrixKe (see, for instance, [3]). To show this, we take a look at
central charge equations

(2.31)ζi =
∏
j

(1 − ζj )
Keij , ξi =

∏
j

(1− ξj )
Kqpij .

Now because of the fact thatKqp = K−1
e , the solutions to these equationsζi andξi are

simply related byξi = 1 − ζi . We find the central charge to be

(2.32)cCFT = 6

π2

∑
i

(
L(ξi)+L(1 − ξi)

)= 6

π2nL(1)= n,

by using the dilogarithm relation

(2.33)L(z)+L(1 − z)= L(1)= π2

6
.

In the case pseudoparticles are present, we again have a simple subtraction (see Eq
the prime denotes the restriction to the pseudoparticles)

(2.34)cCFT = n− 6

π2

∑′

j

L(ξ ′
j ).

It is important to note that the knowledge of the K-matrix is not enough to spe
the theory completely. In addition, one has to know, or rather specify, which particle
pseudoparticles. So two theories can have the same K-matrix, but differ in the ‘p
content’ and thereby (for instance) have different central charge. We will encounte
situation frequently, namely as we discuss the K-matrices for CFTs with affine Lie al
symmetry, in cases the Lie algebra is non-simply-laced.

2.2. Pseudoparticles and fusion rules
There is an intimate connection between the pseudoparticle K-matrixKψψ and the
fusion rules of a CFT, which can be used as a consistency check or guiding principle
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on the construction of K-matrices. To explain this connection, consider a CFT with f
rulesNij

k , i, j, k = 1, . . . , ). The incidence matrix of the fusion graphΓi , corresponding
to taking consecutive fusions with the fieldi, is given by the matrixNi with components
(Ni)j

k = Nij
k . Hence, ifPij k(M) denotes the number of paths of lengthM on the fusion

graphΓi beginning atj and ending atk we have

(2.35)Pij
k(M)= (

(Ni)
M
)
j
k.

Thus we find a recursion relation

(2.36)Pij
k(M)=

∑
l

Pij
l(N)Pil

k(M −N),

for each 0� N � M, with initial condition Pij k(0) = δj
k. These recursion relation

however, involve paths beginning and ending at arbitrary points. To derive a rec
relation for fixedj andk we apply the characteristic equation ofNi , i.e., the)th order
polynomial equation forNi arising from the eigenvalue equation, toPij k(M). If the
characteristic equation is given as

(2.37)
)∑

n=0

an(Ni)
)−n = 0, a0 ≡ 1,

then, by using (2.36) forN = 1, we find the recursion relation

(2.38)
)∑

n=0

anPij
k(M − n)= 0.

That is, a recursion relation for fixedj andk and with coefficients independent ofj and
k. Different solutions of (2.38), determined by different initial conditions, correspon
different choices ofj andk.3 In particular, asymptotically the number of paths is given
(λmax)

M , whereλmax is the largest eigenvalue ofNi .
On the other hand, according to the UCPF assumption, the number of pathsP(M) of

lengthM on the fusion graphΓi is given in terms of theq → 1 limit of the UCPF (2.4),
i.e.,

(2.39)PL =
∑
mi

∏
i

(
((I − Kψψ) · m)i +Li

mi

)
,

whereLi = aiM + ui andKψψ the pseudoparticle K-matrix. The numbersai are fixed
(only depend on the sectori), in fact they arise as the part of the K-matrix describing
coupling of the pseudoparticles to physical particles, whileui is determined by begin an
end point of the path. (Theq-analogue of Eq. (2.39) is related to (level restricted) Kos
polynomials and will be discussed in Section 6.) The numbersPL satisfy the recursion
relations (cf. (2.9))

(2.40)PL = PL−ei + PL−Kψψ ·ei ,
3 In fact, for specific initial conditions, the solution might actually satisfy simpler recursion relations obtained
by factorizing the characteristic equation and taking a subset of the factors.
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whereei is the unit vector in theith direction. In principle, the recursion relations (2.4
can be manipulated to yield a recursion relation forP(M)≡ PaiM , the quantity of interest
Ideally, this recursion relation should be the same as (2.38). In practice, howeve
finds that one corresponds to a factor of the other due to the fact we are dealin
specific initial conditions. In practice, it is easier to study the recursion relations (
in the largeM limit, where they reduce to the IOW-equations (2.11). These can the
used to derive an equation forµ = ∏

i λ
ai
i which should correspond to the characteris

equation for the eigenvalues ofNij
k , i.e., Eq. (2.37). In particular, the largest root of t

equation determiningµ should be equal toλmax.
Moreover, note that while the recursion relations corresponding to graphs onΓi depend

on the sectori, they should all derive from one and the same pseudoparticle matrixKψψ

(they just differ in the choice ofai ). This puts extra constraints on the possible choice
Kψψ , given a set of fusion rulesNij

k . Unfortunately, this still does not suffice to unique
associate a pseudoparticleKψψ with a set of fusion rulesNij

k as is illustrated, for instance
by the matrix

(2.41)Kψψ =
( 4

3
2
3

2
3

4
3

)
,

which arises both inA2,2 andF4,1 (see Sections 4.3.1 and 4.3.6), while these two theo
clearly have different fusion rules. This is because additional information is present
coupling of pseudoparticles to the physical particles (i.e., the numbersai ). Conversely,
given a pseudoparticle K-matrix leading to the correct fusion rules, one can a
construct other K-matrices giving rise to the same recursion relations by extendin
matrix ‘symmetrically’. An example of this will be given in Section 2.3.

Finally, given a set of fusion rulesNij
k , we can compute the modularS-matrix, since

this is the matrix which simultaneously diagonalizes all matricesNi [46]. Since theT -
matrix acts diagonally on the characters of the CFT with values exp(2πi(hi − c/24)), we
can find constraints on the conformal dimensionshi and the central chargec from the
condition(ST )3 = 1 (whenS2 = 1) or (ST )6 = 1 (whenS4 = 1).

The central charge constraint in particular can be compared to the central charge
arising from a particular choice of pseudoparticle K-matrix. Obviously, the constrain
which fusion rules correspond to which pseudoparticle K-matrix derived this way are
weaker than those arising from the comparison of the above recursion relations.

2.3. Simple examples

Let us illustrate the considerations of the previous section in a few examples.
Consider a CFT with two primary fields 1 andφ and non-trivial fusion ruleφ × φ = 1,

i.e.,

(2.42)Nφ =
(

0 1
1 0

)
,

which has eigenvaluesλ= ±1 and is diagonalized by( )

(2.43)S = 1√

2

1 1
1 −1

,
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which satisfiesS2 = 1. We find that(ST )3 = 1 yields the condition

(2.44)hφ = 1

4
mod

1

2
,

while

(2.45)c =


1 mod8 forhφ = 1

4
mod1,

7 mod8 forhφ = 3

4
mod1.

Clearly,A1,1 is an example of the first possibility, whileE7,1 is an example of the secon
Sincec is necessarily an integer, one would conclude that as far as this calcula

concerned no pseudoparticles are necessary. The characteristic equation forNφ is given by
λ2 − 1 = 0 and leads to the recursion

(2.46)P(M)= P(M − 2),

which is trivially solved byP(2M) = P(0) andP(2M + 1)= P(1). Again, this does no
require pseudoparticles, since the fusion paths are obviously unique.

Now considerA1,k for generic levelk. The fusion matrix of the generating fieldφ2 is
given by the incidence matrix of the Dynkin diagram ofAk+1 (see, for example, [23]). Th
characteristic equation is thus given by

(2.47)
[(k+1)/2]∑
j=1

(−1)j
(
k + 1 − j

j

)
λk+1−2j = 0,

and has roots (see, e.g., [23])

(2.48)λj = 2 cos

(
πj

k + 2

)
, j = 1, . . . , k + 1.

For example, the characteristic equation at the first few levels is given by

k = 1, λ2 − 1 = 0,

k = 2, λ(λ2 − 1)= 0,

k = 3, λ4 − 3λ2 + 1 = (λ2 + λ− 1)(λ2 − λ− 1)= 0,

(2.49)k = 4, λ5 − 4λ3 + 3λ= λ(λ2 − 3)(λ2 − 1)= 0.

On the other hand, the pseudoparticle K-matrix forA1,k, is known to beKψψ = 1
2Ak−1,

while a = (1
2,0, . . . ,0). This leads to, e.g.,

k = 2, µ2 − 1 = 0,

(2.50)k = 3, µ2 −µ− 1 = 0.

which, in general, corresponds to a factor of (2.49) as discussed in Section 2.2.
As a final example consider a CFT with two primary fields 1 andφ and fusion rule

φ × φ = 1+ φ, i.e.,( )

(2.51)Nφ = 0 1

1 1
.
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The characteristic equation is given by

(2.52)λ2 − λ− 1 = 0,

with rootsλ± = 1
2(1±√

5). The constraints onh andc, arising from the modular matrice
are (see, e.g., [23], Exercise 10.16)

(2.53)c− 12h= −2 mod8,

while

(2.54)h= m

5
mod1, m= 1,2,3,4.

G2,1 is an example of a solution form= 2 (c = 14/5, h= 2/5), whileF4,1 is an example
of a solution form= 3 (c = 26/5, h= 3/5). Examples ofm= 1,4 solutions can be foun
among the minimal (non-unitary) models.

The characteristic equation (2.52) leads to the recursion relation

(2.55)P(M)= P(M − 1)+ P(M − 2),

the solutions of which are (generalized) Fibonacci numbers. Clearly, the recursion re
(2.55) arises from the pseudoparticle matrix (cf. (2.40))

(2.56)K = (2),

with a = (1).
The central charge subtraction corresponding to (2.56) is, according to (2.34), giv

(2.57)
6

π2
L

(
3

2
− 1

2

√
5

)
= 2

5
,

which is not the correct subtraction for eitherG2 or F4. We can however double th
subtraction while, at the same time, keeping the recursion relation, by a ‘symm
doubling’ of (2.56), i.e., by making a 2× 2 matrix with entries that sum to 2 in a
columns and rows and which is such that the solution to the IOW-equation is ide
for all components, e.g.,

(2.58)K =
( 4

3
2
3

2
3

4
3

)
,

with, a = (a1, a2)wherea1+a2 = 1. This case is relevant for(F (1)
4 )k=1 (see Section 4.3.6

To get a subtraction of 6/5, as needed for(G(1)
2 )k=1, we need to do a ‘symmetric tripling

such as

(2.59)K =
 1 1

2
1
2

1
2 1 1

2
1 1 1

 .
2 2

Cf. Section 4.3.7.
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3. Composite and dual composite construction

As is well known in the context of the quantum Hall effect, the K-matrices descri
the Abelian quantum Hall states are not unique, but are in fact determined up to sim
transformations. These similarity transformations can be thought of as changing th
for the description. Moreover, the physical properties such as the filling fraction ar
changed by this transformation. Also the central charge is left unchanged.

A similar situation occurs when we want to view the K-matrices as the data
general (i.e., non-Abelian) CFT. There exist transformations of the K-matrices, w
leave the corresponding characters unchanged. Therefore, the K-matrices related
a transformation correspond to the same theory. A prime example will be describ
Section 3.2 and the dual version in Section 3.3. At first sight, this might be a distu
observation because we would like to have a unique description of the theory. Howev
situation can be used in our advantage, for instance, in the construction of the K-m
for general affine Lie algebra CFTs, as will be pointed out in Section 3.4.

3.1. W-transformations

To describe the well-known W-transformations (see, for instance, [47]), we will us
notation of the fqH basis (as we will do in the rest of this section). Of course, it is appli
to all Abelian quantum Hall systems. So we have a K-matrixKe and the quantum numbe
vectorsqe (the dual data is obtained by applying Eqs. (2.23) and (2.25)). LetW be an
SL(n,Z) matrix, wheren is the rank ofK. The W-transformation takes the form

(3.1)K̃e = W · Ke · WT, K̃qp = (
W−1)T · Kqp · W−1,

while

(3.2)q̃e = W · qe, q̃qp = (
W−1)T · qqp.

Indeed, physical quantities of the formqT
e ·K−1

e ·qe, such as the filling fraction are invaria
under this transformation. Also, the central charge, which is given byn for the Abelian
states, is not changed. In the non-Abelian case, we can also apply these W-transform
however, to conserve the central charge, we can only use those transformations w
not change the pseudoparticle part of the K-matrix.

In the following, we will concentrate on constructions based on character identitie
we view the K-matrices as matrices containing CFT data). In addition, we will show
extended matrices obtained in this way can be used to make a reduction of the
which turns out to be closely related to the W-transformations described above. W
use the results of this section extensively in the remainder of this paper, in particu
Section 4, where we will obtain the K-matrices for general affine Lie algebra CFTs.

3.2. Composite construction
The basic ‘transformation’ one can do on a K-matrix, leaving the theory invariant, is
the composite construction [3]. The effect of this transformation is to add a particle, which
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is the composite of two particles already present in the theory. The quantum numb
this composite particle are just the sum of the quantum numbers of the two cons
particles. In order to keep the theory unchanged, one has to increase the mutual ex
statistics of the two constituent particles. In a sense, they avoid one another more
the gap is filled by the composite particle.

To make this more precise, consider the IOW-equations (2.14) with a symmetric m
Ke (i.e.,a12 = a21 and�Ke = �KT

e ), fugacitiesy and quantum numbersqe

Ke =
 a11 . . . a1n

...
...

an1 . . . ann

=
a11 a12 aT

1

a21 a22 aT
2

a1 a2 �Ke

 ,

(3.3)y =
(
y1
y2
ȳ

)
, qe =

(
qe,1
qe,2
q̄e

)
.

If we define the operationC12, corresponding to adding a composite of the quasipartic
and 2 to the system, by

(3.4)C12Ke =


a11 a12 + 1 a11 + a12 aT

1
a21 + 1 a22 a21 + a22 aT

2

a11 + a21 a12 + a22 a11 + 2a12 + a22 aT
1 + aT

2
a1 a2 a1 + a2 �K

 ,

and

(3.5)C12y =


y1
y2
y1y2

ȳ

 , C12qe =


qe,1
qe,2

qe,1 + qe,2
q̄e

 ,

then the two systems are equivalent, at least at the level of thermodynamics. The ac
the generalCij is defined, as above, by a suitable permutation of the rows and colu
The solutions{µi} to the IOW-equations defined by(Ke,y) and{µ′

i} defined by(K′
e,y′)=

(CijKe,Cijy) are simply related by

µ′
i = µi +µj − 1

µj
, µ′

j = µi +µj − 1

µi
,

(3.6)µ′
n+1 = µiµj

µi +µj − 1
, µ′

k = µk, k �= i, j, n+ 1.

Note that, in particular, it followsµi = µ′
iµ

′
n+1 andµj = µ′

jµ
′
n+1 such thatµtot = µ′

tot.
Also, fromµi = µ′

iµ
′
n+1 andµj = µ′

jµ
′
n+1 one sees that the original one particle partit

functions fori andj , receive contributions from the new particlesi andj , respectively, as
well as from the composite particlen+ 1. The operationCij has the effect that states in th
spectrum containing both particlesi andj get less dense (their mutual exclusion statis
is bumped up by 1), while the resulting ‘gaps’ are now filled by the new composite pa

A consistency check on the equivalence of the systems described by(Ke,y) and

(K′

e,y′)= (CijKe,Cijy) is the fact that both lead to the same central charge. It was shown
in [9] that this is in fact a consequence of the five-term identity for Rogers’ dilogarithm.
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For completeness, we repeat the argument here. It is not hard to check that the so
to the Eqs. (2.19), withKe andCijKe, which we will denote byζi andζ ′

i , respectively, are
related by

ζ ′
i = ζi(1 − ζj )

1 − ζiζj
, ζ ′

j = ζj (1− ζi)

1 − ζiζj
,

(3.7)ζ ′
n+1 = ζiζj , ζ ′

k = ζk, k �= i, j, n+ 1.

The equivalence of the central charge for both matrices follows from

(3.8)L(x)+L(y)= L

(
x(1− y)

1 − xy

)
+L

(
y(1− x)

1− xy

)
+L(xy),

which is the five-term identity for Rogers’ dilogarithm.
Finally, we note that the composite transformation (3.4) can be derived from

following character identity, which is a special case of theq-Pfaff–Saalschütz sum (se
[24]) [

M1
m1

][
M2
m2

]
=
∑
m�0

q(m1−m)(m2−m)
[
M1 −m2
m1 −m

][
M2 −m1
m2 −m

]

(3.9)×
[
M1 +M2 − (m1 +m2)+m

m

]
.

If one inserts this identity at the(i, j)th entry in the UCPF of Eq. (2.4), one finds, af
shifting the summation variablesmi �→ mi −m andmi �→ mi −m, another UCPF, base
on the data(CijK,Cijy).

The form (3.9) is used for the composite construction on two pseudoparticles. T
the limitM1 → ∞ (M1,M2 → ∞) by using Eq. (2.6), gives the appropriate identity for
composite construction applied to a physical and a pseudoparticle (two physical par
respectively.

3.3. Dual composite construction

Using the logic of the fqH basis, one might expect that upon inverting the exte
matrix CijKe, one should find a matrix, which is related toKqp = K−1

e by a characte
identity as well. This turns out to be the case.

We will denote this transformation byDij , thus we defineDijKqp = (CijK−1
qp )

−1.
After performing this transformation, the quasiparticles corresponding toi and j have
become pseudoparticles. This is necessary, because otherwise the central charg
transformed system̃K = CijKe ⊕ DijKqp would have been increased by one with resp
to Ke ⊕ Kqp, because the rank of the K-matrices is increased by one. The presence

extra pseudoparticles reduces the central charge by precisely the right amount, to keep the
total central charge the same (see below).
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The action ofDij on a symmetric matrixKqp, in the case of two (physical) particle
can be described in the following way:

(3.10)

Kqp =
(
a b

b c

)
, D12Kqp = 1

∆

( 1 ∆− 1 a − b− 1
∆− 1 1 c− b− 1

a − b− 1 c− b− 1 (1+ b)2 − ac

)
,

where∆= 2−(a−2b+c). In addition, in the transformed formulation, the particles 1
2 are pseudoparticles. When, in the original formulation, the particlesi andj are physical,
it is easily verified that the reduction of the central charge, in the transformed formul
due to the particlesi andj is in fact equal to one. This is precisely the value needed to
the transformed system the same central charge as the original formulation, as wa
expected.

The action ofD12 on the fugacity and quantum number vectorsxT = (x1, x2) and
qT

qp = (qqp,1, qqp,2) is given by

D12x =


(
x1
x2

)1/∆(
x2
x1

)1/∆
x
(1+b−c)/∆
1 x

(1+b−a)/∆
2

 ,

(3.11)D12qqp = 1

∆

(
qqp,1 − qqp,2
qqp,2 − qqp,1

(1 + b− c)qqp,1 + (1 + b − a)qqp,2

)
.

If we havex1 = x2 = x and hence,qqp,1 = qqp,2 = q̃qp, as will always be the case in th
paper, we find

(3.12)D12x =
( 1

1
x

)
, D12qqp =

( 0
0
q̃qp

)
.

From a character identity point of view, the transformation (3.10) is based on tq-
binomial doubling formula

(3.13)

[
M +N

n

]
=

∑
p−q=M−n

q(M−p)(N−q)
[
M

p

][
N

q

]
.

Indeed, considering the UCPF for two physical particles withKqp as in Eq. (3.10), i.e.,

(3.14)Z =
∑ q

1
2
(
am2

1+cm2
2+2bm1m2

)
(q)m1(q)m2

=
∑ q

1
2
(
am2

1+cm2
2+2bm1m2

)
(q)m1+m2

[
m1 +m2
m1

]
,

and then applying (3.13) with

M = −(b− c)m1 + (1 + b− a)m2,

N = (1 + b− c)m1 − (b− a)m2,
(3.15)n=m1,
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to the q-binomial in (3.14), results in the UCPF based onD12Kqp of (3.10), with the
identifications

(3.16)m′
1 = p, m′

2 = q, m′
3 =m1 +m2,

and where the first two particles inD12Kqp are pseudo.
The general case can be derived from (3.13) as well, and is described in the foll

way. Again, we will focus on the case where we letD work on the first two particles. In
addition, we will assume that both those particles are physical. For ease of presen
we now define∆= 2− (b11 − 2b12 + b22), δ1 = 1 + b12 − b11 andδ2 = 1 + b12 − b22.

Using similar notation as in Eq. (3.3), we take (the symmetric)Kqp, the fugacities and
quantum numbers

(3.17)Kqp =
b11 b12 bT

1

b21 b22 bT
2

b1 b2 �Kqp

 , x =
(
x1
x2
x̄

)
, qqp =

(
qqp,1
qqp,2
q̄qp

)
.

The dual composite construction, applied on the first two particles is given by

(3.18)

D12Kqp = 1

∆


1 ∆− 1 −δ1 bT

1 − bT
2

∆− 1 1 −δ2 bT
2 − bT

1

−δ1 −δ2 (1+ b12)
2 − b11b22 δ2bT

1 + δ1bT
2

b1 − b2 b2 − b1 δ2b1 + δ1b2 ∆
(�Kqp

)
ij

+ (b1 − b2)i (b1 − b2)j

 .

The first two particles have become pseudoparticles, while the extra particle is a ph
particle. Note that this construction based on the character identity Eq. (3.13) only
in the case that the particles on which it is applied are physical particles. We ha
found a character identity for the case where the dual composite construction is app
two pseudoparticles. However, we will show below that also in that case the central c
works out alright, so we suspect that there is indeed a character identity relating th
systems.

The action of the dual composite construction on the fugacities and quantum n
vectors is given by

D12x =


(
x1
x2

)1/∆(
x2
x1

)1/∆
x
δ2/∆

1 x
δ1/∆

2

x̄i
(
x1
x2

)(�b1−�b2)i/∆

 ,

(3.19)D12qqp = 1


qqp,1 − qqp,2
qqp,2 − qqp,1

 .

∆ δ2qqp,1 + δ1qqp,2

∆q̄qp + (b1 − b2)(qqp,1 − qqp,2)
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Again, specifying to the situation wherex1 = x2 = x andqqp,1 = qqp,2 = q̃qp, as holds in
all the cases we consider, we find

(3.20)D12x =


1
1
x

x̄

 , D12qqp =


0
0
q̃qp
q̄qp

 .

The solutions{λi} to the IOW-equations defined by(Kqp,x) and {λ′
i} defined by

(K′
qp,x′) = (DijKqp,Dijx) are, as was the case for the composite construction (com

(3.6)), related in a simple way

λ′
i = λiλj − 1

λj − 1
, λ′

j = λiλj − 1

λi − 1
,

(3.21)λ′
n+1 = λiλj , λ′

k = λk, k �= i, j, n+ 1.

Using the relations (3.21) it is not hard to show that the IOW-equations based th
systems(Kqp,x) and(DijKqp,Dij x) are in fact equivalent. We also find thatλtot = λ′

tot
by using the fact that the particlesi and j are pseudoparticles after the dual compo
construction has been applied. The composite particle which is created is a ph
(pseudo) particle if particlesi andj are physical (pseudo) in the original description.

From Eq. (3.21) it follows that the dual composite construction cannot be applied
physical and pseudoparticle. In that case,λ′

tot cannot be made equal toλtot. Note that such
a restriction does not apply to the composite construction of Section 3.2. Though
not quite understand this difference, it will not affect any results in this paper.

Let us now focus on the central charge, and look at the case in which all the pa
are physical particles first. Because the rank of the transformed matrices is increa
one, we need that the two created pseudoparticles reduce the central charge by o
is easily verified. Also, because the central charge of the matrixCijKe equals the centra
charge ofKe, we need to find the result that the central charge related toDijKqp without
the pseudoparticle subtraction equals the central charge related toKqp plus one. To show
this, we need to relate the solutions to Eqs. (2.19), which we denote byξi andξ ′

i for Kqp
andDijKqp, respectively. The relations are given by

ξ ′
i = ξi

ξi + ξj − ξiξj
, ξ ′

j = ξj

ξi + ξj − ξiξj
,

(3.22)ξ ′
n+1 = ξi + ξj − ξiξj , ξ ′

k = ξk, k �= i, j, n+ 1.

Because of the relation between the central charges, we require the following dilog
identity

(3.23)

L(x)+L(y)= L

(
x

x + y − xy

)
+L

(
y

x + y − xy

)
+L(x + y − xy)−L(1),

which is easily derived from Eq. (3.8) by applying Eq. (2.33) to each term, and makin
change of variables(x �→ 1 − x, y �→ 1− y).

The argument above not only shows that the central charge works out correctly

absence of pseudoparticles. It can also be used to show that the reduction of the central
charge increases by one if we apply the dual composite construction on pseudoparticles.
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What remains to be checked is the central charge if we apply the composite const
to physical particles, while pseudoparticles are present. For this, we need to comp
central charge equations for the original pseudoparticles with the ones where the ad
two pseudoparticles are present. Though non-trivial, one can convince oneself th
solutions to the central charge equations of the original pseudoparticles do not c
while the solutions for the two pseudoparticles which are introduced add up to on
therefore increase the reduction by one, which gives the correct result.

3.4. P-transformations

In this section, we will discuss a transformation which is based on the (dual) com
construction. This construction is very useful in determining K-matrices for general a
Lie algebra CFTs. We will motivate this construction by using a simple example, w
captures the essence of the method. In the end, this P-transformation is very
to the W-transformations described in Section 3.1, with one important difference.
applying a P-transformation, some of the physical quasiparticles have transforme
pseudoparticles. One of the consequences of this is a reduction of the central charg

As we will use the P-transformations mainly as a tool to obtain K-matrices for le
k affine Lie algebras from the direct sum ofk level-1 algebras, we will explain th
construction using the simplest case. Afterwards, we will present the general case
next section, we will use the results obtained here to find the K-matrices we are afte

3.4.1. The case sl(2)2
The goal in this section is to obtain the K-matrices for thesl(2)2 affine CFT, which

describes the Moore–Read (or Pfaffian) quantum Hall state. The corresponding m
are known, see, for instance, [2,3,45]. Let us recall the K-matrices for the (bosonic)ν = 1
case, which corresponds tosl(2)2

(3.24)Ksl(2)2
e =

(
2 2
2 4

)
, te = −

(
1
2

)
.

The first particle can be identified with the (bosonic) electron, while the second
composite of two electrons. In the quasiparticle sector

(3.25)Ksl(2)2
qp = K−1

e =
(

1 − 1
2

− 1
2

1
2

)
, tqp = −K−1

e · te =
(

0
1
2

)
,

where the first particle is a pseudoparticle. The K-matrices for the general Moore–
state, at filling fractionν = 1

M+1, are obtained by applying the so-called shift map, wh
is described in detail in [3]. Though the theory for generalM has the same central charg
the theory does not have the underlyingsl(2)2 structure anymore, but rather a deformat
(along the charge direction) of this. In this paper, we concentrate on theM = 0 case
throughout; the K-matrices for generalM are obtained by applying the shift map
indicated above. Note that the pseudoparticle matricesKψψ are unchanged under this sh
map.
The main idea is now to obtain thesesl(2)2 matrices via an embedding ofsl(2)2 in
sl(2)1 ⊕ sl(2)1 (which we will call an Abelian covering, see also [13]). By introducing
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a composite, and projecting out some degrees of freedom, we obtain the K-matric
sl(2)2. In physical terms, we start from two, uncoupled, quantum Hall layers with fi
ν = 1

2 (these are in fact bosonic Laughlin states). In a sense, this state is a coverin
for the Moore–Read state at fillingν = 1. By increasing the interactions between the t
layers, one might encounter a phase transition to the Moore–Read state, as desc
[30]. The bosons form pairs, and condense. In the terminology of an effective Lan
Ginzburg theory (see [22]), the difference of the gauge fields describing the bosons a
a mass, and decouples from the spectrum. This is the Meissner effect.

On the level of the K-matrices, we can describe this in the following way. We
introduce the composite of the two bosonic particles, and afterwards simply dele
‘project out’) one of the original bosons. So we actually reduced the theory, as req
We start with the direct sum of twosl(2)1 K-matrices

(3.26)Kcover
e =

(
2 0
0 2

)
, te = −

(
1
1

)
,

(3.27)Kcover
qp =

( 1
2 0
0 1

2

)
, tqp =

( 1
2
1
2

)
.

Now, applying the composite and dual composite constructions (Eqs. (3.4) and (3.1
these matrices gives the following, equivalent description

(3.28)K̃e =
(2 1 2

1 2 2
2 2 4

)
, t̃e = −

(1
1
2

)
,

(3.29)K̃qp =
 1 0 − 1

2

0 1 − 1
2

− 1
2 − 1

2
3
4

 , t̃qp =
( 0

0
1
2

)
.

Note that the first two particles of the quasiparticle matrix are pseudoparticles. To
thesl(2)2 matrices, we have to project out one of these pseudoparticles, by putting
the vacuum state. In addition, we discard one of the original bosons.

However, while projecting out one of the bosons in the electron sector si
corresponds to deleting the respective row and column inK̃e, projecting out one of the
pseudoparticles is more subtle, due to the negative coupling between the pseudop
and the physical particle iñKqp.

For explicitness, consider the UCPF corresponding toK̃qp of (3.29)

(3.30)
∑ q

1
2
(
m2

1+m2
2−(m1+m2)m3+ 3

4m
2
3
)

(q)m3

[ 1
2m3
m1

][ 1
2m3
m2

]
.

Due to the minus-sign in the coupling between particles 2 and 3 inK̃qp, the vacuum stat
for particle 2 is not achieved form2 = 0, but rather form2 = 1

2m3. Hence, rather than jus
omitting particle 2 from̃Kqp, we need to setm2 = 1

2m3 in the bilinear form. This results i
mT · K̃qp · m =m2
1 +m2

2 − (m1 +m2)m3 + 3

4
m2

3
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(3.31)→m2
1 +

(
1

2
m3

)2

−
(
m1 + 1

2
m3

)
m3 + 3

4
m2

3 =m2
1 −m1m3 + 1

2
m2

3,

which precisely corresponds to the matrixKqp of (3.25).
To summarize, the results of projecting out degrees of freedom in Eqs. (3.28

(3.29), gives rise to the K-matrices of Eqs. (3.24) and (3.25). One of the key points o
section is that there is an elegant way of going from K-matrices for the (Abelian) cove
(Eqs. (3.26) and (3.27)) to the K-matrices ofsl(2)2, by what we call a ‘P-transformation
This also hold for the general case, as we will show below. We find

(3.32)Ksl(2)2
e = P · Kcover

e · PT, Ksl(2)2
qp = (

P−1)T · Kcover
qp · P−1.

The vectors containing the quantum numbers (denoted byqe andqqp) transform as

(3.33)q̃e = P · qe, q̃qp = (
P−1)T · qqp.

In the above, we have to takeP = ( 1 0
1 1

)
, and hence(P−1)T = ( 1 −1

0 1

)
. A few remarks need

to be made here. First of all, the P-transformation described by Eqs. (3.32) and
closely resembles the W-transformation, as they act on the K-matrices in the sam
(compare (3.1)). However, there are a few important differences. As we explained
upon applying a P-transformation, we introduced a pseudoparticle in the quasip
sector. This is important, as the presence of a pseudoparticle changes the theo
instance, the central charge is reduced, in the case at hand by 1/2, which is precisely
the difference in central charge betweensl(2)1 ⊕ sl(2)1 andsl(2)2 (given byc = 2 and
c = 3/2, respectively). So the P-transformation actually changes the theory, while t
transformation is a basis transformation, which does not change the theory.

In the remainder of this section, we will show how a P-transformation works
general K-matrix. These results are used in the next section to find the K-matric
the general affine Lie algebra CFTs, in a similar way as we constructed thesl(2)2 matrices
above.

3.4.2. The general case
In this section, we will relate the introduction of a composite (in the electron sector

the corresponding transformation in the quasiparticle sector to a general P-transform
For notational simplicity, consider introducing a composite of particles 1 and 2 in a ge
symmetric K-matrix as given by Eq. (3.4). Now, suppose we delete particle 2 from
resulting matrixC12Ke, we then find a new K-matrix system(K̃e, q̃e) given by

(3.34)K̃e =
 a11 a11 + a12 aT

1

a11 + a21 a11 + 2a12 + a22 aT
1 + aT

2

a1 a1 + a2 �K

 , q̃e =
(

q1
q1 + q2

q̄

)
.

Notice that we can write the relation between(K̃e, q̃e) and(Ke,qe) as

(3.35)K̃e = P · Ke · PT, q̃e = P · qe,

with (1 0 0T)

(3.36)P = 1 1 0T

0 0 I

.
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Now consider the dual composite constructionD12Kqp (see Eq. (3.18)). In analogy wit
Eq. (3.30), putting the second pseudoparticle in its vacuum state amounts to setting

(3.37)m2 = −(∆− 1)m1 + δ2m3 − (b2 − b1) · �m.

Substituting this in the quadratic form yields, after a lengthy calculation,

(3.38)mT · (D12Kqp) · m → mT · K̃qp · m,

whereK̃qp is given by

(3.39)K̃qp =
b11 − 2b12 + b22 b12 − b22 bT

1 − bT
2

b12 − b22 b22 bT
2

b1 − b2 b2 �K

 ,

which is related toKqp by

(3.40)K̃qp = (
P−1)T · Kqp · P−1,

with

(3.41)
(
P−1)T =

(1 −1 0T

0 1 0T

0 0 I

)
,

in accordance with Eq. (3.36). It is important to note that the first particle ofK̃qp in
Eq. (3.39) is a pseudoparticle. The presence of this pseudoparticle causes the re
of the central charge of the system̃Ke ⊕ K̃qp with respect toKe ⊕ Kqp. Of course, this is
to be expected when degrees of freedom are projected out.

Summarizing, a P-transformation acts on the K-matrices and quantum number v
(denoted byqe andqqp) as follows:

(3.42)K̃e = P · Ke · PT, K̃qp = (
P−1)T · Kqp · P−1,

and

(3.43)q̃e = P · qe, q̃qp = (
P−1)T · qqp,

where in addition, some of the quasiparticles have been transformed into pseudopa
In Section 4.1 we will repeatedly use the (dual) composite construction combined

the projecting out of degrees of freedom to determine K-matrices for a variety of C
Rather than specifying the particles to which we consecutively apply this constructi
will simply state the required resulting P-transformation, and specify which quasipar
have become pseudoparticles.

Because the P-transformations take the form (3.42), properties such as the
fraction (see (2.26)), are not changed upon performing the P-transformation. Of cour
statistics properties are changed in a profound way, because the induced pseudop
lead to non-trivial fusion rules as described in Section 2.2. In turn, this leads to the
Abelian statistics of the physical quasiparticles (see, for instance, [38]).
One important remark needs to be made before closing this section. In the construction
of the K-matrices, we will use the (dual) composite construction via the P-transformation.
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We will always apply the dual composite construction to identical (quasi)particles. H
the quantum numbers of the quasiparticles (and also their electronic equivalents)
same. Moreover, we will always haveaii = ajj and bii = bjj . As a result, it does no
matter which of the electron-like particles is projected out. Ifaii �= ajj , the two different
projections are related byP′ = PT. The general form forP we use in this paper will be
discussed in the next section (see, in particular, Eq. (4.13)).

4. K-matrices for affine Lie algebras

One of the main themes of this paper is the identification of the K-matrices for ge
affine Lie algebra CFTs. We will work in the so-called quantum Hall basis, as desc
above. In [3] (see also [2]), the K-matrices corresponding to thesl(2)k andsl(3)k CFTs
were derived. Here, we will give an alternative construction of thek > 1 cases directly from
thek = 1 cases, which can be found in [2]. This construction is based on the embe
of the level-k theory in the direct sum ofk level-1 theories. By applying composite a
dual composite constructions, we introduce pseudoparticles. After projecting out so
these, we have reduce the theory to the level-k theory. We will phrase all of this in term
of the P-transformations of the previous section. Apart from thesl(2)k andsl(3)k theories,
we will also use this construction for the other (simply-laced) affine Lie algebra c
and provide a few non-trivial checks to show that we indeed found the correct K-ma
The non-simply-laced cases can be obtained by embedding the level-1 affine algeb
simply-laced algebras, and performing a similar construction as outlined above.

4.1. Constructing the matrices

We will use the techniques described in the previous section to construct the K-m
for general affine Lie algebras.

In the this section, we will describe how this works in detail for the simplest exam
which have all the characteristics of the general case. Motivation of this constructio
be found in the previous section. In Sections 4.2 and 4.3 we will present the results
K-matrices for general affine Lie algebra CFTs.

4.1.1. Example: the case sl(2)k
Let us illustrate the construction for the levelk > 2 generalizations of the Moore–Re

states, the so-called Read–Rezayi states [41]. The covering state in this case is th
sum ofk level-1 theories (instead of just 2 for the MR case). So we have

(4.1)Kcover
e =


2

2
. . .

2

 , tcover
e = −


1
1
...

1

 .

(Here, and in the following we use the convention that ‘empty’ entries contain zeroes

implied otherwise by ‘dots’.) We also indicated the charge vector, containing the charge
quantum numbers of the particles, as the transformation behavior of the quantum numbers
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under the P-transformation clearly shows that composites are introduced. To obtain
matrices forsl(2)k, describing the Read–Rezayi states, we need to introduce all typ
composites, from a pair up to a cluster made out of thek original particles. ThusP takes
the following form:

(4.2)P =


1
1 1
...

. . .
. . .

1 · · · 1 1

 .

This leads to following matrixKe and charge vectorte (by using Eqs. (3.42) and (3.43))

(4.3)Ke =


2 2 2 · · · 2
2 4 4 · · · 4
2 4 6 · · · 6
...

...
...

. . .
...

2 4 6 · · · 2k

 , te = −


1
2
...

k

 ,

which are indeed correct for thesl(2)k theory. The dual sector is simply obtained by us
the duality relations (2.23), (2.25). Alternatively, we can apply the dual P-transform
on the dual (i.e., the inverse) of the covering matrix Eq. (4.1). The corresponding P-m
is

(4.4)
(
P−1)T =


1 −1

1
. . .
. . . −1

1

 ,

from which we find

(4.5)Kqp =



1 − 1
2

− 1
2 1

. . . − 1
2− 1

2 1 − 1
2

− 1
2

1
2

 , tqp =


0
...

0
1
2

 .

From the matrix equation (4.4) we read of that the firstk − 1 particles are pseudoparticle
These results are in perfect agreement with the results of [3,26].

4.1.2. Example: the case sl(3)k
As an example of a case where the rankn of the affine Lie algebra is greater than

we show that a similar construction can be carried out to obtain the K-matrices rela
the sl(3)k CFT. This is the underlying theory of the ‘non-Abelian spin-singlet’ quan
Hall states as defined in [5]. Finding the K-matrices when the rankn > 1 is somewha
more complicated than forn= 1. The K-matrices for thesl(3)k CFT were obtained in [3]

There, the basis was chosen in such a way that all the particles in the electron sector had
the same sign for the charge. The reason for this choice was that the electron operators (for
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spin up and spin down) appearing in the construction of the quantum Hall state ha
same sign of the charge. These electron operators are associated to the rootsα1 and−α2
of sl(3). From mathematical point of view, it is more natural to work withα1 andα2, as
the resulting K-matrices have a simpler structure. So here we will present the results
the (mathematically) more natural formulation, based on the positive roots. In App
D, we will explain the precise relationship between the two descriptions. Essential
relation is a W-transformation on the physical particles, which leaves the pseudopa
unchanged. This is required, because the pseudoparticles are related to the fusion
the affine Lie algebra and they also determine the central charge. The K-matrix f
electron sector at level 1 takes the form in the representation chosen here

(4.6)Ke =
(

2 −1
−1 2

)
, te =

(
1

−1

)
, se =

(
1
1

)
.

In the other formulation, used in [3], the off-diagonal elements ofKe are 1, while the role
of te andse is interchanged.

The K-matrix in Eq. (4.6) is the building block of the covering matrix, from which
construct the level-k K-matrices

Kcover
e =



2 −1
−1 2

2 −1
−1 2

. . .

2 −1
−1 2


,

(4.7)tcover
e =



1
−1
1

−1
...

1
−1


, scover

e =



1

1

1

1
...

1

1


.

At this point, we need to specify the matrixP, which is used to project to the K-matr
for the sl(3)k theory. However, because we haven = 2 in this case, we can construct t
composites (up to orderk) in different ways. We will first state the form which gives t
correct result, and comment on the other possibilities afterwards. The P-transform
which gives the correct central charge is given by

(4.8)P =


I2
I2 I2
...

. . .
. . .

I2 · · · I2 I2

 ,
where I2 is the 2× 2 identity matrix. The resulting K-matrix has the following form
(explicit forms of the Cartan matrixA2 of A2 and the symmetrized Cartan matrixM−1

k
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of Bk can be found in Appendix A)

(4.9)

Ke = A2 ⊗ Mk =



2 −1 2 −1 · · · 2 −1 2 −1
−1 2 −1 2 · · · −1 2 −1 2
2 −1 4 −2 · · · 4 −2 4 −2

−1 2 −2 4 · · · −2 4 −2 4
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

2 −1 4 −2 · · · 2(k − 1) −(k − 1) 2(k − 1) −(k − 1)

−1 2 −2 4 · · · −(k − 1) 2(k − 1) −(k − 1) 2(k − 1)

2 −1 4 −2 · · · 2(k − 1) −(k − 1) 2k −k
−1 2 −2 4 · · · −(k − 1) 2(k − 1) −k 2k


,

while the charge and spin quantum numbers are given by

(4.10)te =



1

−1

2

−2
...

k

−k


, se =



1

1

2

2
...

k

k


.

It is not to hard to see that introducing the composites can be done in different way
instance, we could move some of the 1’s in the lower-triangular part of the matrixP of
Eq. (4.8) to the corresponding place in the upper-triangular part. If done systema
we still would introduce all the composites, so the resulting quantum numbers wou
the same. Luckily, all the essentially different possibilities result in different K-matr
which have different central charge associated to them. So we can pick the, presu
correct description by looking at the central charge and perform further checks to ass
validity of the chosen matrices. In all the cases we encountered, only one P-transfor
gave rise to a rational central charge (as far as the numerical checks could tell),
indeed was the central charge corresponding to the affine Lie algebra CFT. We r
Section 4.3 for more details on the checks of the central charge associated to
matrices. Whether or not the other possibilities correspond to (non-rational) CFTs
clear at the moment.

The K-matrices and quantum numbers for the quasiparticle sector are obtained si
as in thesl(2)k case, by applying the dual P-transformation to the dual of the cove
Now, the transformation matrix becomes the inverse transpose of Eq. (4.8)

(4.11)
(
P−1)T =


I2 −I2

I2
. . .

. . .

 ,
−I2

I2
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with the results

Kqp = A−1
2 ⊗ M−1

k =
A−1

2 ⊗ Ak−1

−A−1
2

A−1
2 A−1

2

 ,

(4.12)tqp =


0
...

0

− 1
3

1
3

 , sqp =


0
...

0

−1

−1

 .

The K-matrix is to be compared with the matrix (7.23) in [3]. Note that part of the K-ma
corresponding to the 2(k − 1) pseudoparticles is the same in both cases. So, becau
know the two descriptions are related (see Appendix D), we can say that by usin
method of the P-transformations, we were able to obtain correct K-matrices for thesl(3)k
theory. One important check is the central charge. Because the pseudoparticles
same in both formulations, the central charge is also equal. In Section 4.3, the quasi
matrices for all simple affine Lie algebra CFTs will be given. The electron matrice
specified in Section 4.2. Before we come to that, we will first describe in detail ho
construct the general K-matrices, using the P-transformations and suitable covering

4.1.3. The general case
Using the knowledge obtained in the previous section, we go on and propose a sch

obtain the K-matrices for general affine Lie algebra CFTs. We will first concentrate o
simply-laced cases, and discuss the non-simply-laced cases afterwards. As we di
the case ofsl(3), which has all the essential ingredients, in detail in the previous sec
we will be brief here. We saw that in the case ofsl(3)1, we could use the particles relat
to the simple roots as the basis of the electron sector. Simple roots are roots which
be written as a sum of two positive roots. A Lie algebra of rankn hasn simple roots,
and their scalar products define the Cartan matrix. So we found that the K-matrix f
electron sector ofsl(3)1 was the Cartan matrix. In the following, we will assume that t
is the case for all the simply-laced affine Lie algebras. What we need to do further to
the level-k K-matrices is construct the covering theory, which is just the direct sumk
level-1 theories, and apply the correct P-transformation. The form of the P-transform
is similar to thesl(3) case, where the rank is the only thing which needs to be change
we findP for the simply-laced cases

(4.13)P =


In

In In
...

. . .
. . .

 ,
(
P−1)T =


In −In

In
. . .

. . . −In

 .
In · · · In In In
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Applied to the covering matrix we find the resultKe = P · (An ⊗ Ik) · PT = An ⊗ Mk . See
Section 4.2 for an explicit example. Of course,An can be replaced by the Cartan mat
of any other simply-laced algebra,Dn or En. The K-matrix for the quasiparticle sector
obtained by applying(P−1)T to the dual coveringA−1

n ⊗Ik , resulting inKqp = A−1
n ⊗M−1

k .
From the form of(P−1)T we find that the firstn(k−1) particles are in fact pseudoparticle
These matrices will be given explicitly in Section 4.3. For now, we note that the ce
charge associated to these systems does indeed have the correct value. More on th
found in Section 4.3.

Let us now focus our attention to the non-simply-laced case. The idea is to app
same construction as for the simply-laced cases. However, we need to find the
starting point, that is, the levelk = 1 formulation. The non-simply-laced affine algeb
have non-trivial fusion rules already at level-1, so we already need pseudopartic
level-1. This is also reflected in the central charge, which is non-integer. To find th
matrices, we embed the non-simply-laced algebra in a simply-laced one, and ba
do the same construction as before: project out some degrees of freedom by intro
pseudoparticles. As an example, we quote the case forso(5)1, which is related to the spin
charge separated quantum Hall states of [4] (see also [9,11]). There, the K-matrices
so(5)1 were obtained from theso(6)1 K-matrices using the construction outlined above
turns out that in general, the matrices for the non-simply-laced affine Lie algebras are
to the (simply-laced) affine Lie algebra in which they are embedded. The difference
presence of pseudoparticles in the non-simply-laced cases, as described above. Alt
descriptions are possible, e.g., forG2,k we have an alternative description (which is us
in connection with the corresponding parafermion CFT), where thek = 1 K-matrix has
a couple of sign changes in comparison to the Cartan matrix of the algebra used
embedding, see Appendix C.

To check that we indeed found the correct matrices, we will provide another w
obtain the K-matrix for non-simply-laced CFTs at level one. This time, we directly
the exclusion statistics parameters of the electron-like operators, corresponding to t
lattice of the algebra. It is important to know the exclusion statistics of the correspo
parafermions (which are part of the electron operators, see Section 5.3 and also [2
we can borrow results from the literature here. We will show how this works for the
so(5)1 in Appendix B, whileG2 at level-1 can be found in Appendix C. The other no
simply-laced cases can be obtained in a similar way.

Having identified thek = 1 K-matrices for the non-simply-laced algebras, we can
on, and take the direct sum ofk of the level-1 matrices, and do exactly the same
transformations as in the simply-laced case. Because the covering matrices for th
simply-laced cases are identical to the ones used for the corresponding simply-laced
the resulting K-matrices will be identical as well. The only difference is the numb
pseudoparticles, as there will be more pseudoparticles in the non-simply-laced ca
specifying the nature of the particles is the only way to tell the difference between th
It is important to note that in the P-transformation, (dual) composites are made only

identical particles. We never have the situation where a physical particle is paired with a
pseudoparticle, in accordance with the results of Section 3.3.
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4.2. The matrices Ke

The building blocks of all the K-matrices are the Cartan matricesAn, Dn, En and their
inverses. In addition, we need the symmetrized Cartan matrix ofBn, which we denote by
Mk , and its inverse. All these matrices can be found explicitly in Appendix A.

From Section 4.1.3, we have the results that for the simply-laced casesAn,k, Dn,k and
En,k the matricesKe take the formAn ⊗ Mk , Dn ⊗ Mk andEn ⊗ Mk , respectively. As an
example, we will give the result forD4,2 explicitly

(4.14)Ke = D4 ⊗ M2 =



2 −1 0 0 2 −1 0 0
−1 2 −1 −1 −1 2 −1 −1
0 −1 2 0 0 −1 2 0
0 −1 0 2 0 −1 0 2

2 −1 0 0 4 −2 0 0
−1 2 −1 −1 −2 4 −2 −2
0 −1 2 0 0 −2 4 0
0 −1 0 2 0 −2 0 4


.

For the non-simply-laced cases, we have to take the Cartan matrix corresponding to
Lie algebra which we used for the embedding. We find that the matricesKe areDn+1⊗Mk ,
A2n−1 ⊗ Mk , E6 ⊗ Mk andD4 ⊗ Mk for Bn,k , Cn,k , F4,k andG2,k, respectively.

4.3. The matrices Kqp

The matricesKqp can be obtained fromKe by a simple inversion (see (2.23)). In th
following, we will explicitly give these matrices, and indicate which particles are in fac
pseudoparticles. With this knowledge, one can calculate the central charge corresp
to Ke⊕Kqp by using Eq. (2.34). As this is hard to do analytically in general, we determ
the central charge numerically for some low values of(n, k). All the cases up to rankn= 10
have been checked up to levelk = 20. We found that the central charge correspondin
the matrices was equal to the central charge of the CFTs up to 10−20 or better. The centra
charge of an affine Lie algebra CFT is given by (cf. (2.13))

(4.15)cALA = k dimXn

k + h∨ ,

where dimXn is the dimension and h∨ the dual Coxeter number of the Lie algebraXn.
Both can be found in Appendix A for every simple Lie algebra.

In the following, we will denote theith column of the matrixM by (M)i . Recall that
the quasiparticle matrices are of the form (see Eq. (2.29))

Kqp =
(

Kψψ Kψφ

Kφψ Kφφ

)
,

(4.16)KT
ψψ = Kψψ, KT

φφ = Kφφ, KT
ψφ = Kφψ ,
whereψ denotes the pseudoparticles, andφ the physical quasiparticles.
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4.3.1. The case An,k

The quasiparticle matrixKqp for sl(n+ 1)k is given by

(4.17)Kqp = A−1
n ⊗ M−1

k =
A−1

n ⊗ Ak−1

−A−1
n

−A−1
n A−1

n

 .

In particular, the pseudoparticle matrix is given byKψψ = A−1
n ⊗ Ak−1.

4.3.2. The case Bn,k
As already pointed out, we need to an embedding to obtain theBn,1 description first.

This is done forso(5) in Appendix B, where we usedD3,1 for the embedding. In genera
we needDn+1,1. We find that we need one extra pseudoparticle, which correspon
the first node of the Dynkin diagram ofDn+1. This extra particle has exclusion statist
parameter 1, which gives a reduction of the central charge by1

2, which is indeed the
difference of the central charge of the theoriesDn+1,1 andBn,1. At general level we find
thatKqp = D−1

n+1 ⊗ M−1
k , which is characterized by

(4.18)Kψψ =



2D−1
n+1 −D−1

n+1

−D−1
n+1 2D−1

n+1
. . .

. . .
. . . −D−1

n+1

−D−1
n+1 2D−1

n+1 −(D−1
n+1

)
1

−(D−1
n+1

)T
1 1


,

where we see explicitly that there is an extra pseudoparticle next to theD−1
n+1 ⊗ Ak−1 part.

Accordingly, the matrixKφφ is the inverse Cartan matrix ofDn+1, with the first row
and column omitted (denoted byD−1

n+1|/1)

(4.19)Kφφ = D−1
n+1|/1 =



2 2 · · · 2 1 1

2 3 · · · 3 3
2

3
2

...
...

. . .
...

...
...

2 3 · · · n− 1 n−1
2

n−1
2

1 3
2 · · · n−1

2
n+1

4
n−1

4

1 3
2 · · · n−1

2
n−1

4
n+1

4


.

Finally, we have

(4.20)K =
 0 · · · · · · · · · 0

−(D−1 ) · · · · · · · · · −(D−1 )  ,
ψφ n+1 2 n+1 n+1

−1 · · · −1 − 1
2 − 1

2
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where0 stands for the (column) vector with all zeroes (of ‘length’(n + 1)(k − 2) in this
case). Putting the parts together, we find

(4.21)Kqp =
(

Kψψ Kψφ

KT
ψφ Kφφ

)
= D−1

n+1 ⊗ M−1
k .

To put emphasis on the fact that the pseudoparticle matrix is bigger that the one
Dn+1 CFT, we gave the matricesKψψ etc. explicitly, as we will do for all non-simply
laced cases.

4.3.3. The case Cn,k
In this case, we needA2n−1,k as the theory for the embedding. For levelk = 1 we need

the particles corresponding to theeven nodes to be pseudoparticles. These will be the e
pseudoparticles fork > 1, giving n − 1 extra pseudoparticles. We again will specify
matrixKqp by its partsKψψ , etc.

(4.22)

Kψψ =



2A−1
2n−1 −A−1

2n−1

−A−1
2n−1 2A−1

2n−1

. . .

. . .
. . . −A−1

2n−1

−A−1
2n−1 2A−1

2n−1 −(A−1
2n−1

)
2 · · · −(A−1

2n−1

)
2n−2

−(A−1
2n−1

)T
2

.

.

.

−(A−1
2n−1

)T
2n−2

2A
−1
n−1


,

(4.23)Kψφ =
 0 0 · · · 0

−(A−1
2n−1

)
1 −(A−1

2n−1

)
3 · · · −(A−1

2n−1

)
2n−1

Kψeφ

 .

The matrixKψeφ , which contains the coupling between the physical particles and theextra
pseudoparticles, is described most easily by specifying its entries explicitly. Let u
recall the elements of the inverse Cartan matrix ofA2n−1 (compare with Appendix A)(

A−1
2n−1

)
2i−1,2j−1 = min(2i − 1,2j − 1)− (2i − 1)(2j − 1)

2n
,

(4.24)i, j = 1, . . . ,2n− 1.

Then we have(
Kψeφ

)
i,j

= min(2i − 1,2j)− (2i − 1)2j

2n
,

(4.25)i = 1,2, . . . , n, j = 1,2, . . . , n− 1.

For the matrixKφφ we have

(4.26)
(
Kφφ

)
i,j

= min(2i − 1,2j − 1)− (2i − 1)(2j − 1)

2n
, i, j = 1,2, . . . , n.
Note that the elements of the matrix describing the extra pseudoparticles(Kψeψe )i,j =
min(2i,2j)− (2i)(2j)

2n , wherei, j = 1, . . . , n− 1 is indeed equal to 2A−1
n−1.
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4.3.4. The case Dn,k

As we already used the matrix corresponding toDn+1,k in the case ofBn,k , we will be
brief here:

(4.27)Kqp = D−1
n ⊗ M−1

k =
D−1

n ⊗ Ak−1

−D−1
n

−D−1
n D−1

n

 .

So we haven(k − 1) pseudoparticles, andn physical ones.

4.3.5. The cases En,k with n= 6,7,8
ForEn,k , we simply have a similar result as for the other simply-laced cases:

(4.28)Kqp = E−1
n ⊗ M−1

k =
E−1

n ⊗ Ak−1

−E−1
n

−E−1
n E−1

n

 .

so then(k − 1) pseudoparticles couple viaEn ⊗ Ak−1.

4.3.6. F4,k
The embedding used this time is based uponE6,k. Now we expect to have two extr

pseudoparticles, based on the level-1 case (cf. (2.58), Section 2.3), which turns ou
true. The couplings of these extra pseudoparticles are related to the nodes 1 and
Appendix A). For generalk, we have the pseudoparticle matrix

(4.29)Kψψ =



2E−1
6 −E−1

6

−E−1
6 2E−1

6
. . .

. . .
. . . −E−1

6

−E−1
6 2E−1

6 −(E−1
6

)
1 −(E−1

6

)
5

−(E−1
6

)T
1

4
3

2
3

−(E−1
6

)T
5

2
3

4
3


,

while the physical particles have

(4.30)Kφφ =


10
3 4 8

3 2

4 6 4 3
8
3 4 10

3 2

2 3 2 2

 .

Physical and pseudoparticles are coupled via

(4.31)Kψφ =


0 0 0 0

−(E−1
6

)
2 −(E−1

6

)
3 −(E−1

6

)
4 −(E−1

6

)
6

5 2 4 1

 .

3 3
4
3 2 5

3 1
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Again, if we combine the physical and extra pseudoparticles in the right way, we fin
matrixE−1

6 .

4.3.7. G2,k
Finally we come to the last case, which isG2,k. This case is special in the sense tha

we use a similar procedure as we used in all the other cases, we find a description in
the number of physical particles does not equal the rank of the algebra, as was the s
in the other cases. This will have consequences as we consider the related paraferm
Section 5.3. In Appendix C we will provide a different description ofG2,k, which does have
two physical particles. For now, we will just use the description based on the K-ma
for D4,k , in which we embedG2,k . It turns out that we need three extra pseudopartic
leaving only one physical particle. Note that the coupling of the extra pseudopartic
given by Eq. (2.59) in Section 2.3.

(4.32)

Kψψ =



2D−1
4 −D−1

4

−D−1
4 2D−1

4
. . .

. . .
. . . −D−1

4

−D−1
4 2D−1

4 −(D−1
4

)
1 −(D−1

4

)
3 −(D−1

4

)
4

−(D−1
4

)T
1 1 1

2
1
2

−(D−1
4

)T
3

1
2 1 1

2

−(D−1
4

)T
4

1
2

1
2 1


,

(4.33)Kφφ = (
2
)
,

(4.34)Kψφ =


0

−(D−1
4

)
2

1

1

1

 .

5. K-matrices for coset conformal field theories

Having identified the K-matrices for the affine Lie algebra CFTs, one might hope to
K-matrices for more general CFTs. An obvious class to look at are the coset conf
field theories, as most CFTs can be written in a coset form. In this section, we will pr
K-matrices for a class of coset CFTs. In our search for the K-matrices for coset CFT
will be mainly guided by the central charge. We can test our results by comparing to k
coset K-matrices. For diagonal cosets of simply-laced affine Lie algebras, the results
K-matrices are due to McCoy and co-workers. See, for instance, [6].
Having obtained a scheme, we will apply it to the cosetsso(2n)k/so(2n − 1)k with
k = 1,2, where the latter is the non-trivial one. The parafermionic cosets are dealt with in
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Section 5.3, as they require a different approach. This already shows that the sche
found is by no means unique, but useful anyway.

5.1. Diagonal cosets

As said, the central charge is an important quantity to keep in mind in determinin
K-matrices for the cosets. Let us take a look at the general cosetG/H , whereH ⊂ G is
maximal. Let us assume that bothG andH are of the formKe ⊕ Kqp, with equal rank
n. Also, both quasiparticle matrices can contain pseudoparticles. So the central ch
these theories (denoted byc(G) andc(H)) is given by

(5.1)c(G)= n− c
(
Kψψ(G)

)
, c(H)= n− c

(
Kψψ(H)

)
,

wherec(Kψψ(G)) denotes the central charge corresponding to the pseudoparticle ma
G. Let us further assume that all the pseudoparticles which appear inKψψ(G) also appea
in Kψψ(H). This restricts the applicability of the construction, but still covers a large c
of cosets. Now the argument of the central charge suggests to take the pseudopar
matrix of H , and change the pseudoparticles which donot appear in the pseudopartic
matrix of G into physical particles. The central charge corresponding to this mat
c(Kψψ(H))−c(Kψψ(G)). This indeed equals the central charge of the coset theory, w
is given byc(G) − c(H). Note that the matrix we propose for the coset theory is no
the formK ⊕ K−1. This is in fact consistent with known results for K-matrices of co
conformal field theories, as we will discuss below. This construction does work fo
cosets of the typeXn,k ⊕ Xn,l/Xn,k+l , whereXn is a simply-laced Lie algebra. Indee
using this, we reproduce the results of McCoy for these diagonal cosets, see, for in
[6].

The construction above is in fact more generally applicable as we will sho
the next subsection, where we will show a non-trivial example based on the co
so(2n)k/so(2n− 1)k.

5.2. so(2n)k/so(2n− 1)k

Applying the construction above to the cosetso(2n)k/so(2n−1)k at levelk = 1, we find
the K-matrixK = (1), which is obviously the correct result for thisc = 1

2 CFT. Another
coset withc� 1 is the casek = 2, which hasc = 1. We find the following K-matrix

(5.2)K =



1 −1 · · · −1 − 1
2 − 1

2

−1
...

−1 2D−1
n

− 1
2

− 1
2


,

where only the first particle is physical. As mentioned, this matrix yields the correct central
chargec = 1 by construction. That it indeed describes the correctc = 1 CFT can be seen
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as follows. Applying the dual composite construction to

(5.3)K =
(

1− 1
2n

1
2n

1
2n 1 − 1

2n

)
,

where both particles are physical, we find

(5.4)D12K =
 1 − 1

2 − 1
2

− 1
2

n
2 1 − n

2

− 1
2 1− n

2
n
2

 .

Now applying the composite construction to the two pseudoparticles in (5.4)(n− 2) times
we find (5.2). On the other hand, the UCPF based on (5.3), summed overm1 + m2 ≡
0 mod 2n, equals thec = 1 u(1)-character

(5.5)
1

(q)∞

∑
k∈Z

qn(2n−1)k2
,

by using the Durfee square identity (see, e.g., [1])

(5.6)
1

(q)∞
=
∑
m�0

qm
2

(q)m(q)m
.

So we indeed find that the matrix (5.2) describes ac = 1 conformal field theory, namely
the free boson compactified on a circle.

In addition to this non-trivial example, also the equivalence used in the theory oG2-
holonomy—namely, betweenso(7)1/G2,1 and the tricritical Ising model—works, if w
take theG2 (level k = 1) description of Appendix C. We find the K-matrix

(5.7)K =
(

1 − 1
2

− 1
2 1

)
,

with one physical and one pseudoparticle. This is indeed the K-matrix correspond
the minimal model withc = 7/10.

5.3. Parafermions

Generalized parafermionic conformal field theories were defined by Gepner [25
generalization of theZk parafermions of [49]. The generalized parafermion theories
be viewed as cosets based on general affine Lie algebras (ALAs) andu(1) theories

(5.8)X
pf
n,k = Xn,k

u(1)n
,

wheren is the rank of the Lie algebraXn, and k the level. The central charge of th
parafermion CFT (5.8) is given by

(5.9)cpf = cALA − n,
where cALA is the central charge of the corresponding affine Lie algebra theory (see
Eq. (2.13)). The parafermion cosets (5.8) are somewhat different in comparison to the
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diagonal cosets of Section 5.1, and need to be treated differently. Before we come
discussion of the K-matrices, we first fix some notations concerning the parafermion
following [25].

The primary fields of the theoryΦΛ
λ are labeled by a (highest) weightΛ and a charge

λ, which is also an element of the weight lattice, and is defined modulokML, i.e., k
times the long root lattice. To obtain a complete, independent set of parafermion
one has to impose the following restrictions. The chargeλ must be ‘accessible’ fromΛ by
subtracting roots (includingα0) fromΛ. Furthermore, the (proper) external automorphis
σ (see [23]) of the affine Lie algebra give rise to field identifications

(5.10)ΦΛ
λ ≡Φ

σ(Λ)
λ+σ(0),

whereσ(0) denotes the image of the affine weightkΛ0 underσ .
An important check on the K-matrices for the parafermionic CFTs is based o

relation between the parafermionic partition functions and the string functionscΛλ of the
corresponding affine Lie algebras [25]

(5.11)Z
Λ,λ
pf = (η)ncΛλ ,

whereη = q1/24∏∞
k=1(1 − qk) is the Dedekind function. As an example, we will expre

the partition functionZΛ,λ
pf with Λ = (0, . . . ,0) ≡ 1 in terms of UCPFs based on the K

matrices for the parafermion CFTs. Using Eq. (5.11), we can check our results agai
known (tabulated) string functions.

We will use the matricesKe of the corresponding affine Lie algebras as a star
point for obtaining the parafermionic matricesKpf. The matricesKe correspond to the
(elementary) electron-like particles and composites (up to orderk) of these elementar
particles. The operators corresponding to these (elementary) particles have the form

(5.12)Φ1
λ :eiα·ϕ: ,

whereϕ = (ϕ1, . . . , ϕn) is a set of bosonic fields, which correspond to theu(1) degrees of
freedom and determine the quantum numbers of the particles via the constantsαi . For the
orderk composites, the parafermion fields are trivial, i.e.,Φ1

kµ = 1, for µ ∈ ML (µ a long
root), in which case only the vertex operator part remains.

In this section, we are interested in the K-matrices for the parafermionic CFTs. T
can be obtained from the matricesKe of the corresponding affine Lie algebra theor
by subtracting from the particles which have a non-trivial parafermion fieldΦ1

λ the
part of the exclusion statistics which corresponds to the vertex operator:eiα·ϕ :. This
can be done ‘by hand’ by calculating the exclusion statistics of the vertex oper
Actually, because there are always particles which do not have a parafermion fie
equivalently, a trivial parafermion field), this can be done by applying what we will
an X-transformation. Such a transformation is like a W-transformation. Howeve
matrices associated to an X-transformation are notSL(r,Z) matrices, but ratherSL(r,Q).
This is because the quantum numbers of the largest composites (which are the p
with trivial parafermion fields) arek times the quantum numbers of the particles in

k = 1 formulation. In general, the non-zero non-diagonal entries take the forml/k, with
l = 1, . . . , k − 1. Explicitly, in the case of theZk = sl(2)k/u(1) parafermions we find the
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following

(5.13)X =



1 − 1
k

1 − 2
k

. . .
...

1 − k−1
k

1

 .

For more general parafermions, the matrices are (a little) more complicated. In fac
entry of the matrix (5.13) becomes ann × n matrix. Although fractions appear inX,
the quantum numbers of the particles after the transformation are still integers, b
the largest composite is of orderk. More precisely, the X-transformation is such th
all the quantum numbers of the transformed particles are in fact zero; in a sense
vertex operators containing the chiral boson fields are stripped of from the paraferm
fields. The transformed matrixKe splits in two pieces, namely, a part containing the or
k composites and the part corresponding to the parafermionsΦ1

λ , which is the matrix
we are looking for. We will denote this matrix byKpf. In the quasiparticle sector, th
pseudoparticles will completely decouple from the physical quasiparticles and hen
transformed matrix is of the formKψψ ⊕ K̃φφ , whereK̃φφ is a deformed quasiparticl
matrix. So we conjecture that the K-matrices for parafermionic CFTs are given b
inverse of the pseudoparticle matrixKψψ , of the corresponding affine Lie algebra CFT

(5.14)Kpf = K−1
ψψ.

A first check on the proposed matrices is the corresponding central charge. The
charge corresponding to the matricesKψψ is given by

(5.15)cψψ = (n+ p)k − cALA ,

wherep is the difference in rank between the affine algebra under consideration a
one used to ‘build’ the K-matrices (thus for simply-laced algebras,p = 0). The rank of the
matrixKψψ is (k− 1)(n+p)+ e, wheree is the number of ‘extra’ pseudoparticles need
for the non-simply-laced algebras. Thus we have the following result for the central c
of matricesKpf

(5.16)cpf = cALA − n− (p − e).

For all the affine algebras, exceptG2,k, the K-matrices of Section 4.3 havep = e, so we
obtain the correct result of Eq. (5.9). However, we also find that the construction
does not work for the description ofG2,k as given in Section 4.3.7, because there
number of physical quasiparticles is 1 instead of 2, which is the rank ofG2. Luckily, there
exists another way to represent theG2,k affine Lie algebra, which does have two physi
quasiparticles. The inverse of the pseudoparticle matrix therefore has the correct
charge. The corresponding K-matrices can be found in Appendix C. It has been ch

that thisG2,k parafermion K-matrix does give rise to the corresponding string functions
(for k = 2,3).
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5.3.1. The case so(5)2 as an example
As an example, we will discuss the characters of the parafermionic theory associ

so(5)2.
The conjectured pseudoparticleKψψ for so(5)2 is given by Eq. (4.18) withn= 2,k = 2

(5.17)Kψψ =
( (

D−1
3

)
11 −(D−1

3

)T
1

−(D−1
3

)
1 2D−1

3

)
=


1 −1 − 1

2 − 1
2

−1 2 1 1

− 1
2 1 3

2
1
2

− 1
2 1 1

2
3
2

 .

The K-matrix which is supposed to describe theso(5)2 parafermions is simply the invers
of the pseudoparticle matrix, where it is assumed that all particles are physical

(5.18)Kpf =


2 1 0 0

1 3
2 − 1

2 − 1
2

0 − 1
2 1 0

0 − 1
2 0 1

 .

The UCPF based on this K-matrix, namely,

(5.19)ZΛ=1
pf =

∑ q
1
2m·Kpf·m∏
i (q)mi

,

with m a 4-dimensional vector, is the sum over string-functions

(5.20)ZΛ=1
pf =

∑
λ

(η)lcΛλ .

The sum overλ runs over the independent parafermion fieldsΦ
(0,0)
(λ1,λ2)

(where we assum

that the first root is the short root). The various string-functionsc
(0,0)
(λ1,λ2)

are obtained by
restricting the sum in Eq. (5.19). Explicitly, we have

(5.21)c
(0,0)
λ = q−1/12

(q)2∞

∑
res(λ)

q
1
2m·Kpf·m∏
i (q)mi

,

where

(5.22)res(λ)=



2m1 +m2 + 2m3 = 0 mod4,
m3 +m4 = 0 mod2, for λ= (0,0);
2m1 +m2 + 2m3 = 0 mod4,
m3 +m4 = 1 mod2, for λ= (2,0);
2m1 +m2 + 2m3 = 2 mod4,
m3 +m4 = 0 mod2, for λ= (0,2);
2m1 +m2 + 2m3 = 1 mod4,
m3 +m4 = 0 mod2, for λ= (0,1).

(2,0)
The string functionsc(λ1,λ2)
can be obtained by using a shift vector; more explicitly, by

changing the power ofq in Eq. (5.19) to1
2m · Kpf · m̃, wherem̃ = (m1 − 1,m2,m3,m4).
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We have not yet found similar expressions for the other (independent) string func
such asc(0,1)(λ1,λ2)

andc(1,0)(λ1,λ2)
.

5.3.2. Cases checked
The cases for which we checked that the conjectured matrices do give the

functionsc1
λ include all the affine Lie algebras up to rankn= 3 and levelk = 2. In addition,

we also checkedso(5)3, so(8)2, E6,2, E7,2, E8,2 andF4,2. The checks were performed b
numerically calculating the partition functions up to a certain order inq , depending on the
dimension of the K-matrix. These results were compared to the weight-multiplicity t
of Kass et al. [33]. Note that despite the fact that for the higher rank algebras the c
were performed to rather low order inq , we believe that the formulas hold to all orde
in q .

As an example, we give the K-matrix associated to theF4 parafermions at levelk = 2:

(5.23)Kpf(F4,2)=



3
2 − 1

2 0 0 − 1
4 0 1 − 1

2

− 1
2 1 − 1

2 0 0 0 0 0

0 − 1
2 1 − 1

2 0 − 1
2 0 0

0 0 − 1
2 1 − 1

2 0 0 0

− 1
4 0 0 − 1

2
3
2 0 − 1

2 1

0 0 − 1
2 0 0 1 0 0

1 0 0 0 − 1
2 0 2 −1

− 1
2 0 0 0 1 0 −1 2


.

Explicitly, the relation between the parafermionic character based on the mat
Eq. (5.23), namely,

(5.24)
∑
λ

Z1
λ =

∑
{mi }

q
( 1

2m·Kpf·m)∏
i (q)mi

,

and the string functions is as follows. Upon splitting the character in pieces conta
powers ofq which differ by integers, one finds

(5.25)
∑′

{mi }

q
( 1

2m·K·m)∏
i (q)mi

= q
1
6 (q)4∞

(
c1
(0,0,0,0) + 3c1

(0,0,0,2)

) (
qn; n ∈ N

)
,

(5.26)
∑′

{mi }

q
( 1

2m·K·m)∏
i (q)mi

= 12q
1
6 (q)4∞c1

(1,0,0,0)

(
qn+ 1

2 ; n ∈ N
)
,

(5.27)
∑′

{mi }

q
( 1

2m·K·m)∏
i (q)mi

= 24q
1
6 (q)4∞c1

(0,0,1,0)

(
qn+ 1

4 ; n ∈ N
)
,

∑′ q
( 1

2m·K·m)
1
6 4 1 (

n+ 3
4

)

(5.28)

{mi }
∏

i (q)mi

= 24q (q)∞c(0,0,0,1) q ; n ∈ N .
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The primes on the sums denote the restriction to the powers ofq as indicated. The variou
numerical constants for the string functionsc1

λ are the number of independent fields of t
formΦ1

λ′ which have the same conformal dimension as the fieldΦ1
λ .

6. Application to level restricted Kostka polynomials

In Section 2.2 we have argued that there exists an intimate relation between the
rules of a CFT and the pseudoparticle K-matrix as both count paths on the fusion dia
In fact, there exists a naturalq-deformation of the number of fusion paths giving rise
the so-called level truncated Kostka polynomial. This deformation shows up as part
UCPF expression for the characters of WZW models, as conjectured in Section 2.1.
would thus expect that the level truncated Kostka polynomials can be expressed as
with the K-matrices found in this paper.

Concretely, if φi = φΛi , i = 1, . . . , r, denotes the field corresponding to theith
fundamental weight ofg, the multiplicity of the fieldφλ in the fusion rule

(6.1)φ
n1
1 × · · · × φnrr

is given by
(
N
n1
1 . . .N

nr
r

)
0
λ. By associating a power ofq to each path, determined throu

the crystal graph ofg, we obtain aq-deformation of this number. This is referred to as
(dual) level-k truncated Kostka polynomial (or truncatedq Clebsch–Gordan coefficient) o
g and we will denote it byM(k)

λµ (q) whereµ=∑
i niΛi . An explicit expression ofM(k)

λµ (q)

for k → ∞ is known (see, e.g., [12] and references therein) and originates in Bethe-
techniques [36]. Explicit UCPF type expressions for finitek are known forg = sl(n) (see
[42] for the most general result and also [7,15,28,34]) andso(5)1 [12]. In [29], UCPF
type expressions for Kostka polynomials for general (non-twisted) affine Lie algebras
conjectured. Proofs for some of these conjectures and expressions for some twiste
can be found in, for instance, [42] and [40]. The relation between the K-matrices u
these expressions and the ones brought forward in this paper is not clear at the m
We are gratefull to Ole Warnaar for bringing these references to our attention.

According to the UCPF conjecture,M(k)
λµ (q) should be closely related to

q
1
2n·Kφφ ·n− 1

2n′·Kφφ ·n′ ∑′

m

q
1
2m·Kψψ ·m+n·Kφψ ·m

(6.2)×
∏
i

[
((I − Kψψ) · m)i − (Kψφ · n)i + ui

mi

]
,

whereλ=∑
n′
iΛi andµ=∑

i niΛi . (We have setQ = 0 as we are only discussing pat
starting at the identity representation.)

In the simply-laced case, it has been conjectured before (see, e.g., [10] and refe
therein) thatM(k)

λµ (q) can indeed be written in terms of the UCPF based onKqp =
X−1
n ⊗ M−1

k . Here we will focus on a specific non-simply-laced example, namelyso(5)

at levelsk = 1,2. We defer a general investigation to future work. An explicit recipe for
computingM(k)

λµ (q) for g = so(5), at level 1, was given in [48]. Explicit formulae for the
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level k = 1 case were given in [12]. Concretely,

M
(1)
(0,0),(n1,n2)

(q)= q
1
2
(
n2

1+n1n2
)+ 3

8n
2
2
∑
m1

q
1
2
(
m2

1−m1n2
)[ 1

2n2
m1

]
,

n1 + 1

2
n2 +m1 even, n2 even,

M
(1)
(1,0),(n1,n2)

(q)= q
1
2
(
n2

1+n1n2
)+ 3

8n
2
2− 1

2
∑
m1

q
1
2
(
m2

1−m1n2
)[ 1

2n2
m1

]
,

n1 + 1

2
n2 +m1 odd, n2 even,

M
(1)
(0,1),(n1,n2)

(q)= q
1
2
(
n2

1+n1n2
)+ 3

8n
2
2− 3

8
∑
m1

q
1
2
(
m2

1−m1n2
)[ 1

2(n2 + 1)
m1

]
,

(6.3)
1

2
(n2 + 1)+m1 even, n2 odd.

The above formulae are of the UCPF form with

(6.4)K =
 1 0 − 1

2

0 1 1
2

− 1
2

1
2

3
4

 ,

which is to be compared to theB2,1 quasiparticle K-matrix of Section 4.3.2, given by

(6.5)K =
1 1

2
1
2

1
2

3
4

1
4

1
2

1
4

3
4

 .

While the pseudoparticle part of Eqs. (6.4) and (6.5) agree, the K-matrices obviously
in the physical particle part. Both K-matrices are reminiscent ofso(6), but while (6.5) has
physical particles inherited from the4 and4̄ of so(6), Eq. (6.4) contains physical particle
inherited from the4 and the6 of so(6). Since6 = 5 ⊕ 1 underso(5), the matrix (6.4)
does indeed seem to be better suited to describe general (truncated) Kostka poly
for so(5), although we expect that theso(5) Kostka polynomials can also be expressed
terms of a UCPF based on (6.5). Unfortunately, it seems that Eq. (6.4) does not
straightforward higher level generalization.

Therefore, motivated by the decomposition of finite-dimensional irreducible repres
tionsW(n1,n2,n3) of so(6) into those ofso(5) under the regular embeddingso(5)→ so(6),
i.e.,

(6.6)W(n1,n2,0)
∼=

n1⊕
l=0

W(n1−l,n2),

we introduce
n1∑[ ]
(6.7)M̃
(1)
(0,0),(n1,n2)

(q)=
k=0

n1
k

M
(1)
(0,0),(n1−k,n2)

(q).
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Inserting the expression forM(1)
(0,0),(n1−k,n2)

(q), and changingk → n1 − k in the
summation, we find

(6.8)M̃
(1)
(0,0),(n1,n2)

(q)=
∑

k,l;k+l+n2/2 even

q
1
2
(
k2+kn2

)+ 3
8n

2
2+ 1

2 l
2− 1

2 ln2

[ 1
2n2
l

][
n1
k

]
.

Now, letp = k − l, then

M̃
(1)
(0,0),(n1,n2)

(q)=
∑
p

∑
k,l;k−l=p

q
1
2p

2+ 1
2pn2+ 3

8n
2
2qkl

[ 1
2n2
l

][
n1
k

]

(6.9)=
∑
p

q
1
2p

2+ 1
2pn2+ 3

8n
2
2

[
n1 + 1

2n2
n1 − p

]
,

where, in the last step, we have used a finite version of the Durfee square formula (s
Finally, lettingp → n1 − p, we find

(6.10)M̃
(1)
(0,0),(n1,n2)

(q)= q
1
2
(
n2

1+n1n2
)+ 3

8n
2
2
∑
p

q
1
2p

2−pn1− 1
2pn2

[
n1 + 1

2n2
p

]
.

A similar computation can be given for the other sectorsM
(1)
(n′

1,n
′
2),(n1,n2)

(q) of (6.3). Now,

Eq. (6.10) is of the UCPF form with

(6.11)K =
 1 −1 − 1

2

−1 1 1
2

− 1
2

1
2

3
4

 ,

which has the sameKψψ andKφφ parts as (6.4), but differs in the couplingKψφ .
Now consider theso(5), level k = 2 case. As an ansatz we take the pseudopar

matrix of Section 4.3.2 (see also Eq. (5.17)), and the physical particles of Eq. (6.11
adjust the coupling between them. Specifically, let

(6.12)K =



1 −1 − 1
2 − 1

2 0 0

−1 2 1 1 −1 − 1
2

− 1
2 1 3

2
1
2 − 1

2 − 3
4

− 1
2 1 1

2
3
2 − 1

2 − 1
4

0 −1 − 1
2 − 1

2 1 1
2

0 − 1
2 − 3

4 − 1
4

1
2

3
4


.

Note that this matrix is not invertible, as is the case for the matrix in Eq. (6.11). T
Eq. (6.2) reads explicitly

M̃
(2)
(n′

1,n
′
2),(n1,n2)

(q)= q
1
2
(
n2

1+n1n2
)+ 3

8n
2
2− 1

2
(
n′2

1 +n′
1n

′
2
)− 3

8n
′2
2∑′ 1 (2m2+4m2+3m2+3m2)− 1m1(2m2+m3+m4)+m2(m3+m4)+ 1m3m4
×

m

q 4 1 2 3 4 2 2
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× q− 1
2n1(2m2+m3+m4)− 1

4n2(2m2+3m3+m4)

×
[ 1

2(2m2 +m3 +m4)+ u1
m1

]
×
[
m1 − (m2 +m3 +m4)+ n1 + 1

2n2 + u2
m2

]
×
[ 1

2

(
m1 − (2m2 +m3 +m4)

)+ 1
2n1 + 3

4n2 + u3
m3

]
(6.13)×

[ 1
2

(
m1 − (2m2 +m3 +m4)

)+ 1
2n1 + 1

4n2 + u4
m4

]
,

with some appropriate restriction on the summation over(m1, . . . ,m4).
Numerical evidence suggests the following conjecture (cf. (6.7))

(6.14)M̃
(2)
(n′

1,n
′
2),(n1,n2)

(q)=
n1∑
k=0

[
n1
k

] n′
1∑

l=0

M
(2)
(n′

1−l,n′
2),(n1−k,n2)

(q),

or equivalently,

M
(2)
(n′

1,n
′
2),(n1,n2)

(q)=
n1∑
k=0

(−1)kq
1
2k(k−1)

[
n1
k

]

(6.15)×
n′

1∑
l=0

(−1)lM̃(2)
(n′

1−l,n′
2),(n1−k,n2)

(q),

where the vectorsu in (6.13), for given(n′
1, n

′
2), are given in Table 1.4 The summation

restrictions are such that 2m2 + m3 + 3m4 ≡ 2((n1 − n′
1) + (n2 − n′

2))mod4, and

n1 + n2
2 +m1 ≡ (

n′
1 + n′

2
2

)
mod2.

Again, the conjectured formula (6.14) is strongly reminiscent of the decompositi
finite-dimensional irreducible representations (6.6). This suggests that while the pro
of Section 4.3.2 does produce a pseudoparticle K-matrix leading to the correct c
charge, it still overcounts the number of fusion paths. This overcounting can also b
by applying the analysis of Section 2.2, as the pseudoparticle K-matrix does not give

Table 1
The vectorsn′ andu for theso(5)2 Kostka polynomials

(n′
1, n

′
2) (u1;u2, u3, u4)

(0,0) (0; 0,0,0)
(1,0)

(
0; 1, 1

2 ,
1
2

)
(0,1)

(
0; 1

2 ,
1
4 ,

3
4

)

4 We have not been able to find theu-vectors corresponding to the remaining integrable highest weight
modules at level 2, i.e.,(n′

1, n
′
2)= (2,0), (1,1) and(0,2).
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the same recursion relations as theso(5)2 fusion rules. For this reason we also expect t
theso(5)2 characters, when written in UCPF form using the K-matrices of Section 4
will need alternating sign corrections.

7. Discussion

In this paper, we proposed a scheme to obtain the K-matrices for the CFTs with
Lie algebra symmetry. This construction was based on character identities, which
applied to certain Abelian covering states. After projecting out some degrees of fre
the K-matrices were obtained. Subsequently, these K-matrices were used to obtain
matrices of coset CFTs. Also, they appeared in some expressions for the level-k restricted
Kostka polynomials.

It would be interesting to investigate if the K-matrices obtained here indeed ar
central objects in the Kostka polynomials related to a general affine Lie algebr
interesting open question is whether similar K-matrices can be used for more genera
such as the twisted affine Lie algebras (and their parafermions), which were stud
[16] and [17]. Another interesting class of theories which might be addressed in a s
fashion are the affine Lie superalgebras and the related parafermions (see, for in
[14] and [32] for the caseosp(1|2)).

Most of our consistency checks on whether we obtained the correct K-matrices
based on the fact that the central charge worked out correctly. Even though this
to be an extremely restrictive ‘guide’, the ultimate verification of course relies on
construction of the CFT characters in the UCPF form using these K-matrices.
we have proved this in special cases, and did numerical checks in others, a co
verification requires tools beyond the scope of this paper, and will require proving a h
newq-identities. A systematic approach towards a full proof will undoubtedly benefit
a better algebra-geometric understanding of the role of K-matrices (see, e.g., [10,
for some initial studies).

Note added

In an earlier version of this paper we referred to the Kostka polynomials of Sect
as “generalized Kostka polynomials” to indicate the generalization of the standaAn

Kostka polynomials to general simple Lie algebras. In order to avoid confusion wit
“generalized Kostka polynomials”, introduced independently by Schilling and Wa
[43] and by Kirillov and Shimozono [37] (cf. [40] for a discussion), which are more gen
than the Kostka polynomials which are the subject of this paper, we will simply refer t

polynomials in this paper as (level restricted) Kostka polynomials. We thank Ole Warnaar
for communication on these points.
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Appendix A. Cartan matrices and their inverses

In this appendix, we will list of the Cartan matrices of the simple Lie algebras, to cl
the conventions used in this paper. In addition, we will give some other properties, n
the dimension and the dual Coxeter number. Other properties can be found, for in
in [23].

In the Cartan matrices, the empty entries correspond to zeros, unless otherwise
by the dots. Even though we only use matrices corresponding to simply laced Lie alg
we will give the Cartan matrices of all the simple Lie algebras, for completeness. W
denote the Cartan matrix corresponding to the Lie algebraXn by Xn.

An: The Cartan matrix forAn is given by

(A.1)An =



2 −1

−1 2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 2


,

(A.2)A−1
n = 1

n+ 1



n n− 1 n− 2 . . . 2 1

n− 1 2(n− 1) 2(n− 2) . . . 4 2

n− 2 2(n− 2) 3(n− 3) . . . 6 3
...

...
...

. . .
...

...

2 4 6 . . . 2(n− 1) n− 1

1 2 3 · · · n− 1 n


.

Bn:

Bn =



2 −1

−1 2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −2


,

−1 2
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(A.3)B−1
n =



1 1 1 · · · 1 1

1 2 2 · · · 2 2

1 2 3 · · · 3 3
...

...
...

. . .
...

...

1 2 3 · · · n− 1 n− 1
1
2 1 3

2 · · · n−1
2

n
2


Cn:

Cn =



2 −1

−1 2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−2 2


,

(A.4)C−1
n =



1 1 1 · · · 1 1
2

1 2 2 · · · 2 1

1 2 3 · · · 3 3
2

...
...

...
. . .

...
...

1 2 3 n− 1 n−1
2

1 2 3 · · · n− 1 n
2


.

Dn:

Dn =



2 −1

−1 2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1 −1

−1 2 0

−1 0 2


,

(A.5)D−1
n =



1 1 1 · · · 1 1
2

1
2

1 2 2 · · · 2 1 1

1 2 3 · · · 3 3
2

3
2

...
...

...
. . .

...
...

...

1 2 3 · · · n− 2 n−2
2

n−2
2

1 1 3 · · · n−2 n n−2


.

2 2 2 4 4
1
2 1 3

2 · · · n−2
2

n−2
4

n
4
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E6:

E6 =



2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 −1

0 0 −1 2 −1 0

0 0 0 −1 2 0

0 0 −1 0 0 2


,

(A.6)E−1
6 = 1

3



4 5 6 4 2 3

5 10 12 8 4 6

6 12 18 12 6 9

4 8 12 10 5 6

2 4 6 5 4 3

3 6 9 6 3 6


.

E7:

E7 =



2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 −1

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 0

0 0 0 −1 0 0 2


,

(A.7)E−1
7 = 1

2



3 4 5 6 4 2 3

4 8 10 12 8 4 6

5 10 15 18 12 6 9

6 12 18 24 16 8 12

4 8 12 16 12 6 8

2 4 6 8 6 4 4

3 6 9 12 8 4 7


.

E8:

E8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0


,

0 0 0 0 −1 0 0 2
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(A.8)E−1
8 =



2 3 4 5 6 4 2 3

3 6 8 10 12 8 4 6

4 8 12 15 18 12 6 9

5 10 15 20 24 16 8 12

6 12 18 24 30 20 10 15

4 8 12 16 20 14 7 10

2 4 6 8 10 7 4 5

3 6 9 12 15 10 5 8


.

F4:

(A.9)F4 =


2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2

 , F−1
4 =


2 3 4 2

3 6 8 4

2 4 6 3

1 2 3 2

 .

G2:

(A.10)G2 =
(

2 −3

−1 2

)
, G−1

2 =
(

2 3

1 2

)
.

In Table 2 we list some of the properties of the simple Lie algebras. The black no
the Dynkin diagrams correspond to the short roots.

In addition to the Cartan matrices given above, we will frequently use the symme
Cartan matrix ofBk , which we denote byM−1

k . Explicitly, we have

(A.11)

Mk =


1 1 1 · · · 1

1 2 2 · · · 2

1 2 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · k

 , M−1
k =



2 −1

−1 2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 1


.

The simple Lie algebras are labeled byXn, where n is the rank, andX can be
A,B, . . . ,G. As we will only be dealing with the untwisted affine Lie algebras, we will
the notationXn,k , rather than(X(1)

n )k , which is more common in the literature. Sometim
we will use the notationsl(n)k , so(2n− 1)k, sp(2n)k andso(2n)k for the infinite series o
untwisted affine Lie algebras. Here, and in the rest of the paper, the level is denotedk.

Blackboard bold, such asA is used for matrices, while vectors are in boldface, suc
Q. If we want to specify a column of a matrix, sayA, we use the notation(A)c , where the

integerc denotes the column we want to specify. In bilinear forms such asmT · K · m, we
will frequently omit the transposition symbolT.
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Table 2
Some properties of the finite-dimensional simple Lie algebras

Xn Dynkin diagram dimXn h∨

An n(n+ 2) n+ 1

Bn n(2n+ 1) 2n− 1

Cn n(2n+ 1) n+ 1

Dn 2n(n− 1) 2n− 2

E6 78 12

E7 133 18

E8 248 30

F4 52 9

G2 14 4

Appendix B. Obtaining the so(5)1 matrices

The electron matrix forso(5)1 can be obtained by using knowledge about the r
diagram and the associated parafermions (see [25] for general parafermion theorie
will anticipate that it is in fact possible to use a quantum Hall type of basis for this th
So we define a set of electron operators, where the vertex operator part is chosen
a way that the spin and charge are such that we actually have electron-like operato
matrixKe is obtained via the connection with the exclusion statistics, i.e., we calcula
associated exclusion statistics parameters of these electron operators. From [25] w
that at levelk = 1, the short roots ofso(5) come with a parafermion operator, which
in fact the Majorana fermionψ , which has the same exclusion statistics parameter
fermion, namely, 1. The root diagram ofso(5) is given in Fig. 1. The electron operators w
take to be part of the quantum Hall basis correspond to�Ψ ↓, ∆↑↑

s and∆c. These operator
take the form (at levelk = 1)

(B.1)�Ψ ↓ =ψ :e i√
2
(ϕc+ϕs): , ∆↑↑

s = :ei
√

2ϕs : , ∆c = :ei
√

2ϕc : ,

whereϕs andϕc are spin and charge bosons, respectively, chosen according to the spin and
charge direction indicated in Fig. 1. From these operators, we infer the following exclusion
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Fig. 1. The roots(•) and weights(◦) of so(5).

statistics matrix

(B.2)Ke =
 2 −1 −1

−1 2 0

−1 0 2

 , te =
 1

0

−2

 , se =
−1

2

0

 .

We should comment on a few things here. First of all, the matrix we found is equal
Cartan matrix ofso(6), which relates to the so-called covering state of the state re
to so(5). This is analogous to the situation of the Moore–Read state, which is rela
a two-layer state. So we could have started from this K-matrix, and performed a s
construction as was done in Section 3.4.1 to find the K-matrices for the Moore–Read
This would lead to the same matrix (B.2). In addition, in the quasiparticle sector, the
pseudoparticle, just as in the Moore–Read case. The matrix for the quasiparticle sec
simply be obtained by inverting the matrix (B.2). As said, it is important to notice tha
particle in the quasiparticle sector which has trivial quantum numbers, is to be cons
as a pseudoparticle. Otherwise, we would not obtain the correct central charge, and
not the correct description. We find

(B.3)Kqp =
 1 1

2
1
2

1
2

3
4

1
4

1
2

1
4

3
4

 , tqp =
0

0

1

 , sqp =
 0

−1

0

 .

To obtain the K-matrices forso(5) at general level, we takek copies of the level-1
formulation, and do a similar construction as described in Section 3.2. This gives the
of Section 4.3.

Appendix C. The case G2,k

In Section 4.3 we found that the K-matrices for the affine Lie algebraG2,k are specia
in the sense that the number of physical quasiparticles is not equal to the rank

algebra (which is 2), if we use the standard construction of Section 4.1. Here, we will
find another way of describing this theory, which does have two physical quasiparticles.
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Fig. 2. The roots ofG2.

We will start by deriving the K-matrices for levelk = 1, in a similar way as we did fo
so(5)1 in Appendix B. We continue by explaining how to obtain the K-matrices for gen
level k. This is a little different from Section 4.1, as the P-transformation which is ne
is different.

The root lattice for the Lie algebraG2 is given in Fig. 2. In fact, it is not possible to pic
four electron-like operators, such that the K-matrix is the Cartan matrix of the envel
algebraso(8), but we will stay as close as possible.

The short roots come with two types of parafermions,ψ1 andψ2, which belong to the
Z3 parafermion theory. The operators needed to form the quantum Hall basis are

(C.1)Ψ ↑ =ψ1:exp

{
i√
6
φc + i√

2
φs

}
: , �Ψ ↓ =ψ2:exp

{
− i√

6
φc − i√

2
φs

}
: ,

(C.2)∆↑
c = :exp

{
i

3√
6
φc + i√

2
φs

}
: , ∆↓

c = :exp

{
i

3√
6
φc − i√

2
φs

}
: ,

whereφc,s are the charge and spin boson. As the K-matrix for theZ3 parafermions is given
by

(C.3)K
pf
Z3

=
( 4

3
2
3

2
3

4
3

)
,

and the statistics parameters due to the vertex operators of the spin and charge bo
easily calculated, we find the following data for the ‘electron’ sector of theG2,k=1 theory

(C.4)Ke =


2 0 1 0

0 2 −1 0

 , te = −


1

−1

 , se =


1

−1

 .

1 −1 2 1

0 0 1 2

3

3

1

−1
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By the duality construction, we find the dual data

(C.5)Kqp =


1 − 1

2 −1 1
2− 1

2 1 1 − 1
2

−1 1 2 −1
1
2 − 1

2 −1 1

 , tqp =


0

0

1

1

 , sqp =


0

0

−1

1

 ,

where the first two particles are pseudoparticles, which reduce the central charge, a
care of the non-Abelian statistics. Note that we do not use the usual ordering of the
matrix (compare Appendix A), because in the quasiparticle sector, we want the fi
particles to be the pseudoparticles.

Picking the operators associated to the right roots is crucial in finding a basis for tG2
affine Lie algebra. The way we have chosen them here gives a description which do
the right central charge, and has two physical quasiparticles.

We would like to comment on the difference between the pseudoparticle ma
for the two descriptions ofG2,1. If we apply the composite construction on the 2× 2
pseudoparticle matrix of this appendix, we indeed find the pseudoparticle matrix (at le
of Section 4.3. This matrix also appeared in Section 2.2, Eq. (2.59). So the pseudop
are equivalent in both cases.

We now proceed by constructing the matrices for levelk. As usual, the covering is o
the formKe⊗ Ik . The required P-transformation turns out to be of the form (compare
Appendix D)

(C.6)P′ =


I4 Ju4 · · · Ju4

Jl4 I4
. . .

...

...
. . .

. . . Ju4

Jl4 · · · Jl4 I4

 ,

whereJu4 andJl4 are given by

(C.7)Ju4 =


1

0

0

1

 , Jl4 =


0

1

1

0

 .

BecauseJu4 + Jl4 = I4, all composites up to orderk are formed. To display the resultin
matrix, it is most convenient to reorder the particles in the order of increasing qua
numbers (this is not done automatically, because of the form of the P-transformatio
conveniently display the ‘permuted’ K-matrix for the electron sector, we define a mod
Cartan matrix ofD4

(C.8)M(a, b, c)=


a 0 b 0

0 a c 0

 .

b c a b

0 0 b a
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Then, the electron K-matrix forG2,k can be described by

(C.9)

K
G2,k
e =



M(2,0,−1) M(2,0,−1) · · · · · · M(2,1,−1)
M(2,0,−1) M(4,0,−2) M(4,2,−2)

.

.

.
. . .

.

.

.

M
(
2min(i, j),max(i + j − k,0),− min(i, j)

)
.
.
.

. . .
.
.
.

M(2,1,−1) M(4,2,−2) · · · · · · M(2k, k,−k)

 .

To make this a little more clear, we give the result fork = 2 explicitly

(C.10)Ke =



2 0 0 0 2 0 1 0
0 2 −1 0 0 2 −1 0
0 −1 2 0 1 −1 2 1
0 0 0 2 0 0 1 2

2 0 1 0 4 0 2 0
0 2 −1 0 0 4 −2 0
1 −1 2 1 2 −2 4 2
0 0 1 2 0 0 2 4


.

The quasiparticle sector fork > 2 is characterized by the following matrices (compare w
Section 4)

(C.11)Kψψ =



2D−1
4 −D−1

4 −(D−1
4

)
1

−D−1
4 2D−1

4
. . .

. . .
. . . −D−1

4

−D−1
4 2D−1

4 −(D−1
4

)
3

−(D−1
4

)T
1 1 0

−(D−1
4

)T
3 0 1


,

(C.12)Kφψ =
( −(D−1

4

)T
2 0 1

−(D−1
4

)T
4

1
2 0

)
,

(C.13)Kφφ =
(

2 0

0 1

)
,

(C.14)tqp = (0, . . . ,0; 1,1),

(C.15)sqp = (0, . . . ,0; −1,1).

So, although the form of the K-matrix differs from the general description, we still
that all the elements are related to the (inverse) Cartan matrix of the Lie algebraD4.

Now that we have a description ofG2 which does have two quasiparticles (for everyk),

we can use the same conjecture (5.14) to find the K-matrices for the parafermions, namely,
the parafermion theoryG2,k/[u(1)]2. So, without giving the explicit form, it is found that
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the parafermion K-matrixKpf
G2

= K−1
ψψ does have the right properties. It gives the corr

central charge, and reproduces the string functions as described in Section 5.3.
For the casek = 1, we indeed find that the parafermions associated toG2 are theZ3

parafermions. At levelk � 2 we find the K-matrices of theG2 parafermions, which fo
k = 2 is given by

(C.16)K
pf
G2,k=2 =



5
3

1
3 − 1

2 0 4
3

3
2

1
3

5
3 − 1

2 0 2
3

4
2

− 1
2 − 1

2 1 − 1
2 0 0

0 0 − 1
2 1 0 0

4
3

2
3 0 0 8

3
4
3

2
3

4
3 0 0 4

3
8
3


.

Note the ‘asymmetry’ between the parafermions 3 and 4.

Appendix D. Relating different bases

In Section 4.1 we pointed out that the K-matrices forsl(3)k found in [3] differ from the
ones we presented here. The reason for this was also given. In [3], all the particles
electron sector were chosen such that their charge all had the same sign. Conseque
K-matrix for level-1 was based on the rootsα1 and−α2. This resulted in the following
K-matrix and quantum number vectors

(D.1)K′(k=1)
e =

(
2 1

1 2

)
, t′

e = −
(

1

1

)
, s′

e =
(

1

−1

)
.

In this appendix, we will explain in detail the relation between this approach an
one followed in this paper. The matrix (D.1) can also be used to obtain K-matrice
sl(3)k. This formulation is different, but can be related to the one obtained in Sectio
We will first show that we can construct thesl(3)k K-matrices found in [3] using the P
transformations. We then explicitly relate the two constructions.

So, let us begin with the covering matrix based on Eq. (D.1), which is constr
in the usual way, by taking a direct sum ofk copies:K′cover

e = K
′(k=1)
e ⊗ Ik . Now the

P-transformation is different than the one used in Section 4.1. It will be such th
composites up to orderk are formed (for both spin up and spin down particles). Howe
P is not lower triangular, but instead we have

(D.2)P′ =


I2 Ju2 · · · Ju2

Jl2 I2
. . .

...

...
. . .

. . . Ju2

Jl2 · · · Jl2 I2

 .

( 1 0) ( 0 0)
Here,Ju2 = 0 0 andJl2 = 0 1 . The transformed K-matrixP′ · K′cover
e · P′T is most easily

described after a suitable permutation of the particles, which orders the particles according
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to their quantum numbers; as indicated before, all composites (up to orderk) are formed,
becauseJu2 + Jl2 = I2. The quantum numbers after applying the P-transformation to
covering and the permutation to order them, are given byt′

e = −(1,1,2,2, . . . , k, k) and
s′
e = (1,−1,2,−2, . . ., k,−k). The K-matrix becomes

(D.3)K′
e =



2 0 2 0 · · · 2 0 2 1

0 2 0 2 · · · 0 2 1 2

2 0 4 0 · · · 4 1 4 2

0 2 0 4 · · · 1 4 2 4
...

...
...

...
. . .

...
...

...
...

2 0 4 1 · · · 2(k − 1) k − 2 2(k − 1) k − 1

0 2 1 4 · · · k − 2 2(k − 1) k − 1 2(k − 1)

2 1 4 2 · · · 2(k − 1) k − 1 2k k

1 2 2 4 · · · k − 1 2(k − 1) k 2k


.

This matrix is to be compared withKe of Eq. (4.9). The diagonal part of the 2× 2 blocks is
the same, namely, 2 min(i, j), wherei, j label the blocks. The off-diagonal parts are giv
by max(k − i − j,0). The inverse is found to be (again, after a suitable permutation o
particles)

(D.4)K′
qp =



−(A−1
2

)
1 0

0 0
A−1

2 ⊗ Ak−1 · · · · · ·
0 0
0 −(A−1

2

)
2

−(A−1
2

)T
1 0 · · · 0 0 2

3 0

0 0 · · · 0 −(A−1
2

)T
2 0 2

3


,

which is to be compared withKqp of Eq. (4.12). To relate the two descriptions, we make
of the fact that we know how to relate the matrices fork = 1. The difference is the use ofα2

in the description detailed in Section 4.1 and−α2 in the description of this appendix an
[3]. Recall that the K-matrix for levelk = 1 from Section 4.1 is given byK(k=1)

e = ( 2 −1
−1 2

)
.

So we find that we can relate the two K-matrices for level-1 by a W-transformation, w
is given byK

′(k=1)
e = W · K

(k=1)
e · WT, whereW = ( 1 0

0 −1

)
. Because we also know how

transform the coverings into the corresponding K-matrices forsl(3)k, we can relate the tw

descriptions in terms of a W-transformation. Apart from the extra permutations which are
involved, the calculation is straightforward, and we find the relationK′

e = We · Ke · WT
e,
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with (dropping the subscript 2)

(D.5)We =



−Jl −Ju Ju

. . . . .
.

Ju

. . .. .
. ...

. .
. . . . Ju

−Ju −Jl Ju

Ju − Jl


,

where
. . .. .
.

stands for(−Jl −Ju

−Ju −Jl

)
if k is odd and for−Jl −Ju

−I

−Ju −Jl


if k is even. Note thatW−1

e = We. For the quasiparticle sector we have a similar relat
K′

qp = Wqp · Kqp · WT
qp. But because we needed the extra permutations, we do not ha

relationWqp = (W−1
e )T. This only holds for the case at hand if we undo this permuta

Instead, we have

(D.6)Wqp =


−I

−I

. . .

−I

Ju Ju · · · Ju Ju − Jl

 .

Note that in going from the one formulation to the other, we are only transformin
physical quasiparticles, the pseudoparticles are not changed. This should be the
the pseudoparticles govern the fusion rules and the central charge.

Let us end this discussion by mentioning that the formulation forsl(3)k of the type of
Eq. (D.3) can be generalized to arbitrary affine Lie algebra CFTs. The relations betwe
description in this paper is precisely analogous to the relation forsl(3) as described in thi
appendix. The only difference would be in the form of the matricesJu andJl . However,
they still would only have non-zero elements on the diagonal, subject to the con
Ju + Jl = I.
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